
Asynchronous Verifiable Secret Sharing and Proactive
Cryptosystems� y

Christian Cachin Klaus Kursawe Anna Lysyanskaya
z

Reto Strobl
IBM Research

Zurich Research Laboratory
CH-8803 Rüschlikon, Switzerland
{cca,kku,rts}@zurich.ibm.com

ABSTRACT
Verifiable secret sharing is an important primitive in distributed
cryptography. With the growing interest in the deployment of
threshold cryptosystems in practice, the traditional assumption of
a synchronous network has to be reconsidered and generalized to
an asynchronous model. This paper proposes the first practical
verifiable secret sharing protocol for asynchronous networks. The
protocol creates a discrete logarithm-based sharing and uses only
a quadratic number of messages in the number of participating
servers. It yields the first asynchronous Byzantine agreement pro-
tocol in the standard model whose efficiency makes it suitable for
use in practice. Proactive cryptosystems are another important ap-
plication of verifiable secret sharing. The second part of this paper
introduces proactive cryptosystems in asynchronous networks and
presents an efficient protocol for refreshing the shares of a secret
key for discrete logarithm-based sharings.

Keywords
Asynchronous, Secret Sharing, Proactive, Model

1. INTRODUCTION
The idea of threshold cryptographyis to distribute the power of

a cryptosystem in a fault-tolerant way [12]. The cryptographic op-
eration is not performed by a single server but by a group of n
servers, such that an adversary who corrupts up to t servers and
observes their secret key shares can neither break the cryptosystem
nor prevent the system as a whole from correctly performing the
operation.

�This work was supported by the European IST Project MAFTIA
(IST-1999-11583). However, it represents the view of the authors.
The MAFTIA project is partially funded by the European Commis-
sion and the Swiss Department for Education and Science.
yExtended abstract. Full version available at http://eprint.
iacr.org/2002/134.
zBrown University, Providence, RI 02912, USA. anna@cs.
brown.edu. Work done at IBM Zurich.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’02,November 18-22, 2002, Washington, DC, USA.
Copyright 2002 ACM 1-58113-612-9/02/0011 ...$5.00.

However, when a threshold cryptosystem operates over a longer
time period, it may not be realistic to assume that an adversary cor-
rupts only t servers during the entire lifetime of the system. Proac-
tive cryptosystemsaddress this problem by operating in phases;
they can tolerate the corruption of up to t different servers dur-
ing every phase [18]. They rely on the assumption that servers may
erasedata and on a special reboot procedure to remove the adver-
sary from a corrupted server. The idea is to proactively reboot all
servers at the beginning of every phase, and to subsequently refresh
the secret key shares such that in any phase, knowledge of shares
from previous phases does not give the adversary an advantage.
Thus, proactive cryptosystems tolerate a mobile adversary[20],
which may move from server to server and eventually corrupt every
server in the system.

Since refreshing is a distributed protocol, the network model de-
termines how to make a cryptosystem proactively secure. For syn-
chronous networks, where the delay of messages is bounded, many
proactive cryptosystems are known (see [6] and references therein).
However, for asynchronous networks, no proactive cryptosystem is
known so far. Because of the absence of a common clock and the
arbitrary delay of messages, several problems arise: First, it is not
clear how to define a proactive phase when the servers have no
common notion of time. Second, even if the notion of a common
phase is somehow imposed by external means, a message of the
refresh protocol might be delayed arbitrarily across phase bound-
aries, which poses additional problems. And last but not least, one
needs an asynchronous share refreshing protocol.

The distributed share refreshing protocols of all proactive cryp-
tosystems rely on verifiable secret sharing. Verifiable secret shar-
ing is a fundamental primitive in distributed cryptography [11] that
has found numerous applications to secure multi-party computa-
tion, Byzantine agreement, and threshold cryptosystems. A veri-
fiable secret sharing protocol allows a distinguished server, called
the dealer, to distribute shares of a secret among a group of servers
such that only a qualified subgroup of the servers may reconstruct
the secret and the corrupted servers do not learn any information
about the secret. Furthermore, the servers need to reach agreement
on the success of a sharing in case the dealer might be faulty.

Asynchronousverifiable secret sharing protocols have been pro-
posed previously [1, 9, 5]. However, all existing solutions are pro-
hibitively expensive to be suitable for practical use: the best one
has message complexity O(n5) and communication complexity
O(n6 log n). This is perhaps not surprising because they achieve
unconditionalsecurity. In contrast, we consider a computational
setting and obtain a much more efficient protocol. Our protocol
achieves message complexity O(n2) and communication complex-
ity O(�n3), where � is a security parameter, and optimal resilience

88

n > 3t.
Specifically, we assume hardness of the discrete-logarithm prob-

lem. Our protocol is reminiscent of Pedersen’s scheme [22], but the
dealer creates a two-dimensional polynomial sharing of the secret.
Then the servers exchange two asynchronous rounds of messages
to reach agreement on the success of the sharing, analogous to the
deterministic reliable broadcast protocol of Bracha [2].

Combining our verifiable secret sharing scheme with the pro-
tocol of Canetti and Rabin [9], we obtain the first asynchronous
Byzantine agreement protocol that is provably secure in the stan-
dard model andwhose efficiency makes it suitable for use in prac-
tice.

With respect to asynchronous proactive cryptosystems, our con-
tributions are twofold. On a conceptual level, we propose a formal
model for cryptosystems in asynchronous proactive networks, and
on a technical level, we present an efficient protocol for proactively
refreshing discrete logarithm-based shares of a secret key.

Our model of an asynchronous proactive networkextends an
asynchronous network by an abstract timer that is accessible to ev-
ery server. The timer is scheduled by the adversary and defines the
phase of a server locally. We assume that the adversary corrupts
at most t servers who are in the same local phase. Uncorrupted
servers who are in the same local phase may communicate via pri-
vate authenticated channels. Such a channel must guarantee that
every message is delayed no longer than the local phase lasts and
that it is lost otherwise.

A proactive cryptosystem refreshes the sharing of the secret key
at the beginning of every phase (i.e., when sufficiently many servers
enter the same local phase). Our model implies that liveness for the
cryptosystem is only guaranteed to the extent that the adversary
does not delay the messages of the refresh protocol for longer than
the phase lasts. Otherwise, the secret key may become unaccessi-
ble. Despite this danger, we believe that our model achieves a good
coverage for real-world loosely synchronized networks, such as the
Internet, since a phase typically lasts much longer than the maximal
delay of a message in the network.

Finally, we propose an efficient proactive refresh protocol for
discrete logarithm-based sharings. It builds on our verifiable secret
sharing protocol and on a randomized asynchronous multi-valued
Byzantine agreement primitive [3]. The refresh protocol achieves
optimal resilience n > 3t and has expected message complexity
O(n3) and communication complexity O(�n5).

2. PRELIMINARIES

2.1 Asynchronous System Model
We adopt the basic system model from [4, 3], which describe an

asynchronous network of servers with a computationally bounded
adversary.

Our computational model is parameterized by a security param-
eter �; a function �(�) is called negligible if for all c > 0 there
exists a �0 such that �(�) < 1

�c
for all � > �0.

Network. The network consists of n servers P1; : : : ; Pn, which are
probabilistic interactive Turing machines (PITM) as defined in [15]
that run in polynomial time (in �). There is an adversary, which is
a PITM that runs in polynomial time in �. Some servers are con-
trolled by the adversary and called corrupted; the remaining servers
are called honest. An adversary that corrupts at most t servers is
called t-limited. There is also an initialization algorithm, which is
run by a trusted party before the system starts. On input �, n, t,
and further parameters, it generates the state information used to
initialize the servers, which may be thought of as a read-only tape.

We assume that every pair of servers is linked by a secure
asynchronous channelthat provides privacy and authenticity with
scheduling determined by the adversary. (This is in contrast to [3],
where the adversary observes all network traffic.) Formally, we
model such a network as follows. All communication is driven by
the adversary. There exists a global set of messagesM, whose el-
ements are identified by a label (s; r; l) denoting the sender s, the
receiver r, and the length l of the message. The adversary sees the
labels of all messages inM, but not their contents. M is initially
empty. The system proceeds in steps. At each step, the adver-
sary performs some computation, chooses an honest server Pi, and
selects some message m 2 M with label (s; i; l). Pi is then acti-
vatedwith m on its communication input tape. When activated, Pi
reads the contents of its communication input tape, performs some
computation, and generates one or more response messages, which
it writes to its communication output tape. A response message m
may contain a destination address, which is the index j of a server.
Such an m is added toM with label (i; j; jmj) if Pj is honest; if
Pj is corrupted, m is given to the adversary. In any case, control
returns to the adversary. This step is repeated arbitrarily often until
the adversary halts.

These steps define a sequence of events, which we view as logi-
cal time. We sometimes use the phrase “at a certain point in time”
to refer to an event like this.

We assume an adaptiveadversary that may corrupt a server Pi
at any point in time instead of activating it on an input message. In
that case, all messages m 2 M with label (�; i; jmj) are removed
from M and given to the adversary. She gains complete control
over Pi, obtains the entire view of Pi up to this point, and may
now send messages with label (i; �; jmj). The viewof a server con-
sists of its initialization data, all messages it has received, and the
random choices it made so far.

Termination. We define terminationof a protocol instance only
to the extent that the adversary chooses to deliver messages among
the honest servers [4]. Technically, termination of a protocol fol-
lows from a bound on the number of messages that honest servers
generate on behalf of a protocol, which must be independent of the
adversary.

We say that a message is associatedto a particular protocol in-
stance if it was generated by any server that is honest throughout
the protocol execution on behalf of the protocol.

The message complexityof a protocol is defined as the number of
associated messages (generated by honest servers). It is a random
variable that depends on the adversary and on �.

Similarly, the communication complexityof a protocol is defined
as the bit length of all associated messages (generated by honest
servers). It is a random variable that depends on the adversary and
on �.

Recall that the adversary runs in time polynomial in �. We as-
sume that the parameter n is bounded by a fixed polynomial in �,
independent of the adversary, and that the same holds for all mes-
sages in the protocol, i.e., larger messages are ignored.

For a particular protocol, a protocol statisticX is a family of
real-valued, non-negative random variables fXA(�)g, parameter-
ized by adversary A and security parameter �, where each XA(�)
is a random variable induced by running the system with A. (Mes-
sage complexity is an example of such a statistic.) We restrict our-
selves to protocol statistics that are bounded by a polynomial in the
adversary’s running time.

We say that a protocol statistic X is uniformly boundedif there
exists a fixed polynomial p(�) such that for all adversaries A, there

89

is a negligible function �A, such that for all � � 0,

Pr[XA(�) > p(�)] � �A(�):

A protocol statisticX is called probabilistically uniformly bounded
if there exists a fixed polynomial p(�) and a fixed negligible func-
tion Æ such that for all adversaries A, there is a negligible function
�A, such that for all l � 0 and � � 0,

Pr[XA(�) > lp(�)] � Æ(l) + �A(�):

If X is probabilistically uniformly bounded by p, then for all adver-
saries A, we have E[XA(�)] = O(p(�)), with a hidden constant
that is independent of A. Additionally, if Y is probabilistically
uniformly bounded by q, then X � Y is probabilistically uniformly
bounded by p �q, and X+Y is probabilistically uniformly bounded
by p+ q. Thus, (probabilistically) uniformly bounded statistics are
closed under polynomial composition, which is their main benefit
for analyzing the composition of randomized protocols [3].

Protocol execution and notation. We now introduce our notation
for writing asynchronous protocols. Recall that a server is always
activated with an input message; this message is added to an inter-
nal input buffer upon activation.

In our model, protocols are invoked by the adversary. Every pro-
tocol instanceis identified by a unique string ID , also called the
tag, which is chosen by the adversary when it invokes the instance.

There may be several threads of execution for a given server, but
no more than one is active concurrently. When a server is activated,
all threads are in wait states. A wait state specifies a condition de-
fined on the received messages contained in the input buffer and
other local state variables. If one or more threads are in a wait state
whose condition is satisfied, one such thread is scheduled arbitrar-
ily, and this thread runs until it reaches another wait state. This
process continues until no more threads are in a wait state whose
condition is satisfied. Then, the activation of the server is termi-
nated, and control returns to the adversary.

There are two types of messages that protocols process and gen-
erate: The first type contains input actions, which represent a local
activation and carry input to a protocol, and output actions, which
signal termination and potentially carry output of a protocol; such
messages are called local events. The second message type is an
ordinary point-to-point network message, which is to be delivered
to the peer protocol instance running on another server; such mes-
sages are also called protocol messages.

All messages are denoted by a tuple (ID; : : :); the tag ID de-
notes the protocol instance to which this message is associated. In-
put actions are of the form (ID;in; type; : : :), and output actions
are of the form (ID ;out; type; : : :), with typedefined by the pro-
tocol specification. All other messages of the form (ID; type; : : :)
are protocol messages, where typeis defined by the protocol imple-
mentation.

We describe protocols in a modular way: A protocol instance
may invoke another protocol instance by sending it a suitable in-
put action and obtain its output via an output action of the sub-
protocol. This is realized by a server-internal mechanism, which,
for any message generated by the calling protocol that contains an
input action for a sub-protocol, creates the corresponding proto-
col instance (if not already running) and delivers the input action;
furthermore, it passes all output actions of the sub-protocol to the
calling protocol by adding them to the input buffer.

The pseudo-code notation used for describing our protocols is as
follows. To enter a wait state, a thread may execute a command of
the form wait for condition, where conditionis an ordinary predi-
cate on the input buffer and other state variables. Upon executing
this command, a thread enters a wait state with the given condition.

We specify a condition in the form of receiving messagesor
events. In this case, messagesdescribes a set of one or more proto-
col messages and eventsdescribes a set of local events (e.g., outputs
from a sub-protocol) satisfying a certain predicate, possibly involv-
ing other state variables. Upon executing this command, a thread
enters a wait state, waiting for the arrival of messages satisfying the
given predicate; moreover, when this predicate becomes satisfied,
the matching messages are movedout of the input buffer into local
state variables. If there is more than one set of matching messages,
one is chosen arbitrarily.

We also may specify a conditionof the form of detecting mes-
sages. The semantics of this are the same as for receiving messages,
except that the matching messages are copiedfrom the input buffer
into local state variables.

There is a global implicit wait for statement that every proto-
col instance repeatedly executes; it matches any of the conditions
given in the clauses of the form upon condition block. Every time a
conditionis satisfied, the corresponding block is executed. If there
is more than one satisfied condition, all corresponding blocksare
executed in an arbitrary order.

2.2 Cryptographic Assumptions
Let p and q be two large primes satisfying qj(p� 1), and q > n.

Let G denote a multiplicative subgroup of order q of Zp, and let g
and h be two generators of G chosen by an initialization algorithm
such that no server knows logg h.

The discrete-logarithm problemis to compute logg u given a de-
scription of G, a generator g of G, and an element u 2 G. We
assume that this problem is hard to solve in G, which means that
any probabilistic polynomial-time algorithm solves this problem at
most with negligible probability.

2.3 Multi-valued Validated Byzantine
Agreement

Byzantine agreementis a fundamental problem in distributed
computation [21]. In asynchronous networks, it is impossible to
solve by deterministic protocols [13], which means that one must
resort to randomized protocols. The first polynomial-time solution
to this problem was given by Canetti and Rabin [9, 5]. The standard
notion of Byzantine agreement implements only a binary decision
in asynchronous networks. It can guarantee a particular outcome
only if all honest servers propose the same value. Validated Byzan-
tine agreement[3] extends this to arbitrary domains by means of
a so-called external validity condition. It is based on a global,
polynomial-time computable predicate QID known to all servers,
which is determined by an external application. Each server may
propose a value that perhaps contains validation information. The
agreement ensures that the decision value satisfies QID , and that it
has been proposed by at least one server.

When a server Pi starts a validated Byzantine agreement (VBA)
protocol with a tag ID and input v 2 f0; 1g�, we say Pi proposes
v for ID . W.l.o.g. the honest servers propose values that satisfy
QID . When a server terminates a validated Byzantine agreement
protocol with tag ID and outputs a value v, we say Pi decidesv for
ID .

The protocol of Cachin et al. [3] for multi-valued validated
Byzantine agreement is based on a so-called consistent broadcast
protocol and on a protocol for binary Byzantine agreement, which
rely on threshold signatures and on a threshold coin-tossing pro-
tocol [4]. Both sub-protocols can be implemented efficiently in
the random oracle model. With these primitives, the expected mes-
sage complexity of multi-valued validated agreement isO(n2), and
the expected communication complexity is O(n3 + n2(K + jvj)),

90

where v is the longest value proposed by any server and K is the
length of a threshold signature. These protocols have been proven
secure only against static adversaries [3].

As we show in this paper, binary asynchronous Byzantine agree-
ment can also be implemented efficiently in the standard model and
with adaptive security based on verifiable secret sharing. This solu-
tion incurs a larger communication complexity than the one in [3],
however.

3. ASYNCHRONOUS VERIFIABLE
SECRET SHARING

In this section we define asynchronous verifiable secret sharing
(AVSS) and propose a novel efficient AVSS protocol based on the
discrete-logarithm problem.

3.1 Definition
We consider dual-threshold sharings, which generalize the stan-

dard notion of secret sharing by allowing the reconstruction thresh-
old to exceed the number of corrupted servers by more than
one [23]. In an (n; k; t) dual-threshold sharing, there are n servers
holding shares of a secret, of which up to t may be corrupted by
an adversary, and any group of k or more servers may reconstruct
the secret (n � t � k > t). Such dual-threshold sharings are
an important primitive for distributed computation and agreement
problems [4].

A protocol with a tag ID:d to share a secret s 2 Zq consists of a
sharingstage and a reconstructionstage as follows.

Sharing stage. The sharing stage starts when a server initializes
the protocol. In this case, we say the server initializes a shar-
ing ID:d. There is a special server Pd, called the dealer,
which is activated additionally on an input message of the
form (ID:d; in;share; s). If this occurs, we say Pd shares
s usingID :d among the group. A server is said to complete
the sharingID:d when it generates an output of the form
(ID:d; out;shared).

Reconstruction stage. After a server has completed the sharing, it
may be activated on a message (ID :d; in; reconstruct).
In this case, we say the server starts the reconstruction for
ID :d. At the end of the reconstruction stage, every server
should output the shared secret. A server Pi terminates the
reconstruction stage by generating an output of the form
(ID:d, out, re-constructed, zi). In this case, we say
Pi reconstructszi for ID :d. This terminates the protocol.

The definition of asynchronous verifiable secret sharing is the
same as in synchronous networks, except that some extra care is
required to ensure that all servers agree on the fact that a valid shar-
ing has been established. Our definition provides computational
correctness and unconditional privacy.

Definition 1. A protocol for asynchronous verifiable dual-
threshold secret sharingsatisfies the following conditions for any
t-limited adversary:

Liveness: If the adversary initializes all honest servers on a sharing
ID :d, delivers all associated messages, and the dealer Pd is
honest throughout the sharing stage, then all honest servers
complete the sharing, except with negligible probability.

Agreement: Provided the adversary initializes all honest servers
on a sharing ID:d and delivers all associated messages, the
following holds: If some honest server completes the sharing

ID:d, then all honest servers complete the sharing ID:d and
if all honest servers subsequently start the reconstruction for
ID:d, then every honest server Pi reconstructs some zi for
ID:d, except with negligible probability.

Correctness: Once k honest servers have completed the sharing
ID:d, there exists a fixed value z 2 Zq such that the follow-
ing holds except with negligible probability:

1. If the dealer has shared s using ID :d and is honest
throughout the sharing stage, then z = s.

2. If an honest server Pi reconstructs zi for ID :d, then
zi = z.

Privacy: If an honest dealer has shared s using ID:d and less than
k� t honest servers have started the reconstruction for ID :d,
the adversary has no information about s.

Efficiency: For every ID:d, the communication complexity is uni-
formly bounded.

The first two conditions are liveness conditions. They imply the
same form of termination and agreement as required by the Byzan-
tine generals problem[19], which implements a reliable broad-
cast with Byzantine faults [17, 3] from a distinguished server to
all others. The servers must terminate the protocol only if the dis-
tinguished server is honest, but they agree on the termination of the
protocol such that either none or all honest servers terminate the
protocol and generate some output.

This definition is analogous to the definition of AVSS in the
information-theoretical model by Canetti and Rabin [9].

3.2 Implementation
This section describes a novel verifiable secret sharing protocol

for an asynchronous network with computational security. Our pro-
tocol creates a discrete logarithm-based sharing of the kind intro-
duced by Pedersen [22], and it is much more efficient than the pre-
vious VSS protocols for asynchronous networks [1, 9, 5] (which
were proposed in the information-theoretic model). Our protocol
uses exactly the same communication pattern as the asynchronous
broadcast primitive proposed by Bracha [2], which implements the
Byzantine generals problem in an asynchronous network.

Protocol AVSS creates an (n; k; t) dual-threshold sharing for
any n � 2t � k > t. The sharing stage works as follows (assume
k � dn+t+1

2
e for the moment).

1. The dealer computes a two-dimensional sharing of the secret
by choosing a random bivariate polynomial f 2 Zq[x; y]
of degree at most k � 1 with f(0; 0) = s. It commits to
f(x; y) =

Pk�1
j;l=0 fjlx

jyl using a second random polyno-
mial f 0 2 Zq[x; y] of degree at most k � 1 by computing a

matrixC = fCjlg with Cjl = gfjlhf
0

jl for j; l 2 [0; k� 1].
Then the dealer sends to every server Pi a message contain-
ing the commitment matrix C as well as two share polyno-
mialsai(y) := f(i; y) and a0i(y) := f 0(i; y) and two sub-
share polynomialsbi(x) := f(x; i) and b0i(x) := f 0(x; i),
respectively.

2. When they receive the send message from the dealer, the
servers echo the points in which their share and sub-share
polynomials overlap to each other. To this effect, Pi sends an
echo message containing C, ai(j), a0i(j), bi(j), and b0i(j)
to every server Pj .

91

3. Upon receiving k echo messages that agree on C and con-
tain valid points, every server Pi interpolates its own share
and sub-share polynomials �ai; �a

0
i;�bi, and �b0i from the re-

ceived points using standard Lagrange interpolation. (In case
the dealer is honest, the resulting polynomials are the same
as those in the send message.) Then Pi sends a ready
message containing C; �ai(j); �a0i(j); �bi(j), and �b0i(j) to ev-
ery server Pj .

It is also possible that a server receives k valid ready mes-
sages that agree on C and contain valid points, but has not
yet received k valid echo messages. In this case, the server
interpolates its share and sub-share polynomials from the
ready messages and sends its own ready message to all
servers as above.

4. Once a server receives a total of k+ t ready messages that
agree on C, it completesthe sharing. Its share of the secret
is (si; s0i) = (�ai(0); �a

0
i(0)).

The reconstruction stage is straightforward. Every server Pi re-
veals its share (si; s

0
i) to every other server, and waits for k such

shares from other servers that are consistent with the commitments
C. Then it interpolates the secret f(0; 0) from the shares.

For smaller values of k, in particular for t < k < dn+t+1
2
e, the

protocol has to be modified to receive dn+t+1
2
e echo messages in

step 3. This guarantees the uniqueness of the shared value.
A detailed description of the protocol is given in Figures 1 and 2.

In the protocol description, the following predicates are used:

verify-poly(C; i; a; a0; b; b0), where a, a0, b, and b0 are polyno-
mials of degree k � 1, i.e., a(y) =

Pk�1
l=0 aly

l; a0(y) =
Pk�1

l=0 a
0
ly

l; b(x) =
Pk�1

j=0 bjx
j ; and b0(x) =

Pk�1
j=0 b

0
jx

j ;
the predicate verifies that the given polynomials are share
and sub-share polynomials for Pi consistent with C; it is
true if and only if for all l 2 [0; k � 1], it holds galha

0

l =
Qk�1

j=0 (Cjl)
ij , and for all j 2 [0; k � 1], it holds gbjhb

0

j =
Qk�1

l=0 (Cjl)
il .

verify-point(C; i;m; �; �0; �; �0) verifies that the given val-
ues �, �0, �, and �0 correspond to the points f(m; i),
f 0(m; i), f(i; m), and f 0(i;m), respectively, committed to
in C, which Pi supposedly receives from Pm; it is true

if and only if g�h�
0

=
Qk�1

j;l=0(Cjl)
mj il and g�h�

0

=
Qk�1

j;l=0(Cjl)
ijml

.

verify-share(C;m; �; � 0) verifies that the pair (�; �0) forms a
valid share of Pm with respect to C; it is true if and only if
g�h�

0

=
Qk�1

j=0 (Cj0)
mj

.

The servers may need to interpolate a polynomial a of degree at
most k � 1 over Zq from a set A of k points f(m1; �m1

); : : : ;
(mk; �mk

)g such that a(mj) = �mj
for j 2 [1; k]. This can be

done using standard Lagrange interpolation. We abbreviate this by
saying a server interpolatesa fromA; should A contain more than
k elements, an arbitrary subset of k elements is used for interpola-
tion.

In the protocol description, the variables e and r count the num-
ber of echo and ready messages, respectively. They are instan-
tiated separately only for values of C that have actually been re-
ceived in incoming messages.

Intuitively, protocol AVSS performs a reliable broadcast of C
using the protocol of Bracha [2], where every echo and ready

Protocol AVSS for server Pi and tag ID:d (sharing stage)

upon initialization:
for allC do
eC 0; rC 0
AC ;; A0

C ;; BC ;; B
0
C ;

upon receiving a message (ID:d;in;share; s):
choose two random bivariate polynomials f; f0 over
Zq[x; y] of degree k � 1 with f(0; 0) = f00 = s, i.e.,
f(x; y) =

Pk�1
j;l=0 fjlx

jyl, and

f 0(x; y) =
Pk�1

j;l=0 f
0
jlx

jyl

C fCjlgj;l2[0;k�1], where Cjl = gfjlhf
0

jl

for j 2 [1; n] do
aj(y) f(j; y); a0j(y) f 0(j; y);
bj(x) f(x; j); b0j(x) f 0(x; j)
send (ID:d; send;C; aj ; a0j ; bj ; b

0
j) to Pj

upon receiving a message (ID:d;send;C; a; a0; b; b0) from Pd
for the first time:

if verify-poly(C; i; a; a0; b; b0) then
for j 2 [1; n] do

send to Pj the message
(ID:d; echo;C; a(j); a0(j); b(j); b0(j))

upon receiving a message (ID:d;echo;C; �; �0; �; �0) from
Pm for the first time:

if verify-point(C; i; m; �; �0; �; �0) then
AC AC [f(m;�)g; A0

C A
0
C [f(m;�0)g

BC BC [f(m;�)g; B0C B
0
C [f(m;�0)g

eC eC + 1
if eC = maxfdn+t+1

2
e; kg and rC < k then

interpolate �a, �a0, �b, and �b0 from AC, A0
C, BC,

and B0C, respectively
for j 2 [1; n] do

send to Pj the message
(ID:d;ready;C; �a(j); �a0(j);�b(j);�b0(j))

upon receiving a message (ID:d;ready;C; �; �0; �; �0) from
Pm for the first time:

if verify-point(C; i; m; �; �0; �; �0) then
AC AC [f(m;�)g; A0

C A
0
C [f(m;�0)g

BC BC [f(m;�)g; B0C B
0
C [f(m;�0)g

rC rC + 1
if rC = k and eC < maxfdn+t+1

2
e; kg then

interpolate �a, �a0, �b, and �b0 from AC, A0
C, BC,

and B0C, respectively
for j 2 [1; n] do

send to Pj the message
(ID:d;ready;C; �a(j); �a0(j);�b(j);�b0(j))

else if rC = k + t then
�C C

(si; s
0
i) (�a(0); �a0(0))

output (ID:d;out;shared)

Figure 1: Protocol AVSS for asynchronous verifiable secret shar-
ing (sharing stage).

92

message between two servers Pi and Pj additionally contains the
values f(i; j), f(j; i), f 0(i; j), and f 0(j; i), which they have in
common.

Protocol AVSS for server Pi and tag ID :d (reconstruction
stage)

upon receiving a message (ID:d; in;reconstruct):
c 0; S ;
for j 2 [1; n] do

send (ID :d;reconstruct-share; si; s0i) to Pj

upon receiving (ID:d;reconstruct-share; �; �0) from
Pm:

if verify-share(�C; m; �; �0) then
S S [f(m;�)g
c c + 1
if c = k then

interpolate a0 from S
output (ID:d; out;reconstructed; a0(0))
halt

Figure 2: Protocol AVSS for asynchronous verifiable secret shar-
ing (reconstruction stage).

The protocol usesO(n2)messages and has communication com-
plexityO(�n4). The size of the messages is dominated byC; it can
be reduced by a factor of n as shown in Section 3.3.

Note that protocol AVSS creates an ordinary (n; t+1; t)-sharing
with optimal resilience n > 3t, and an (n; 2t+ 1; t)-sharing with
resilience n > 4t. It is an open problem to develop an AVSS proto-
col with comparable efficiency that creates arbitrary dual-threshold
sharings (or even sharings with k = 2t+1) with optimal resilience.
We prove the following theorem in the full version of the paper.

Theorem 1. Assuming the hardness of the discrete-logarithm prob-
lem, protocol AVSS implements asynchronous verifiable dual-
threshold secret sharing forn� 2t � k > t.

3.3 Reducing Message Sizes
In the sharing stage of the protocol AVSS described above, every

server Pi resends the commitment matrixC with every message it
sends. Intuitively, this is needed for two reasons: first, to allow
the honest servers to agree on the value that is a commitment to
the secret being shared, and second, to allow the servers to verify
that the secret shares they receive correspond to this commitment.
We show in this section how to guarantee these two ends without
having the servers resend so much data.

The new protocol relies on a collision-resistant hash function H .
This is not an extra assumption because it is well-known that
the hardness of the discrete-logarithm problem implies efficient
collision-resistant hash functions. In practice, hash functions can
be implemented at very little cost.

Recall from Section 3.2 that to create a secret sharing, the dealer
selects two bivariate polynomials f and f0. Also, recall the nota-
tion ai, a0i, bi, b

0
i from the description in Section 3.2. Let A(i) =

(A
(i)
0 ; A

(i)
1 ; : : : ; A

(i)
n) denote the (n + 1)-element list formed by

setting A
(i)
j = gai(j)ha

0

i(j) for j 2 [0; n]. Let B(i) be derived

analogously from bi and b0i. Define lists A(0) and B(0) analo-
gously with A

(0)
j = gf(0;j)hf

0(0;j) and B
(0)
j = gf(j;0)hf

0(j;0)

for j 2 [0; n].

Modifications to the dealer’s part of the sharing protocol. In-
stead of sending C to each server, Pd adds the following values,

which we will denote byD, to every send message:

1. A(0) and B(0);

2. ha = (ha;0; : : : ; ha;n) and hb = (hb;0; : : : ; hb;n), where
ha;j = H(A(j)) and hb;j = H(B(j)).

In addition, the dealer sends the polynomials ai, a0i, bi and b0i to
each server Pi as before. Note that as a result, the dealer sends n
messages of length O(�n) each.

Modifications to Pi’s part of the sharing protocol. In the modi-
fied protocol, Pi computes the listsA(i) and B(i) from the received
data and adds them to every echo or ready message, together
with the public D from the dealer’s message. This allows every
server to perform the same checks as before, but reduces the length
of every message to O(�n). Furthermore, messages are counted
separately with respect toD instead ofC.

The modified protocol uses the following predicates (in each,
D = (A(0); B(0); ha; hb) as described above):

check-poly(D; i; A;B), where A and B are (n + 1)-element
lists, is satisfied if A(0)

i = B0, B(0)
i = A0, ha;i = H(A),

and hb;i = H(B).

check-point(C;
;
 0) checks that C is a commitment to
 and

0; it is satisfied if and only if C = g
h

0

.

verify-poly(D; i; a; a0; b; b0), where a, a0, b, and b0 are poly-
nomials of degree k � 1, is satisfied if and only if
check-poly(D; i; A;B) for the lists A = (A0,: : : ,An) and
B = (B0; : : : ; Bn) formed by setting Aj = ga(j)ha

0(j) and
Bj = gb(j)hb

0(j), respectively.

verify-point(D; i;m;A;B; �; �0; �; �0), where A and B are
the (n + 1)-element lists received from Pm, verifies
that the given values �, �0, �, and �0 correspond to
the points f(m; i), f 0(m; i), f(i;m), and f 0(i;m), re-
spectively, committed to in D; it is true if and only
if check-poly(D;m;A;B) ^ check-point(Ai; �; �

0) ^
check-point(Bi; �; �

0).

verify-share(D;m; �; � 0) verifies that the pair (�; �0) forms a
valid share of Pm with respect to D; it is true if and only if
g�h�

0

= A
(0)
m .

The remaining details of the modified protocol can now easily be
filled in. The part for reconstructing the secret remains the same,
except for the new definition of the verify-share predicate.

It is clear that the message complexity of the revised protocol is
the same as the message complexity of the protocol in Section 3.2.
It is also clear that the communication complexity is reduced to
O(�n3) because every single message sent out by the new protocol
includes D, which is of size O(�n), instead ofC, which is of size
O(�n2).

The analysis of the revised protocol is omitted from this extended
abstract.

Further Improvements. Suppose instead of using just the two
generators g and h of the group G, we use generators g1; : : : ; gN ,
and h. Then, in order to share N secrets s1; : : : ; sN , the
dealer computes N + 1 bivariate polynomials f1; : : : ; fN , and
f 0, and forms the entries of the verification matrix C as Cjl =

g
f1(j;l)
1 g

f2(j;l)
2 � � � gfn(j;l)n hf

0(j;l). The rest of the protocol is car-
ried out analogously to the protocol described above. As a result,
we can have a dealer share N secrets at the cost of O(n2) messages
and O(�n2(n+N)) communication.

93

3.4 Application to Asynchronous Byzantine
Agreement

Byzantine agreement is a fundamental problem in distributed
computation [21]. In asynchronous networks, it is impossible to
solve by deterministic protocols [13], which means that one must
resort to randomized protocols. The first polynomial-time solu-
tion to this problem was given by Canetti and Rabin [9, 5]. How-
ever, this result is a proof of conceptand not a practical solution
because the complexity of their protocol is rather high: the mes-
sage complexity is O(n6) and the communication complexity is
O(n8 log n).

The cost of this protocol is dominated by their asynchronous ver-
ifiable secret sharing protocol for sharing n secrets. Our protocol
for the same task from the previous section is �(n3) times more
efficient for message complexity, and approximately �(n4) times
more efficient for communication complexity. We propose to plug
our AVSS protocol directly into the Byzantine agreement protocol
of Canetti and Rabin [9] (an excellent exposition of how AVSS is
used in asynchronous Byzantine agreement is given in [5]). As a
result, assuming the hardness of the discrete-logarithm problem,
the complexity of asynchronous Byzantine agreement is reduced to
O(n3) message complexity and O(�n4) communication complex-
ity.

We stress that this works in the computationalsetting, whereas
Canetti and Rabin [9] use an unconditional model. We also mention
that in the so-called random-oracle model, a more efficient protocol
exists, which is secure against a static adversary [4]. However, the
random-oracle model makes an idealizing assumption about cryp-
tographic hash functions, which involves certain problems [7], and
a proof in this model falls short from a proof in the real world.
Hence, our AVSS protocol yields the first asynchronous Byzantine
agreement protocol that is provably secure in the standard model
andwhose efficiency makes it suitable for use in practice.

4. ASYNCHRONOUS PROACTIVE
MODEL

In this section, we propose an extension of the asynchronous sys-
tem model given in Section 2 for proactive cryptosystems. We ar-
gue that such an extension is necessary and that our proposal is
minimal. An asynchronous proactive refresh protocol for shared
secrets, which forms the core of every proactive cryptosystem, is
presented in the next section.

Motivation. A proactive cryptosystem is a threshold cryptosystem
that tolerates a mobileadversary who can gradually break into any
number of servers [20, 18]. To protect against leaking the secret
key, it operates in a sequence of phasesand the servers periodically
refresh their shares between two phases. The new set of shares
is independent of the previous one and the old shares are erased.
Thus, the adversary may corrupt up to t different servers in any
phase without learning anything about the secret key.

The underlying assumption is that breaking into a server requires
a certain amount of time, which occurs for every server that is cor-
rupted, independent from other corruptions. It must also be possi-
ble to remove the adversary by rebooting a server in a trusted way
(e.g., from a read-only device) and to erase information on a server
permanently.

This concept maps onto a synchronous network in a straightfor-
ward way. In an asynchronous network, however, the following
two issues regarding phases and secure channels arise.

First, the notion of a common phase is not readily available be-
cause there is no common clock. Since refreshing requires a dis-
tributed protocol, in which all servers should participate, at least

some synchronization primitive is needed to define the length of a
phase in a meaningful way. It turns out that a single time signal or
clock tick, which defines the start of every phase locally, is enough.
In our formal model, we leave the scheduling of this signal up to the
network, i.e., the adversary. In practice, this might be an impulse
from an external clock, say every day at 0:00 UTC. Hence, phases
are defined locally to every server. The adversary may corrupt up
to t servers who are in the same local phase.

Second, the channels that link the servers have to be adapted
to this model. Recall that all servers are linked by secure chan-
nels (i.e., private and authenticated links), which are scheduled by
the adversary. Given only locally defined phases and purely asyn-
chronous scheduling, however, it would be possible for the adver-
sary to break the secure channels assumption as follows. Suppose
all servers are in the same local phase and the adversary has cor-
rupted t of them. In order to read any message sent between two
honest servers, the adversary may delay the message until the re-
ceiver enters the next phase and some of the previously corrupted
servers are again honest. Then she corrupts the receiver and ob-
serves the message, which gives her access to private information
from the previous phase of more than t servers.

Therefore, we assume that secure channels in the proactive
model guarantee that messages are delivered in the same local
phase in which they are sent. More precisely, a message sent in
some local phase of the sender arrives when the receiver is in the
same local phase or it is invariably lost. Under these restrictions, we
leave all scheduling up to the adversary. In practice, such proactive
secure channels might be implemented by re-keying every point-
to-point link when a phase change occurs, as discussed below.

We now proceed to the formal description of the model.

Formal Model. A server is a PITM as before, which can now
also eraseinformation. We define erasing in terms of restricting
a server’s view. To erase information means to exclude the corre-
sponding values from the server’s view.

As before, the adversary may corrupt a server at any point in
time, but now it can also be removed from a corrupted server by a
rebootprocedure. In this case, the server is restarted with correct
initialization data, and the proactive protocols running before the
corruption are invoked again (how these protocols are determined
is outside our model). The internal state of the server may have
been modified arbitrarily by the adversary.

Every server operates in a sequence of local phases, which are
defined with respect to a trivial protocol timer. Every honest server
continuously runs one instance of this protocol, which starts when
the server is initialized. Upon initialization, the protocol sends a
timer message called a clock tick to itself. Whenever the server
receives a clock tick, the server resends the message to itself over
the network. The local phaseof an uncorrupted server Pi is de-
fined as the number of clock ticks that it has received so far. If
the adversary corrupts a server during some phase � , we define the
corrupted server to remain in local phase � until it is rebooted and
the adversary is removed. We assume that after a reboot, a server
is automatically activated on a clock tick and continues to operate
in the subsequent phase. Hence every server is honest at the point
in time when it enters the next local phase. However, the adversary
can cause a server to appear corrupted during multiple subsequent
phases (and across the phase changes) by corrupting it again imme-
diately after the phase change.

Since the set of honest servers may change from one phase to
another, we also define the set of associated messagesaccordingly.

An adversary in the proactive network model is called t-limited
if for every phase index � � 0, it corrupts at most t servers in
local phase � . Recall that activations are atomic and cannot be

94

interrupted by a corruption. This allows an honest server to perform
some actions, like erasing critical data, at the very beginning of a
phase (upon detectinga clock tick) beforeit can be corrupted by
the adversary during this phase.

We assume that every pair of servers is linked by a proactive
secure asynchronous channel, which is defined as follows. Recall
that in our asynchronous network model, the adversary can sched-
ule messages in a set M with labels of the form (s; r; l). In the
proactive network, a number � is added to every label denoting the
local phase in which Ps has sent the message. Then we restrict the
scheduling as follows. If Pj enters local phase � , all messages in
M with labels (�; j; �; �) where � < � are removed fromM. Fur-
thermore, the adversary may not schedule any message with label
(�; j; �; �) before Pj has entered its local phase � . We say that the
adversary delivers messages within phasesto denote an adversary
that delivers all messages inMwith a label of the form (�; j; �; �) to
a receiver Pj when Pj is in local phase � . If the adversary corrupts
a server Pj during its local phase � , then all messages m 2 M
with label (�; j; �; �) are removed fromM and given to the adver-
sary, who may now send messages with label (j; �; �; �).

Note that every honest server runs a separate instance of the timer
protocol, and that we view this protocol as an integral part of the
proactive system model. As such, it is not required to terminate
or to satisfy a uniform bound on its communication complexity. It
will simply run until the adversary halts.

Implementation. In practice, asynchronous proactive secure chan-
nels with the described properties could be implemented using se-
cure co-processors as follows. The communication link between
every pair of servers is encrypted and authenticated using a phase
session key that is stored in secure hardware. A fresh session key is
established in the co-processor as soon as both enter a new phase,
with authentication based on data stored in secure hardware (if a
public-key infrastructure is used, this may be a single root certifi-
cate). Thus, even if the adversary corrupts a server, she gains access
to the phase session key only through calls to the co-processor. The
external clock which triggers the phase changes must have a trusted
path into the secure co-processor and an intruder must not be able
to influence it.

The related problem of maintaining proactive authenticated com-
munication in a synchronous network has been investigated by
Canetti et al. [8].

Related Work. Proactive systems in asynchronous networks have
been discussed by Castro and Liskov [?] and by Zhou [?]; the
former aims at maintaining a common state, and the latter at main-
taining a shared secret. In these works, the phases are defined with
respect to proactive protocols, i.e., a phase endsupon the termina-
tion of the corresponding refresh protocol. Our approach is more
general in the sense that we define the phases only with respect to a
timeout mechanism, independent of proactive protocols. This mod-
els also systems where a refresh protocol may not terminate within
a phase. Our protocols therefore guarantee two types of conditions:
liveness conditions (like correctness), which hold only if the proto-
col terminates within a phase, and safety conditions (like privacy),
which hold in any case.

Another difference lies in our network model, which identifies
the main security requirements on asynchronous proactive secure
communication. While authenticity of messages in such a setting
is addressed in terms of a special freshness requirement in [10], a
formal treatment of these aspects is missing in [24].

From a practical point of view, our implementation of the refresh
protocol is much more efficient than the one of Zhou [24]. It has an
expected message complexity of O(n3) as opposed to O(

�
n

t

�
).

5. ASYNCHRONOUS PROACTIVE RE-
FRESH PROTOCOL

In this section, we describe how a group of servers holding shares
of a secret may refresh these shares in an asynchronous proactive
network such that the adversary does not learn anything about the
secret. Such protocols form the basis of any proactive cryptosys-
tem. We define the notion of a verifiable sharing and the properties
of a protocol to refresh such a sharing. Then we propose an imple-
mentation of a refresh protocol for discrete logarithm-based verifi-
able sharings as established by protocol AVSS from Section 3. We
restrict ourselves to ordinary (n; t+ 1; t)-sharings in this section.

5.1 Definitions

Verifiable sharing. A sharingof a (secret) value s0 2 Zq can be
seen as an encoding of s0 into a set of sharesSi such that all sets
of at least t+1 shares uniquely define s0, whereas any other set of
shares does not give any information about s0.

Such a sharing results, for example, from the first stage of an
AVSS protocol. A sharing is robust against erasures in the sense
that a unique secret can also be reconstructed from a subset the
shares. Missing shares of honest servers are denoted by ?.

A verifiable sharing, or v-sharingfor short, has the additional
property that the secret is defined uniquely even if the adversary
corrupts up to t servers and modifies their shares in an arbitrary
way.

We define a verifiable sharing in terms of an algorithm recon-
struct that takes as input a set of shares fSig and outputs a value in
Zq or ?.

Definition 2. We say the servers hold a verifiable sharing ofs0
with tagID and with respect to an algorithm reconstruct, if every
server Pi holds a share Si such that the following conditions are
satisfied:

Integrity: For any set fSig of shares that contains at least t + 1
shares of honest servers different from ?, running recon-
structon input fSig yields s0, except with negligible proba-
bility.

Privacy: Any set fSig of at most t shares contains no information
about s0.

Notice that the integrity property is computational and the pri-
vacy property unconditional.

Refreshing a verifiable sharing. The goal of a proactive refresh
protocol is to protect a verifiable sharing by providing the servers
with new shares for the next phase such that the adversary’s knowl-
edge of shares from the previous phase is rendered useless.

Suppose the servers hold a v-sharing S1; : : : ; Sn of a value s0
with tag ID and with respect to an algorithm reconstructat some
point in time where all honest servers are in local phase ��1. Then
an honest server starts a refresh protocolwith tag ID and input Si
as soon as it detectsand receivesthe next clock tick (all ongoing
computations are aborted as soon as the clock tick is detected). This
also marks the end of local phase � � 1 and the begin of phase � .
The refresh protocol terminates either when the server generates an
output of the form (ID ;refreshed) or when it detectsthe next
clock tick. In the first case, we say the server completes the refresh
of sharingID .

The refresh protocol must ensure that the honest servers compute
a fresh v-sharing of the same value s0 and that any t-limited adver-
sary does not learn any information on s0. This is captured by the
following definition.

95

Definition 3. Suppose the servers hold a verifiable sharing of some
value s0 with tag ID and with respect to some algorithm recon-
struct. An asynchronous secure refreshprotocol satisfies the fol-
lowing conditions for any t-limited adversary:

Liveness: If the adversary activates all honest servers on a clock
tick and delivers all associated messages within phases, then
all honest servers complete the refresh of sharing ID , except
with negligible probability.

Correctness: If at least t + 1 honest servers have completed the
refresh of sharing ID and have not detecteda subsequent
clock tick, the servers hold a verifiable sharing of s0 with tag
ID and with respect to reconstruct, except with negligible
probability.

Privacy: In any polynomial number of consecutive executions of
the protocol, the adversary’s view is statistically independent
of s0.

Efficiency: For every ID , the communication complexity of in-
stance ID is probabilistically uniformly bounded.

Note that this definition guarantees that the servers complete the
refresh only when the adversary delivers messages within phases.
Otherwise, the model allows the adversary to cause the secret to be
lost, in order to preserve privacy. One could also imagine a different
formalization of asynchronous proactive refresh protocols that pre-
serves correctness at the cost of privacy, i.e., where the adversary
may learn the secret. Such a trade-off between privacy and correct-
ness seems unavoidable in asynchronous networks where messages
may be delayed for longer than the duration of a proactive phase;
interestingly, it does not arise for proactive cryptosystems in syn-
chronous networks.

Another difference to the synchronous case is the fact that our
phases do not overlap. As a consequence of this, a server must
erase the old share during the sameactivation in which it receives
the clock tick (in order to guarantee privacy of the secret). This
point in time corresponds to the beginning of the refresh proto-
col, before the server may receive messages from other servers or
become corrupted in the new local phase. In contrast, two subse-
quent phases in synchronous proactive cryptosystems are usually
assumed to overlap for the duration of the refresh protocol, and a
server may delay the erasure of an old share until the end of the
refresh protocol.

5.2 Implementation
This section describes protocol Refresh for refreshing a dis-

crete logarithm-based verifiable (n; t + 1; t)-sharing in an asyn-
chronous network. Its implementation needs the multi-valued vali-
dated Byzantine agreement protocol from Section 2.3, a digital sig-
nature scheme secure against adaptive chosen-message attacks [16]
for every server, and the AVSS protocol from Section 3 as building
blocks. We assume that such sub-protocols have the property that
the calling protocol can access and modify their internal state and
abort them if necessary by terminating the corresponding instance
and erasingall associated local data. A local variable x associated
with sub-protocol instance ID is denoted x[ID].

Recall that these primitives were defined in a purely asyn-
chronous, non-proactive network. Hence, we use them only as
sub-protocols running within a single phase; if a protocol does not
terminate before the end of the phase, it must be aborted by the
calling protocol. The security of the keys for the digital signature
scheme and for the VBA protocol in the proactive corruption model
has to be guaranteed by storing them inside secure co-processors or

by using a proactively secure refresh protocols. The details of this
are beyond the scope of this paper.

The verifiable sharing. We investigate how to refresh a discrete
logarithm-based verifiable sharing as computed by protocol AVSS
from Section 3. The share of an honest server Pi is of the form
Si = (i; si; s

0
i; V), where V = (V0; : : : ; Vt) is the same for all

servers and gsihs
0

i =
Qt

j=0(Vj)
ij ; in other words, there exist two

polynomials a(x) =
Pt

j=0 ajx
j and a0(x) =

Pt
j=0 a

0
jx

j overZq

such that a(i) = si and a0(i) = s0i for all correct shares Si, and
gajha

0

j = Vj for j 2 [0; t]. (Note that Vj = Cj0 using the notation
of protocol AVSS.)

Algorithm reconstructworks as follows. On input a set S of
shares, it selects a value V that is found in at least t + 1 shares
and discards shares that contain a different value for V . If V is not
unique or does not exist, it returns ?; otherwise, it computes a set

G � S of tuples (i; si; s0i; V) that satisfy gsihs
0

i =
Qt

j=0(Vj)
ij .

If jGj � t, it returns ?; otherwise it interpolates a polynomial a
of degree at most t from the set f(i; si)j(i; si; s0i; V) 2 Gg and
returns a(0).

From a high-level point of view, the protocol works in three
stages. First, every server Pi shares its share si of s0 using an
AVSS protocol. Second, the servers use multi-valued Byzantine
agreement to select t+ 1 such sharings that have successfully ter-
minated. Third, they compute a fresh share of s0 from the set of
sharings which they agreed on.

More precisely, suppose the servers hold a verifiable sharing of
s0 with tag ID as described in the previous paragraph and have
set up a digital signature scheme such that every server can verify
signatures issued by any other server. Then every server executes
the following steps for protocol Refresh in phase � .

1. Server Pi initializes n verifiable (n; t + 1; t)-sharings
IDjavss:j for j 2 [1; n] using an extendedversion of
protocol AVSS. Then it shares si and s0i using ID javss:i,
where f 0

[IDjavss:i]
(0; 0) is set to s0i, and immediately

erases the current share and the sharing polynomials
f [IDjavss:i] and f 0[IDjavss:i] in instance IDjavss:i.

The extension of protocol AVSS is that each server
adds a digital signature to every ready message; in
AVSS instance IDjavss:j, the signature is computed on
(IDjavss:j; �;ready). A list� of 2t+1 such signatures is
output when the server completes the sharing and may serve
as a proof for this fact.

The server also sends its current value of V = (V0; : : : ; Vt)
all other servers in a recover message. Then it waits for
receivingt+1 identical recovermessages and assigns the
value found in them to D.

2. The server waits for completing t + 1 sharing protocols
IDjavss:j such that C[IDjavss:j] is consistent with D,

i.e., C [IDjavss:j]
00 =

Qt
l=0(Dl)

jl . Recall that the extended
AVSS protocol also returns a proof �j for the completion of
the sharing.

Next, Pi proposes the set of completed sharings for validated
Byzantine agreement with tag ID jvba. Its proposal is a set
Li = f(j;�j)g of t + 1 tuples, indicating the dealer Pj of
every completed sharing and containing the list �j of sig-
natures on ready messages from the extended sharing. The
predicate of the VBA protocol is set to verify-termination(),
described below, which verifies that a proposal contains t+1
valid lists of signatures from instances of protocol AVSS.

96

3. After the server decides in the VBA protocol for a set L that
indicates t + 1 AVSS instances, it waits for these sharings
to complete. Then Pi computes its new share as follows: it
interpolates two polynomials over Zq from the set of shares
computed in the AVSS instances indicated by L. More pre-
cisely, the polynomial �a of degree t is interpolated from the
set f(j; s[IDjavss:j]i)j(j;�j) 2 Lg; similarly, the polyno-

mial �a0 is interpolated from f (j; s0i
[IDjavss:j]

) j (j;�j)
2 Lg. Then the server sets the shares si and s0i to �a(0) and
�a0(0), respectively. The new commitments V are computed
analogously.

Finally, the server aborts all sub-protocols ID javss:j,
which automatically erasesall information of these protocol
instances.

Predicate verify-termination(IDjvba; �;L) used in VBA in-
stance ID jvba verifies that L contains t + 1 tags of AVSS pro-
tocols with the proofs that these protocols will actually terminate.
It is true if and only if jLj = t + 1 and for every (j;�j) 2 L,
the list �j contains at least 2t + 1 valid signatures on the string
(ID javss:j; �;ready) from distinct servers.

As mentioned before, a key point of the protocol is that every
server erases its old share in the first activation before waiting for
any network input. The event of receivingthe clock tick and start-
ing the refresh protocol defines the end of local phase � � 1. Thus,
one cannot tolerate to leave share information from phase � � 1
around when entering a wait state in phase � because at any point
in time afterwards, a corruption might occur that counts towards
phase � . This is also the reason why the protocol does not follow
the approach of Gennaro et al. [14], which is to establish a set of
sharings of the value 0 and to add these shares to the shares of the
secret from phase � �1 later on. Instead, our protocol creates shar-
ings of previous shares of the secret and uses the agreed-on set of
such sharings as a polynomial sharing of the secret itself.

The purpose of the recover messages is to supply the verifi-
cation information V of phase � � 1 to those honest servers that
might have been corrupted in phase � � 1 and have been rebooted
into phase � .

Protocol Refresh invokes n protocols for AVSS and one VBA
sub-protocol. With AVSS implemented according to Section 3.3
and VBA from [3], its expected message complexity is O(n3) and
its expected communication complexity is O(�n4). We prove the
following theorem in the full version of the paper.

Theorem 2. Assuming the hardness of the discrete-logarithm prob-
lem, protocolRefresh is an asynchronous secure refresh protocol
for n > 3t.

6. REFERENCES
[1] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous

secure computation. In Proc. 25th Annual ACM Symp. on
Theory of Computing, 1993.

[2] G. Bracha. An asynchronous [(n� 1)=3]-resilient consensus
protocol. In Proc. 3rd ACM Symp. on Principles of
Dist. Computing, pages 154–162, 1984.

[3] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and
efficient asynchronous broadcast protocols (extended
abstract). In J. Kilian, editor, CRYPTO 2001, volume 2139 of
LNCS, pages 524–541. Springer, 2001.

[4] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in
Constantinople: Practical asynchronous Byzantine
agreement using cryptography. In Proc. 19th ACM Symp. on
Principles of Distributed Computing, pages 123–132, 2000.

[5] R. Canetti. Studies in Secure Multiparty Computation and
Applications. PhD thesis, Weizmann Institute, 1995.

[6] R. Canetti, R. Gennaro, A. Herzberg, and D. Naor. Proactive
security: Long-term protection against break-ins. RSA
Laboratories’ CryptoBytes, 3(1), 1997.

[7] R. Canetti, O. Goldreich, and S. Halevi. The random oracle
methodology, revisited. In Proc. 30th Annual ACM Symp. on
Theory of Computing, pages 209–218, 1998.

[8] R. Canetti, S. Halevi, and A. Herzberg. Maintaining
authenticated communication in the presence of break-ins.
J. Cryptology, 13(1):61–106, 2000.

[9] R. Canetti and T. Rabin. Fast asynchronous Byzantine
agreement with optimal resilience. In Proc. 25th Annual
ACM Symp. on Theory of Computing, pages 42–51, 1993.

[10] M. Castro and B. Liskov. Proactive recovery in
Byzantine-fault-tolerant systems. In Proc. 3rd USENIX
Symposium on Operating System Design and Implementation
(OSDI’99), 1999.

[11] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch.
Verifiable secret sharing and achieving simultaneity in the
presence of faults. In Proc. 26th IEEE Symp. on Found. of
Computer Science, pages 383–395, 1985.

[12] Y. Desmedt. Threshold cryptography. European Trans. on
Telecommunications, 5(4):449–457, 1994.

[13] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. J. ACM,
32(2):374–382, Apr. 1985.

[14] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure
key generation for discrete-log based cryptosystems. In
J. Stern, editor, EUROCRYPT ’99, volume 1592 of LNCS,
pages 295–310. Springer, 1999.

[15] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof systems. SIAM J. Computing,
18(1):186–208, Feb. 1989.

[16] S. Goldwasser, S. Micali, and R. L. Rivest. A digital
signature scheme secure against adaptive chosen-message
attacks. SIAM J. Computing, 17(2):281–308, Apr. 1988.

[17] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and
related problems. In S. J. Mullender, editor, Distributed
Systems. ACM Press & Addison-Wesley, New York, 1993.

[18] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung.
Proactive secret sharing or how to cope with perpetual
leakage. In D. Coppersmith, editor, CRYPTO ’95, volume
963 of LNCS, pages 339–352. Springer, 1995.

[19] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem. ACM Trans. on Programming Languages
and Systems, 4(3):382–401, July 1982.

[20] R. Ostrovsky and M. Yung. How to withstand mobile virus
attacks. In Proc. 10th ACM Symp. on Principles of
Distributed Computing, pages 51–59, 1991.

[21] M. Pease, R. Shostak, and L. Lamport. Reaching agreement
in the presence of faults. J. ACM, 27(2):228–234, Apr. 1980.

[22] T. P. Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. In J. Feigenbaum, editor,
CRYPTO ’91, volume 576 of LNCS, pages 129–140.
Springer, 1992.

[23] V. Shoup. Practical threshold signatures. In B. Preneel,
editor, EUROCRYPT 2000, volume 1087 of LNCS, pages
207–220. Springer, 2000.

[24] L. Zhou. Towards fault-tolerant and secure on-line services.
PhD thesis, Cornell University, USA, 2001.

97

