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�THE CELLULAR AUTOMATA principle has been suc-

cessfully applied to electronic digital circuits, lead-

ing to the quantum-dot cellular automata (QCA)

concept.1 The general principle of this concept is

that a QCA cell has two different charge configura-

tions, representing the two logic values 0 and 1

(see Figure 1a). These building blocks are placed

a short distance from each other on the same

plane. The electrostatic interaction between neigh-

bor cells drives the information through the circuit.

Two main implementations of this theoretical princi-

ple exist: molecular QCA, in which the cell is a com-

plex molecule, and magnetic QCA (MQCA),3 in

which the cell is a single-domain nanomagnet

(see Figure 1b). Although MQCA allow speeds (hun-

dreds of MHz) lower than the molecular ones (a few

THz), they offer several specific advantages. These

include small area, low power consumption, and

the possibility to combine computation and storage

on the same circuit.5 Most importantly, though, they

offer experimental feasibility with technology that’s

currently available.3 The International Technology

Roadmap of Semiconductors thus mentions that

MQCA are worth studying to prove

whether cellular automata can generally

replace CMOS (see http://public.itrs.net/

Links/2010ITRS/Home2010.htm).

QCA might offer many advantages in

replacing CMOS, but many issues and

constraints come with this technology

(as we detail in the ‘‘Considerations

and Constraints’’ sidebar). Asynchrony has been intro-

duced when designing QCA circuits at the architectural

level, and it’s tempting to think of this approach as a

magical elixir. Is it, though? Or, because of the over-

head it introduces, is this approach more of a poison?

In this article, that’s exactly what we intend to discern.

Specifically, we’re interested in applying and

testing Wave Semiconductor’s asynchronous Null

Convention Logic (NCL) to QCA technology. Tabrizi-

zadeh et al. proposed a general NCL implementation

applied to QCA circuits,6 whereas we presented a spe-

cific solution for magnetic circuits in previous

work.2,7 That research informed the system that we

currently propose, which is globally asynchronous

(the handshake protocol to allow information propa-

gation) and locally synchronous (the clock system to

enable information propagation). Some traditional

designs have used globally asynchronous, locally syn-

chronous (GALS) circuits recently to successfully le-

verage the burdens caused by interconnect delays8

or by different synchronization subsystems.9 They

can thus be effectively adapted to nanotechnology

designs to enlighten their real potential.
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Editor’s note:

Emerging computing technologies inherently exhibit high process and timing

variation. Many researchers believe that an asynchronous approach is likely

to play an enabling role in making these technologies feasible. This article com-

pares the cost and performance of fully synchronous and mixed synchronous-

asynchronous implementations of quantum cellular automata, and makes the

case that asynchrony is inevitable at the top levels of QCA designs.

��Montek Singh, UNC Chapel Hill

0740-7475/11/$26.00 �c 2011 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers72



Despite the potentially beneficial effects of NCL for

QCA circuits’ functionality, our preliminary investiga-

tions based on simulations show that NCL applied

to QCA technology has several consequences, as

demonstrated in previous work.10 The plain applica-

tion of this logic is not necessarily a panacea. With

this in mind, we present a complete comparison

(which, as far as we know, has never been attempted

before) between a fully synchronous QCA implemen-

tation based on standard Boolean logic and a GALS

QCA solution based on NCL. The comparison

includes speed, latency levels, power dissipation,

and area. It’s based on a VHDL behavioral model of

QCA circuits that we developed2 and applied to two

specific circuits: a 32-bit ALU and a parallel memory

with four address bits and 14 data bits. We also con-

sider a problem related to feedback signals that can

occur in layout- and technology-aware designs of

complex circuits such as microprocessors.

MQCA clock system and NCL
MQCA circuits are built using single-domain nano-

magnets with only two stable magnetizations (see

Figure 1b). This is favored by their rectangular struc-

ture, which implies an evident shape anisotropy.

The magnetization vector is parallel to the nanomag-

nets’ long side (it is called an easy axis because the

magnetic energy assumes a minimum in the longer

of two sides), and this state is difficult to change. A

strong magnetic field (called a clock) is required to

switch a nanomagnet from one state to another. The

field is directed along the nanomagnets’ short side

(hard axis). The field, when applied, forces the nano-

magnets into an unstable state: their magnetization is

redirected along the hard axis. When the field is

removed, nanomagnets realign themselves in an anti-

ferromagnetic order along the easy axis.

To avoid information-propagation errors during the

realignment, only a small number of nanomagnets

(between 10 and 20)3 can be placed together. There-

fore, the circuit plane is divided into small areas,

each influencing a limited number of nanomagnets.

The nanomagnets can be organized in one of several

ways: in a simple sequence within each area (see

Figure 1c, which represents a wire); in more complex

structures (see Figure 1d, which shows two examples

of crossing between two wires);3,4 or in blocks able to

execute a logic function, such as the inverter in

Figure 1e or the majority voter (or MV), which we de-

tail later.

A multiphase clock system is necessary to drive in-

formation through the circuit independently on the

logic function. We have proposed a three-phased

snake clock for this purpose.2,7 The whole circuit

area is split in groups of subareas, each organized

in three clock zones (a simplified example is in

Figure 1c), driven by a different signal. Figure 2a

shows the signal waveforms, such as pulses with a

phase shift of 120 degrees. The sequence of the

three clock phases associated to as many clock

zones is repeated along the entire circuit in an

order of 1-2-3-1-2-3.

Figure 2b shows the nanomagnets’ operations

according to clock phases. In the first time step, the

second clock zone’s cells are in a hold state: no exter-

nal field is applied and they’re therefore in a stable

state. This significantly influences the following

(third) clock zone’s nanomagnets, which are in a

switch state. These magnets reorder themselves fol-

lowing the second clock zone’s nanomagnets,

which act like an input signal. At the same time, mag-

nets in the previous zone (the first) are in a reset

state: this means that the external field is applied,

their magnetization is directed along the short axis,

and they have a small influence on clock zone 2. In

the next time step, this situation is repeated, but

with the first clock zone (which is the next in the

clock-zone sequence 1-2-3-1-2-3) in the switch phase,

0 01 1 Clock zone 1

(a) (b) (c) (d) (e)

Clock zone 2 Clock zone 3

Figure 1. Elementary quantum-dot cellular automata (QCA) structures (a). Magnetic QCA (MQCA) cells (b).

Possible clock signal distribution below a wire of magnets (c).2 Two examples of magnetic wires crossing (d).3,4

MQCA inverter (e).
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Considerations and Constraints

Researchers have demonstrated that switching from

one quantum-dot cellular automata (QCA) logic state to

another should be adiabatic.1 By means of an external

field, cells are thus temporarily driven to an intermediate

unstable state,1 a magnetic one in the magnetic QCA

(MQCA) case. The external field reduces the potential

barrier between the two stable states and erases the pre-

vious value stored in a cell. When a signal releases the

external field, this drives the cells toward a stable hold

state. This transition toward a new hold state occurs

through transient switching, which is favored by the

neighbor cell’s influence.1 This on-and-off switching lik-

ens this field to a clock signal. A special wire provides

the switching. The wire is external to the nanomagnets’

circuit, in which a current flows with proper timing gener-

ating the magnetic field. Note that this signal is far differ-

ent from the clock normally used in CMOS digital

structures. In fact, the signal’s only job is to enable infor-

mation propagation for every cell throughout the whole

circuit��it’s not a signal that delivers synchronization to

special gates like registers. To propagate information in

every direction, this wire would have to be routed using

a complex layout. At the same time, the physical feasibil-

ity of the structure that generates it can’t be ignored:

in previous work, we investigated this problem and dis-

cussed a ‘‘snake clock’’ solution, which we briefly dis-

cuss in the main text of this article.2-4

The unavoidable use of complex clock organization

leads to two main issues. First, the clock signal gives

QCA circuits a wavefront pipelined behavior and leads

to the ‘‘layout ¼ timing’’ problem:5 the propagation

delay of a QCA wire depends on its layout. We can better

understand the crucial impact of a QCA wire’s layout by

comparing it with a situation in CMOS circuits in which

every wire has a pipelined structure. More specifically,

we mean a wire pipelined with a depth that depends

on routing (i.e., the longer the routing, the more stages)

and not on the circuit-logic function. In this situation,

the standard skewing and deskewing stages aren’t just

a design choice, they’re a constraint complicated by

cell placement and routing. Those constraints could be

unsatisfiable in complex circuits, and automatic CAD

tools wouldn’t help leverage this problem in realistic

designs.

A second issue also arises. We could argue that

the necessity of this snake clock used to move infor-

mation through the external field doesn’t prevent the

circuit from having a real clock signal, as is the case

in standard CMOS circuits. However, although it’s

not impossible to have a real clock signal, it would

be almost unfeasible in practice for circuits of realistic

complexity.

Currently, no effective direct solutions have been pro-

posed to provide a clock meant as a synchronization
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Figure 2. MQCA clock system. Clock signals’ timing behavior (a), where the time slots are listed as T1, T2, and T3.

Clock phase sequence and magnets’ behavior (b). Top view of a layout example (c) spanning four clock zones for

three wires and a basic logic QCA cell, the majority voter: MV � AB + AC + BC (symbol in the bottom right detail).

Magnetization behavior (d) in time of the output MV magnet obtained using a finite-difference nanomagnetic

simulator:11 magnetization starts from 0, because of an applied reset field, and then changes (switch) to a

negative stable value (hold). Values are shown as mega ampere per meter (MA/m).
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the second in the reset, and the third in the hold state.

The information moves along the circuit following the

clock-zone sequence.

Figure 2c shows an example of a top view of a cir-

cuit wherein three signals are routed through three

zones, and carry information to the MV as a basic

QCA logic gate: (MV ¼ AB þ AC þ BC ). The informa-

tion propagates in this example from left to right hor-

izontally. As a vertical propagation should also be

assured, the clock zones’ organization is slightly

more complex.2,7 The snake clock zones allow infor-

mation propagation in all directions, but they follow

a snake-like sequence along the circuit plane.

Figure 2d depicts the magnetization transient

of the MV output (the central element in the evi-

denced MV subblock). This magnetization transient

is obtained by an accurate finite-difference nanomag-

netic simulator.11 The case reported in the simulation

in Figure 2d corresponds to the input values shown

by arrows in Figure 2c (A ¼ 1, B ¼ 0, and C ¼ 0),

so the output is expected to go to 0. Indeed, the mag-

netization starts from a zero value, as the magnet was

previously in a reset state; afterward it switches to a

negative magnetization value (logic 0), which is

then maintained in the hold state. The delay found

here depends on the magnets’ aspect ratio, on

their horizontal and vertical distances, and on the

magnetic material used (typically permalloy or cobalt).

The maximum clock frequency is bounded not

only to this delay, but also to the delay of the nano-

magnets representing the wires that carry the informa-

tion within the same phase. So the sum of all the

delays of magnets within a zone during the switch

phase roughly defines one-third of the clock period.

To achieve fast frequencies, then, a limited number

of magnets should be placed within a phase zone.

Nevertheless, the smaller the phase zone, the smaller

the size of the wire delivering the clock. Typical sizes

signal (rather than having a real, traditional clock signal).

Instead, there are two other possibilities: using another

external field, or delivering a traditional synchronization

signal using the magnetic cells to route the traditional

clock signal through the magnetic cells coping with the

layout ¼ timing constraint. Both, at the moment, aren’t

practicable solutions.

The indirect approach consists in confronting the fact

that this technology doesn’t let us use the well-known

primitives of the synchronous world, and exploiting the

potential of an asynchronous design style. If, in the

CMOS digital world, asynchronous systems are often

seen as a niche for specific applications (which are

now rapidly multiplying),6 in the QCA case they’re an en-

abling solution. In asynchronous circuits, a block is not

only associated with the logic function that it executes

in an information flow, but also with the time at which

it’s going to execute it.

Embedding the execution’s timing in asynchronous

circuits’ information is potentially a perfect scenario for

QCA and is the reason why one of the proposed

solutions consists of adopting Wave Semiconductor’s

asynchronous Null Convention Logic (NCL).7 It doesn’t

need a clock and manages the timing of logic propaga-

tion using encoded acknowledge signals. It’s totally

delay insensitive and thus helps solve the layout¼ timing

issue. The consequence of NCA is then to reduce syn-

thesis and physical design constraints and the possibility

of avoiding the burden of using a real clock. The number

and position of the logic gates are constrained much as

they would be in standard digital circuits, so the same

principles and automatic algorithms can be adopted.
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of magnets are 50 to 100 nm with a space of 20 nm

between two of them. It’s easy, then, to see an oppo-

site constraint: the more magnets in a zone, the easier

the clock fabrication, at least as long as nanowires

really can’t be used for this purpose. The estimated

realistic frequency reported is around 100 MHz.5

It’s thus clear that in a QCA circuit, even in the

case of a simple wire that crosses many clock

zones, the information propagates with a delay of

one clock cycle for every group of three zones. This

is an intrinsic pipelined behavior and clearly illus-

trates a fundamental QCA property: a wire’s length

depends on the number of clock zones it crosses,

and the propagation delay of a wire depends on its

length. The consequence of this property is the com-

plexity in designing QCA circuits based on synchro-

nous Boolean logic. The wire’s length at the inputs

of every logic gate must be equalized to synchronize

signals (layout ¼ timing). In theory, this is feasible

only by using specific algorithms, but for complex cir-

cuits the constraints dictated by the synchronization

constraints could be unbearable.

One possible solution in this situation is to use a

real clock signal��that is, a further signal that delivers

synchronization to blocks similar to D-flip-flops in

CMOS circuits. However, the D-FF would delay the

progress of data until a synchronization signal is

sampled. Although it’s natural to think of this solution

as similar to CMOS structures, it’s difficult to imple-

ment and unfeasible with current technology.

A better remedy for this situation is to design a cir-

cuit with information propagation split conceptually

into two levels. The first level in such a design is

strictly connected to the physical signal propagation,

which must be synchronous. The other level is for

logic signal propagation, which can rely on an asyn-

chronous delay-insensitive logic. One of the possible

asynchronous implementation choices, as we men-

tioned earlier, is NCL.12

In NCL, every signal is coded using two bits that

can assume two different values: Data ¼ 01 or 10

(that stand for a Boolean 0 and 1) and Null ¼ 00,

while 11 is forbidden. Circuits switch periodically

from Null to Data, and vice versa. The advantage is

that the switch of a gate in either direction occurs

only when all the inputs assume the same coherent

value (all Null to Data or, in the opposite case, all

Data to Null). The delay insensitivity is thus assured,

at the cost of increased complexity. The consequen-

ces of this choice (of using NCL) are twofold. First,

it’s unnecessary to deliver a synchronization signal;

second, gates can be placed without worrying

about delays and synchronization, and thus top-

down synthesis and physical design can be inherited

from CMOS circuits’ design flow. We’ve seen a few

attempts at basic design flows using QCA, both for

synthesis13 and for placement.14 Although a lot of

work is yet to be done, especially with respect to

any MQCA, results show that it’s possible to rely on

these design-flow algorithms.13,14

NCL is based on several basic cells: Fant and

Brandt have detailed the cells’ behavior,12 whereas

Vacca,7 as well as Graziano et al.,2 have explained

the cells’ application to an MQCA circuit. It’s note-

worthy that the two bits’ encoding doubles the

wires, and as a consequence, many crossing points

could be necessary. Although this is a complication

of NCL, it is readily resolved, as coplanar wire cross-

ings have been experimentally demonstrated.3,4

At this point in our research, what we’re most inter-

ested in clarifying is whether the NCL asynchronous

circuit organization is an effective solution for QCA.

We have previously compared Boolean and NCL

using our VHDL behavioral model.2,7 Logic gates

are considered ideal, with no delay, but we simulated

the wire propagation delay through the clock

zones, using a register for every phase zone, with

the corresponding zone’s clock signal as a clock

(see Figure 2a), thereby reproducing the pipelined

circuit behavior. We based our model on the physi-

cal structure of every NCL gate, and on the basis

of our snake clock.2 We designed every gate to

be feasible, and the VHDL description (proposed

elsewhere)2,7 reflected this design.

Over time we’ve improved this VHDL model,

allowing for a hierarchical estimation of the circuit

area and power dissipation. For the sake of simplicity,

we won’t describe the model’s structure here in de-

tail. We based the model on the real number of mag-

nets used by the basic logic gates, and we’ve

hierarchically and parametrically estimated the total

number of nanomagnets to obtain a realistic approx-

imation of the circuit area and power dissipation. We

then calculated the power dissipated by the nano-

magnets by multiplying their total number for the

power dissipated (approximately) by each one.5 Start-

ing from the total number of magnets, we’ve also eval-

uated the circuit area, using the magnets’ dimensions

and some parameters to account for wasted space.

Using the reckoned circuit area, and knowing the

Asynchronous Design
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clock zone’s dimensions, we can estimate the clock

wires’ length and power dissipation caused by the

joule effect. The power is estimated using the most ef-

ficient clock-generation system currently available.15

Synchronous versus asynchronous
solutions

Now we can discuss the processor we designed

and simulated using a simulator able to understand

the VHDL model. In this work, the referenced archi-

tecture is a microprocessor, as Figure 3a shows. For

a detailed comparison between fully synchronous

and asynchronous solutions, we chose two of the

main processor components: the instruction memory

(Figure 3b) and the ALU (Figure 3c), both discussed

herein.

Arithmetic logic unit

The ALU organization is the same in both Boolean

and NCL cases at the higher hierarchical level,

the only difference being the delay blocks (gray in

Figure 3c) added to the Boolean solution to synchro-

nize signals. The architecture is a simple ripple carry

adder for addition and subtraction, and a logic block

for AND/OR operations. The output multiplexer

selects between logic and arithmetic operations,

while the input multiplexer selects, if needed, the

negated operand for two complements’ subtraction.
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present in the Boolean implementation. Memory cell structure based on majority voters (MVs) in a Boolean imple-

mentation (d). Memory cell structure based on Null Convention Logic (NCL) gates, themselves based on MVs (e).2

Full adder (FA) structure based on the MV in a Boolean implementation; inputs are A, B, and C_in (or ‘‘carry in’’),

while outputs are Sum and C_out (or ‘‘carry out’’) (f). Full adder structure based on NCL gates, themselves based

on the MV (g).2 (B: Boolean, INV: inverter, N: NCL, W/NR: write/not read.)
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Each full adder for the two logic cases is based

on the structures in Figures 3f and 3g. The Boolean

solution is implemented starting from the MV; the

NCL circuit relies on NCL gates, internally based

on the MV. Details on this structure are provided

elsewhere.2 It’s enough to note here that double

wires for each logic signal are present, and that,

for example, the TH23 gate has the function OUT ¼

MV (B, C, OUT) þ A. The internal feedback is neces-

sary to assure the delay insensitivity.

Data have been represented

using 32 bits. Figures 4 and 5

show our simulation results for

the Boolean and NCL versions.

As previously mentioned, the

behavior is intrinsically pipe-

lined, as Figure 4 shows. At

every clock cycle, a data item

is accepted at the inputs, and

an output is correspondingly

generated with high latency.

The Boolean implementation of

the ALU can be problematical

because signals must be pre-

cisely synchronized to obtain

working circuits, otherwise prob-

lems arise. In this simulation, we

intentionally altered the delay of

the synchronizing blocks to

show how critical this synchroni-

zation problem is in the Boolean implementation. In

the example, two logic operations are performed, first

the addition of 2 þ 1, and then the subtraction 2 � 1,

according to the selection signal Sel_1. The circuit

has a long latency because of its intrinsic structure,

and results are available after a long delay (not

shown in Figure 4). The first available output is cor-

rect (3, because of the addition). During the next

clock cycle, the output correctly changes because

of the pipeline, but the result shown, which is 0, is
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Figure 5. NCL ALU simulation results: an OR and an addition (+) are shown. The top waveforms are NCL encoded,

while the bottom details are their Boolean translation. Waveforms A and B are the ALU inputs, waveforms labeled

with Out and C_out are the ALU outputs ‘‘result’’ and ‘‘overflow’’ (‘‘carry out’’) respectively.
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wrong. At the next clock cycle, the output changes

again, and now the results are correct (Sum is 1

and C_out is 0). This behavior is caused by a mis-

match in the propagation time of the first selection

bit, which internally changes one clock cycle after

the input signal, generating the glitch, meaning a tem-

porary variation to a wrong value (this is a demon-

stration of the layout ¼ timing issue). It’s noteworthy

that this glitch has the same importance in this QCA

circuit as it has in CMOS circuits when it’s sampled

by a flip-flop; it’s an error that propagates throughout

the circuit.

The use of NCL rather than Boolean totally elimi-

nates this problem. Figure 5 shows an example

where two operations use NCL encoding: a logic

OR and an addition (þ). Note that every signal is

encoded using two bits and that signals periodically

switch from Data to Null: a new data item is accepted

only when all the inputs switch to the Null state inde-

pendently from their delay. In this way, circuits work

normally also in the presence of different propagation

delays.

NCL, like every asynchronous logic, requires a

communication protocol to operate. Figure 3a

shows this, wherein every block of combinational

logic is embraced by two asynchronous registers

(a transmitter TX on the left and a receiver RX on

the right of each block) that generate and exchange

this handshake protocol:

� A data item is propagated from a register output

(TX) to the input of the next one (RX) through

the combinational circuit.

� At this point, register RX receives the data and

sends back an acknowledgment (ack) to the pre-

vious register (TX).

� When Ack is received at TX, a null (all outputs set

to 0) is sent through the combinational circuit.

� RX receives the null and sends back another Ack.

� Once this second Ack is received, the TX register is

ready to accept new data from its combinational

input.

So, the behavior of QCA circuits is pipelined for

what concerns magnetic signal propagation, but the

asynchronous protocol freezes the circuit from the

logic’s point of view and accepts new data only

after the completion of the Data-Null cycle. Note

that the propagation time of the signals through the

circuit and the propagation time of the Ack signal

are equal to the combinational circuit’s latency. This

means that an asynchronous register accepts new

data only after a time equal to four times the circuit

latency (one time for the propagation of the data,

one time for the propagation of the null, and two

times for the propagation of the Ack signals).

Table 1 shows the comparison between the two

ALUs in terms of area, latency, and power dissipation

caused by the nanomagnets’ switching. The power

dissipation increases, but the area occupied by the

NCL version is more than two times bigger. This is

easy to explain with the two bits’ coding of the

NCL, and the relative additional interconnections’

overhead. The circuits’ latency is also twice that

of the Boolean circuit. Therefore, NCL solves the lay-

out ¼ timing issue, allowing a less-constrained design

flow through standard design automation algorithms.

This comes at the price of increasing the circuit’s

area and slowing down operations. We previously

remarked that a Boolean QCA circuit accepts new

data after each clock cycle. On the contrary, however,

a QCA implemented with NCL accepts new data after

a time that’s equal to a multiple of the latency. The

time itself is bigger than the latency of the Boolean

version.

Parallel memory

We ran the same type of comparison��NCL ver-

sus Boolean��for a parallel memory (Figure 3b)

organized as a 16 � 14 matrix (the microprocessor

instruction memory). The structure was quite sim-

ple. A decoder selected the desired matrix row

and the corresponding memory output. As with

the ALU, we used delay blocks (colored in gray)

only in the Boolean version to synchronize signals.

Figures 3d and 3f show the details of a memory

cell for the two logic types.

Table 1. Asynchronous versus synchronous design performance

comparison.

Implementation

Area

(mm2)

Latency (no. of

clock cycles)

Power

(mW)

Power

clock (mW)

ALU (Boolean) 1.33 34 0.52 0.86

ALU (NCL) 2.64 72 1.04 1.65

Memory (Boolean) 1.04 6 0.39 0.65

Memory (NCL) 44.38 26 36.60 27.66

Microprocessor 10.60 426 3.88 6.62

ALU: arithmetic logic unit; NCL: Null Convention Logic
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We omitted showing the waveforms for the sake

of brevity, but Table 1 shows a comparison between

the two implementations. Here the difference be-

tween the two logic choices is significant because

of the complexity of the memory cell implemented

in NCL, as Figure 3f shows. The memory’s power

consumption is roughly 100 times bigger than in

the Boolean implementation, and the area is

44 times bigger. The power dissipation caused by

the clock wires��estimated using the area, the

zones’ width, and the technological choices that

Augustine et al. described for what concerns the

magnetic field application15��are reported in

Table 1’s last column. The data we obtained are

on the same order of the magnets’ power consump-

tion, and maintain in every case a trend similar to

the one we obtained for the magnets.

The difference in terms of latency between Boo-

lean logic and NCL isn’t so big but still high (about

six times). Notwithstanding the higher memory com-

plexity, the latency of both memories is lower than the

two ALUs. This is caused by the choice of the ripple

carry adder, which is a high-latency circuit.

Further optimizations on the NCL memory archi-

tecture are possible, and therefore we can expect a

performance improvement eventually. However,

these results show that NCL isn’t suited for memory

structures (at least when applied to QCA technology),

as it could severely worsen results, even defeating the

advantages of adopting this technology. In this situa-

tion, it’s better to use a Boolean memory, provided

that a good input signal synchronization is assured.

In the case of a memory, it’s easier to assure the ab-

sence of glitches in the Boolean version. This is be-

cause of the memory’s (Boolean’s or NCL’s) higher

regularity, because the cells are small, and because

given a memory-style choice, only the parallelism

could change without impacting the relations or

delays among cells. Clearly, until it’s physically real-

ized, this assumption cannot be proven.

Feedback in QCA circuits
Working with a complex circuit such as a micro-

processor lets us pinpoint a negative characteristic,

which is typical of pipelined circuits but amplified

in QCA technology. To focus on an example, we

can consider the structure shown in the right-hand

section of Figure 3a. Here, one of the ALU inputs is

connected (using a feedback signal) to its output.

The ALU connected in this way performs the addition

between an input and the result of the previous

operation. Because the circuit is intrinsically pipe-

lined, it accepts new data at every clock cycle, but

as Figure 3a shows, the feedback loop has a propaga-

tion delay of &100 clock cycles because of the num-

ber of clock zones it crosses in this example.

Therefore, at the next clock cycle, it performs the ad-

dition between an input and the result of the opera-

tion that occurred 99 clock cycles before.

This propagation-delay problem is well-known, as

it’s typical of conditional jumps in reduced-instruction-

set computer (RISC) microprocessors. However, in

the case of QCA circuits, the feedback-delay is

heavily amplified by the high pipeline stages and by

every loop in the circuit. Only the adoption of an

asynchronous logic such as NCL can solve it, because

the computation is performed only when all the

signals arrive at the circuit inputs. This means that a

new ALU operation is executed only when the result

of the previous operation has passed through the

feedback loop and arrived at the ALU’s inputs.

Microprocessor: Mixed-logic solution
On the basis of what we’ve discussed thus far, we

claim that for QCA technology the Boolean logic in

a synchronous environment is the best theoretical

solution to obtain maximum performance. However,

implementation-related aspects��such as delay syn-

chronization and feedback in sequential circuits��

prevent its actual use. If we could overcome the

delay synchronization in some cases with the devel-

opment of an ad hoc algorithm to automatically syn-

chronize signals (when possible), then we could

solve the feedback issue using NCL, and accept a re-

sultant loss in performance.

We thus propose a solution to achieve the best

compromise between circuits’ feasibility and perfor-

mance optimization: a mixed Boolean-NCL logic de-

sign. We use the NCL asynchronous structure for the

global architecture, leaving the Boolean synchronous

solution for subblocks (for example, the memory), in

which NCL would critically compromise results. Such

an approach requires the use of appropriate interfa-

ces between the two logic topologies.

To test the proposed solution, we implemented a

simple four-bit microprocessor (Figure 3a) with four

main components: a program counter, a parallel

memory able to store 16 instructions of 14 bits, a

data memory with four memory cells of 4 bits each,

and the ALU. We organized the microprocessor in

Asynchronous Design
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four asynchronous (logic) pipeline stages, where a

pipe stage is a combinational circuit enclosed within

two asynchronous registers, which solve the feedback

problem. In this implementation, the two memories

aren’t NCL; rather, they’re Boolean based. We substi-

tuted the memories because from our previous anal-

ysis they’re the most critical and because in their

Boolean implementation they’re the simplest to

synchronize.

A division algorithm helps us test the architec-

ture: in this example, input A ¼ 12 is divided by

B ¼ 3 (12/3). The result is reported in the example

in Figure 6. The waveforms are organized in phases

from 1 to 14 for the sake of clarity.

Table 1 shows the microprocessor’s performance.

The latency is high because of the design’s complexity

and lack of optimization, but it’s interesting to com-

pare its performance to the parallel NCL memory

alone. The whole mixed-logic microprocessor is four

times smaller and has 10 times less power dissipation

than a memory NCL design alone. This shows that our

approach works well because it lets us build every

kind of QCA circuit without losing too much per-

formance. Clearly, the memory must be carefully

designed to synchronize delays. However, this isn’t

as complex for other blocks because of intrinsic regu-

lar organization in arrays of identical cells.

Finally, regarding power dissipation, we note that

we evaluated and compared this QCA mixed solution

to an equivalent CMOS solution. We implemented

(using CMOS technology) a CMOS-based microproc-

essor with the same structure as our QCA processor

and which operated at the same frequency of

100 MHz. We synthesized it on 45-nm standard cell

technology and calculated its total power dissipation,

which resulted in 536 mW. This proved that the QCA

solution is advantageous: as Table 1 shows, it

dissipates just 3.88 þ 6.62 ¼ 10.5 mW in the mixed

case. We estimated the power based on several con-

straints and parameters chosen to obtain a realistic

evaluation.

THIS STUDY CLEARLY shows that our proposed mixed

solution is viable. A totally synchronous architecture

in QCA technology, although granting high data

throughput, would be unfeasible, because it would

require complex synchronization procedures to

solve the layout ¼ timing constraint and could be ap-

plied only to combinational circuits. An important im-

provement can be achieved if we were to adopt a

global asynchronous circuit organization (based, for

example, on NCL). In this way, no synchronization

of signals is needed and both combinational and se-

quential circuits with any order of feedback can be

implemented without the need of particular care

while routing signals.

As with all ‘‘medications,’’ collateral effects might

arise, especially if the ‘‘dosage’’ isn’t respected: circuits

Division sequence
Ack

Ovf (0)

Ovf (1)

Out (0)

Out 4 (1)

Out 3 (0)

Out 3 (1)

Out 2 (0)

Out 2 (1)

Out 1 (0)

Out 1 (1)

1. Load instruction from memory

2. Counter = 0 and store
3. Store 12 (1100)

4. Subtract 3 (0011)
5. Store result

6. Counter + 1
7. Store new counter

8. Load result of sub

9. If result = 0 stop else 10

10. Subtract 3 (0011)

11. Phases from 5 to 10

12. Phases from 5 to 10

13. Phases from 5 to 10

14. Sub result = 0, stop

show final data 4(0100)

0.00 50.00 100.00 150.00 200.00 250.00 300.00
Time (s)

350.00 400.00

1                            2   3   4  5   6   7  8   9 10             11                             12                            13           14 

C1: 512.019.380

Figure 6. Division algorithm execution: 12/3 � 4. In the leftmost inset is the ‘‘Division sequence,’’ which briefly

explains the phases numbered at the bottom of the figure.
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are bigger, slower, and need more power (because of

their increased complexity). If a poisonous effect is

to be avoided, trade-offs must be carefully evaluated,

and when block regularity reduces the burden of

signal synchronization, synchronous blocks can

coexist with asynchronous blocks.

This joint synchronous-asynchronous solution��

Boolean logic and NCL��is a compromise be-

tween performance and circuit feasibility. It’s

also clear that QCA technology is best suited

for pure combinational circuits, wherein it can

grant a consistent advantage over CMOS technol-

ogy in terms of speed and especially power dissipa-

tion. General-purpose circuits are feasible using

the asynchronous approach, but only at the

cost of lowering the overall performance. However,

our results show that even in this case it’s

advantageous.

Our future efforts will be directed toward finding a

different solution��still asynchronous but not based

on NCL��to explore whether it’s possible to exploit

the advantages of asynchrony without suffering the

burdens that NCL implies in terms of area and latency.

At the same time, our efforts will be directed toward

an automatic circuit synthesizer, placer, and router for

Boolean QCA logic circuits. �
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