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ABSTRACT

With the rapid development of adversarial machine learning, numerous adversarial
attack methods have been proposed. Typical attacks are based on a search in the
neighborhood of input image to generate a perturbed adversarial example. Since
2017, generative models are adopted for adversarial attacks, and most of them focus
on generating adversarial perturbations from input noise or input image. Thus the
output is restricted by input for these works. A recent work targets “unrestricted
adversarial example” using generative model but their method is based on a search
in the neighborhood of input noise, so actually their output is still constrained by
input. In this work, we propose AT-GAN (Adversarial Transfer on Generative
Adversarial Net) to train an adversarial generative model that can directly produce
adversarial examples. Different from previous works, we aim to learn the distribu-
tion of adversarial examples so as to generate semantically meaningful adversaries.
AT-GAN achieves this goal by first learning a generative model for real data, fol-
lowed by transfer learning to obtain the desired generative model. Once trained
and transferred, AT-GAN could generate adversarial examples directly and quickly
for any input noise, denoted as non-constrained adversarial examples. Extensive
experiments and visualizations show that AT-GAN can efficiently generate diverse
adversarial examples that are realistic to human perception, and yields higher attack
success rates against adversarially trained models.

1 INTRODUCTION

In recent years, Deep Neural Networks (DNNs) have been found vulnerable to adversarial exam-
ples (Szegedy et al., 2014), which are well-crafted samples with tiny perturbations imperceptible
to humans but can fool the learning models. Despite the great success of the deep learning empow-
ered applications, many of them are safety-critical, for example under the scenario of self-driving
cars (Eykholt et al., 2018; Cao et al., 2019), raising serious concerns in academy and industry.

Numerous works of adversarial examples have been developed on adversarial attacks (Goodfellow
et al., 2015; Carlini & Wagner, 2017; Madry et al., 2018), adversarial defenses (Goodfellow et al.,
2015; Kurakin et al., 2017; Song et al., 2019) and exploring the property of adversarial examples (He
et al., 2018; Shamir et al., 2019). For adversarial attacks, most studies focus on the perturbation-based
adversarial examples constrained by input images, which is also the generally accepted conception
of adversarial examples. Generative models are also adopted recently to generate adversarial pertur-
bations from an input noise (Reddy Mopuri et al., 2018; Omid et al., 2018) or from a given image
(Xiao et al., 2018; Bai et al., 2020), and such perturbations are added to the original image to craft
adversarial examples. Song et al. (2018) propose to search a neighborhood noise around the input
noise of a Generative Adversarial Net (GAN) (Goodfellow et al., 2014) such that the output is an
adversarial example, which they denoted as unrestricted adversarial example as there is no original
image in their method. However, their output is still constrained by the input noise, and the search is
time-consuming.

In this work, we propose an adversarial generative model called AT-GAN (Adversarial Transfer on
Generative Adversarial Net), which aims to learn the distribution of adversarial examples. Unlike
previous works that constrain the adversaries in the neighborhood of input image or input noise,
including the prominent work of Song et al. (2018) that searches over the neighborhood of the input
noise of a pre-trained GAN in order to find a noise whose output image is misclassified by the target
classifier, AT-GAN is an adversarial generative model that could produce semantically meaningful
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adversarial examples directly from any input noise, and we call such examples the non-constrained
adversarial examples.

Specifically, we first develop a normal GAN to learn the distribution of benign data so that it can
produce plausible images that the classifier and a human oracle will classify in the same way. Then
we transfer the pre-trained GAN into an adversarial GAN called AT-GAN that can fool the target
classifier while being still well recognized by the human oracle. AT-GAN is a conditional GAN that
has learned to estimate the distribution of adversarial examples for the target classifier, so AT-GAN
can directly generate adversarial examples from any random noise, leading to high diversity and
efficiency.

We implement AT-GAN by adopting AC-GAN (Odena et al., 2017) and WGAN-GP (Gulrajani et al.,
2017) in the pre-training stage, then do transfer learning for the adversary generation. Here we
develop AT-GAN on three benchmark datasets, namely MNIST, Fashion-MNIST and CelebA, and
apply typical defense methods to compare AT-GAN with existing search-based attacks. Empirical
results show that the non-constrained adversarial examples generated by AT-GAN yield higher attack
success rates, and state-of-the-art adversarially trained models exhibit little robustness against AT-
GAN, indicating the high diversity of our adversaries. In addition, AT-GAN, as a generation-based
adversarial attack, is more efficient than the search-based adversarial attacks.

Note that all conditional GANs that can craft realistic examples could be used for the implementation
of AT-GAN. For another demonstration, we adopt StyleGAN2-ada (Karras et al., 2020a) and develop
AT-GAN on CIFAR-10 benchmark dataset using wide ResNet w32-10 (Zagoruyko & Komodakis,
2016) as the target classifier. Empirical results show that AT-GAN can produce plausible adversarial
images, and yield higher attack success rates on the adversarially trained models.

2 PRELIMINARIES

In this section, we provide definitions on several types of adversarial examples and adversarial attacks,
and give a brief overview of adversarial attacks using GAN. Other related works on typical adversarial
attacks and defenses (Goodfellow et al., 2015; Madry et al., 2018; Tramèr et al., 2018), as well as
some typical GANs (Goodfellow et al., 2014; Radford et al., 2016; Odena et al., 2017; Arjovsky
et al., 2017; Gulrajani et al., 2017) are introduced in Appendix A.

2.1 DEFINITIONS ON ADVERSARIES

Let X be the set of all digital images under consideration for a learning task, Y ∈ R be the output
label space and pz ∈ R

m be an arbitrary probability distribution (e.g. Gaussian distribution) where m
is the dimension of pz . A deep learning classifier f : X → Y takes an image x ∈ X and predicts its
label f(x). Suppose px and padv are the distributions of benign images and adversarial examples,
respectively. Assume we have an oracle classifier o : X → Y , which could always predict the correct
label for any image x ∈ X , we define several types of adversarial examples as follows.

For perturbation-based adversarial examples (Szegedy et al., 2014; Goodfellow et al., 2015; Moosavi-
Dezfooli et al., 2016), tiny perturbations are added to the input images, which are imperceptible to
humans but can cause the target classifier to make wrong predictions.

Definition 1. Perturbation-based Adversarial Examples. Given a subset (trainset or testset) images
T ⊂ X and a small constant ǫ > 0, the perturbation-based adversarial examples can be defined as:
Ap = {xadv ∈ X |∃x ∈ T , ‖x− xadv‖p < ǫ ∧ f(xadv) 6= o(xadv) = f(x) = o(x)}.

Song et al. (2018) define a new type of adversarial examples called unrestricted adversarial examples,
which is not related to the subset (trainset or testset) images, by adding adversarial perturbation to the
input noise of a mapping, such as GAN, so that the output of the perturbed noise is an adversary to
the target classifier.

Definition 2. Unrestricted Adversarial Examples. Given a mapping G from z ∼ pz to G(z, y) ∼ pθ,
where pθ is an approximated distribution of px, and a small constant ǫ > 0, the unrestricted
adversarial examples can be defined as: Au = {G(z∗, ys) ∈ X |∃z ∼ pz, z

∗ ∼ pz, ‖z − z∗‖p <
ǫ ∧ f(G(z∗, ys)) 6= o(G(z∗, ys)) = f(G(z, ys)) = o(G(z, ys)) = ys} where ys is the source label.
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In this work, we train a conditional GAN to learn the distribution of adversarial examples and output
the corresponding adversary directly from any input noise. To clarify the difference with Song et al.
(2018), we call our generated adversaries the non-constrained adversarial examples.

Definition 3. Non-constrained Adversarial Examples. If there is a mapping G∗ from z ∼ pz to
G∗(z, y) ∼ qθ, where qθ is an approximated distribution of padv, the non-constrained adversarial
examples can be defined as An = {G∗(z, ys) ∈ X |f(G∗(z, ys)) 6= o(G∗(z, ys)) = ys} where ys is
the source label.

Here we need to find a mapping G∗, e.g. a generative model, such that for z ∼ pz , G∗(z, y) is an
image in X and the output distribution is an approximated distribution of padv , for example using the
Kullback-Leibler divergence (Kullback & Leibler, 1951), KL(qθ||padv) < ǫ for a small constant ǫ.

In summary, perturbation-based adversarial examples are based on perturbing an image x ∈ X ,
and unrestricted adversarial examples (Song et al., 2018) perturbs an input noise z ∼ pz for an
existing mapping G. Most perturbation-based adversarial attacks and Song et al. (2018) fall into the
search-based adversarial attack.

Definition 4. Search-based Adversarial Attack. Given an input vector v ∈ V (either benign image
x or random vector z), the search-based adversarial attack searches a vector v′ : ‖v− v′‖p < ǫ where
v′ leads to an adversarial example for the target classifier.

In contrast, non-constrained adversarial examples are more generalized so that we need to learn a
mapping G∗ such that for any input noise sampled from distribution pz , the output is an adversarial
image. Such a mapping to be learned is called an adversarial generative model, and our method falls
into the generation-based adversarial attack.

Definition 5. Generation-based Adversarial Attack. Given an input vector v ∈ V (either benign im-
age x or random vector z), the generation-based adversarial attack generates adversarial perturbation
or adversarial example directly from v, usually adopting generative models.

2.2 GENERATIVE MODELS FOR ADVERSARIAL ATTACK

Generative models have been adopted for adversarial attack in recent works (Baluja & Fischer, 2017).
Reddy Mopuri et al. (2018) propose a Network for Adversary Generation (NAG) that models the
distribution of adversarial perturbations for a target classifier so that their NAG can craft adversarial
perturbations from any given random noise, which will be added to the natural image to fool the
target classifier. Omid et al. (2018) propose to generate universal or image-dependent adversarial
perturbations using U-Net (Ronneberger et al., 2015) or ResNet Generator (He et al., 2016) from any
given random noise. Xiao et al. (2018) propose to train AdvGAN that takes an original image as the
input and generate adversarial perturbation for the input to craft an adversarial example. Bai et al.
(2020) further propose AI-GAN that adopts projected gradient descent (PGD) (Madry et al., 2018) in
the training stage to train a GAN to generate target adversarial perturbation for the input image and
target class. The above attack methods all fall into the generation-based adversarial attack, and their
crafted examples fall into the perturbation-based adversarial examples. Another recent work called
PS-GAN (Liu et al., 2019) pre-processes an input seed patch (a small image) to adversarial patch that
will be added to a natural image to craft an adversarial example, and an attention model is used to
locate the attack area on the natural image.

Different from the above methods that generate adversarial perturbations or patches, Song et al.
(2018) propose to search a random noise z∗ around the input noise z of AC-GAN (Odena et al., 2017)
such that the corresponding output of AC-GAN is an adversarial example for the target classifier.
Their method falls into the search-based adversarial attack, and their crafted examples fall into the
unrestricted adversarial examples as there is no original image in their method.

AT-GAN falls into the generation-based adversarial attack, and the crafted examples fall into the
non-constrained adversarial examples. To clearly distinguish our work, we highlight the differences
with most related works as follows:

NAG, AdvGAN and AI-GAN vs. AT-GAN. NAG (Reddy Mopuri et al., 2018), AdvGAN (Xiao
et al., 2018) and AI-GAN (Bai et al., 2020) focus on crafting adversarial perturbations by GANs.
NAG takes random noise as input and crafts image-agnostic adversarial perturbation. AdvGAN and
AI-GAN both use natural images as inputs, and generate the corresponding adversarial perturbations
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Figure 1: Estimating the distribution of adversarial examples qθ in two stages: 1) estimate the
distribution of benign data pθ. 2) transfer pθ to estimate qθ.

for the input image. AI-GAN uses adversarial examples generated by PGD for the training. In
contrast, AT-GAN does not use any natural image as the input, and generates adversarial examples
directly from any random noise. Further, compared with AI-GAN, we do not use any adversarial
examples for the training.

Song’s vs. AT-GAN. Song’s method (Song et al., 2018) searches over the neighborhood of the input
noise for the pre-trained AC-GAN in order to find a noise whose output image is misclassified by
the target classifier. They define such adversaries as the unrestricted adversarial examples, however,
their adversaries are still constrained by the original input noise. Their method is essentially based on
search, while AT-GAN is trained as an adversarial generative model, and our output is not constrained
by any neighborhood.

3 AT-GAN: AN ADVERSARIAL GENERATIVE MODEL

Here we first introduce the estimation on the distribution of adversarial examples, then propose the
AT-GAN framework, a generation-based adversarial attack for crafting non-constrained adversarial
examples. Further analysis is provided that AT-GAN could learn the adversary distribution.

3.1 ESTIMATING THE ADVERSARIAL DISTRIBUTION

In order to generate non-constrained adversarial examples, we need to estimate the distribution
of adversarial examples padv(xadv|ytrue) where ytrue is the true label. Given the parameterized
estimated distribution of adversarial examples qθ(x|ytrue), we can define the estimation problem as:

qθ∗(xadv|ytrue) = argmin
θ∈Ω

KL(qθ(xadv|ytrue)‖padv(xadv|ytrue)), (1)

where θ indicates trainable parameters and Ω is the parameter space.

It is hard to calculate equation 1 directly as padv(xadv|ytrue) is unknown. Inspired by the perturbation-
based adversarial examples, as shown in Figure 1, we postulate that for each adversarial example
xadv , there exists some benign examples x where ‖x−xadv‖p < ǫ. In other words, padv(xadv|ytrue)
is close to p(x|ytrue) to some extent and we can obtain p(x|ytrue) by Bayes’ theorem, p(x|ytrue) =
p(ytrue|x)·p(x)

p(ytrue)
, where p(ytrue|x), p(x) and p(ytrue) can be obtained directly from the trainset. Thus,

we can approximately solve equation 1 in two stages: 1) Fit the distribution of benign data pθ. 2)
Transfer pθ to estimate the distribution of adversarial examples qθ.

Specifically, we propose an adversarial generative model called AT-GAN to learn the distribution of
adversarial examples. The overall architecture of AT-GAN is illustrated in Figure 2. Corresponding to
the above two stages, we implement AT-GAN by first training a GAN model called AC-WGAN_GP,
which combines AC-GAN (Odena et al., 2017) and WGAN_GP (Gulrajani et al., 2017) to get a gener-
ator Goriginal, to learn pθ (See Appendix B), then transfering Goriginal to attack the target classifier
f for the learning of qθ. We adopt AC-GAN and WGAN-GP for the AT-GAN implementation as
they could build a powerful generative model on three evaluated datasets, and Song et al. (2018) also
utilize the same combination. But AT-GAN is not limited to the above GANs, and we also implement
AT-GAN using StyleGAN2-ada (Karras et al., 2020a) on a different dataset.

3.2 TRANSFERRING THE GENERATOR FOR ATTACK

After the original generator Goriginal is trained, we transfer the generator Goriginal to learn the
distribution of adversarial examples in order to attack the target model. As illustrated in Figure 2
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Figure 2: The architecture of AT-GAN. The first training stage of AT-GAN is same as AC-WGAN_GP.
Once trained, we regard G as the original model Goriginal and transfer Goriginal to attack target
classifier to obtain Gattack. Once finished, AT-GAN can generate adversarial examples by Gattack.

(b), there are three neural networks, including the original generator Goriginal, the attack generator
Gattack to be transferred that is initialized by the weights of Goriginal, and the classifier f to be
attacked. The goal of the second stage can be described as:

G∗
attack = argmin

Gattack

||Goriginal(z, ys)−Gattack(z, ys)||p s. t. f(G(z, ys)) = yt 6= ys, (2)

where yt denotes the target label, ‖ · ‖p denotes the ℓp norm and we focus on p = 2 in this work.

To optimize equation 2, we construct the loss function by L1 and L2, where L1 aims to assure that f
yields the target label yt that is fixed for target attack for each category:

L1 = Ez∼pz
[H(f(Gattack(z, ys)), yt)]. (3)

Here H(·, ·) denotes the cross entropy between the two terms and ys is sampled from Y . L2 aims to
assure that the adversarial generator Gattack generates realistic examples:

L2 = Ez∼pz
[||Goriginal(z, ys) + ρ−Gattack(z, ys)||p]. (4)

Here ρ is a small uniform random noise constrained by both l0 and l∞ norm. We add ρ to constrain
Gattack(z, ys) to be in the neighborhood of Goriginal(z, ys) rather than be exactly the same as
Goriginal(z, ys).

The objective function for transferring Goriginal to Gattack can be formulated as L = 〈αL1, βL2〉,
where α and β are hyper-parameters to control the training process. Note that in the case that α = 1
and β → ∞, the objective function is similar to that of the perturbation-based attacks (Goodfellow
et al., 2015; Tramèr et al., 2018; Madry et al., 2018). For the untargeted attack, we can replace yt in
La with the maximum confidence of prediction label y except for ys, maxy 6=ys

f(y|Gattack(z, ys)).

3.3 THEORETICAL ANALYSIS ON AT-GAN

This subsection provides theoretical analysis on why AT-GAN can generate as realistic and diverse
non-constrained adversarial examples as real data. We will prove that under ideal condition, AT-GAN
can estimate the distribution of adversarial examples, which is close to that of real data.

Suppose pdata is the distribution of real data, pg and pa are the distribution learned by the generator of
AC-WGAN_GP and AT-GAN respectively. For the optimization of equation 4, L2 aims to constrain
the image generated by Gattack in the ǫ-neighborhood of Goriginal. We prove that under the ideal
condition that L2 guarantees Gattack(z, ys) to be close enough to Goriginal(z, ys) for any input noise
z, the distribution of AT-GAN almost coincides the distribution of AC-WGAN_GP. Formally, we
state our result for the two distributions as follows.

Theorem 1. Suppose maxz,y L2 < ǫ, we have KL(pa‖pg) → 0 when ǫ → 0.

The proof of Theorem 1 is in Appendix C. Samangouei et al. (2018) prove that the global optimum of
WGAN is pg = pdata and we show that the optimum of AC-WGAN_GP has the same property. We
formalize the property as follows.

Theorem 2. The global minimum of the virtual training of AC-WGAN_GP is achieved if and only
if pg = pdata.
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The proof of Theorem 2 is in Appendix C. According to Theorem 1 and 2, under the ideal condition,
we conclude pa ≈ pg = pdata, which indicates that the distribution of non-constrained adversarial
examples learned by AT-GAN is very close to that of real data as discussed in Section 3.1, so that the
non-constrained adversarial instances are as realistic and diverse as the real data.

4 EXPERIMENTS

In this section, we provide two implementations of AT-GAN to validate the effectiveness and
efficiency of the proposed approach. Empirical experiments demonstrate that AT-GAN yields higher
attack success rates against adversarially trained models with higher efficiency. Besides, AT-GAN can
learn a distribution of adversarial examples which is close to the real data distribution, and generate
realistic and diverse adversarial examples.

4.1 EXPERIMENTAL SETUP

Datasets. We consider four standard datasets, namely MNIST (LeCun et al., 1989), Fashion-MNIST
(Xiao et al., 2017), CelebA (Liu et al., 2015) on the AT-GAN implementation using AC-GAN (Odena
et al., 2017) and WGAN_GP (Gulrajani et al., 2017), and CIFAR-10 dataset (Krizhevsky et al.,
2009) on the AT-GAN implementation of StyleGAN2-ada (StyleGAN2 with adaptive discriminator
augmentation) (Karras et al., 2020a). MNIST is a dataset of hand written digits from 0 to 9. Fashion-
MNIST is similar to MNIST with 10 categories of fashion clothes. CelebA contains more than
200, 000 celebrity faces. We group them according to female/male and focus on gender classification
as in Song et al. (2018). CIFAR-10 consists of 32× 32 color images in 10 classes, with 6, 000 images
per class. For all datasets, we normalize the pixel values into range [0, 1].

Baselines. We compare AT-GAN with the search-based attack methods, including Song’s (Song
et al., 2018) for unrestricted adversarial examples, as well as FGSM (Goodfellow et al., 2015), PGD
(Madry et al., 2018) and R+FGSM (Tramèr et al., 2018) for perturbation-based adversarial examples.
Note that although the perturbation-based results are not directly comparable to ours as they are
limited to small perturbations on real images, they can provide a good sense on the model robustness.

Models. For MNIST and Fashion-MNIST, we adopt four models used in Tramèr et al. (2018),
denoted as Model A to D. For CelebA, we consider three models, i.e. CNN, VGG16 (Simonyan &
Zisserman, 2015) and ResNet (He et al., 2016). Details of Model A to D and CNN are described
in Table 1. The ResNet is same as in Song et al. (2018). For CIFAR-10, we adopt the wide ResNet
w32-10 (Zagoruyko & Komodakis, 2016). Details about the architectures of AT-GAN are provided in
Appendix D.

Table 1: Architectures of Model A through D used for MNIST and Fashion-MNIST and CNN used
for CelebA. The total number of parameters of each model is provided after the model name.

Model A (3,382,346) Model B (710,218) Model C (4,795,082) Model D (509,410) CNN (17, 066, 658)

Conv(64, 5× 5)+Relu Dropout(0.2) Conv(128, 3× 3)+Relu
[

FC(300)+Relu
Dropout(0.5)

]

× 4
[Conv(32, 3× 3)+Relu] × 2

Conv(64, 5× 5)+Relu Conv( 64, 8× 8)+Relu Conv( 64, 3× 3)+Relu Dropout(0.3)
Dropout(0.25) Conv(128, 6× 6)+Relu Dropout(0.25) [Conv(64, 3× 3)+Relu] × 2
FC(128)+Relu Conv(128, 5× 5)+Relu FC(128)+Relu FC(10) + Softmax Maxpool(2, 2) + Dropout(0.3)
Dropout(0.5) Dropout(0.5) Droopout(0.5) [Conv(128, 3× 3)+Relu]× 2

FC(10)+Softmax FC(10)+Softmax FC(10)+Softmax Maxpool(2, 2) + Dropout(0.3)
FC(512) + Relu

Dropout(0.3)
FC(10) + Softmax

Evaluation Setup. We consider normal training and existing advanced defenses, namely adversarial
training (Goodfellow et al., 2015), ensemble adversarial training (Tramèr et al., 2018) and iterative
adversarial training (Madry et al., 2018). All experiments are conducted on a single Titan X GPU and
the hyper-parameters used for attacks are described in Appendix D.

4.2 EVALUATION RESULTS

For evaluation, we report the comparisons on attack success rate, attack efficiency and visualize some
adversarial examples for AT-GAN and the baselines. More evaluation results on the transferability,
ablation study, human evaluation, and the attack results on CIFAR-10, are provided in Appendix D.

6



Under review as a conference paper at ICLR 2021

Table 2: Attack success rate (ASR, %) of adversarial examples generated by AT-GAN and the baseline
attacks against models by normal training and various adversarial training methods. For each model,
the highest ASR is highlighted in bold. Notation: Nor. — Normal training, Adv. — Adversarial
training, Ens. — Ensemble adversarial training, Iter. — Iterative adversarial training.

(a) Comparison of attack success rate on MNIST.

Attack
Model A Model B Model C Model D

Nor. Adv. Ens. Iter. Nor. Adv. Ens. Iter. Nor. Adv. Ens. Iter. Nor. Adv. Ens. Iter.

FGSM 68.8 2.9 8.7 4.0 88.0 9.5 18.0 9.2 70.7 4.3 7.8 4.7 89.6 23.5 34.6 26.7
PGD 100.0 92.6 85.1 5.9 100.0 42.4 98.2 36.2 100.0 76.9 96.4 9.6 91.7 96.8 99.5 81.1

R+FGSM 77.9 28.4 20.3 2.6 96.5 7.1 42.1 4.6 81.6 7.2 19.9 2.9 93.8 76.2 51.6 25.3
Song’s 82.0 70.5 75.0 84.6 76.9 65.0 72.0 80.7 74.2 75.6 72.6 87.8 67.7 43.6 56.3 44.5

AT-GAN 98.7 97.5 96.7 91.4 99.5 97.7 99.3 95.6 99.3 95.8 96.9 90.0 99.9 99.9 99.5 99.7

(b) Comparison of attack success rate on Fashion-MNIST.

Attack
Model A Model B Model C Model D

Nor. Adv. Ens. Iter. Nor. Adv. Ens. Iter. Nor. Adv. Ens. Iter. Nor. Adv. Ens. Iter.

FGSM 68.8 2.9 8.7 4.0 88.0 9.5 18.0 9.2 70.7 4.3 7.8 4.7 89.6 23.5 34.6 26.7
PGD 100.0 92.6 85.1 5.9 100.0 42.4 98.2 36.2 100.0 76.9 96.4 9.6 91.7 96.8 99.5 81.1

R+FGSM 77.9 28.4 20.3 2.6 96.5 7.1 42.1 4.6 81.6 7.2 19.9 2.9 93.8 76.2 51.6 25.3
Song’s 82.0 70.5 75.0 84.6 76.9 65.0 72.0 80.7 74.2 75.6 72.6 87.8 67.7 43.6 56.3 44.5

AT-GAN 98.7 97.5 96.7 91.4 99.5 97.7 99.3 95.6 99.3 95.8 96.9 90.0 99.9 99.9 99.5 99.7

(c) Comparison of attack success rate on CelebA.

Attack
CNN VGG16 ResNet

Nor. Adv. Ens. Iter. Nor. Adv. Ens. Iter. Nor. Adv. Ens. Iter.

FGSM 81.2 11.8 14.7 9.5 76.7 10.6 16.2 8.9 98.7 9.8 12.3 9.5
PGD 97.3 16.4 22.6 11.4 87.9 14.6 26.3 10.7 100.0 10.9 15.1 10.5

R+FGSM 68.7 9.5 11.3 7.9 68.4 8.7 13.2 7.3 97.5 7.9 9.5 7.8
Song’s 90.6 83.4 85.7 89.8 98.7 87.5 95.7 81.6 99.2 93.4 91.0 90.6

AT-GAN 97.5 98.9 95.9 99.6 97.1 96.7 95.8 97.8 98.4 98.5 97.3 98.5

4.2.1 COMPARISON ON ATTACK SUCCESS RATE

To validate the attack effectiveness, we compare AT-GAN with the baselines under white-box setting.
Since Athalye et al. (2018) show that the currently most effective defense method is adversarial
training, we consider adversarially trained models as the defense models. The attack success rates are
reported in Table 2.

On MNIST, AT-GAN achieves the highest Attack Success Rate (ASR) against the baselines on all
defense models. As for normal training, AT-GAN achieves the highest ASR on Model D, and the
second highest ASR of over 98% on the other models. On Fashion-MNIST, AT-GAN achieves the
highest ASR on average. On CelebA, AT-GAN achieves the highest ASR on almost all the models,
with two exceptions under normal training but the results of AT-GAN are close to the highest.

In general, AT-GAN achieves the highest attack performance above 90% on all the defense models.
As AT-GAN aims to estimate the distribution of adversarial examples, adversarial training with some
specific attacks has little robustness against AT-GAN, raising a new security issue for the development
of more generalized adversarial training models.

4.2.2 COMPARISON ON ATTACK EFFICIENCY

There are many scenarios where one needs a large amount of adversarial examples, such as adversarial
training or exploring the property of adversarial examples. Thus, the efficiency of generating
adversarial examples is very important, but such metric is ignored in most existing works.

As an adversarial generative model, once trained, AT-GAN can generate adversarial examples very
quickly. Here we evaluate the efficiency of each attack method for Model A on MNIST. The average
time of generating/searching 1000 adversarial examples is summarized in Table 3. Among the five
attack methods, AT-GAN is the fastest as it could craft adversarial examples without target classifier
and gradient calculation. Note that Song’s needs much longer time than others as it needs multiple
searches and queries to generate one adversarial example. It takes about 8 minutes for transferring
the generator of AT-GAN. Here we only focus on the efficiency of generating adversarial examples
after AT-GAN is transferred, i.e. we have already found the generator G∗, as in such case we could
generate as many adversarial examples as we need.
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Table 3: Comparison on the average example generation time, measured by generating 1000 adver-
sarial instances using Model A on MNIST.

FGSM PGD R+FGSM Song’s AT-GAN

Time 0.3s 1.8s 0.4s ≥ 2.5min 0.2s

FGSM

PGD

R+FGSM

Song's

AT-GAN

(a) Adversarial examples for Model A on MNIST.
FGSM

PGD

R+FGSM

Song's

AT-GAN

(b) Adversarial examples for Model A on Fashion-MNIST.

FGSM

PGD

R+FGSM

Song's

AT-GAN

Source	Class:	Female Source	Class:	Male

(c) Adversarial examples for CNN on CelebA.

Figure 3: Adversarial examples generated by various attacks on three datasets (Zoom in for details).
The red borders indicate unrealistic adversarial examples generated by Song’s method or AT-GAN.

4.2.3 VISUALIZATION ON ADVERSARIAL EXAMPLES

Since the goal of adversarial examples is to fool target neural networks but not to fool human oracle,
in Figure 3 we illustrate some adversarial examples generated by different attacks for Modle A on
MNIST and Fashion-MNIST, and CNN on CelebA.

On MNIST, AT-GAN generates slightly more realistic images than Song’s, e.g. “0” and “3”. On
Fashion-MNIST and CelebA, some adversarial examples generated by Song’s method are not as
realistic as AT-GAN to human perception, for example “t-shirt/top (0) ”, “sandal (5)” and some facial
details. Note that Song’s method tends to distort the foreground that makes the images on MNIST
more clean but some images are not realistic while AT-GAN tends to distort the background. As for
perturbation-based attacks, their adversarial examples are not clear enough, especially on MNIST
and Fashion-MNIST, due to the adversarial perturbations. There are also some unnatural samples
generated by AT-GAN due to the limitation of GAN and we hope some better generative models can
solve such issue. For target attack, please see more examples crafted by AT-GAN in Appendix D.

In general, AT-GAN can generate realistic and diverse adversarial examples as equation 1 forces the
generated non-constrained adversarial examples to be close to the benign examples generated by the
original generator.

4.3 VISUALIZATION ON ADVERSARIAL DISTRIBUTION

As discussed in Section 3.3, we provide a brief analysis that AT-GAN can learn a distribution of
adversarial examples close to the distribution of real image data. To identify it empirically, we
randomly choose 5, 000 benign images and 5, 000 adversarial examples generated by different attack
methods, and merge these images according to their real label for MNIST and Fashion-MNIST.
Then we use t-SNE (Maaten & Hinton, 2008) on these images to illustrate the distributions in two
dimensions. t-SNE models each high-dimensional object in such a way that similar objects are

8
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(a) Testset (b) FGSM (c) PGD (d) R+FGSM (e) Song (f) AT-GAN

Figure 4: T-SNE visualization for the combination of testset and adversarial examples generated by
various attacks on MNIST (top) and Fashion-MNIST (bottom). For (a), we use total testset with
10,000 images. For (b) to (f), we use 5,000 sampled images in testset and 5,000 adversarial examples
generated by various attacks. The position of each class is random due to the property of t-SNE.

modeled by nearby points and dissimilar objects are modeled by distant points with high probability.
It indicates that, if the adversarial examples have different distribution to the benign data, t-SNE
could not deal with them well and the points with different categories will overlap with each other
after the dimension reduction, i.e. the results will be in chaos.

The results are illustrated in Figure 4. For AT-GAN, different categories are separated as that of
the test set while those of other methods are mixed with each other, especially on MNIST (top). It
indicates the distribution AT-GAN learned is indeed very close to the distribution of real data.

To further validate that AT-GAN learns a different distribution from the original GAN rather than
just adding some constant universal perturbation vector. In Appendix E, we illustrate some instances
generated by the original generator and AT-GAN for the same input. We find that for different inputs,
the original generator outputs different images and the difference between the instances generated by
the original generator and AT-GAN is also different, indicating that AT-GAN indeed learns a different
distribution from the original GAN.

5 CONCLUSION

In this work, we propose a generation-based adversarial attack method, called AT-GAN (Adversarial
Transfer on Generative Adversarial Net), that aims to learn the distribution of adversarial examples
for the target classifier. The generated adversaries are “non-constrained” as we do no search at all in
the neighborhood of the input, and once trained AT-GAN can output adversarial examples directly for
any input noise drawn from arbitrary distribution (e.g. Gaussian distribution). Extensive experiments
and visualizations show that AT-GAN achieves highest attack success rates against adversarially
trained models and can generate diverse and realistic adversarial examples efficiently.

Our work also suggests that adversarial training, a popular defense method based on perturbation-
based adversarial examples, could not guarantee robustness against non-constrained adversarial
examples. A possible reason is that AT-GAN learns a more complete version of the adversarial
example distribution, which is much more diverse than that of the perturbation-based method.

Note that any conditional GANs that craft realistic examples could be used for the implementation of
AT-GAN. In this work, we provide two implementations on four datasets. In future work we plan
to try advanced GANs for generating high resolution images. Our method also suggests a new way
of adversarial attack by designing an adversarial generative model directly. There are several other
interesting questions related to our work that can be explored in future work. For instance, what is the
distribution of adversarial examples really like? Is it a continuous or smooth manifold? How close
could we learn such distribution through GAN? We hope our work could inspire more researches in
this direction.
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APPENDIX

In the appendix, we provide additional related work on gradient-based adversarial attack methods,
adversarial training methods and typical generative adversarial nets. Then we describe how to obtain
the original generator and provide theoretical analysis, as well as experimental details and additional
results. In the end, we visualize the examples generated by original GAN and AT-GAN.

A ADDITIONAL RELATED WORK

A.1 GRADIENT-BASED ATTACKS

Numerous adversarial attacks have been proposed in recent years (Carlini & Wagner, 2017; Liu et al.,
2017; Bhagoji et al., 2017; Li et al., 2019). In this part, we will introduce three typical adversarial
attack methods. Here the components of all adversarial examples are clipped in [0, 1].

Fast Gradient Sign Method (FGSM). FGSM (Goodfellow et al., 2015) adds perturbation in the
gradient direction of the training loss J on the input x to generate adversarial examples.

xadv = x+ ǫ · sign(∇xJ(θ, x, ytrue)),

where ytrue is the true label of a sample x, θ is the model parameter and ǫ specifies the ℓ∞ distortion
between x and xadv .

Projected Gradient Descent (PGD). PGD adversary (Madry et al., 2018) is a multi-step variant of
FGSM, which applies FGSM for k iterations with a budget α.

xadvt+1
= clip(xadvt+αsign(∇xJ(θ, xadvt , ytrue)), xadvt − ǫ, xadvt + ǫ)

xadv0 = x, xadv = xadvk

Here clip(x′, p, q) forces its input x′ to reside in the range of [p, q].

Rand FGSM (R+FGSM). R+FGSM (Tramèr et al., 2018) first applies a small random perturbation
on the benign image with a parameter α (α < ǫ), then it uses FGSM to generate an adversarial
example based on the perturbed image.

xadv = x′ + (ǫ− α) · sign(∇x′J(θ, x′, ytrue)) where x′ = x+ α · sign(N (0, I)).

A.2 ADVERSARIAL TRAINING

There are many defense strategies, such as detecting adversarial perturbations (Metzen et al., 2017),
obfuscating gradients (Buckman et al., 2018; Guo et al., 2018) and eliminating perturbations (Shen
et al., 2017; Liao et al., 2018), among which adversarial training is the most effective method (Athalye
et al., 2018). We list several adversarial training methods as follows.

Adversarial training. Goodfellow et al. (2015) first introduce the method of adversarial training,
where the standard loss function f for a neural network is modified as:

J̃(θ, x, ytrue) = αJf (θ, x, ytrue) + (1− α)Jf (θ, xadv, ytrue).

Here ytrue is the true label of a sample x and θ is the model’s parameter. The modified objective is
to make the neural network more robust by penalizing it to count for adversarial samples. During
the training, the adversarial samples are calculated with respect to the current status of the network.
Taking FGSM for example, the loss function could be written as:

J̃(θ, x, ytrue) =αJf (θ, x, ytrue) + (1− α)Jf (θ, x+ ǫsign(∇xJ(θ, x, ytrue)), ytrue).

Ensemble adversarial training. Tramèr et al. (2018) propose an ensemble adversarial training
method, in which DNN is trained with adversarial examples transferred from a number of fixed
pre-trained models.

Iterative adversarial training. Madry et al. (2018) propose to train a DNN with adversarial examples
generated by iterative methods such as PGD.
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A.3 GENERATIVE ADVERSARIAL NET

Generative Adversarial Net (GAN) (Goodfellow et al., 2014) consists of two neural networks, G and
D, trained in opposition to each other. The generator G is optimized to estimate the data distribution
and the discriminator D aims to distinguish fake samples from G and real samples from the training
data. The objective of D and G can be formalized as a min-max value function V (G,D):

min
G

max
D

V (G,D) = Ex∼px
[logD(x)] + Ez∼pz

[log(1−D(G(z)))].

Deep Convolutional Generative Adversarial Net (DCGAN) (Radford et al., 2016) is the convolutional
version of GAN, which implements GAN with convolutional networks and stabilizes the training
process. Auxiliary Classifier GAN (AC-GAN) (Odena et al., 2017) is another variant that extends
GAN with some conditions by an extra classifier C. The objective function of AC-GAN can be
formalized as follows:

min
G

max
D

min
C

V (G,D,C) =Ex∼px
[logD(x)] + Ez∼pz

[log(1−D(G(z, ys)))]

+ Ex∼px
[log(1− C(x, ys))] + Ez∼pz

[log(1− C(G(z, ys), ys))].

To make GAN more trainable in practice, Arjovsky et al. (2017) propose Wasserstein GAN (WGAN)
that uses Wassertein distance so that the loss function has more desirable properties. Gulrajani et al.
(2017) introduce WGAN with gradient penalty (WGAN_GP) that outperforms WGAN in practice.
Its objective function is formulated as:

min
G

max
D

V (D,G) = Ex∼px
[D(x)]− Ez∼pz

[D(G(z))]− λEx̂∼px̂
[(‖∇x̂D(x̂)‖2 − 1)2],

where px̂ is uniformly sampled along straight lines between pairs of points sampled from the data
distribution px and the generator distribution pg .

B TRAINING THE ORIGINAL GENERATOR

Figure 2 (a) illustrates the overall architecture of AC-WGAN_GP that we used as the normal GAN.
AC-WGAN_GP is the combination of AC-GAN (Odena et al., 2017) and WGAN_GP (Gulrajani
et al., 2017), composed by three neural networks: a generator G, a discriminator D and a classifier
f . The generator G takes a random noise z and a source label ys as the inputs and generates an
image G(z, ys). It aims to generate an image G(z, ys) that is indistinguishable to discriminator D
and makes the classifier f to output label ys. The loss function of G can be formulated as:

LG = Ez∼pz(z)[H(f(G(z, ys)), ys)]− Ez∼pz(z)[D(G(z, ys))].

Here H(a, b) is the entropy between a and b. The discriminator D takes the training data x or the
generated data G(z, ys) as the input and tries to distinguish them. The loss function of D with
gradient penalty for samples x̂ ∼ px̂ can be formulated as:

LD = −Ex∼pdata(x)[D(x)] + Ez∼pz(z)[D(G(z, ys))] + λEx̂∼px̂(x̂)[(‖∇x̂D(x̂)‖2 − 1)2].

The classifier f takes the training data x or the generated data G(z, ys) as the input and predicts the
corresponding label. The loss function is:

Lf =Ex∼pdata(x)[H(f(x), ytrue)] + Ez∼pz(z)[H(f(G(z, ys)), ys)].

Different from AC-WGAN_GP, styleGAN2-ada (Karras et al., 2020a) trains styleGAN2 (Karras
et al., 2020b) with adaptive discriminator augmentation. We obtain the network and weights from
Karras et al. (2020a).

C THEORETICAL ANALYSIS OF AT-GAN

In this section, we provide proofs for theorems in Section 3.3.

Theorem 1. Suppose maxz,y L2 < ǫ, we have KL(pa‖pg) → 0 when ǫ → 0.
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Proof. We first consider that for a distribution p(x) in space X , we construct another distribution q(x)
by selecting points pǫ(x) in the ǫ-neighborhood of p(x) for any x ∈ X . Obviously, when pǫ(x) is
close enough to p(x), q(x) has almost the same distribution as p(x). Formally, we have the following
lemma.

Lemma 1. Given two distributions P and Q with probability density function p(x) and q(x) in
space X , if there exists a constant ǫ that satisfies ‖q(x) − p(x)‖ < ǫ for any x ∈ X , we could get
KL(P‖Q) → 0 when ǫ → 0.

Proof. For two distributions P and Q with probability density function p(x) and q(x), we could get
q(x) = p(x) + r(x) where ‖r(x)‖ < ǫ.

KL(P‖Q) =

∫

p(x) log
p(x)

q(x)
dx

=

∫

p(x) log p(x)dx−

∫

p(x) log q(x)dx

=

∫

(q(x)− r(x)) log p(x)dx−

∫

(q(x)− r(x)) log q(x)dx

=

∫

q(x) log p(x)dx−

∫

q(x) log q(x)dx−

∫

r(x) log p(x)dx+

∫

r(x) log q(x)dx

=

∫

r(x) log
q(x)

p(x)
dx−KL(Q‖P )

≤

∫

ǫ log(1 +
ǫ

p(x)
)dx

Obviously, when ǫ → 0, we could get
∫

ǫ log(1 + ǫ
p(x) )dx → 0, which means DL(P‖Q) → 0.

Now, we get back to Theorem 1. For two distributions pa and pg, maxy,z L2 < ǫ indicates ∀z ∼
pz, ‖pa(z, ·)− pg(z, ·)‖ < ǫ. According to Lemma 1, we have KL(pa‖pg) → 0 when ǫ → 0. This
concludes the proof.

Theorem 2. The global minimum of the virtual training of AC-WGAN_GP is achieved if and only
if pg = pdata.

Proof. To simplify the analysis, we choose a category y of AC-WGAN_GP and denote pg(x|y) and
pdata(x|y) the distribution that the generator learns and the distribution of real data respectively.
Then for each category, the loss function is equivalent to WGAN_GP. We refers to Samangouei et al.
(2018) to prove this property. The WGAN_GP min-max loss is given by:

min
G

max
D

V (D,G) = Ex∼pdata(x)[D(x)]− Ez∼pz(z)[D(G(z))]− λEx̂∼px̂(x̂)[(‖∇x̂D(x̂)‖2 − 1)2]

=

∫

x

pdata(x)D(x)dx−

∫

z

pz(z)D(G(z))dz − λ

∫

x̂

px̂(x̂)[(‖∇x̂D(x̂)‖2 − 1)2]dx̂

=

∫

x

[pdata(x)− pg(x)]D(x)dx− λ

∫

x̂

px̂(x̂)[(‖∇x̂D(x̂)‖2 − 1)2]dx̂

(5)

For a fixed G, the optimal discriminator D that maximizes V (D,G) should be:

D∗
G(x) =

{

1 if pdata(x) ≥ pg(x)
0 otherwise

(6)

According to equation 5 and equation 6, we could get:

V (D,G) =

∫

x

[pdata(x)− pg(x)]D(x)dx− λ

∫

x̂

px̂(x̂)[(‖∇x̂D(x̂)‖2 − 1)2]dx̂

=

∫

{x|pdata(x)≥pg(x)}

(pdata(x)− pg(x))dx− λ

∫

x̂

px̂(x̂)dx̂

=

∫

{x|pdata(x)≥pg(x)}

(pdata(x)− pg(x))dx− λ

(7)
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Let X = {x|pdata(x) ≥ pg(x)}, in order to minimize equation 7, we set pdata(x) = pg(x) for any
x ∈ X . Then, since both pg and pdata integrate to 1, we could get:

∫

X c

pg(x)dx =

∫

X c

pdata(x)dx.

However, this contradicts equation 6 where pdata(x) < pg(x) for x ∈ X c, unless µ(X c) = 0 where
µ is the Lebesgue measure.

Therefore, for each category we have pg(x|y) = pdata(x|y), which means pg(x) = pdata(x) for
AC-WGAN_GP.

D ADDITIONAL DETAILS ON EXPERIMENTS

In this section, we provide more details on experimental setup, report results on transferability, do
ablation study on hyper-parameters, investigate the generating capacity by human evaluation, and
show details for another implementation of AT-GAN on CIFAR-10 dataset. In the end, we illustrate
some non-constrained adversarial examples generated by AT-GAN on MNIST, Fashion-MNIST and
CelebA for the target attack.

D.1 MORE EXPERIMENTAL SETUP

We first provide more details on the experimental setup, including the model architectures and attack
hyper-parameters.

Model Architectures for AT-GAN. We first describe the neural network architectures used for
AT-GAN in experiments. The abbreviations for components in the network are described in Ta-
ble 4. The architecture of AC-WGAN_GP for MNIST and Fashion-MNIST is shown in Table 5
where the generator and discriminator are the same as in Chen et al. (2016), while the architecture
of AC_WGAN_GP for CelebA is the same as in Gulrajani et al. (2017) and the architecture of
styleGAN2-ada for CIFAR-10 is the same as in Karras et al. (2020a).

Hyper-parameters for Attacks. The hyper-parameters used in experiments for each attack method
are described in Table 6 for MNIST, Fashion-MNIST and CelebA datasets. For CIFAR-10 dataset,
we set ǫ = 0.03 for FGSM, ǫ = 0.03, α = 0.0075 and epochs= 20 for PGD, α = 3, β = 2 and
epochs= 1, 000 for AT-GAN.

Table 4: Abbreviations for network architectures.

Abbreviation Description

Conv(m, k × k) A convolutional layer with m filters and filter size k
DeConv(m, k × k) A transposed convolutional layer with m filters and filter size k

Dropout(α) A dropout layer with probability α
FC(m) A fully connected layer with m outputs

Sigmoid The sigmoid activation function
Relu The Rectified Linear Unit activation function

LeakyRelu(α) The Leaky version of a Rectified Linear Unit with parameter α
Maxpool(k,s) The maxpooling with filter size k and stride s

D.2 TRANSFERABILITY OF AT-GAN

Another important issue for adversarial examples is the transferability across different models. To
demonstrate the transferability of non-constrained adversarial examples, we use adversarial examples
generated by attacking Model A (MNIST and Fashion-MNIST) and CNN (CelebA), to evaluate the
attack success rates on Model C (MNIST and Fashion-MNIST) and VGG16 (CelebA). As shown in
Table 7, non-constrained adversarial examples generated by AT-GAN exhibit moderate transferability.
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Table 5: Architecture of WGAN_GP with auxiliary classifier for MNIST and Fashion-MNIST.

Generator Discriminator Classifier

FC(1024) + Relu Conv(64, 4× 4) + LeakyRelu(0.2) Conv(32, 3× 3) + Relu
FC(7× 7× 128) + Relu Conv(128, 4× 4) + LeakyRelu(0.2) pooling(2, 2)

DeConv(64, 4× 4) + Sigmoid FC(1024) + LeakyRelu(0.2) Conv(64, 3× 3) + Relu
DeConv(1, 4× 4) + Sigmoid FC(1) + Sigmoid pooling(2, 2)

FC(1024)
Dropout(0.4)

FC(10) + Softmax

Table 6: Hyper-parameters of different attack methods on MNIST, Fashion-MNIST and CelebA.

Attack
Datasets

MNIST Fashion-MNIST CelebA Norm

FGSM ǫ = 0.3 ǫ = 0.1 ǫ = 0.015 ℓ∞
PGD ǫ = 0.3, α = 0.075, epochs = 20 ǫ = 0.1, α = 0.01, epochs = 20 ǫ = 0.015, α = 0.005, epochs = 20 ℓ∞

R+FGSM ǫ = 0.3, α = 0.15 ǫ = 0.2, α = 0.1 ǫ = 0.015, α = 0.003 ℓ∞
Song’s λ1 = 100, λ2 = 0, epochs = 200 λ1 = 100, λ2 = 0, epochs = 200 λ1 = 100, λ2 = 100, epochs = 200 N/A

AT-GAN α = 2, β = 1, epochs = 100 α = 2, β = 1, epochs = 100 α = 3, β = 2, epochs = 200 N/A

Table 7: Transferability of non-constrained adversarial examples and other search-based adversarial
examples on three datasets. For MNIST and Fashion-MNIST, we attack Model C with adversarial
examples generated on Model A. For CelebA dataset, we attack VGG16 using adversarial examples
generated on CNN. Numbers represent the attack success rate (%).

MNIST Fashion-MNIST CelebA

Nor. Adv. Ens. Iter. Adv. Nor. Adv. Ens. Iter. Adv. Nor. Adv. Ens. Iter. Adv.

FGSM 46.7 4.2 1.7 4.6 68.9 23.1 20.8 14.8 15.6 4.3 3.3 4.1
PGD 97.5 6.5 4.1 4.1 84.7 27.6 39.6 14.6 18.3 4.3 3.1 4.1

R+FGSM 82.3 6.7 4.8 4.1 21.2 32.1 17.5 26.3 11.0 4.0 3.3 3.8
Song’s 23.8 20.8 20.6 20.1 39.2 34.0 31.5 30.3 9.6 31.8 21.5 38.8

AT-GAN 65.3 24.6 27.9 17.2 58.0 22.7 32.0 15.2 63.7 15.4 16.5 17.6

D.3 ABLATION STUDY

In this subsection, we investigate the impact of using different ρ in the loss function. As ρ could be
constrained by both ℓ0 and ℓ∞ norm, we test various bounds, using Model A on MNIST dataset, for
ρ in ℓ0 and ℓ∞, respectively.

We first fix ‖ρ‖∞ = 0.5 and try various values for ‖ρ‖0, i.e. 0, 100, 200, 300, 400 (the maximum
possible value is 784 for 28*28 input). The attack success rates are in Table 8. We can observe that
different values of ‖ρ‖0 only have a little impact on the attack success rates, and the performances are
very close for ‖ρ‖0 = 0, 100, 200. Figure 5 further illustrates some generated adversarial examples,
among which we can see that there exist some slight differences on the examples. When ‖ρ‖0 = 0,
AT-GAN tends to change the foreground (body) of the digits. When we increase the value of ‖ρ‖0
(100 and 200), AT-GAN is more likely to add tiny noise to the background and the crafted examples
are more realistic to humans (for instance, smoother on digit 4). But if we continue to increase ‖ρ‖0
(300 or 400), AT-GAN tends to add more noise and the quality of the generated examples decays. To
have a good tradeoff on attack performance and generation quality, we set ‖ρ‖0 = 200.

Table 8: Attack success rate (ASR, %) of AT-GAN with various values for ‖ρ‖0 using Model A on
MNIST dataset.

‖ρ‖0 0 100 200 300 400

ASR 98.9 98.8 98.7 96.7 95.8

We then fix ‖ρ‖0 = 200 and test different values for ‖ρ‖∞, i.e. 0, 0.1, 0.2, 0.3, 0.4, 0.5 (the maximum
possible value is 1). The attack success rates are in Table 9. We can observe that different values of
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Figure 5: The adversarial examples generated by AT-GAN for various values of ‖p‖0.

‖ρ‖∞ have very little impact on the attack performance. Figure 6 further illustrates some generated
adversarial examples, among which we can see that a little bit more noises are added for bigger
‖ρ‖∞ but the differences are very tiny when ‖ρ‖∞ = 0.2 to 0.5. So we simply set ‖ρ‖∞ = 0.5 in
experiments, but other values of ‖ρ‖∞ (0.2, 0.3, 0.4) also work.

Table 9: Attack success rate (ASR, %) of AT-GAN with various values for ‖ρ‖∞ using Model A on
MNIST dataset.

‖ρ‖∞ 0 0.1 0.2 0.3 0.4 0.5

ASR 98.9 99.2 98.9 98.9 98.9 98.7

Figure 6: The adversarial examples generated by AT-GAN for various values of ‖p‖∞.

D.4 HUMAN EVALUATION

To investigate the generating capacity of AT-GAN, we use the same input, and randomly pick 100
images for each category of MNIST generated by AT-GAN and the original generator, respectively.
We then conduct human evaluation to determine whether each example is realistic. The evaluation
results are in Table 10. We see that adversarial examples in some categories (e.g. 2, 4) are harder to
be semantically meaningful than other categories (e.g. 0, 1). On average, however, the generating
capability is close to that of the original generator.

Table 10: The evaluation results on the percentage of realistic images by human evaluation.

Category 0 1 2 3 4 5 6 7 8 9 Average

Original 100.0 100.0 93.0 94.0 98.0 96.0 99.0 100.0 98.0 100.0 97.8
AT-GAN 100.0 100.0 85.0 91.0 80.0 90.0 97.0 98.0 92.0 100.0 93.3

D.5 AT-GAN ON CIFAR-10 DATASET

To further demonstrate the flexibility of AT-GAN, we implement AT-GAN on CIFAR-10 dataset using
StyleGAN2-ada (Karras et al., 2020a), a recently proposed conditional GAN. The target classifier
is wide ResNet w32-10 (Zagoruyko & Komodakis, 2016) by normal training (Nor.) and Iterative
adversarial training (Iter.). The attack success rates are in Table 11. On normally trained models,
PGD achieves the attack success rate of 100% while AT-GAN achieves the attack success rate of
93.5%. However, the adversarially trained model exhibits little robustness against AT-GAN and
AT-GAN achieves attack success rate of 73.0%. In Figure 7, we illustrate some generated adversarial
examples on CIFAR-10 dataset.

Table 11: Attack success rate (%) of adversarial examples generated by FGSM, PGD and AT-GAN
against wide ResNet w32-10 by normal training (Nor.) and iterative adversarial training (Iter.).

Model FGSM PGD AT-GAN

Nor. 92.3 100.0 93.5
Iter. 49.2 54.6 73.0
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D.6 AT-GAN ON TARGET ATTACK

Here we show some non-constrained adversarial examples generated by AT-GAN for the target attack.
The results are illustrated in Figure 8 for MNIST and Fashion-MNIST, and Figure 9 for CelebA.
Instead of adding perturbations to the original images, AT-GAN transfers the generative model (GAN)
so that the generated adversarial instances are not in the same shape of the initial examples (in
diagonal) generated by the original generator. Note that for CelebA, the target adversarial attack is
equivalent to the untarget adversarial attack as it is a binary classification task.

Figure 7: The adversarial examples generated by AT-GAN on CIFAR-10 dataset.
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Figure 8: Adversarial examples generated by AT-GAN to various targets with the same random noise
input for each row. The images on the diagonal are generated by Goriginal which are not adversarial
examples and treated as the initial instances for AT-GAN.

Figure 9: Adversarial examples generated by AT-GAN on CelebA dataset for the target attack.
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E VISUALIZATIONS FOR THE ORIGINAL GAN AND AT-GAN

Here we provide some instances generated by the original GAN and AT-GAN with the same input
noise and their difference on MNIST and Fashion-MNIST. The results are depicted in Figure 10
and 11. For different input noise, both the original GAN and AT-GAN output different instances.
For each category with the same input noise, the difference between original GAN and AT-GAN is
mainly related to the main content of image. For two different input noises, the differences between
the original GAN and AT-GAN are not the same with each other, indicating that AT-GAN learns
a distribution of adversarial examples different from the original GAN rather than just adds some
universal perturbation vectors on the original GAN.

Figure 10: The instances generated by the original GAN and AT-GAN with the same input on MNIST.
First row: the output of original GAN. Second row: the output of AT-GAN. Third row: The difference
between the above two rows.

Figure 11: The instances generated by the original GAN and AT-GAN with the same input on
Fashion-MNIST. First row: the output of original GAN. Second row: the output of AT-GAN. Third
row: The difference between the above two rows.
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