
 Open access Proceedings Article DOI:10.1145/1583991.1584003

At-most-once semantics in asynchronous shared memory — Source link

Sotirios Kentros, Aggelos Kiayias, Nicolas Nicolaou, Alexander A. Shvartsman

Institutions: University of Connecticut

Published on: 11 Aug 2009 - ACM Symposium on Parallel Algorithms and Architectures

Topics: Asynchronous communication, Shared memory and Upper and lower bounds

Related papers:

 Cooperative asynchronous update of shared memory

 Algorithms for the Certified Write-All Problem

 Do-All Computing in Distributed Systems: Cooperation in the Presence of Adversity

 The strong at-most-once problem

 Renaming in an asynchronous environment

Share this paper:

View more about this paper here: https://typeset.io/papers/at-most-once-semantics-in-asynchronous-shared-memory-
1wyo9wk30y

https://typeset.io/
https://www.doi.org/10.1145/1583991.1584003
https://typeset.io/papers/at-most-once-semantics-in-asynchronous-shared-memory-1wyo9wk30y
https://typeset.io/authors/sotirios-kentros-4g081nkc55
https://typeset.io/authors/aggelos-kiayias-8beoknp7o7
https://typeset.io/authors/nicolas-nicolaou-16j90nzxxb
https://typeset.io/authors/alexander-a-shvartsman-2zovbdq0hq
https://typeset.io/institutions/university-of-connecticut-fb9kpyvt
https://typeset.io/conferences/acm-symposium-on-parallel-algorithms-and-architectures-3q4aixva
https://typeset.io/topics/asynchronous-communication-32zvom8z
https://typeset.io/topics/shared-memory-3mkb16w1
https://typeset.io/topics/upper-and-lower-bounds-26krndal
https://typeset.io/papers/cooperative-asynchronous-update-of-shared-memory-lwxda45ow9
https://typeset.io/papers/algorithms-for-the-certified-write-all-problem-53jvrgox5d
https://typeset.io/papers/do-all-computing-in-distributed-systems-cooperation-in-the-g8qggnyjoh
https://typeset.io/papers/the-strong-at-most-once-problem-5ccdgf24ck
https://typeset.io/papers/renaming-in-an-asynchronous-environment-4bdp6pwd69
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/at-most-once-semantics-in-asynchronous-shared-memory-1wyo9wk30y
https://twitter.com/intent/tweet?text=At-most-once%20semantics%20in%20asynchronous%20shared%20memory&url=https://typeset.io/papers/at-most-once-semantics-in-asynchronous-shared-memory-1wyo9wk30y
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/at-most-once-semantics-in-asynchronous-shared-memory-1wyo9wk30y
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/at-most-once-semantics-in-asynchronous-shared-memory-1wyo9wk30y
https://typeset.io/papers/at-most-once-semantics-in-asynchronous-shared-memory-1wyo9wk30y

At-Most-Once Semantics in Asynchronous Shared Memory

(Brief Announcement)

Sotirios Kentros ∗ Aggelos Kiayias Nicolas Nicolaou

Alexander A. Shvartsman

Computer Science and Engineering

University of Connecticut

Storrs, CT 06268

{skentros,aggelos,nicolas,aas}@engr.uconn.edu

February 23, 2009

Abstract

At-most-once semantics is one of the standard models for object access in decentralized systems. Ac-

cessing an object, such as altering the state of the object by means of direct access, method invocation, or

remote procedure call, with at-most-once semantics guarantees that the specific instance of access is not

repeated more-than-once, enabling one to reason about the safety properties of the object. This paper in-

vestigates implementations of at-most-once access semantic for the model with failure-prone, asynchronous

shared-memory multiprocessors. The focus here is on the setting, where any processor is able to perform any

task on any object, where the total number of tasks is performed is to be maximized while preserving the

at-most-once semantics. The paper introduces formal definitions of the At-Most-Once and Do-Exactly-Once

problems for performing tasks (including accessing memory) in the assumed model, and defines the notion of

efficiency, called effectiveness, that allows for precise characterizations of algorithms solving these problems.

Effectiveness for an at-most-once implementation is the number of tasks completed (at-most-once) by the

implementation, as a function of the overall number of tasks, the number of participating processors, and the

number of processor failures. We show a lower bound on the effectiveness in our model for at-most-once and

do-exactly-once implementations that states that at least f tasks cannot be completed, where f is the maxi-

mum number of crashes. Following this finding we present two effectiveness-optimal at-most-once algorithms

for two-processes (the second improving the space performance of the first) and then we propose an algorithm

for the model with n processors. The last algorithm being a hierarchical generalization of a two-processor

solution. The algorithms are presented using Input/Output Automata formalism. We prove correctness of the

algorithms and analyze their performance in terms of effectiveness.

Keywords: Asynchronous Shared Memory, At-Most-Once Semantics

∗Part of this work is supported by the State Scholarships Foundation of Greece

0

1 Introduction

At-Most-Once semantic for object invocation ensures that an operation accessing and altering the state of an object

is performed no more than once. This semantic is among the standard semantics for remote procedure calls and

method invocations in decentralized systems, and it provides important means for reasoning about the safety

of critical applications. Uniprocessor systems may trivially provide solutions for at-most-once semantics by

implementing a central schedule for the operations to be performed. The problem becomes very challenging for

autonomous processors in a shared-memory system, in which processes perform concurrent object invocations.

At-most-once message delivery protocols have been a subject of much research, e.g., [4, 1, 2]. The authors

in [4] motivate their work in terms of remote procedure calls and method invocations, obtaining at-most-delivery

with reliance on the estimation of message lifetimes. The work [1] achieves stronger results by eliminating

timing dependencies. The work [2] considers the at-most-once semantic motivated by the security requirements

of one-time pad encryption. The authors partition a shared random pad among multiple communicating parties.

Perfect security can be achieved only if every piece of the pad is used at most once by any process in the system.

Unlike the works [4, 1], the authors of [2] connect the at-most-once problem to the problem of multiple processor

coordination, where each process has to decide whether or not to use certain parts of the single shared pad.

Contributions. This paper explores the possibility of At-Most-Once implementations for asynchronous shared-

memory multiprocessor environments where processors are prone to crashes. We are concerned with a setting

where a collection of objects exists in shared memory, such that each object has a specific task that needs to be

performed for the object using at-most-once semantics. Here any processor is able to perform the specific single

task for any object, and we are interested in maximizing the total number of performed tasks while preserving

the at-most-once semantics. We formally define our problem and the notion of effectiveness used to assess the

efficiency of solutions for the problem. Effectiveness measures the number of operations (tasks) performed using

at-most-once semantics as a function of the number of objects to be accessed, the number of processors, and

the maximum number of processor crashes. We provide tight lower bounds for effectiveness, and we introduce

three algorithms that solve the problem. The first two are formulated for two processors and they achieve optimal

effectiveness. The third algorithm is stated for an arbitrary number of processors comprising the system. The

algorithms in this work are motivated by the algorithm for the Write-All problem from [3], although the correct-

ness criteria for our algorithms is quite different. Our work can be viewed as complementary to [2] that considers

a similar problem in message-passing models.

2 Model, Problems, Definitions

We consider a system of n asynchronous processors, where the processors are susceptible to crashes. The model

includes shared memory, where the memory locations are atomic. We use the Input/Output Automata formalism

[5]. In particular an asynchronous shared memory automaton, consists of a finite set of processes that interact by

means of a finite collection of shared variables [5].

The adversary controls the asynchrony and the crashes of the processes. We allow up to f ≤ n − 1 crashes

in our system, where n is the number of processes in A.

In our setting we consider algorithms whose purpose is to perform a set of tasks or activities that we call jobs.

Let A be such an algorithm that is comprised of a set of processes P , where |P| = n, and where the jobs come

from the set J with |J | = m. We assume that there are at least as many jobs as there are processors, i.e., m ≥ n.

A job is performed in an execution α of A by process p ∈ P , if α includes action dop,j . For a sequence β, we let

len(β) denote its length, and we let β|π denote the sequence of elements π occurring in β. Then for an execution

α, len
(

α|dop,j

)

is the number of times process p performs job j. Now we define the number of jobs performed

in an execution.

Definition 2.1 Let the set of performed jobs in execution α be denoted by Jα = {j ∈ J | ∃ dop,j event in α, where p ∈
P}. The total number of jobs performed in execution α of A is defined as: Do(α) = |Jα|

We next define the at-most-once and do-exactly-once properties.

1

Definition 2.2 Property AO (at-most-once correctness): An execution α of A satisfies AO if:

∀j ∈ J :
∑

p∈P len
(

α|dop,j

)

≤ 1 . In this case α is called an AO-execution.

We say that algortihm A satisfies the AO property if any of its executions is an AO-execution. The at-most-

once problem consists of devising such algorithms.

Definition 2.3 Property EO (do-exactly-once correctness): An execution α of A satisfies EO if:

∀j ∈ J :
∑

p∈P len
(

α|dop,j

)

= 1 . In this case α is called an EO-execution.

Algorithm A satisfies the EO property if any fair execution of A is an EO-execution. Devising such algorithms

is the do-exactly-once problem. We note that AO is a safety property, thus it must hold in any execution. On

the other hand we intend for EO to be a liveness property, thus it must hold in fair executions. It is easy to see

that any prefix of an EO-execution or an AO-execution is also an AO-execution. Next we define the effectiveness

measure that counts the number of jobs performed by an automaton in the worst case.

Definition 2.4 The effectiveness of algorithm A is: eA(m, n, f) = min{Do(α)} where α is any fair execution

of A with n processes, m jobs, and at most f crashes.

Here we consider only the case where m ≥ n > f , since the most interesting case is when there is at least

one job for each processor. (In the full version of the paper we also consider the case m ≤ n).

3 Lower Bound and Impossibility

We show that if the at-most-once property is to be preserved, it is impossible for any algorithm to sustain f

crashes and perform more than m − f jobs.

Theorem 3.1 For any algorithm A that satisfies the AO property with n processes, m ≥ n jobs, and in the

presence of f < n crashes it holds that eA(m, n, f) ≤ m − f .

Moreover, we show the do-exactly-once problem cannot be solved even in the presence of a single crash:

Theorem 3.2 For any algorithm A, there exists a fair execution of A that does not satisfy the EO property in

the presence of f ≥ 1 crashes.

4 Algorithms for the At-Most-Once Problem

We developed three solutions for the at-most-once problem. Two of them (P2A and P2B) assume a two process

system, while the third one (P2l) is more general and assumes n-process participation. The last solution is

motivated by the algorithm of Groote et al. [3]. We now provide a brief description of the three algorithms and

state their effectiveness.

Algorithm P2A. Algorithm P2A solves the at-most-once problem for m jobs, using two processes p and q, and

m 1-bit shared variables. The main idea is to have the processes move in opposite directions, trying to avoid a

collision (i.e., doing a job twice) by adopting a “look ahead decide for the current” (LA-DC) approach.

In particular we use m shared variables {x1, . . . , xm} as a bookkeeping mechanism on the progress of the

processes. Initially all shared variables are set to 0 and let process p start from job 1 and process q start from

job m. When some process, say p, performs job j, it sets xj = 1. Deploying the LA-DC approach, a process

decides that it is safe to perform some job by checking the shared variable associated with the next task in its

path. More precisely p (resp. q) performs a job j only if xj+1 = 0 (resp. xj−1 = 0). The key idea here lies on

the fact that since the shared variable xj+1 (resp. xj−1) is 0 then the competing process q (resp. process p), did

not yet perform the task j + 1 (resp. j − 1). Hence it cannot be performing j, which the acting process attempts

2

to perform, and thus collision is avoided. It can be shown that the effectiveness of P2A in the presence of at most

one stopping failure is eP2A(m, 2, 1) = m− 1, where m is the number of tasks (this is optimal by Theorem 3.1).

Algorithm P2B. Algorithm P2B is also based on LA-DC idea. The main difference here is that we only use two

integer shared variables, xleft = 1 and xright = m, each of size log m bits. Each variable represents a pointer

to the progress of each processor. Initially xleft = 1 and xright = m, and thereafter each time process p or q

performs a job, xleft is incremented and xright is decremented respectively. The decision on whether it is safe

to perform a task j, is based on the difference of the shared variables, xright − j and j − xleft, for processes p

and q respectively. If the difference is greater than 1, then there is a safety gap between the progress of the two

processes and thus it is safe to perform the task, hence collision is avoided. It can be shown that P2B has the

same (optimal) effectiveness as P2A, eP2B(m, 2, 1) = m − 1.

Algorithm P2l. This is an n-processor algorithm for the at-most-once problem, where n is 2l (non-powers of

two are easily handled using standard padding techniques). Let m = kl be the number of jobs in J , for some

integer k ≥ 2. Algorithm P2l is a hierarchical generalization of algorithm P2A. The algorithm uses a full k-ary

tree of l levels to keep track of progress and satisfy property AO. The tree, is reflected in the shared memory

as follows: no variable represents the root, variables x1, . . . , xk represent level 1, variables xk+1, . . . , xk2 form

level 2 and so on. The leaves are shared memory variables xc+1, . . . , xc+kl , where c = k + k2 + k3 + . . .+ kl−1.

An internal node xλ, has children {x(λ·k)+1, . . . , x(λ+1)·k}. The parent of node xλ is node x⌊λ−1
k ⌋. Each leaf is

associated with one of the jobs in J : job j is associated with leaf xc+j .

The algorithm proceeds as follows. All processes start at level 1. At each level processes are split in half

according to their process identifiers and compete to find subtrees with jobs that are safe to perform. Essentially,

in each level we can see the processes as two multiprocessors, solving a subproblem with k jobs (the subtrees)

using the approach of algorithm P2A. The effectiveness of algorithm P2l, can be expressed by:

e
P2l(m, n, n − 1) = (m

1
log n − 1)log n = m − log n · o(m)

where the number of processors is n = 2l and the number of jobs is m = kl.

5 Discussion

We defined the At-Most-Once (AO) and Do-Exactly-Once (EO) problems in the asynchronous multiprocessor

shared memory model and we propose a new efficiency measure we call effectiveness that counts the number of

jobs performed by a given implementation. We showed that there exists no implementation that tolerates even

a single crash while satisfying the EO-property. Moreover we showed that algorithms that tolerate f failures

cannot perform more than m − f jobs and still satisfy the AO-property. We presented three algorithms for the

At-Most-Once problem. The first two are two-processor algorithms that achieve optimal effectiveness. The third

is an n-processor algorithm that achieves good effectiveness.

References

[1] S. Chaudhuri, B. A. Coan, and J. L. Welch. Using adaptive timeouts to achieve at-most-once message

delivery. Distrib. Comput., 9(3):109–117, 1995.

[2] G. D. Crescenzo and A. Kiayias. Asynchronous perfectly secure communication over one-time pads.

3580:216–217, 2005.

[3] J. Groote, W. Hesselink, S. Mauw, and R. Vermeulen. An algorithm for the asynchronous write-all problem

based on process collision. Distributed Computing, 14(2), 2001.

[4] B. Liskov, L. Shrira, and J. Wroclawski. Efficient at-most-once messages based on synchronized clocks.

ACM Trans. Comput. Syst., 9(2):125–142, 1991.

[5] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

3

