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At-sea distribution of female southern elephant
seals relative to variation in ocean surface properties
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We examined the relationships between physical oceanography (sea surface temperature e
SST, sea surface height anomaly e SSH, ocean colour e OC, bathymetry e BA, sea-ice
concentration e SI, and their associated gradients) and the foraging distribution (time at
sea) of female southern elephant seals using generalized linear and generalized additive
models (GLM and GAM). Using data from 28 separate foraging trips (22 unique
individuals) over two years, we found that during the post-lactation trips (summer), the best
GLM demonstrated a negative relationship between time at sea and SST and BA, but
a positive relationship with SST gradient and SSH. During the post-moult (winter) trips,
there was a negative relationship with OC gradient, SSH, and BA. The best post-lactation
GAM identified a positive relationship with OC gradient, negative relationships with OC
and SST gradient, and a non-linear relationship with SST. For the post-moult trip there was
a negative relationship with OC, SST, BA and BA gradient, and a positive relationship with
SST gradient. The relationship between the predicted time and observed time at sea was
significant only for the post-lactation GAM, although predictability was low. That SST and
its gradient predicted a small, but significant proportion of the variation in time at sea is
indicative of the frontal zones within this area that are generally more biologically
productive than surrounding regions. It appears that coarse-scale oceanographic
configuration influences foraging behaviour in southern elephant seals only subtly.
Nonetheless, some of the mechanisms influencing predator foraging are congruent with
expectations of distribution of marine food resources at coarse spatial scales.
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Introduction

Within ocean ecosystems, biological resources are hetero-

geneous in distribution and abundance and depend to some

degree on the physical characteristics of the water column

(Lutjeharms et al., 1985; Mann and Lazier, 1996; Guinet

et al., 2001). Physical parameters such as temperature,

salinity, water chemistry, currents, wind action, and sea ice

can correlate well with primary production (Denman and

Abbott, 1994; Knox, 1994; Loeb et al., 1997; Kögeler and

Rey, 1999; Rutherford et al., 1999). However, organisms in

higher trophic levels that depend directly or indirectly on
1054-3139/$30.00 � 2004 International C
the distribution and abundance of primary or first-order

secondary production may not always demonstrate clear

relationships to the physical parameters. Although some

correlations between apex predator (e.g., seals, whales,

seabirds) foraging patterns and physical characteristics of

the marine environment have been found (Hindell et al.,

1991; McConnell et al., 1992; Jaquet et al., 1996;

Pakhomov and McQuaid, 1996; Guinet et al., 1997, 2001;

Tynan, 1997, 1998; Georges et al., 2000), the degree to

which models can be used to predict predator performance

is highly variable. Factors such as the spatial and temporal

scales of investigation (Mehlum et al., 1999; Fauchald
ouncil for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.
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et al., 2000; Guinet et al., 2001), ‘‘downstream’’ effects that

re-distribute plankton beyond the conditions responsible for

their production and growth (Guinet et al., 2001), and

dilution effects through the foodweb may all act to restrict

the predictive ability of these models (El-Sayed, 1988;

Guinet et al., 2001).

With the increasing availability of broad-scale satellite

imagery, measurements of various physical attributes of the

oceanscape have been used as covariates in models

examining variation in marine predator behaviour and

distribution including sea surface temperature (Hindell

et al., 1991; Sydeman and Allen, 1999; Georges et al.,

2000; Lea and Dubroca, 2003), ocean colour (from which

phytoplankton concentration can be estimated e Ainley

et al., 1991; Jaquet and Whitehead, 1996; Jaquet et al.,

1996), sea-ice extent and concentration (Trathan et al.,

1996; Barbraud et al., 2000; Bornemann et al., 2000),

bathymetry (Rodhouse et al., 1996; Gentry et al., 1998;

Bonadonna et al., 2001; Hooker et al., 2002; Lea and

Dubroca, 2003), and sea surface height anomalies (Nel

et al., 2001). However, the predictive ability of derived

models appears to be limited by the often patchy

distribution of physical data in space and time (Sumner

et al., 2003), the various spatial scales of investigation

(Jaquet, 1996; Boyd et al., 2001; Bradshaw et al., 2002),

and the expected non-linear association between predator

foraging and physical variables (e.g. Burns et al., in press).

Previous models examining these relationships have

generally used simple multi-variate linear approaches

with standard parametric assumptions (Guisan and

Zimmermann, 2000; Guinet et al., 2001). The low

predictive capacity of the resulting models may be due to

subtle or weak influences of coarse-scale oceanographic

patterns on predator foraging behaviour, or a result of the

complex relationships that may exist but yet remain poorly

modelled with the standard approaches such as multiple

linear regression. Generalized linear models (GLM) have

an advantage over these techniques because they do not

force data into unnatural scales and allow for non-linearity

and non-normal responses (i.e., one can choose the

underlying distributions to avoid uninterpretable data

transformations e Hastie and Tibshirani, 1990; Guisan

et al., 2002). However, in some cases the use of more

empirically based techniques such as the semi-parametric

extension of GLM, generalized additive models (GAM),

can provide better predictions because of their ability to

deal with highly non-linear and non-monotonic relation-

ships between the response and explanatory variables

(Guisan and Zimmermann, 2000; Guisan et al., 2002).

The expectation of a spatial relationship between the

distributions of a predator and its prey is contingent on two

general assumptions: (1) the predator has knowledge of or

can predict the distribution of its prey, and (2) the prey are

accessible (Matthiopoulos, 2003). One apex marine pred-

ator that may lend itself well to the investigation of

oceanographic influence on foraging behaviour is the
southern elephant seal (Mirounga leonina). This species

is a high-level consumer in the Southern Ocean (Clarke,

1983; Boyd et al., 1994; Hindell et al., 2003) that ranges

widely (millions of km2) during its annual foraging trips

(McConnell and Fedak, 1996; Bradshaw et al., 2003,

in press; Hindell et al., 2003).

Elephant seals are also amenable to data collection given

their tendency to return to the breeding colony to breed and

moult; therefore, the collection of foraging distribution and

behaviour through archival and satellite-relayed tags has

provided substantial data over the last 15 years. The

impressive annual foraging routes take individuals through

extensive variation in the properties of the oceanscape in

which they feed. Indeed, during a foraging trip temperature

ranges can exceed 15(C (Campagna et al., 2000; Bradshaw

et al., 2002), sea ice can be present or absent (Bornemann

et al., 2000), the depth of water in which foraging occurs

can range from hundreds to thousands of metres, and the

individuals can traverse many different frontal and

oceanographic zones (Field et al., 2001; Hindell et al.,

2003). Thus, this extensive variation may provide sufficient

scope to predict foraging performance from physical

information.

The objectives of this study were therefore to examine

the relationships between physical oceanography and the

foraging distribution of female southern elephant seals.

Specifically, we examined the potential linear and non-

linear relationships between the time spent by elephant

seals in particular regions of the Southern Ocean and sea

surface temperature, ocean colour, bathymetry, ice concen-

tration, sea surface height anomaly, and their associated

spatial gradients. Relationships were examined during the

middle of the post-lactation (summer) and post-moult

(winter) foraging trips separately using a series of

generalized linear and additive models (GLM and GAM).

Foraging trips were separated on the basis of potential

different underlying relationships between surrogate meas-

ures of prey dispersion (i.e., oceanographic variables) for

summer vs. winter months (Bradshaw et al., 2003; Hindell

et al., 2003).

Material and methods

Animal capture and foraging data

Adult female southern elephant seals from Macquarie

Island (54(30#S 158(50#E) were captured, sedated,

weighed, and equipped with Time-Depth Recorder archival

tags (TDRs, Wildlife Computers, Redmond, Washington,

USA) from 1999 to 2002 prior to departure for the post-

lactation (PL e OcteJan) or post-moult (PM e FebeSep)

foraging trips following the procedures outlined in Hindell

and Slip (1997) and Field et al. (2002). All animal handling

procedures were reviewed and approved by the Antarctic

Science Advisory Committee (ASAC 1171). All sampled

females were of known age (born in 1993) to minimize the



1016 C. J. A. Bradshaw et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/61/6/1014/676039 by guest on 21 August 2022
potentially confounding effects of age and cohort in the

analyses. The TDRs sampled time, depth, light level, and

temperature every 30 s for the duration of each foraging trip

(Bradshaw et al., 2002). At-sea locations were derived from

light data and geo-location software (Multi-trace, Jensen

Software, Germany). The resulting locations were pro-

cessed using a Kalman filter (analogous to a coarse velocity

filter that uses a maximum travel velocity threshold to

remove locations requiring unrealistic swim speeds e
McConnell and Fedak, 1996; Bradshaw et al., 2002)

developed to smooth the geo-location-estimated trajectories

of marine vertebrates (Sibert et al., 2003). Once filtered the

tracks for each seal and for each foraging trip were

summarized by time per unit area to incorporate the

remaining uncertainty in foraging trajectories. This was

done by creating a raster latitude/longitude grid centred on

the track and estimating the time spent per cell by all

individuals combined (Figure 1A). The time-spent value

assumed a constant rate of travel between successive

locations. Raster grids were defined for each month of the

foraging trip (calendar month); however, we chose to

analyse only the middle period of each foraging trip (PL:

NoveDec; PM: JuneeAug) to avoid incorporating major

transit phases (leaving and arriving to Macquarie Island)

into the analysis (Figure 2). Hence, we isolated the most-

probable main periods of prey ingestion and assimilation

during each foraging trip.

Spatial resolution

The spatial resolution of the grid cells was determined from

a previous analysis estimating the combined inherent

spatial error in geo-location estimates and oceanographic

data (Bradshaw et al., 2002). Geo-location estimates often

result in position accuracy of greater than G1( of latitude

depending on the region in question and time of year (Hill,

1994; Le Boeuf et al., 2000; Bradshaw et al., 2002; van den

Hoff et al., 2002). Additionally, remotely sensed oceano-

graphic data, such as sea surface temperatures (SST), have

errors arising from temperature interpolation in regions

where the number of valid observations is reduced due to

excessive cloud cover and the poor polar light regime in

winter months (McClain et al., 1985; Sumner et al., 2003).

Therefore, to determine the optimal spatial scale in-

corporating the errors inherent in the geo-location method

and the least-accurate oceanographic data set, sea surface

temperature (see below), we repeated the methods outlined

in Bradshaw et al. (2002). Briefly, this involved defining 10

different spatial scales from 50! 50 km (2500 km2) to

500! 500 km (250 000 km2), at incrementing intervals of

50! 50 km. We assumed a linear, constant rate of

movement between successive daily positions, and con-

structed grid cells from these trajectories at the same spatial

scale. Thus, we were able to determine the seal’s putative

times of entry and exit for each cell along the trajectory

based on the limits of the grid cell at each spatial scale.
TDR-recorded temperatures were then summarized for

each grid cell between these entry and exit times. Next, the

SST interpolated grids were averaged over each monthly

interval based on a time fraction-weighted mean for the

files overlapping the time period in question. The number

of interpolated SST values falling within the limits of each

grid cell comprised the basis of all summary parameters for

the SST data. For each scale, individual seal, time period,

and grid cell we calculated the percentage of interpolated

SST values lying between the upper and lower 95%

confidence limits of the mean TDR temperature. Based on

this methodology, we determined that the highest agree-

ment between TDR-recorded temperatures and remotely

sensed SST data occurred at a spatial resolution of

300! 300 km (Bradshaw et al., 2002, in press). This

spatial scale was used for all subsequent analyses.

Oceanographic data

Sea surface temperature

We used the Advanced Very High-Resolution Radiometer

(AVHRR) Pathfinder Sea Surface Temperature monthly

data set available in Hierarchical Data Format (HDF) from

the Jet Propulsion Laboratory Physical Oceanography

Distributed Active Archive Center (JPL PO.DAAC). The

equal angle, eight-day ‘‘best SST’’ data for both ascending

and descending passes at 18-km spatial resolution were

used (Vazquez et al., 1998).

Ocean colour

Monthly averaged ocean colour data were derived from the

SeaWiFS Level-3 data to determine regions of high

phytoplankton concentration (an indication of higher

primary productivity). Data sets are available in HDF from

the NASA Goddard Space Flight Center Distributed Active

Archive Center (GSFC DAAC). Level-3 data consist of

9! 9-km bins of average chlorophyll a concentration

(mg cm�3).

Sea-ice concentration

We used monthly images of sea-ice concentration from The

National Snow and Ice Data Center (NSIDC) to determine

the ice cover of the ocean where elephant seals forage

(Cavalieri et al., 1990). The combined Scanning Multi-

channel Microwave Radiometer (SMMR) and Special

Sensor Microwave/Imager (SSM/I) sea-ice concentration

time series is produced from brightness temperatures (TBs)

obtained from GSFC. Data are gridded at a resolution of

25! 25 km and represent sea-ice concentrations ranging

from 0% to 100% (!15% classified as open water).

Bathymetry

Data were abstracted from the ETOPO5 digital data set

(NOAA National Geophysical Data Center, 1988) to

determine ocean depth. Data were generated from a digital
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Figure 1. An example of post-lactation (November 1999) response (seal use) and explanatory (oceanographic) variables displayed in the

300! 300-km grid resolution. Darker grid cells indicate higher values. A. Time spent by adult female southern elephant seals, B. Sea

surface temperature, C. Sea surface temperature gradient, D. Bathymetry, and E. Bathymetric gradient.
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database of land and sea floor elevations on a 5-min

latitude/longitude grid. Data values are in whole metres,

representing the elevation of the centre of each cell. Data

points within the ocean therefore are assigned a negative

number of metres.

Sea surface height anomaly

Satellite altimetry is a practical way of measuring global

sea level variation (Church et al., 2001). The height of the

sea surface relative to a gravitational equipotential surface

is determined by the mass of water at a given location and

by the water density (a function of temperature, salinity,

and pressure). A radar altimeter measures changes in sea

surface height due to both of these factors e re-distribution

of mass and changes in density (Roemmich et al., 2001).

Maps of Sea Level Anomalies (MSLA) data products were

obtained from the final combined processing of TOPEX/

POSEIDON and ERS-1/2 data. The MSLA values provide

an indication of fluctuation in both current strength and

direction around long-term averages. The MSLA grids

contain the data for global mapping of ocean variability,

i.e., both the sea level anomalies signal (in millimetres) and

the errors as a percentage of the signal variance. These are

available every 10 days and plotted with a 0.25! 0.25(
resolution. Altimeter measurements are corrected for

instrumental errors, environmental perturbations (wet

tropospheric, dry tropospheric, and ionospheric effects),

ocean wave influence (sea state bias), tide influence (ocean
tide, earth tide, and pole tide), and inverse barometer effect

(AVISO, 2000).

Analysis

Oceanographic gradients

A gradient measure was derived from the data describing

bathymetry, ocean colour and sea surface temperature

(Guinet et al., 2001). Using IDL software, a Sobel operator

was applied to each of the arrays in turn to create three new

spatial variables. The IDL Sobel operator calculates a gra-

dient by applying two 3! 3 matrix operators. One matrix

is sensitive to EeW gradients, and the other to NeS gra-

dients. The numbers derived from applying the two matrices

are squared and added, and the square root taken to provide

a non-directional measure of the oceanographic data.

Data selection for model construction

There was a possibility of temporal autocorrelation of

foraging behaviour and oceanographic variables between

the different months; here, the position and time spent per

grid cell may have depended on the distribution of time per

grid cell in the previous month. To avoid the problems

associated with temporal autocorrelation, we randomly

selected 50% of the grid cells to construct the models. The

remaining 50% of the data describing each grid cell were

used to validate the fitted values from each best-fit model

selected (see following sections).
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Figure 2. An example of post-moult (August 2001) response (seal use) and explanatory (oceanographic) variables displayed in the

300! 300-km grid resolution. Darker grid cells indicate higher values. A. Time spent by adult female southern elephant seals, B. Sea

surface temperature, C. Sea surface temperature gradient, D. Sea-ice concentration, and E. Ocean colour.
/article/61/6/1014/676039 by guest on 21 August 2022
Distribution of oceanographic variables

An inspection of boxplots and histograms for each variable

considered demonstrated that ocean colour, ocean colour

gradient, and sea-ice concentration were strongly right

skewed due to the high frequency of zero values. Despite

attempting to account for the skewed distributions using

a log-transformation on the response variable (time) or

a monotonic link function (see below), residuals remained

highly skewed and heteroscedastic.

Therefore, we adopted a transformation strategy of these

variables based on biological grounds. We believed that the

presence or absence of sea ice to elephant seal foraging was

more important than estimated cover itself, so we reduced

sea-ice concentration to a binary variable (i.e., ‘‘ice’’ vs.

‘‘no ice’’). Similarly, the distribution of mean ocean colour

in summer indicated several extreme outliers

O1.0 mg cm�3 chlorophyll a. These extreme values could

be highly influential to model fits, and large ocean colour

can result from satellite error; therefore, we used

1.0 mg cm�3 chlorophyll a as the productivity threshold

(see Nixon and Thomas, 2001), and truncated the

distribution so that all values O1.0 mg cm�3 chlorophyll

a were set to 1.0. A similar distribution was observed for

the gradient in chlorophyll a during summer, so all gradient

values O1.0 were truncated to 1.0 mg cm�3. The distribu-

tion of colour values in winter was similarly right

skewed, although the mean concentration of chlorophyll

a was much lower (xsum Z 0.40, s.e.Z 0.05 mg cm�3;
xwin Z 0.17, s.e.Z 0.01 mg cm�3). Therefore, we truncat-

ed the winter colour values to %0.25 mg cm�3 and the

gradient of these values to 0.05 to avoid extensive outlying

values.

Generalized linear models (GLM)

We used the generalized linear model (GLM) function in R

(Ver. 1.7.1) to fit a series of linear models to the data.

GLMs extend the standard regression model in two ways:

(1) the response y may be distributed about its expected

value m according to any distribution F from the

exponential family (including the Normal, Gamma,

Binomial, Poisson, and Negative Binomial distributions),

yiwFðmiÞ

and (2) the predictors x1, x2,., xm enter the model through

the linear predictor h, which is related to the expected

response m by a monotonic link function hiZ h(mi),

hðmiÞZhiZb0Cb1x1iCb2x2iC.Cbmxmi:

These features relax the restrictions imposed by the

standard regression model on both the distribution of the

response, and the functional relation between the response

and predictors.

Inference for a GLM is based on the theory of maximum

likelihood estimation, and likelihood ratio tests and analysis
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of deviance replace the classical F-tests and analysis of

variance of the standard regression model (McCullagh and

Nelder, 1989). A useful measure of comparative model fit is

the Akaike Information Criterion (AIC e Akaike, 1973).

The use of the AIC parallels the use of Mallow’s Cp for

model selection in the standard regression model (Venables

and Ripley, 1999), with smaller values of the AIC being

preferred. A major advantage of the AIC is that it is valid

for the comparison of non-tested models, allowing models

with different link and distributional assumptions to be

compared.

Both Gamma and Normal response models were

considered, with identity-, log- and inverse-link functions.

A stepwise procedure based on the AIC was used to select

amongst candidate models incorporating both untrans-

formed and log-transformed predictors. Only the top model

based on Akaike’s Information Criterion (AIC) was

considered. The best model was constructed from the first

randomly chosen 50% of the data for both PL and PM

foraging trips, and the remaining data were used to validate

the model predictions. Significance of best-fit model terms

was tested using analysis of deviance. The per cent change

in deviance between the final model and the null model was

calculated as a measure of the amount of variation

explained by the final model.

Generalized additive models (GAM)

We also used the generalized additive model (GAM)

function in S-Plus (Ver. 6.1) to fit a series of linear and non-

linear models to the data. GAMs extend GLMs by assuming

the linear predictor is of the form:

hðmiÞZhiZf 1ðx1iÞCf 2ðx2iÞC.Cf nðxmiÞ

where fi are arbitrary smooth functions that are to be

estimated (Hastie and Tibshirani, 1990). That is, where

a GLM estimates regression coefficients b0, b1, ., bm,
a GAM estimates the smooth functions f1, f2, ., fm, and

where the results of a GLM are typically presented as tables

of coefficients, the results of a GAM are presented as scatter

plots of the estimated f1, f2, .,fm. There is no requirement

that all the fi are to be estimated e it is possible for the

functional form of some of the fi to be specified a priori.

When the form of every fi is specified, the model reverts to

a GLM. The level of smoothing imposed on the estimated fi
is arbitrary and is controlled by a number of smoothing

parameters. These parameters are in essence arbitrary but

are typically chosen according to a data-driven automatic

selection rule (Simonoff, 1996).

Inference for the GAM is again based on the theory of

maximum likelihood, but is conditional on the choice of

smoothing parameters. That is, test p-values account for the

uncertainty due to the distribution of the response about its

expected value, but do not account for uncertainty in the

choice of smoothing parameters. Thus, p-values in GAMS

are conditional on the choice of smoothing parameters, and

these may be somewhat arbitrary.
For this reason, test p-values should only be taken as an

approximate guide. The advantage of GAMs is that they

automatically transform each predictor to give the best

model fit, relieving the user of the burden of selecting the

form in which predictor variables should enter the model.

Although GAMs provide flexibility, their key disadvantage

is that they are purely additivee it is not possible in standard

GAMs to represent interactions amongst predictors.

As for the GLM procedure, the occupancy time per grid

cell was modelled using both Gamma and Normal

responses, with identity-, log- and inverse-link functions.

A stepwise procedure based on the AIC was used to select

amongst candidate models incorporating untransformed,

log-transformed and smoothed predictors. Additionally, we

examined the results of the AIC stepwise selection using

several different starting models because selection could be

influenced by the choice of starting model. Terms that were

consistently selected were used to construct the final model

for both the PL and PM trips separately. As for the best-fit

GLM, the best-fit GAM was constructed from the first

randomly chosen 50% of the data for both PL and PM

foraging trips, and the remaining data were used to validate

the model predictions.

Results

We collected 28 separate foraging records during the 1999

(nZ 17) and 2000 (nZ 11) post-lactation foraging trips

(22 unique individuals), and 19 separate foraging records

during the 2000 (nZ 10) and 2001 (nZ 9) post-moult

foraging trips (16 unique individuals). Adult females

travelled a maximum distance of 1491G 105 km (mean -

G standard error) from Macquarie Island during the post-

lactation trip, and 2761G 156 km from the island during

the post-moult foraging trip.

Generalized linear model selection

Both the AIC and an examination of residuals from the

fitted model showed that a Gamma GLM with a log-link

function was the most appropriate model for occupancy

time per grid cell as a function of the oceanographic

response variables and their gradients. The Gamma

distribution captured the strong right skew of the response

variable (i.e., many grid cells with low use and few with

high use). The choice of a log-link function induces

a multiplicative relation between response and predictor

variables.

Model selection identified two separate best-fit models to

explain the variation in the PL and PM foraging trip test

data sets. During the PL trip, the best model included sea

surface temperature, its gradient, sea surface height

anomaly, and bathymetry. This model explained 18.2% of

the deviance from the null model (100[132.39� 108.27]/

132.39). In general, there was a negative relationship
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between seal use and bathymetry and sea surface

temperature, but a positive relationship with sea surface

temperature gradient and sea surface height anomaly

(Figure 3). Analysis of deviance indicated strong support

for the effects of sea surface temperature (DevZ�9.44;

F1,107Z 12.25; p! 0.001), sea surface temperature gradi-

ent (DevZ�20.66; F1,107Z 26.81; p! 0.001), and

bathymetry (DevZ�5.06; F1,107Z 6.56; pZ 0.012) on

seal use. There was little support for the effect of sea

surface height anomaly on seal use (DevZ�2.09;

F1,107Z 2.71; pZ 0.103). The relationship between the

predicted time and observed time for the validation data set

was not significant (least-squares regression: r2Z 0.002,

F1,107Z 0.21, pZ 0.65; Figure 4).

During the post-moult trip, the best-fit model included

ocean colour gradient, sea surface height anomaly, and

bathymetry. This model explained 24.2% of the deviance

from the null model (100[33.09� 25.07]/33.09). In general,

there was a negative relationship between seal use and all

three terms (Figure 5). Analysis of deviance revealed that

sea surface height anomaly and bathymetry contributed

significantly to the model (sea surface height anomaly:

DevZ�4.63; F1,13Z 4.62; pZ 0.051; bathymetry:
o

DevZ�7.70; F1,13Z 7.67; pZ 0.016). However, there

was no support for the effect of ocean colour gradient on

seal use (DevZ�2.45; F1,13Z 2.44; pZ 0.142). There

was no significant relationship between the predicted and

observed values for the validation set, possibly due to the

low degrees of freedom (d.f.Z 31).

Even though the best-fit models explained a significant

amount of variation in seal use, model validation revealed

little predictive power of the defined models. The predicted

line between the observed and predicted data sets does not

pass through the origin as a consequence of the best-fit

model not explaining a large proportion of the overall

variance in the data.

Generalized additive model selection

As for the GLM procedure, the occupancy time per grid cell

was modelled as a function of the oceanographic response

variables and their gradients using a Gamma distribution

GAM with a log link. Model selection identified two

separate best-fit models to explain the variation in the PL

and PM foraging trip test data sets, but these differed

somewhat from those identified using GLM. During the PL
m
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oceanographic variables: sea surface temperature (negative), sea surface temperature gradient (positive), sea surface height anomaly
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trip, the best-fit GAM included ocean colour, its gradient,

sea surface temperature and its gradient. In general, there

was a negative relationship between seal use and ocean

colour gradient and sea surface temperature gradient, and

a positive relationship with ocean colour (Figure 6). There

was a non-linear relationship between seal use and sea

surface temperature, with maximum use occurring between

4 and 5(C (Figure 6). The relationship between the

predicted time and observed time for the validation data

set was significant (least-squares regression: r2Z 0.04,

F1,110Z 4.15, pZ 0.044; Figure 7).

During the post-moult trip, the best-fit model included

mean ocean colour, sea surface temperature and its

gradient, bathymetry and its gradient. There was a negative

relationship between seal use and ocean colour, bathymetry

gradient and sea surface temperature (the latter being

a negative log-linear relationship), and a positive relation-

ship between sea surface temperature gradient and

bathymetry (Figure 8). However, there was no significant

relationship between the predicted and observed values for

the validation set (least-squares regression: r2! 0.01,

F1,15Z 0.07, pZ 0.79).

Discussion

The foraging behaviour and distribution of marine preda-

tors will be influenced largely by the distribution of their

prey, the latter being influenced to various degrees by the

physical and biological properties of the ocean (Charrassin

and Bost, 2001). Although simple covariates describing

ocean surface properties have been useful in explaining
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Figure 4. Relationship between the amount of time spent per grid

cell predicted from the best generalized linear model and the

observed time spent per grid cell. The solid line represents the

least-squares regression.
some of the variation in the foraging behaviour of apex

predators (Georges et al., 2000; Guinet et al., 2001; Nel

et al., 2001), the predictive capacity of simple models is

variable. In contrast to other studies (e.g., Guinet et al.,

2001; Nel et al., 2001), our results suggest that even more

complex, non-linear models still fail to provide a strong

predictive framework for apex predator foraging at coarse

spatial scales. Much of this reduced predictive capacity

may result from the relatively sparse data collected from

remote satellite instruments, especially during the heavily

clouded winter months (Sumner et al., 2003). Additionally,

measurement of surface properties may not necessarily

capture the oceanographic patterns at depth to which deep-

diving species such as elephant seals may respond more

strongly (sub-surface information based on climatological

mean fields is limited). Furthermore, the data used to

describe predator foraging were basic spatial occupancy

(time per unit area), and this parameter may still have

included transit and non-foraging behaviour even though

the major transiting periods were removed from the

analysis.

An important potential limitation of the models’ pre-

dictive capacity may reside in the choice of the spatial scale

of investigation. The large grid cell size (300! 300 km)

determined from optimal temperature agreement (Bradshaw

et al., 2002, in press) provided a high degree of spatial

averaging in oceanographic conditions. Improvements in

the estimates of foraging tracks (satellite telemetry or

improved geo-location algorithms) and better spatial

resolution in surface oceanographic data would likely result

in a different selection field for GLM and GAM approaches.

Of course, subtler effects of oceanographic configuration on

elephant seal foraging behaviour at finer spatial scales are

likely to exist, but the coarse spatial scale of investigation

used in our analysis was incapable of describing these.

However, a greater spatial resolution would necessarily

result in a higher sample size (i.e., greater number of grid

cells) that may further complicate the problem of temporal

autocorrelation in animal behaviour. With relatively few

spatial blocks used to derive the models, randomization of

the data prevented the problems associated with high

temporal autocorrelation in our analyses.

Although there was some consistency in the results of the

best-fit GLM and GAM for each foraging trip (sea surface

temperature for the PL model; bathymetry for the PM

model), strong differences were found. Because GAMs are

more flexible than similarly constructed GLMs, GAMs can

over-fit models more frequently. The collective information

from the two approaches indicates that prediction may still

be difficult because the mechanisms influencing seal

behaviour may not be identified; rather, our modelling

only indicates which factors impact behaviour. The

application of the concept of parsimony in model selection

results in the fewest number of terms that result in the best

predictions. Additionally, because GLM and GAM effec-

tively model ecological niches (those that include biotic
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interactions and competitive exclusion) rather than funda-

mental niches (primarily a function of physiological

performance and ecosystem restraints), their predictive

capacity from region to region is expected to be low (Roloff

and Kernohan, 1999; Guisan et al., 2002).

The ability to predict foraging behaviour of wide-ranging

predators may be severely restricted by other factors not

directly related to the physical properties of the environ-

ment. First, the physical configurations of the local marine

environment may not directly influence the structure and

composition of elephant seal prey communities because of

dilution and downstream effects (El-Sayed, 1988; Guinet

et al., 2001). Second, there is still a limited understanding

of how physical properties may influence or relate to

plankton abundance and distribution within the upper layers

of the Southern Ocean. Finally, accessibility and predator

knowledge of the foraging environment are also central

components of any relationship between animal behaviour

and oceanographic configuration (Matthiopoulos, 2003).

Although elephant seals from Macquarie Island have the

ability to access areas within 3000e5000 km of the island

itself (Hindell and McMahon, 2000; McConnell et al.,

2002; Hindell et al., 2003), they do demonstrate strong

preference for individual foraging regions (Field et al.,

2001; Bradshaw et al., in press) that may have evolved due
to the higher costs of compensating for local reductions in

food availability (Bradshaw et al., in press). This strong

tendency to return to known foraging regions may therefore

over-ride local events that could lead to higher prey

availability in regions adjacent to the foraging routes

chosen by adult individuals.

Nonetheless, one of the most consistent properties

describing a small, but significant component in the

variation of spatial occupancy was sea surface temperature

and its spatial gradient. In general, seals spent more time in

areas of colder water; however, the non-linear relationship

during the PL indicates that surface waters around 4(C
were most often selected. The prominent frontal zones

within this region (Rintoul et al., 1997, 2001; Budillon and

Rintoul, 2003) have been identified as a potentially

important features for vertebrate marine species originating

from Macquarie Island (Hull et al., 1997; Hull, 1999; Field

et al., 2001; Hindell et al., 2003). Higher temperature

gradients associated with these and other frontal features

may be indicative of higher relative productivity than

surrounding areas (Rintoul et al., 1997, 2001; Tynan, 1998;

Guinet et al., 2001; Moore and Abbott, 2002). An

examination of sub-surface temperature, salinity, and

oxygen values from the Java OceanAtlas (http://odf.ucsd.

edu/joa/index.html) at depths of 300e700 m (average

http://odf.ucsd.edu/joa/index.html
http://odf.ucsd.edu/joa/index.html
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foraging depth range for southern elephant seals e Field

et al., 2001) supported the results using surface data alone.

Within the frontal zone areas where surface temperature

gradients were highest, sub-surface temperatures ranged

0 200 400 600 800

20
0

22
0

24
0

18
0

16
0

14
0

12
0

Observed time spent per grid cell (hours)

Pr
ed

ic
te

d 
tim

e 
sp

en
t p

er
 g

rid
 c

el
l (

ho
ur

s)

Figure 7. Relationship between the amount of time spent per grid

cell predicted from the best generalized additive model and the

observed time per grid. The solid line represents the least-squares

regression.
between 2 and 4 degrees. However, there was a noticeable

reduction in sub-surface oxygen content in these areas

(w4 ml l�1). Sub-surface salinity measures demonstrated

relatively low variability at these depths (34.6e34.7 psu).

The identification of bathymetry and its gradient as

potential explanatory terms may be indicative of the effect

of the Macquarie ridge on the southern deflection of the

frontal zones and associated eddies south of Macquarie

Island (Gordon, 1972; Rintoul et al., 2001).

Understanding the often subtle influence of the coarse-

scale physical properties of vast ocean systems on marine

biological communities on which they depend is limited

ultimately by the quantity and quality of the data collected.

The paucity of oceanographic data during winter remains

one of the largest obstacles to understanding these

processes, especially for large, wide-ranging marine

predators that extend well into the pack-ice zones

surrounding Antarctica. Increased resolution of location,

behaviour and remotely sensed data, in addition to more

advanced methods of spatial summary (i.e. non-raster) may

also improve model performance. More complex, non-

linear modelling approaches may also provide more insight

(see Guisan and Zimmermann, 2000 for review), although

the underlying mechanisms of foraging pattern may be
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driven more by long-term evolutionary processes rather

than contemporaneous oceanographic configuration (Brad-

shaw et al., in press). As well, more specific estimates of

foraging itself, such as foraging ‘‘effort’’ determined by

diving behaviour (Boyd et al., 1997; Bowen et al., 2001;

Field et al., 2001; Charrassin et al., 2002), changes in travel

rate (McConnell and Fedak, 1996; Campagna et al., 1999;

Le Boeuf et al., 2000; McConnell et al., 2002), and

estimates of relative lipid changes (Biuw et al., 2003) may

identify closer associations between specific oceanographic

variables and foraging distribution. Finally, both the

strength and direction of correlations with certain ocean-

ographic features that act as surrogate measures of

productivity can depend on the spatial scale of investigation

(Jaquet and Whitehead, 1996; Guinet et al., 2001). The use

of coarse-scale methods to obtain at-sea locations (geo-

location) does not provide information on the fine-scale

foraging behaviour of southern elephant seals. Therefore,

our ability to detect scale dependencies in the models

constructed was not possible. Despite the poor predictive

capacity of the models examined in this study, some of the

mechanisms influencing predator foraging are congruent

with expectations of distribution of marine food resources

at coarse spatial scales.
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