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Abstract—At-speed testing for asynchronous circuits is still an
open concern in the literature. Due to its timing constraints
between control and data paths, Design for Testability (DfT)
methodologies must test both control and data paths at the same
time in order to guarantee the circuit correctness. As Process
Voltage Temperature (PVT) variations significantly impact circuit
design in newer CMOS technologies and low-power techniques
such as voltage scaling, the timing constraints between control
and data paths must be tested after fabrication not only under
nominal conditions but through a range of operating conditions.
However, this requirement demands modifications in the control
and data paths, which are not straightforward and not desirable
from a commercial standpoint due to its incompatibility with
conventional testing tools. Even with the available testing method-
ologies for asynchronous circuits in the literature – by adapting
the existing techniques for synchronous or creating new ones
from scratch – those methodologies usually target the control or
data path. This work explores an at-speed testing approach for
bundled data circuits, targeting the micropipeline template. The
main target of this test approach focuses on whether the sized
delay lines in control paths respect the local timing assumptions
of the data paths. By adding extra controllability points in the
controllers and taking advantage of scan-chain structures, this
work targets to generate/stall tokens in controllers, enabling
circuit verification through available scan chains.

I. INTRODUCTION

Asynchronous circuits are a promising solution for coping
with aggressive process variations faced in the most advanced
silicon technology nodes, as they are able to gracefully ac-
commodate wide ranges in gate and wire delays. A similar
phenomenon also takes place in more classical technologies
when the performance is not an issue and the requirements are
mainly driven by power consumption considerations. Indeed,
in order to drastically reduce power consumption, power
management strategies tend to minimize or aggressively shrink
the power supply voltage. In such conditions, the process
variations are exacerbated because the operating voltage is
near-threshold or, worst, sub-threshold. Operating at very low-
voltage makes sense, especially with the emerging Internet of
Things (IoT), where the devices may have strong low-power
requirements. Most of the ultra-low power circuits operate at
very low supply voltages and sometimes in electrical harsh
environments, implying less predictable propagation delays
and noisy working environments [1]. Delay variations can
compromise the circuit functionality, especially if the timing
assumptions are strong, which is the case for the synchronous
circuits. Indeed, their timing assumption is based on the worst

circuit critical path, pushing the designers to over-design and
take excessive timing margins. Hence, asynchronous circuits
can help designers to avoid such excessive margins by pro-
viding an easier timing closure and improving robustness
against unexpectedly large delays [2]. The most efficient
circuit class to tackle this problem is certainly the Quasi-
Delay Insensitive (QDI) circuit class because it only requires
a very weak assumption on some circuit forks (known as
isochronic forks) [3]. Nevertheless, this class suffers from a
large circuit area and requires specific skills and dedicated
tools, making its adoption difficult by the industry. In order to
overcome these issues, designing bundle-data circuits seems
more acceptable because they have a similar area compared
to the synchronous circuits, while offering a better robustness
to process and voltage variations. As they are really good
candidate for playing an important role in low power and
ultra-low power circuits, it is important to propose effective
solutions for testing the imposed timing constraints of such
circuits after fabrication or even in their working environment.
Moreover, testing circuits is a mandatory requirement in digital
circuits and at-speed becomes especially crucial when the
supply voltage is low or changed during operations.

As bundled-data circuits are technically close to their syn-
chronous counterparts, they are more understandable for the
designers and can benefit from the commercial electronic
design automation (EDA) tools usually used with synchronous
design [4]. Based on the existing synchronous Design for Test
(DfT) approaches, it is possible to develop a similar framework
for asynchronous bundled-data circuits, which could also take
advantage of the commercial tools. Thus, testing asynchronous
bundle-data circuits requires a limited effort to make them
compliant with the EDA tools. It is of course needed to adapt
the DfT strategy to their specificity. This paper focuses on
an at-speed DfT strategy for micropipeline circuits, which can
successfully be used in low-power devices exploiting low or
several supply voltages. The proposed technique tries as much
as possible to stay in the traditional DfT framework in order
to foster its adoption by industry.

II. ASYNCHRONOUS BUNDLED-DATA CIRCUITS

Taking an asynchronous approach, the literature presents dif-
ferent template designs. These templates are defined according
two main characteristics: (i) data encoding; and (ii) the selected
handshake protocol. On top of that, those templates are usually
organized in two main major design families: bundled-data
(BD) and Quasi-Delay Insensitive (QDI). By employing Delay
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Insensitive (DI) encoding into its handshake scheme, QDI
design provides more relaxed timing constraints, at the cost
of heavy area and power trade-off. Bundled-data design, in
the other hand, takes an implementation approach close to
standard synchronous design, employing single-rail encoding
but replacing the global clock signal by local handshake
schemes. Figure 1 illustrates a generic asynchronous bundled-
data push channel, in which data flows through the data paths
according to the handshaking protocol between sender/re-
ceiver controllers. The most common handshake protocols
employed in bundled-data circuits are (a) four-phase and (b)
two-phase protocols, as depicted in Figure 2. With four-phase
handshaking, only the rising transition of the request signal
req indicates the validity of data and a single transition of
the acknowledgement signal ack signifies that data has been
captured by the receiver. To end the communication cycle, both
req and ack signals must be reset. Two-phase handshaking,
however, considers both rising and falling transitions of req
to indicate the presence of new data, and both transitions of
ack to signifies the data capture by the receiver. Here, there is
no necessity to reset the handshake signals as the transition in
ack already ends the communication cycle.
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Fig. 1. Generic scheme of a asynchronous bundled-data push channel,
highlighting the timing relationship between handshake and data signals.

Due to the handshake schemes, timing constraints between
handshake and data signals must be respected in order to
guarantee circuit correctness. According to [5], the basic
constraints in bundled-data design are: (i) The receiver must
not see a request until its input data is stable; (ii) The receiver
must not acknowledge to the sender until it has no further need
for its input data and (iii) The sender must hold its output data
steady between sending the req and receiving the ack. Taking
Figure 1 again, consider that valid data is present at datai−1

and we desire to propagate it to datai+1. In order to do that,
the launch controller ctrli receives a flag through reqi−1 (e.g.
reqi−1 rises), indicating valid data is present at the input of
its respective registers – in this case, Ri. Usually, this request
flag is called ‘token’, as it carries the information that valid
data is present in the data path. Next, Ri stores and propagates
data through the combinational block CLi. At the same time,
ctrli also propagates the request signal reqi, indicating to the
capture controller ctrli+1 in the receiving part that new data
is available. If reqi is propagated to ctrli+1, which will pulse

clki+1, before the new data had been completely computed
by CLi, the receiver register Ri+1 will store invalid data,
compromising the circuit operation. This implies that, from the
point-of-divergence podi at the launch controller, the control
path tdsctrl(i) must be tuned in order to match the propagation
delay of the launch register and the combinational block
tdsdata(i) at the point-of-convergence poci+1 in the capture
controller. In order to do that, a delay line dli is inserted
into the request signal between the controllers, delaying the
arrival of the request signal at the receiving end. This timing
constraint between control and data paths is called forward
(setup) constraint and can be represented by Equation 1.
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Fig. 2. Asynchronous bundled-data communication employing (a) four-phase
and (b) two-phase handshake protocols.

tdsdata(i) < tdsctrl(i) (1)

From a testing standpoint, the presence of the control part
in bundled-data design infers lower controllability as it is not
possible to control the registers directly through a global clock
signal. This requires modifications in both control and data
paths, specially when it is necessary to verify the local timing
constraint between control and data paths.

III. RELATED WORK

The testability of asynchronous circuits is already a topic
in discussion in the literature. Several well-known authors in
the asynchronous field have presented the issues and solutions
while testing bundled-data and QDI circuits. This sections
focuses on the test of bundled-data circuits, giving a historical
view of how asynchronous testing has been evolving in the
last decades.

In 1992, Pagey et al. [6] explores the basics of testing for
the micropipeline template. In their work, they indicate that
the control part of the circuit is concurrently testable during
normal operation and ATPG for the data path can be reduced
to that for the combinational circuits. In this case, the authors
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suggest to set all latches in pass mode and treat the circuit
as a single logic block, allowing the test pattern generation.
The micropipeline template is also explored by Khoche and
Brunvand in 1994 [7]. The authors propose stuck-at and delay
testing in the data path by adding scan functionality to latches
and C-elements. One year later, the same authors present a
partial scan approach for self-timed circuits [8]. Here, C-
elements are not included in the scan path and modified in
order to test them as combinational logic. For the scan path, the
latches employ two non-overlapping clocks input to provide
race free operation during testing – basically, a level-sensitive
scan-design (LSSD) structure.

In the same year, Petlin et Furber presents a fully-
asynchronous scan test technique [9] for a micropipeline-
based microprocessor called AMULET. According to the au-
thors, the techniques allows both stuck-at and delay faults.
Moreover, different testing control schemes are presented –
called scan test control logic (STCL) – for two and four-
phase protocols. Schöber et Kiel also explores a scan path
design for micropipeline circuits [10]. They also propose a
fully asynchronous scan approach, which in no clock is used
during normal and test mode. In order to do that, latches
are replaced by asynchronous scan latch (ASL) and an extra
two-phase handshaking control permits the scan manipulation
(scan in and out). As the test structure is also asynchronous,
this implies in a relatively high area overhead due to the
extra handshaking controls. Again, Petlin et Furber covers the
subject of micropipeline testing in 1997 [11]. In their work, the
authors present a built-in self-test (BIST) micropipeline design.
The circuit employs an asynchronous built-in logic block
observer (BILBO) for stuck-at fault detection. The authors
also indicates that their BIST approach can check the timing
constraint of the micropipeline template.

In 1996, Roncken et Bruls discuss that the autonomous
handshake behavior of asynchronous circuits compromises
the test quality [12]. Thus, the authors introduce the hand-
shake component HOLD, which is inserted between handshake
controls to add more controllability and better applicability
of scan and quiescent current (IDDQ) testing. Roncken et
al. [13] also addresses the use of LSSD-based testing design
for asynchronous circuits. In their work, the authors propose an
algorithm to implement near-optimal scan structures, avoiding
the area overhead caused by LSSD. In the end of the 20th
century, Roncken takes another step in the subject and presents
a defect-oriented testing for asynchronous circuit [14]. This
time, Roncken targets IDDQ testing for stuck-at and bridging
fault detection. This is done through a HOLD DfT approach,
which is responsible to stall the circuit at a desired state
and, thus, allowing IDDQ testing in a quiescent state not
normally available in an asynchronous design. This kind of
testing approach is further addressed in [15], where it intro-
duces the notion of naturalized communication and how to
reused the handshake behavior to test two-phase bundled-data
circuits, such as micropipeline, GasP, MOUSETRAP and Click
templates. The authors present a proper stopper circuit, called
MrGO, responsible to controlling actions, freezing or releasing
specific handshake parts of the circuit. Details about the MrGO
circuitry are presented, but the scan approach used for testing

delay and stuck-at faults is not described, the same is true
about fault coverage and the area overheads.

Kishinevsky et al. presents a path-delay fault testing algo-
rithm for asynchronous circuits [16]. The algorithm is respon-
sible to generate test sequences for a set of paths in the circuit
that must respect a specific timing constraint. Despite the fact
that their work covers delay testing, the authors consider only
quasi-delay insensitive (QDI) circuits in their experiments.

In 1999, Kang et al. proposes a scan design for mi-
cropipeline circuits, focusing on delay testing [17]. The latches
are replaced by their proposed scan latch that, according to the
authors, allows full control during two-pattern delay testing.
However, the proposed scan latch adds three latches (four in
total), implying a relative high area overhead.

At the 21th century begin, Berkel et al. explores the insertion
of synchronous and LSSD modes to C-elements [18], targeting
a more general testing approach of any asynchronous imple-
mentation. Here, they consider the scan-path technique and
level-sensitive operation of LSSD operation to add full con-
trollability and observability in sequential gates. Consequently,
asynchronous circuits could take advantage of traditional DfT
and automatic test pattern generation (ATPG) tools. This
statement is further explored in [19], [20], where it applies
the DfT proposed in [18] and presents fault coverage and
area results of five testable bundled-data circuits designed with
Tangram, a Philips’ design flow for asynchronous circuits. The
authors were able to test both data and control paths with 100%
and 99% fault coverage, respectivately, with area overhead
ranging from 90% (full-scan) to 30% (partial-scan). In other
to reduce the impact of LSSD, Beest et Peeters also explores
a multiplexer-based testing technique to test C-elements [21].
The authors indicates that the proposed multiplexer-based ap-
proach achieves the same structural fault coverage of previous
LSSD approaches, as well as profits the automatic pattern
generation from conventional testing tools.

Others authors focus mainly on testing the handshaking con-
trols in asynchronous circuits. For instance, King et Saluja [22]
adds testability for the control part of micropipeline circuits.
By inserting scan latches in the handshake controllers and
restraining combinational loops, the proposed technique syn-
chronously treats the existing asynchronous elements – like a
finite state machine. This approach brings extra controllability
and observability, allowing stuck-at fault detection in the
control part at the cost of a signficant area overhead.

Delay testing for the MOUSETRAP [23] template is covered
in [24]. The proposed DfT technique consists of controlling
the acknowledgement signals between handshake controllers,
permitting the user to pause or resume the pipeline at will.
To allow this extra handshake control, the proposed technique
requires the insertion of multiplexers in the acknowledgement
signals and a shift register to configure each multiplexer.
Another interesting approach to test the control part of asyn-
chronous circuit is presented in [25]. In this work, a checker
logic block is connected in the handshake signals in order
to detect any violation in the handshake protocol. For each
handshake pair – request and acknowledgement pair signal –
the proposed checker logic requires four flip-flops, four David
Cell (DC) circuits [26] and four delay elements, implying
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that checking all handshake signal brings a significant area
overhead.

In 2006, delay testing for asynchronous circuits is cov-
ered in [27], which in presents a non-intrusive delay testing
technique for three different templates: MOUSETRAP [23],
GasP [28] and high-capacity (HC) pipelines. However, the
authors focus on the MOUSETRAP template most of the
paper, also presenting how to generate test patterns for non-
linear MOUSETRAP implementations – containing forks and
joins, for example.

Finally, Kuentzer et al. explore the testing characteristics
of the resilient bundled-data template called Blade [29], [30].
First, the authors analyze and classify the faults in the error
detection logic (EDL) of the Blade template [29], proposing
slight modification in the EDL design to increase controlla-
bility/observability. As the resilient architecture of the Blade
template is capable to detect timing violations during opera-
tion, it also implies that the architecture also enables online
delay testing of critical paths [30].

This work proposes a DfT architecture for at-speed testing,
while taking in consideration the compatibility with stuck-at
testing using traditional testing tools. Taking the same ap-
proach of [15], we desire to freeze and release specific control
parts of the circuit and test their respective data path. This
is done by adding controllability in the controllers, allowing
to control directly the points-of-divergence of the forward
timing constraint between control and data paths. Despite
the proposed testing architecture imposes modifications in the
controllers’ design to add controllability, it requires only the
use of logic gates already available in off-the-shelf standard
cell libraries. The proposed architecture is also compatible with
the Local Clock Set (LCS) flow [4] The LCS flow enables the
implementation of bundled-data circuits with standard EDA
tools, allowing the use of scan-chain insertion and static timing
analysis (STA) features. Moreover, the STA enables better
interface with ATPG tools for path-delay testing.

IV. PROPOSED TESTING ARCHITECTURE FOR

MICROPIPELINE DESIGN

The main objective to the proposed architecture is to allow
verifying whether the timing constraint imposed in Equation 1
has been respected after fabrication. Figure 3 illustrates the
proposed testing structure with a push channel structure. Re-
garding testing, the circuit has multiple testing signals:

• Test mode (Tmode): when enabled, it bypasses the con-
trol logic and allows to control register with an external
clock signal Tclk. This signal is usually added for stuck-
at testing with scan chains;

• Scan enable (SC en): when enabled, it bypasses the
combinational logic presented in the circuit data paths,
allowing to load and unload the scannable registers in the
circuit. This signal is also presented for stuck-at testing
with scan chains;

• Handshake breakers (HSBi): this signal allows to dis-
able or enable the left handshake signals of a given
controller. When enabled, this signal disables the left
handshake signals and permits external control of the left

request signal of the controller through ext req. When
disabled, the left handshake signals are connected to the
previous stage(s) and the controller operates normally;

• External request signal (ext req): this signal is added
specially for the at-speed testing methodology in this
work. During at-speed testing, this signal is responsible
to internally propagate tokens in control paths.
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Fig. 3. Proposed testing structure. Lower MUX logic controlled by Tmode

and SCen are already presented for stuck-at testing. The proposed testing
structure adds two more MUX gates that allows to disable the left handshake
signals of the controller.

Tclk

Tmode

SCen

ext_req

scan in scan out

clk0
(launch clock)

clk1
(capture clock)

test run

Fig. 4. Behavior of the testing signals during a test cycle.

Despite of the higher additional testing signals, note that
the two first signals (Tmode and SCen) are usually already
presented into the design whether a scan-chain structure is
used. Thus, the proposed structure only leverages the scan-
chain structure for better controllability and observability of
the data path. However, the proposed structure adds testing
signals to the control part of the circuit: external request
(ext req) and handshake breaker (HSBi) signals. As the
name suggest, HSBi signals are responsible to ‘break’ the left
handshake communication of a given controller. Consequently,
each controller in the circuit requires a reserved HSBi signal.
When enabled, the HSBi sets the controller in launch mode
during at-speed testing. In this mode, the left handshake
signals of the controller are disconnected from the previous
controller(s) and bypassed directly to ext req. This isolates
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the controller from its previous neighbour controller(s) and
avoids any interference from another token inserted in previous
controllers, which may create timing issues during at-speed
testing. However, this also creates a testing limitation because
no handshaking communication is possible and, consequently,
makes it impossible to verify the timing constraint of the
previous control/data path. This requires different HSB con-
figurations in order to cover all existing timing constraint in
the design. When HSBi is disabled, the controller stays in
capture mode and it will communicate normally with previous
controller(s). To reduce the use of test input of each HSBi

signal, a shift register can be employed to load sequentially
each HSBi.

A. Test Cycle

The test cycle is composed of three main steps: (1) scan in,
(2) test run and (3) scan out. Figure 4 illustrates the behavior
of the main test signals. During the first step (1), both Tmode

and SCen signals are enabled. This will put the circuit in test
mode and will allow loading the scan chain and configuring
each HSBi signal. Once the scan chain and the HSB shift
register are loaded, Tmode and SCen signals are disabled, the
circuit goes back in normal mode. When extreq is enabled, it
launches all controllers in launch mode (HSBi enabled) and
propagates tokens to the remaining controllers set in capture
mode (HSBi disabled) – this is the test run step (2). Finally,
the circuit is put in test mode again to scan out (3) the circuit
and verify if the capturing registers contain the expected test
vectors.

(a)

Lreq Rreq+ +

Lack Rack+ +

Lreq Rreq- -

Lack Rack- -

generate
externally

pre-set
internally

register
enabled

request to
next ctrl

Lreq Rreq

Lack Rack

ctrl

clk

(b)

Fig. 5. Block representation (a) of a weak feedback half buffer (WCHB)
controller with its handshake signals and STG representation (b) of the WCHB
controller demonstrating the handshake behavior.

B. Initialization

For the proposed testing procedure, it is required to initialize
both data and control paths.

For the data path, test vectors must be loaded into the design
for two-pattern testing. Considering a launch register, which
will be directly activated by an inserted token, a previous
and successor data path is loaded with test vectors in such

a way that, when the circuit is launched, the launch register
will stimulate a target path while the token is also propagated
through the control path. A straightforward technique to load
the data path is a scan chain. To allow that, the controller
clock clki is usually multiplexed with an external test clock
Tclk and the registers are replaced by their equivalent scannable
implementations. During test mode, the registers are externally
controlled by Tclk and data paths are bypassed. During normal
mode, registers are controlled internally by the their respective
controllers and data paths are not longer bypassed.

Regarding the control path, all handshake signals must be set
according the initial state of the employed handshake protocol.
In that way, all the controllers must have known handshake
signal values and be ready to process the inserted tokens
during the test. This can be done by setting the primary control
inputs and all the memories inside the control blocks – flip-
flops, latches or C-element – according to the circuit initial
state. On top of that, depending of the employed handshake
protocol, multiple initial states must be considered to ensure
that the circuit is fully tested. For the sake of illustration,
Figure 5 illustrates block representation (a) of a weak-feedback
half-buffer (WCHB) controller with its handshake signals
and its State Transition Graph (STG) representation (b). The
STG indicates the transition sequences of the left and right
handshake signals of the WCHB controller. Note that we
consider only a standard four-phrase handshake protocol. In
this case, registers are only activated in the first phase of
handshake protocol (Rreq+ rising). As our technique focuses
on externally generating the rising transition of the left request
signal Lreq+, all the remaining handshake signals and internal
memories must have the logic values preceding Rreq+. Taking
into consideration the STG in Figure 5 (b), the left token is
generated externally through ext req. However, the right token
requires that not only the controller itself would be properly
reset, but also all its successor controllers – guaranteeing the
desired logic value of Rack.

C. Verifying Circuit Correctness

After launching the circuit, the circuit must be checked
to verify circuit correctness. This can only be done after
the circuit had computed all tokens and no token is being
propagated through the circuit. Then, the values in the capture
registers can be extracted through the scan path and matched
with the expected values. If the the capture registers contains
expected values, it indicates that the timing constraints between
the control and data paths was respected. Otherwise, the
timing constraint between the launch/capture registers have
been violated.

D. Retrieving Path-Delay Information with Local Clock Sets

As mentioned before, the LCS flow [4] enables the use of
standard EDA tools to run synthesis and STA on bundled-data
circuits. The basic idea of the LCS flow consists on using root
clocks at each controller in order to ‘break’ the combinational
loops in the control logic. Based on a given root clock, LCS
derives launch and capture generated clocks, which allow to
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verify hold and setup timing constraints, respectively, beyond
neighbour root clocks. Because of this timing support created
by the LCS flow, it is possible to check timing violations
with standard EDA commands (e.g. report timing). Note
that, during STA checking, the tool is capable to identify the
required transitions to stimulate a given path, such as a critical
path or any desired path. This very same information is also
the required information that ATPG tools need to know how
registers must be initialized for path-delay testing.

It is important to indicate that, in our case, the path-delay
extraction is software dependent, specially because it must
employ the same tools compatible with the LCS flow. In
that way, giving a more pratical view of our approach, the
path-delay information can be extracted through Synopsys’
Primetime tool – currently supported by the LCS flow. On top
of that, Primetime interfaces Synopsys’ ATPG tool TetraMAX,
which reads the given path-delay information and generates
test vector for two-pattern testing. However, the behavior of
the local clock signals are not identical to synchronous two-
pattern testing as the root clock and the generated capture clock
pulse only once. Consequently, the only valid expected register
values generated by TetraMAX is in the capture registers and
all values in the launch registers must be ignored (don’t care).

E. Testing Non-linear Structures

Asynchronous circuits employs complex flow control
scheme far different from a conventional linear scheme as
illustrated in Figure 1. Thus, they can employ unconditional
and conditional flow schemes such as forks (a), joins (b), splits
(c) and merges (d), as indicated in Figure 6. According to the
employed flow scheme, the proposed testing technique must be
adapted in order to properly insert tokens in the circuit without
stalling the circuit or violating the handshaking protocol.

With a fork scheme, the generated token propagates to all
successor branches. This implies that the controller in the
sending end must be configured in launch mode and all branch
controllers in capture mode. As the fork employs a uncondi-
tional control flow, a single token in the receiving controller
propagates to all branches, allowing to verify the operation
correctness of all branches in parallel. The same idea applies
to join schemes. However, in this case, the branches controllers
are the sending end. Then, all branch controllers must be
configured in launch mode. If the controller in the receiving
end does not receive tokens from all branch controllers, no
further token is generated and the circuit halts, registering no
new data in the receiving end.

For conditional control flow, such as splits and merges,
additional care is needed. In split schemes, the split selector is
responsible to redirect the flow to a target branch. In order
to test all branches, it is required to generate tokens that
will propagate to a target branch, which is selected by the
split selector controller. Then, for a target branch, the sending
and split selector controller must be set in launch mode and
the target branch controller in capture mode. This process is
repeated until all branches were selected and tested.

Again, the merge scheme considers a similar logic as the
split scheme. For a target branch, the target branch and
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SPLIT/MERGE must select

the target branch

Tokens generated separetely
for each branch
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Fig. 6. Token generation according the control path structure: (a) fork, (b)
join, (c) split and (d) merge. The arrows indicate where the token is generated
(through ext req) and where it is propagated.

merge selector controller must be set in launch mode and the
receiving controller in capture mode.

F. Compatibility with Traditional Stuck-at Testing

Another point that the proposed architecture takes into con-
sideration is to keep the compatibility with traditional testing,
including the use of DfT and ATPG tools available in the
industry. In this case, we consider scan insertion and traditional
stuck-at testing. As the control part utilizes C-elements and
combinational loops, the strategy focuses on isolate the control
part. Taking as example Figure 7, this is done through enabling
the Tmode signal, which bypasses all control logic and redirects
all register control to Tclk. Consequently, the circuit operates
synchronously and the scan test protocol remains the same.

V. STUDY-CASE CIRCUIT

This section details the implementation of the proposed
testing architecture in a study-case circuit. Moreover, it also
includes stuck-at and at-speed testing.

To apply the proposed testing architecture, a micropipeline-
based 128-bit AES core is considered. The AES core was
designed and synthesized in-house, using a 65-nm CMOS
technology from STMicroelectronics. Figure 8 (a) depicts the
register stages of the AES core, where each stage is controlled
by a separated root clock. The original core comprises two
main blocks: control and data path blocks. The control block
employs a four-phase handshaking protocol and is responsible
to interact with the external handshaking interfaces and control
the registers in the data path. The AES data path block
implements a FF-based design and its execution is controlled
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Fig. 7. Stuck-at testing with proposed approach. Data paths are isolated with
Tmode signal, avoiding any interaction with controllers. Thus, circuit operates
as a conventional synchronous circuit.

through 8 root clock signals (clklabel) and two one-hot control
signals for the merge and split structure (selmerge and selsplit),
all generated by the control block.

TABLE I. AREA RESULTS OF THE ORIGINAL AND THE PROPOSED

TESTABLE AES CORE.

Implementation Original Proposed

Combinational (um2) 45280.80 54752.64

Buffers/Inverters (um2) 8758.80 10154.64

Non-combinational (um2) 11146.56 13138.80

Macro/black box (um2) 86.16 86.16

Total (um2) 56513.52 67977.60

Area Overhead (%) - 20.28

The first main modification in the design is the employment
of a testable version of the micropipeline controllers, illustrated
in Figure 8 (b). The testable version adds the HSB logic (left
MUX and AND gate) and a second multiplexer to implement
the testing clock bypass. Moreover, a 8-bit shift register has
been added into the design to enable the configuration of the
HSB logic of each micropipeline controller. Each bit of the
HSB shift register allows to access directly one of the eight
root clocks. Note that the Tclk controls both AES control block
and the HSB shift register. Thus, during scan manipulation, the
HSB shift register can be loaded at the same time.

The synthesis step considers the Synopsys’ Design Compiler
tool with LCS flow support. Manually, all controllers are re-
placed by the proposed testable counterpart. The LCS flow has
been modified to enable the DfT insertion through Synopsys’
DFT Compiler. Taking a full-scan approach in this study case,
the DFT Compiler replaces all registers for scannable FFs and
only considers Tclk, SCen and Tmode signals to control the
scan path. The remaining testing signals (HSBin and ext req)
are ignored. As the Tmode bypasses the control block when
enabled, the DfT tool ignores the AES control block and HSB
shift register during scan insertion. Table I compares the area
results of the original and the proposed testable AES core. With

TABLE II. ATPG RESULT SUMMARY FOR STUCK-AT TESTING.

Detected 218323

Undetectable 17

ATPG Untestable 1550

Not Detected 0

Total Faults 219890

Test Coverage 99.30%

Scan Patterns 217

the addition of the testable controller, the 8-bit shift register
and the scan path, the testable AES presents an area overhead
of around 20%. This overhead comes mostly from the scan
path, as the shift register and the AES control block only
contribute to 0.3% of the area overhead. As the AES’ control
path represents 1.5% of the area consumption, it was expected
that the extra circuitry in the control part would not inflict a
significant impact.

As the control block is bypassed and the AES data path
employs FF registers, it is possible to use a conventional ATPG
tool, such as Synopsys’ TetraMAX, to generate test patterns
for traditional stuck-at testing. Table II gives a summary of
the ATPG for the testable AES core. The ATPG achieves
99.30% of fault coverage considering the full-scan architecture
considered in this study case. As the ATPG tool is not able
to manage the asynchronous logic of the controllers, the tool
is configure to not test the control path, which includes the
handshake signals and the signals dedicated to at-speed testing
(HSBin and ext req).

During at-speed testing, the proposed architecture verifies
whether the delay lines between controllers match the critical
paths between controllers – as previous detailed in Equation 1
– and also validates the controller operation.

The testing patterns were generated with an ad-hoc ap-
proach, targeting to stimulate the critical path of each pipeline
stage. Here, the LCS flow provides essential information to
assist with the pattern generation. As the LCS flow creates
root clocks and generated launch/capture clocks to enable STA
analysis between control and data paths, this same information
is used to stimulate the desired critical path. In our case, all
critical path information is obtained with Synopsys’ Prime-
Time, which is able to read all constraint files created by the
LCS flow and indicate the required transitions to stimulate the
critical path. For example, Listing 1 shows the PrimeTime’s
output regarding the critical path in the loop between MIX
(clkstage3) and ADD (clkstage1) stages. Note that, however,
the critical path information provided by PrimeTime contains
only the stimuli at the data path – not the control part. Thus, the
HSB configuration necessary to properly activate the correct
launch/capture clocks was done manually according each case.

The testing patterns were loaded in the scan chain and
the HSB shift register was configured to set which controller
would operate in launch or capture mode. Figure 9 presents
the two testing cycles performed in the study-case circuit,
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Fig. 9. HSB configuration for each test cycles during at-speed testing. Arrows
represent where each token is inserted and the target path.

indicating where the test inserts tokens. The end of each
arrow represents the last controller where the tokens was
propagated and that their respective registers contains the
resulting pattern to be checked. Moreover, as already discussed
in subsection IV-E, the test of split and merge schemes requires
that the selector controllers propagate the token to the target
branch. The two cycles are required due to the fact that the
HSB configuration disables the left handshake communication
of the launch controllers. Thus, it is not possible to verify
the timing constraints between the launch controllers and any
previous controller.

Listing 1. Example of critical path between two root clocks of the AES
circuit. This example considers the critical path in the loop between the third
stage (MIX) and the first stage (ADD).

$path {

// from: datapath/round/mix/ \

// colmix_reg/outrkey_reg_0__3__3_

// to: datapath/round/add/ \

// addkey_reg/subst_d_reg_3__5_

$name "aes_stage3-aes_stage1_setup_merge_c" ;

$cycle 0.0 ;

$slack 0.679212 ;

$transition {

"datapath/U355/D0" ˆ ; // (HS65_LH_MUX21X27)

"datapath/round/add/addkey_comb_in/ \

keysched1_comb_in/sub0_comb/U286/A" ˆ ; //(BFX27)

"datapath/round/add/addkey_comb_in/ \

keysched1_comb_in/sub0_comb/U34/A" ˆ ; //(NAND2X43)

"datapath/round/add/addkey_comb_in/ \

keysched1_comb_in/sub0_comb/U275/B" v ; //(NOR2X25)

"datapath/round/add/addkey_comb_in/ \

keysched1_comb_in/sub0_comb/U127/A" ˆ ; //(IVX22)

"datapath/round/add/addkey_comb_in/ \

keysched1_comb_in/sub0_comb/U14/A" v ; //(NOR2X3)

"datapath/round/add/addkey_comb_in/ \

keysched1_comb_in/sub0_comb/U47/B" ˆ ; //(NOR2X13)

"datapath/round/add/addkey_comb_in/ \

keysched1_comb_in/sub0_comb/U119/C" v ; //(OAI211X3)

"datapath/round/add/addkey_comb_in/ \

keysched1_comb_in/sub0_comb/U18/A" ˆ ; //(CBI4I1X3)

"datapath/round/add/addkey_comb_in/ \

keysched1_comb_in/sub0_comb/U62/D" v ; //(CB4I1X18)

"datapath/round/add/addkey_comb_in/ \

keysched1_comb_in/sub0_comb/U147/D" v ; //(OAI211X5)

"datapath/round/add/addkey_reg/ \

subst_d_reg_3__5_/D" ˆ ; //(SDFPRQX4)

}

}

VI. CONCLUSIONS

This paper presents an at-speed DfT architecture for
bundled-data circuits, applied to micropipeline-based designs.
By modifying the micropipeline controller, it is possible to
verify whether the forward timing constraints between the
control and data paths had been respected. In addition to
that, the architecture still enables traditional stuck-at testing,
allowing the use of DfT and ATPG tools already available in
the market. With a 128-bit AES core as study-case circuit, the
modifications in the micropipeline controllers and the addition
of the HSB shift register only contributes to a total area
increase of 0.3%.
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The architecture also leverages from the LCS flow to see
exactly the stimuli required to activate the critical paths. This
allowed us to properly load the scan chain and launch two-
pattern testing to verify the timing constraints. However, it
is important to highlight that the entire test setup is not
yet fully automated and it will be addressed in the future.
Another current limitation of the proposed architecture is
that, after inserting tokens through the ext req signal, it is
not possible to evaluate whether the circuit had finished the
test run. In nominal operation, the end of the test could
be estimated according an expected worst-case delay, albeit
this estimation is not trivial in a voltage scaling scenario,
for example. Consequently, the architecture could employ any
structure responsible to acknowledge the end of the test run. As
a last point, the proposed DfT architecture can be extended to
allow at-speed testing for any bundled-data template, covering
templates such as Click, MOUSETRAP or GasP.
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