
At-Speed Distributed Functional Testing
to Detect Logic and Delay Faults in NoCs
Mohammad Reza Kakoee, Member, IEEE, Valeria Bertacco, Senior Member, IEEE, and

Luca Benini, Fellow, IEEE

Abstract—In this work, we propose a distributed functional test mechanism for NoCs which scales to large-scale networks with

general topologies and routing algorithms. Each router and its links are tested using neighbors in different phases. The router

under test is in test mode while all other parts of the NoC are operational. We use triple module redundancy (TMR) for the

robustness of all testing components that are added into the switch. Experimental results show that our functional test approach

can detect stuck-at, short and delay faults in the routers and links. Our approach achieves 100 percent stuck-at fault coverage for

the data path and 85 percent for the control paths including routing logic, FIFO’s control path, and the arbiter of a 5� 5 router. We

also show that our approach is able to detect delay faults in critical control and data paths. Synthesis results show that the area

overhead of our test components with TMR support is 20 percent for covering stuck-at, delay, and short-wire faults and 7 percent

for covering only stuck-at and delay faults in the 5� 5 router. Simulation results show that our online testing approach has an

average latency overhead of 3 percent in PARSEC traffic benchmarks on an 8� 8 NoC.

Index Terms—NoC testing, online testing, delay fault, functional test

Ç

1 INTRODUCTION

MAIN microprocessor manufacturers are migrating to
chip multiprocessors (CMPs) for their latest products.

In CMPs, many cores are put together in the same chip and,
as Moore’s law continues to apply in the CMP era, we can
expect to see a geometrically increasing number of
processors and memories [1]. Intel developed a research
chip called single-chip cloud computer (SCC) with 48 cores,
under the tera-scale computing research program [2] and a
chip prototype that included 80 cores (known as TeraFlops
research chip) [3]. More recently, Intel has announced the
many integrated core (MIC) architecture [4] as the latest
breakthrough in multicore processors. The MIC project is
the fruit of three research streams: The 80-core Tera-scale
research chip program, the single-chip cloud computer
initiative, and the Larrabee many-core visual computing
project [5].

Embedded systems have also been shifting to multicore

solutions (multiprocessor system-on-chips; MPSoCs). A

clear example of high-end MPSoCs are the products offered

by Tilera [6], where multicore chips provide support to a

wide range of computing applications, including high-end

digital multimedia, advanced networking, wireless infra-

structure, and cloud computing.
Current trends indicate that multicore architectures will

be used in most application domains with high energy-

efficiency requirements. However, aggressive CMOS scal-
ing accelerates transistor and interconnect wear out,
resulting in shorter and less predictable lifespans for CMPs
and MPSoCs [7]. It has been predicted that future designs
will consist of hundreds of billions of transistors, with
upwards of 10 percent of them being defective due to wear
out and process variation [8]. Consequently, to support the
current technology trends we must develop solutions to
design reliable systems from unreliable components, mana-
ging both design complexity and process uncertainty [9],
[10], with minimal nominal performance degradation.

Network on chip (NoC), a high performance and scalable
communication mechanism, is being increasingly investi-
gated by researchers and designers to address the issues of
interconnect complexity in both CMPs and MPSoCs [11].
The reliability of NoC designs is threatened by transistor
wear out in aggressively scaled technology nodes. Aging
and wear-out mechanisms, such as oxide breakdown and
electromigration, become more prominent in these nodes as
oxides and wires are thinned to their physical limits. These
breakdown mechanisms occur over time, so traditional post
burn-in testing will not capture them. NoCs provide
inherent structural redundancy and interesting opportu-
nities for fault diagnosis and reconfiguration to address
transistor or interconnect wear out.

A network on chip consists of routers, links, network
interfaces (NIs), and cores. Failures can occur in any of these
components. In this work, we focus on failures in routers
and links, and propose an online functional testing solution
for the NoC infrastructure. A number of works has evolved
NoC reconfiguration to counteract faults in both routers
and links [12], [13], [14], [15], [16], [17], [18]. For instance,
routing algorithms for fault-tolerant networks have been
extensively explored for network-level reconfiguration.
These algorithms direct traffic around failed network

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014 703

. M.R. Kakoee and L. Benini are with the Department of DEIS, University of
Bologna, Italy. E-mail: {m.kakoee, luca.benini}@unibo.it.

. V. Bertacco is with the CSE Department, University of Michigan, Ann
Arbor, MI. E-mail: valeria@umich.edu.

Manuscript received 31 Oct. 2011; accepted 22 Sept. 2013; published online
11 Oct. 2013.
Recommended for acceptance by R. Ginosar and K.S. Chatha.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-2011-10-0793.
Digital Object Identifier no. 10.1109/TC.2013.202.

0018-9340/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society



components to avoid network deadlock. However, to take
countermeasures against NoC faults, we must first detect
and diagnose them. Most of the works proposed for fault-
tolerant NoCs do not address the testing mechanism and
how they find faulty components. Some of them rely on
offline testing mechanisms, such as BIST and scan chains,
which require external test sources, are not scalable and
cannot be applied while the system is in operation. Others
rely on traditional error detection and correction mechan-
isms, such as CRC and parity checkers, to detect data path
faults in both links and routers [19], [20], [21]. However,
their fault coverage is very limited and, more importantly,
they cannot be used for fault detection in control paths of
the router.

Recently, Lubaszewski et al. [22], [23] proposed a new
post burn-in testing for NoCs, which is based on the at-
speed functional testing of several 2� 2 meshes in an N �
N NoC. They test each 2� 2 mesh using a set of test
sequences and patterns. However, as they showed in [23],
the 2� 2mesh can give good fault coverage for the links but
not for the routers, especially for the routing logics, FIFO’s
control paths, and arbiters. To obtain higher fault coverage
for the routers, they added more than 12 other mesh
configurations including 3� 1, 1� 3, 2� 2, and so on.
However, having those additional configurations is not
efficient for online testing and keeps several switches busy
in testing procedure, impacting the NoC’s performance and
packet latency. Moreover, their approach is suitable for
manufacturing testing using automatic test equipment
(ATE), and implementing it in hardware leads to overhead
especially with its enhanced version.

Motivation and contribution. The motivation behind this
work is having a distributed and scalable online testing
mechanism for NoC that can detect both logic and delay
faults in data path and control path of the routers as well as
the links with a reasonable fault coverage and with
minimum hardware overhead. In this paper, we propose
a scheme for online detection and diagnosis of faults in
NoC’s routers and links. First, we propose a functional test
architecture, which can be implemented in routers and NIs
with small hardware overhead. Similar to the work in [23],
we use test pattern generator (TPG) and test response
analyzer (TRA). However, to have minimum performance
overhead on the NoC in online mode we take advantage of
TPG and TRA in both router and NI. We also propose a
hardware-efficient fault diagnosis module (FDM) in each
router, which can diagnose the location of the fault. Second,
we propose a new test sequence to test each router.
Moreover, we use TMR for the reliability of testing
components added to the router. Unlike the work proposed
in [23], we do not use 2� 2 meshes to test the entire NoC,
but we test each router separately and using its neighbors in
online and at-speed functional mode. We use logic and
delay fault models and the corresponding system-level
failure modes to better tune the test pattern sequences. Note
that, in this work, we are seeking the integration of the test
of interconnects and routers, at the lowest possible cost, but
considering gate-level fault models. We try to cover most of
the logic and delay faults in the entire router and in all data
and control wires that build the NoC infrastructure.

Experimental results show that our functional test
approach can detect all the stuck-at, delay, and short-wire
faults in both interrouter and intrarouter wires. The results
also show that our approach has a 100 percent stuck-at fault
coverage for the data path and 85 percent for the control
paths including routing logic, FIFO’s control path, and the
arbiter of a 5� 5 switch. Synthesis results show that the
hardware overhead of our test components with TMR
support is 20 percent for covering stuck-at, delay, and short-
wire faults and only 7 percent for covering stuck-at and
delay faults. Simulation results show that our online testing
approach has an average latency overhead of 3 percent in
the real traffic benchmarks on an 8� 8 NoC.

2 RELATED WORK

NoC infrastructure is composed of three main parts:
Routers, links, and NIs. Since the functionalities of these
components are decoupled from each other, it is possible to
test each of them separately. Testing each component
separately in NoC means, we are testing NoC structurally.
An alternative way is to functionally test the whole NoC. In
this case testing, different elements of NoC are not
decoupled from each other and they will be tested all
together. The latter method is cheaper, but does not identify
where is the defected element unless we have a fault
diagnosis mechanism. Since the focus of this work is on
routers and links, we give an overview of previous works
performed on testing these parts.

2.1 Link Testing

As density in chip increases, the distance between wires
decreases and accompanied with higher functional fre-
quency, links are more susceptible to crosstalk noises. Other
faults that can happen in links are shorts between wires of
links (so-called bridging), opens, shorts to VDD (stuck-at-1),
shorts to Ground (stuck-at-0), and delay fault, which is
caused by noises or process, voltage, and temperature
(PVT) variations.

Grecu et al. [19] propose a built-in self-test methodology
for testing the channels of the communication platform. The
proposed methodology targets crosstalk faults assuming
the MAF fault model [24]. The authors also suggest that
shorts between wires within a single channel are detected as
well. The test strategy is based on two BIST blocks: Test data
generator (TDG) and the test error detector (TED). TDG
generates the test vectors capable of detecting all possible
crosstalk faults in a channel connecting two adjacent
routers. The test vectors are launched on the channel under
test from the transmitter side of the link and then are
sampled and compared for logical consistency at the
receiver side of the link by the TED circuit. Their technique
is suitable only for testing interswitch links in offline mode;
moreover, they do not provide any data on the gate-level
fault coverage of their technique.

In another approach, Pande et al. [25] propose to
incorporate crosstalk avoidance coding and forward error
correction schemes in the NoC data stream to enhance the
system reliability.

The authors of [26] propose a functional test method for
detecting delay faults in asynchronous NoC links connecting

704 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014



between two switches, which are in two different clock
domains. In this method, they are sampling data which is
passed in interconnect before and after the handshake
signals. If there is a timing error in the line, the data will
not be the same before and after the handshake signals.
Therefore, by comparing the two sampled data they can
detect the delay fault. However, their method is offline
and is suitable only for links.

Raik et al. [27] proposed a technique for diagnosing
faulty links by applying test patterns at the border I/Os of
the network. While very high fault coverage was achieved,
their method is offline and the time complexity of the test
configurations is square with respect to the rank of the
NoC matrix. Moreover, to apply test patterns from
network boundaries at-speed, a large number of test pins
are necessary.

Lubaszewski et al. [22] proposed a post burn-in testing
for NoC interconnects, which is based on the at-speed
functional testing of several 2� 2 meshes in an N � N NoC.
Their method is also capable of detecting faults between
distinct interswitch channels. However, their method is a
postburn testing that cannot be applied in online mode and
is suitable only for mesh-like networks.

2.2 Router Testing

One of the first works performed for router testing is
proposed by Aktouf et al. [28]. They use IEEE 1149
boundary scan standard (JTAG standard) to transfer test
data in router ports and as wrapper for a group of routers-
under-test. All routers are full scan. In this way, the full scan
provides test access to inside of the routers. The authors of
[29] propose to use partial scan for each router and a single
modified IEEE 1500 standard as wrapper for the whole
NoC. In this method, they have used a single wrapper that
covers the whole NoC. Liu et al. [30] and Cota et al. [31]
propose to reuse NoC as TAM for transferring test data to
its own routers. For this reason, they assume that the links
between routers and network interfaces are tested before
and they are fault free. Amory et al. [32] propose a scalable
methodology for testing NoC routers by using scan chains
and a specific router configuration during test so that the
same set of vectors can be broadcast to all routers while
responses can be compared within the chip. Grecu et al. [33]
propose two schemes for testing the combinational blocks of
the NoC routers based on unicast and multicast transmis-
sion of test data packets through the switching fabric.

The above structural testing approaches are not at-
speed and cannot be applied in online mode and are not
suitable for detecting delay faults. Stewart and Tragoudas
[34] proposed a functional fault model and a functional
test strategy for routers and NIs of regular NoCs with a
grid topology. However, their fault model is not at the
gate level and they do not provide any data on low-level
fault coverage. More recently, Zheng et al. [35] proposed
an accelerating technique for a functional test scheme. The
test strategy is based on the technique proposed by Raik
et al. [36] and assumes an external tester and the
definition of several test path configurations to exercise
all possible communications in the network. Lubaszewski
et al. [23] proposed a post burn-in testing for both links
and routers, which is based on the functional testing of

several 2� 2 meshes in an N � N NoC. However, both
these techniques are offline and suitable for manufacturing
testing using automatic test equipment, and to get a
reasonable fault coverage and implementing them in
hardware leads to overhead.

Lin et al. [37] propose a built-in self-test and self-
diagnosis architecture to detect and locate faults in the
FIFOs and in the MUXes of the switches. Unfortunately,
they do not cover the control path of the router.

Strano et al. [38] propose a built-in self-test/self-
diagnosis procedure at startup of the NoC by exploiting
the inherent structural redundancy of the NoC architecture
in a cooperative way. They detect faults in test pattern
generators and achieve a high coverage. However, their
approach is not online, and moreover, they do not discuss
about the format of test patterns to obtain a good fault
coverage. In addition, they do not consider the reliability of
testing components.

3 NOC CASE STUDY

Without lack of generality, in this work, we base our
analysis on a packet-switching network model, called
Xpipes, introduced in [39]. Each router in the Xpipes
network is composed of N input and M output ports, and
for our work we consider a typical router with N and
M equal to 5 as shown in Fig. 1. Note that, in this figure, we
show only one input port (West) and one output port (East);
other input and output ports have the same architectures.

The switch contains control path and data path as shown
in the figure. Data path includes interswitch links (except
flow-control signals), output multiplexers (crossbar), input/
output buffers, and switch’s data path wires. Control path
consists of routing computation (RCs), arbiters, control logic
of the buffers, control signals inside the switch, and
interswitch flow-control signals.

One pair of input/output ports is dedicated to the
connection between the router and the core, while the
remaining four pairs connect the router with the four
adjacent routers. Switching is based on the wormhole

KAKOEE ET AL.: AT-SPEED DISTRIBUTED FUNCTIONAL TESTING TO DETECT LOGIC AND DELAY FAULTS IN NOCS 705

Fig. 1. Xpipes switch used in this work (RC: Routing Computation).



approach, where a packet is partitioned into multiple flits
(flow control units): a header flit, a set of payload flits
followed by a tail flit. Flit is the smallest unit over which the
flow control is performed and its size equals the channel
width. For the case-study NoC topology, the communication
channels between routers are defined to be 32-bit wide.
Without loss of generality, we consider a 2D mesh as our
topology with XY routing, where a packet is first routed on
the X direction and then on the Y direction before reaching
its destination. However, our testing methodology can work
with any topology and routing algorithm as described in
Section 5.6.

4 NOC FAULT SPACE MODEL

In this section, we describe the fault models we used for this
work. We classify faults into two groups: logic faults and
delay faults. Both of these faults may lead to a system
failure, which shows itself in the NoC’s operation.

4.1 Logic Fault Model

We define logic fault as a hardware failure in different
locations of the NoC. This hardware failure may result in a
completely wrong behavior in the NoC functionality. To
demonstrate the effectiveness of our testing mechanism, we
consider realistic gate-level fault models. We consider two
types of gate level faults: stuck-at faults, and bridging faults.

Stuck-at Fault. Stuck-at faults are the most common logic
faults at the gate level. They are actually shorts to VDD
(stuck-at-1) and shorts to Ground (stuck-at-0). Both routers
and links are subject to these types of faults. Any wire in the
links is susceptible to stuck-at faults. Stuck-at faults can
occur in any component in the router including FIFOs,
routing logics, MUXes, arbiters, and wires. In this work, we
cover stuck-at faults in both routers and links.

Bridging fault. Bridging faults can occur mostly on the
interrouter links as well as the internal wires of the router.
They are shorts between wires of a link. These types of
faults are different from stuck-at faults and need different
test patterns to be detected. In this work, we also cover
bridging faults in links.

4.2 Delay Fault Model

Delay fault is not a logic failure, but a timing failure where a
combinational path between two stages of flip-flops has
higher delay than expected. The delay fault shows itself
only at speed while design is working with the target clock
frequency. Delay faults are mostly due to aggressive place
and route [40], circuit aging, PVT variations, and transistor
wear out [41], [42]. Fig. 2 shows a delay fault on an
interswitch wire (victim) caused by the cross-talk coupling
effect of an aggressor signal (e.g., clock).

Scaling down of process technologies has increased
process variations and transistor wear out. Because of this,
delay variations increase and impact the performance of the
design. Delay faults in deep submicron are one of the
primary reasons of system failure and need to be detected
[43]. At-speed functional testing is one of the well-known
methods to detect delay faults [44] and we are going to use
this technique in our NoC testing approach.

There are two classical fault models that have been
developed in recent past to represent delay defects:
transition delay fault and path delay fault [45]. Transition
delay fault assumes a large delay defect concentrated at one
logical node such that any signal transition passing through
that node will be delayed past the clock period. The
transition delay fault model may miss the distributed and
small delay defects in a combinational path which is more
common in deep submicron than having a large delay on a
single node. The fault list and coverage metrics of the
transition delay faults are similar to those of stuck-at faults.
Therefore, the stuck-at fault tools can support transition
delay faults with minor modifications [46].

On the other hand, path delay assumes a distributed
delay along the combinational path. A path is a sequence of
connected gates between two stages of clocked elements or
between IOs and flip-flops. A path delay fault is said to
have occurred if the delay of a path (including the delay of
wires and gates) is more than the specified clock period of
the circuit. The number of paths in a circuit grows
exponentially with circuit size, and hence, typical circuits
contain millions and millions of paths making it impossible
to test all the paths in the circuit. Table 1 shows the number
of faults in various fault models inside different NoC
switches (M �N switch has M input ports and N output
ports). As can be seen, the number of path delay faults is
much more than stuck-at and transition faults.

Due to large number of timing paths, a practical
approach to detect path delay faults is identifying a set of
critical paths using a timing analyzer tool and applying
functional test vectors to the design and measuring the
output using operational clock frequency [46]. We use a
similar technique in this work .

4.3 Fault Location

Considering a NoC as a network of routers and NIs, a logic
or delay fault can occur in different places including:
routers, links, and NIs. In this work, we focus on the routers
and links. We assume that NIs are already tested or can be
tested together with cores. Faults in the links can be
detected using a small number of test patterns. However, to

706 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

Fig. 2. Delay fault due to the cross-talk coupling.

TABLE 1
Number of Faults Inside Different Switches



fully test the routers several test patterns are needed. Faults
in router can occur in two main parts: data path and control
path. Data path contains flip-flops in FIFOs, router wires,
and output MUXes; control path includes routing logics,
FIFO’s control part, and arbiters. In this work, we cover
faults in both control and paths.

4.4 System-Level Failure Modes

As our approach is at-speed functional testing, we need to
define some system level failure modes to better tune the
test patterns that can give us higher gate-level fault
coverage. Note that these system level failure modes help
us only to generate better test patterns, but the quality of
testing approach is measured considering gate-level fault
coverage.

Gate level faults may have different effects on the
functional behavior of the system. They can put the system
into a failure mode. In case of routers and links, as proposed
in [47], we categorize the system level failures into four
modes: dropped data, corrupted data, misrouting, and
multiple copies. We will describe each failure mode in more
details in the following.

Dropped data. In this failure mode, the switch receives the
data, but never sends it to the intended output port.
Dropped data failure can cause by any fault in the control
path of FIFOs, arbiters, or multiplexers of the switch. For
instance, consider a case where the head counter of the
FIFO is faulty and its current value is increased by 2 or more
each time a buffered flit is being removed from the head of
FIFO to be sent to its appropriate destination. In this
situation, some of the flits in the FIFO will be lost and never
exit the switch. Faults in arbiters may cause the select
signals of the output multiplexers to not be activated and,
therefore, the flit will be dropped. If the output multiplexer
is faulty, for example, one or more bits of its select signal are
stuck at one or zero, one of its unintended inputs is selected
and consequently the original flit will be dropped. Also, a
delay fault on the output multiplexers or on the interswitch
links will lead to a dropped data failure. Detecting faults
related to this failure mode is not easy and requires several
test patterns probing all possible combinational paths.

Corrupted data. In this failure mode, the switch receives
the data, but it corrupts the data and sends it to the
intended output port. This failure mode can also happen
on the links. Any logic fault in the data path of FIFOs
(flip-flops), multiplexers, links, and internal wires may
lead to this failure. As this failure mode can only be
created by logic faults in the data path of the switch and
links, faults related to this failure are easier to detect
compare to those related to the dropped data.

Misrouting. Misrouting is the result of the faulty behavior
of the switch router. Assume that the router has a faulty
behavior and makes wrong decisions while routing its
incoming data. As these faults happen in the control path of
the switch, several test patterns are needed to cover all
possible routing paths. Logic faults in the header bits of the
FIFOs that are related to the destination address can also
create this failure as they may change the intended output
port. However, these faults are already covered using the
patterns related to the corrupted data failure.

Multiple copies. Multiple copies in time failure are
originated from faults in FIFOs control path. Consider a
FIFO with a faulty “empty” signal. The false empty signal
may cause the FIFO send its old data out of the switches
port. These old data are usually an earlier packet’s flits, and

sending the same sequence of flits out of the switch’s ports
leads to repetition of a packet, i.e., multiple copies in time.
The faults related to this mode can be detected easily using
test response analyzer that checks the order of received flits
in a test packet.

5 THE PROPOSED NoC ONLINE TESTING

We propose an at-speed functional testing technique which

is capable of detecting logic and delay faults in routers and
links of any network with minimum overhead on NoC
performance. Fig. 3 shows the overall architecture of our
online NoC testing on a mesh.

As can be seen, in our approach only the router under
test (RUT) and its links will put in the test mode, while
other parts of the network are in the operational mode. All
the packets that want to traverse through RUT will be held
in the RUT’s neighbors until the test is finished. This

may have a little latency degradation for some packets.
However, we use a token-based technique to make sure
that only one router is under test at any given time. In other
words, two or more routers cannot be put in test mode
simultaneously. Token is simply 1 bit traversing in the
network. When a router receives the token, it decides
whether it wants to test itself or not; this can be done using
a counter in the switch or a request from the core

connecting to it. After finishing the testing, the current
switch passes the token to the next switch. As token is only
1 bit, we can use TMR for its reliability to make sure all the
routers receive the token correctly.

KAKOEE ET AL.: AT-SPEED DISTRIBUTED FUNCTIONAL TESTING TO DETECT LOGIC AND DELAY FAULTS IN NOCS 707

Fig. 3. Overall architecture of our online NoC testing on mesh. Each
router which gets a token can start testing itself with the help of its
neighbors. Only one router and its links are in the test mode and others
are in the operational mode.



When a router is in test mode, it should be tested by its
neighbors. Each router contains three main test blocks: test
pattern generator, test response analyzer, and fault diagnosis
module. TPG is responsible for generating test patterns and
sending them to the neighbor router which is under test
(RUT). TPG of the local port which is inside the router
under test’s NI sends test packets to the neighbors. Test
response analyzer receives test patterns from the neighbor
that is under test and analyzes them to detect any fault in
the corresponding router and links. TRA of the local port,
which is inside router under test’s NI, receives test packets
sent by neighbors and verifies them. Fault diagnosis
module gets the status signals from the neighbors’ TRAs
as well as the local TRA and diagnoses the faulty channel.
There is only one fault diagnosis module in each router.
Since only one router can be tested at any given time, TPG
and TRA can be shared between all the ports (except the
local port). Therefore, for our testing mechanism, we need
one pair of TPG and TRA inside each router and each NI.
Also, we need one FDM for each router.

Table 2 shows the list of acronyms used during the rest
of the paper.

5.1 Test Architecture for Fault Detection

As mentioned before, in our testing approach each router is
tested with the help of its neighbors. Thus, this mechanism
is scalable to any size of the network with any topology. The
architecture of testing one router with four neighbors and
one NI is shown in Fig. 4.

When a router is under test, all its neighbors send the test
packet generated by their TPG to it. Also, RUT sends test

packet to the neighbors using the TPG inside its NI. This
enables us to test the local channels connected to the NI as
well. At all output ports (except the local) of the routers, we
add a 2� 1 multiplexer, which selects data from either
crossbar or TPG. This additional multiplexer is quite small
and we use TMR for its reliability.

TPG generates a sequence of predefined packets based
on the test phases. We will describe test phases in details in
Section 5.3. The packets generated in different phases are
the same in terms of data flits. The header flit of the packet
depends on the test phase. Therefore, the same data are sent
to different destinations in different phases. The rationale
behind this is that the data flits in each packet are
responsible to cover the faults in data paths and different
phases of testing cover control paths’ faults. We will
describe the format of test packet in more details in the
next section.

TRA verifies whether the incoming data corresponds to
the predefined sequence generated by TPG or not. TRA
sends a 2-bit signal (TR) to the RUT, which shows the result
of pattern checking. RUT receives TR signal from all
neighbors and its NI, and diagnoses the faulty channel
using fault diagnosis module which is described in
Section 5.5. In addition to the corrupted data checking,
TRA is able to check the dropped packet failure. In each
phase of the test, TRA waits for a specific pattern to arrive.
If it receives the packet within a limited number of cycles, it
checks the data and sends the results to the RUT. If TRA
does not receive any packet, it generates a time-out error.
For time-out checking, we use a 5-bit counter inside TRA. If
the counter reaches the limit, TRA generates a time-out
signal (1 bit of TR) and sends it to the RUT. Table 3 shows
the meaning of different bits of TR signal generated by TRA.
Note that, since TR is only 2 bits, parity checks can be used
for its reliability with a small area overhead.

5.2 Test Packet Format

As mentioned earlier, TPG generates the same packet
targeting different destinations at different phases during
test of the router. The format of the data flit in the packet is
chosen so that it covers all stuck-at and bridging faults in
the data path which includes links, FIFO’s flip-flops, switch
internal wires, and output MUXes. This format is indepen-
dent from the topology of the network and from the RUT’s
number of ports.

Two data flits of All-One and All-Zero are enough to
cover all stuck-at faults in the data path. However, to detect
all bridging faults, we need a set of Walking-One data flits.1

Therefore, the number of data flits required for bridging

708 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

TABLE 2
Acronyms

Fig. 4. Each router and its links are tested using neighbors (TPG:
Test pattern generator, TRA: Test response analyzer, FDM: Fault
diagnosis module).

TABLE 3
Two-Bit TR Signal Generated by Test Response Analyzer

1. Walking-One refers to a set of data patterns where, in each data word,
a single bit is set to one and the rest to zero.



faults is equal to the flit-width, i.e., 32 in our switch. As a
result, to cover all stuck-at and bridging faults in the data
path, we need at least 34 data flits. If we target only stuck-at
faults, the number of data flits will decrease to 2. This can
help to reduce the overhead of both TPG and TRA and to
decrease the latency overhead as well. We will show this
tradeoff, in more details, in experimental results section.
Fig. 5 shows the packet format which is generated at each
phase of testing in TPG. Note that in TRA the same packet
format is verified at each phase of the testing.

Since all packets are sent with headers and tails, faults
may affect those flits, thus modifying the packet routing.
When this occurs, the packet can be routed to any other
node of the NoC or a tail flit may not be received. In both
cases, TRA at the target node will not receive the packet or
the tail within a predefined time interval, thus reporting a
time-out error.

Since the network is in the normal mode of operation
during the test, one might consider the possibility of other
errors caused by the logic fault, such as a deadlock, in
addition to packet losses and payload errors. We note that
a fault cannot cause a deadlock within our test configura-
tion because of the packet format and paths established
during testing.

5.3 Test Phases

As described earlier with the specified packet format, we
are able to detect all stuck-at, delay, and bridging faults in
the data path traversed by the packet. However, to provide
coverage for faults in the control path we need different test
rounds or phases. Each phase is responsible to cover some
of the combinational paths inside the router, while the data
path is being tested multiple times. These phases depend on
the network topology and the RUT’s number of connected
ports. In the following, we describe the suitable phases for a
router with four neighbors and one NI. In Section 5.6, we
discuss how we can modify them for other topologies.

For a router with four neighbors and one NI, we consider
nine different phases to cover all the control paths including
different routing, arbitration, and FIFO’s control. Fig. 6
shows these phases. Arrows in the figure show the source
and destination of the test packet. At each phase, one test
packet is sent from source to the destination through RUT
(R0 in this figure) and its links. Those test packets that come
from the neighbors are generated at the output port of the
neighbors using their TPGs; while, packets whose sources is
RUT are generated in the TPG of the RUT’s NI. Therefore,
packets originated from RUT also cover the local input
channel. Similarly, those packets targeting the neighbors are
verified immediately at the input port of the neighbor and
before the FIFO. While packets whose destinations are RUT
are verified in the RUT’s NI. Thus, packets targeting RUT
cover the local output channel as well.

As can be seen in Fig. 6, test phases are chosen in such a
way that they cover all functional failures of the router
related to the misrouted data, dropped data, and multiple
copies failure modes, which are the results of logic faults in
the RC, FIFO’s control path, or the arbiter.

Since for each input port there could be four different
destinations, we need at-least four test phases to fully
cover all the routing logics. Test phases 1 to 4 cover all
different routing possibilities inside the switch without any
arbitration policy. These test phases (1 to 4) are chosen so
that we can test all RC blocks inside the router with a
minimum number of tests. However, in phases 1 to 4 the
packet’s destination (stored in header flit) is chosen so that
for each output port of the RUT there is only one request.
Thus, although some parts of the arbiter are being tested
during these phases, these phases (1 to 4) are not sufficient
to test the functionality of the arbiters. Also, they cannot
fully test the control logic of the FIFO. The FIFO’s control
logic decides based on the arbiter grants. During these test
phases, the arbiter grant is always given to the requester
immediately and, therefore, the output’s busy signal which
goes to the FIFO’s control logic is always zero. Thus, in
these phases FIFO’s control logic always pop the data out
of the buffer without waiting. We need more test vectors to
put the FIFO in the waiting state.

Both arbiter and FIFO control block can be covered by a
set of test packets targeting the same destination. As we
have five output and input ports, we need at least five test
phases to cover all arbiters and FIFOs. Test phases 5 to 9 are
created to perform this task. At each of these phases, there
are four requests to the related arbiter. We should note that,
there can be some other phases to completely test arbiters
where there are two or three requests to each arbiter.
However, we ignore since sending four (maximum) re-
quests to each arbiter can test most of its functionality. In

KAKOEE ET AL.: AT-SPEED DISTRIBUTED FUNCTIONAL TESTING TO DETECT LOGIC AND DELAY FAULTS IN NOCS 709

Fig. 6. Nine test phases for a router with four neighbors and one NI.
Phases 1 to 4 cover data path and all routings without any arbitration.
Phases 5 to 9 cover arbiters as well as FIFO’s control logic.

Fig. 5. Format of test packet generated by TPG and verified by TRA at
each phase of testing. This format is fixed and independent from
network topology.



Section 5.6, we show a general formula of the number of
phases based on the number of ports.

As can be seen in Fig. 6, at each phase of this set (phases
5 to 9) one arbiter together with four FIFOs are tested. At the
end of these phase, each arbiter is tested once and each
FIFO (both control and data paths) is tested four times.
These test phases (5 to 9) are mainly responsible to cover the
dropped data, misrouting, and multiple copies failure
modes. In the TRA, at each phase we check whether all
the packets are arrived or not. In these phases of the test,
TRA should receive four consecutive packets from four
different sources provided that there were no time-outs in
the first four phases. If it does not receive the related
packets, it means that the arbiter has not given the grant to
one of the requests and TRA generates time-out error. We
note that if there are time-outs in the first four phases, TRA
does not check it again in phases 5 to 9 and only validates
those packets that are supposed to arrive.

5.4 Delay Faults

Since our testing technique is at-speed, it can detect the
delay faults in the functional paths. Delay faults can happen
in both control and data paths. In the following, we describe
how our technique handles delay faults in different
functional paths:

5.4.1 Control paths

Based on our timing analysis there are two critical control
paths in our switch: 1) request to the arbiter for an output
port and 2) grant from the arbiter.

Request paths to the arbiter. If there is a new packet, a
request signal is sent to the related arbiter from routing
computation block or from the FIFO controller (depending
on the implementation). If a delay fault occurs on the path
related to request signal, it does not affect the functionality
of the router because the arbiter will get the request one
clock cycle later. This is because the request signal remains
high until the grant is given by the arbiter.

Arbiter’s grant paths. If a grant is given by the arbiter, the
related FIFO controller pops out the flit from the buffer and

the arbiter will drive the appropriate signaling of the
crossbar to send the flit out of the switch. Here, if a delay
fault occurs on the path from arbiter to the crossbar, the
related flit is not sent out of the switch and since it is
already popped out of the buffer, we miss that flit. This
delay fault will eventually lead to a dropped packet failure,
which can easily be detected in TRA.

Other control paths inside the switch are not critical
enough to be considered for the path delay fault testing.
However, if a huge delay fault occurs in these paths and
leads to a functional failure, the packet may be either
dropped or misrouted and the fault will be detected in TRA.

5.4.2 Data Path and Links

If a delay fault occurs on the router’s data path or on the
links, depending on the path where the delay fault occurred
the receiver may or may not capture the right data. Fig. 7
shows the timing diagram related to delay fault in data
path and links. As can be seen, if the same delay fault
occurs on both control signal (valid) and flit bus the receiver
is able to capture the right data one or more cycle after the
expected cycle. In this case, since TRA waits for the
expected packet to arrive, it can get the data eventually
(before the timeout) and does not generate any error.
However, if the delay occurs only on valid signal or only on
flit bus, as shown in the figure, it leads to a dropped packet
failure that can be detected in TRA. (Note that, we say a
delay fault occurs on the flit bus if there is at least one delay
fault on the bus’s bits.)

This timing behavior is valid for both input and output
links of RUT. For input links, the receiver is the RUT buffer
and fault may occur on input wires; for output links, the
receiver is the TRA of the related neighbor and fault may
occur either on the data path or on output wires of the RUT.

5.5 Fault Diagnosis

Using TPG, we generate test packets in different test phases
and in TRA, we verify the incoming packet and detect if
there is any error in it (either corrupted data or misrouted).
TRA sends the results of checking to RUT using 2-bit TR
signal. However, we still need a mechanism to diagnose the
location of the fault. We perform this using fault diagnosis
module inside RUT.

For data path faults that are related to the corrupted data
failure, FDM is able to diagnose fault location in the input
or output channels of RUT. We define input channel as the
data path covering the input link and the FIFO, and the
output channel as the path covering internal link, output
MUX, and the output link. Fig. 8 shows input and output
channels for West and East ports. Using 2-bit TR signals,
FDM is able to find out which channel (either input or
output) is not faulty.

For a 5� 5 router, we have a 10-bit register that shows
the status of each channel; we name this register channel
status register (CSR). Each bit of CSR corresponds to one
channel as shown in Fig. 9. FDM receives TR signals and in
each phase of the test updates CSR. FDM is based on
finding nonfaulty channels.

As seen in Fig. 6, each test packet covers two channels
considering local channels. Thus, if a TR signal shows a
corrupt error (01), FDM cannot diagnose which of the two

710 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

Fig. 7. Detecting delay faults which occurred in links and the router’s

data path.



channels is faulty. However, if a TR signal shows no error
(00), FDM can diagnose that both channels are nonfaulty. At
the beginning of the test, FDM sets all the bits in CSR to “0”
meaning all channels are faulty. During the test, when FDM
receives a TR signal (from either any neighbor or its NI) that
shows no-error (00), it sets the corresponding bits of the
CSR to “1,” which are related to the channels in which the
packet has traversed meaning they are nonfaulty. If the bit
is already set to “1,” it does not change it. At the end of the
testing, those bits of CSR which are “1” show the nonfaulty
channels. FDM is a simple combinational block which is
decided based on the TRs and the testing phase.

FDM is also able to diagnose which RC or arbiter is
faulty. We have two 5-bit registers showing the status of
RCs and arbiters in a 5 � 5 router; we call these registers
routing status register (RSR) and arbiter status register
(ASR), respectively. At the beginning of the test FDM sets,
all bits of both registers to “1” meaning all the RCs and
arbiters are nonfaulty. During the first four phases, if the
FDM receives a TR signal of dropped error (10), it sets the
corresponding bit in RSR to “0,” which is decided based on
the test phase. During phases 5 to 9, if FDM receives a TR of
dropped error, it sets the corresponding bit in ASR to “0.”
As mentioned earlier, if TRA detects a time-out error in the

first four phases, it does not check it again; therefore, if there
is a fault in one RC, it does not have any effect in the results
of phases 5 to 9. Thus, if TR shows a dropped error (10) in
phases 5 to 9 it is related to the arbiter but not to the RC.

5.5.1 Distinguishing Delay Faults

During the first four phases of the test, if FDM detects a
time-out error, the failure is caused by either a delay fault
in router/links or a logic fault in RC. We cannot
differentiate these faults from each other using the current
test pattern and phases. This is because both these faults
(delay fault in router/links and logic fault in RC) lead to a
dropped packet failure mode. Therefore, with the current
test pattern we are only able to detect delay faults, but not
to diagnose their locations.

To distinguish delay faults from logic fault in RC, we can
use a dedicated test packet and repeat all nine phases with
this new packet. To decrease the testing time, we can repeat
only those phases that did not pass the test. This requires a
modification in TPG, TRA, and FDM to store the pass/fail
information. The new packet is formatted so that it can
bypass the delay faults, but is still vulnerable to the logic
faults. Fig. 10 shows the format of the new packet that can
bypass the delay faults in data path or links.

As can be seen in the figure, in the new packet each flit is
repeated one time. Note that TPG and TRA should be a little
modified to accept two similar consecutive flits during the
second round of test phases. Fig. 11 shows how this new
packet can bypass the delay faults on the valid signal and on
the flit bus.

By repeating all nine phases (or just the failed phases)
but with the new packet, we are able to distinguish delay
faults in data path/links from logic faults. For example, if in
phase 2 FDM receives a dropped packet signal but does not
get it in the second round (phase 2 with the new packet), it
means the dropped packet failure was due to a delay fault
in the data path/links and not to the RC’s logic fault. To
store the information related to delay faults in each channel,
we also need another 10-bit register that stores the delay
faultiness status of the channels.

KAKOEE ET AL.: AT-SPEED DISTRIBUTED FUNCTIONAL TESTING TO DETECT LOGIC AND DELAY FAULTS IN NOCS 711

Fig. 9. FDM gets TR signals and updates CSR, RSR, and ASR.

Fig. 10. Packet for bypassing delay faults in data path and links.

Fig. 11. Delay faults on data path and links are bypassed with the
new packet.

Fig. 8. Channels in which the fault diagnosis module is able to diagnosis
data path faults.



The main reason for distinguishing logic faults from
delay faults, especially the delay faults on the interswitch
links, is the possibility to recover from them by postsilicon
tuning techniques or by adjusting the clock frequency. An
interested reader can refer to [48], [49] for more information
about tuning techniques.

5.6 Testing of Custom Topologies

Our testing methodology is based on testing each router
using its neighbors and the NI connected to it. Each router
receives TRs from the neighbors as well as its own NI and
updates the related status registers. Considering the
switches at the boundary of the mesh, there are one or
two ports which are not connected to any neighbor. We
connect TRs of those ports to “11” meaning no information
is available on those specific ports. FDM module does not
update anything based on the TR of those unconnected
ports. On the other hand, neighbors that are connected to
the boundary switches expect test packet from those ports
of the RUT which are not connected to any other router.
Therefore, they generate time-out error for those specific
ports and RUT sets the related bits of RSR to “0” meaning
those ports that are not connected to anywhere are faulty.
This does not have any effect on the functionality of the
router as those ports are not used. Based on this mechan-
ism, our testing technique can be used for any topology and
any routing.

TPG and TRA modules should be modified based on the
routing algorithm. TPG should send test packet to all
output ports of the RUT in different phases. If the routing
algorithm and the maximum number of ports in the switch
are known, TPG and TRA are the same for all routers and
independent from the topology. However, they can be
optimized based on the NoC topology to reduce their
hardware overhead. For example, TPG does not need to
send the test packet to those ports of the RUT which are not
connected to any other router. Note that, sending test
packet to those ports does not have any effect on the related
bits of status registers because the TRs of those port are
already connected to “11.” Also, TRA does not need to
check the time-out error for those input ports of the RUT
which are not connected to any other routers. Moreover,
CSR, RSR, and ASR can be optimized based on the number
of connected ports.

As mentioned earlier, test phases are chosen so that they
can cover all the functional paths of the router. They
depend on the number of ports in each router. Phases
shown in Fig. 6 are suitable for maximum five input and
five output ports. However, if a router inside the NoC has
more ports, we need to define more test phases to cover
those additional ports. Note that for switches with less than
five ports, the phases shown in Fig. 6 are more than enough
and may be reduced to a smaller number for optimizing test
time and hardware cost. For instance, Fig. 12 shows the
optimized test phases for a 3� 3 switch.

To give a general formula on the number of test phases
based on the number of ports of the switch, we divide
phases into two groups: 1) phases for RC testing and
2) phases for arbiter and FIFO control testing.

Let say N is the number of input/output ports inside the
switch. Since each port can send data to all other ports, we

need N � 1 phases to test each RC component. RCs can be
tested in parallel and, therefore, N � 1 phases are enough
for testing all RCs inside the switch.

For the arbiters, the situation is different. Each arbiter can
get the request from all other ports; since we have N ports,
each arbiter may receive a number of requests in the range
of ½1; . . . ; N � 1�. For one request, it is already tested in the
previous phases. However, we need to test other situations.
For each number of requests K 2 ½2; . . . ; N � 1�, K of the
input ports send requests to the arbiter. Therefore, we have
a binomial coefficient ðN

K
Þ for K requests to each arbiter. Thus,

the number of test phases for each arbiter is C, where C is
the sum of all binomial coefficients as follows:

C ¼
X

N�1

K¼2

�

N

k

�

:

Arbiters cannot be tested in parallel unless we have a
complex control logic, and we consider testing them
sequentially. Therefore, the number of test phases for all
arbiters is N � C and the total number of phases for the
router is M ¼ ðN � 1þN � CÞ. Note that, during all these
phases links, the data path, and control logics of FIFOs are
tested multiple times.

6 EXPERIMENTAL RESULTS

To evaluate our online testing methodology, we used
Xpipes [39] which is a packet-switching synthesizable
NoC IP. The switch is configured to have five input and
five output ports with the flit width of 32 bits and the buffer
depth of 2. We used Synopsys design compiler for
hardware synthesis and Synopsys Tetramax for logic fault
simulation. All designs are mapped on CMOS 45-nm
technology from ST-Microelectronics.

6.1 Hardware Overhead

First, we implemented both TPG and TRA in Verilog to see
their hardware overhead on a 5� 5 router. As mentioned
earlier, we can have one TPG and one TRA for the whole
switch. We also need one pair of TPG and TRA for each NI.
However, TPG and TRA of the NI are simpler than those of
the switch because the sequence of test generated/verified
by TPG/TRA inside the switch depends on the port while
the sequence of those inside NI is fixed. As we mentioned
earlier, TPG and TRA are the critical components and we
need to use robust techniques to make them reliable. Since

712 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

Fig. 12. Test phases for a router with two neighbors and one NI.
Phases 1 and 2 cover data path and all routings without any arbitration.
Phases 3 to 5 cover arbiters as well as FIFO’s control logic.



these module are quite small with respect to the switch and

NI, we can use TMR for this purpose.
We implemented two kinds of TPG and TRA. One pair

with all-one, all-zero, and walking-one sequence and

another pair without walking-one sequence to cover only

stuck-at and delay faults. The synthesis results are shown in

Tables 4 and 5.
As can be seen, if we want to cover stuck-at, delay, and

bridging faults in the 5� 5 router the area overhead of all

TPGs and TRAs with TMR is about 58 percent, which is

pretty high. This is due to the long walking-one sequence

that needs a shift register. However, if we target only stuck-

at and delay faults the area overheadwith TMR is 16 percent,

which is acceptable considering TMR support for reliability.
We also implemented the fault diagnosis module

together with status registers in Verilog and synthesized

them. Based on our synthesis results, the area overhead of

the FDM module with TMR is 10 percent on the Xpipes

switch. Considering NI and switch together, the area

overhead of FDM with TMR is only 7 percent. Therefore,

the area overhead of all modules including TPGs, TRAs,

and FDM with TMR support is 65 percent to cover stuck-at,

delay, and bridging faults and 23 percent to cover only

stuck-at and delay faults.
Note that the switch model we used is very small

without any output buffer and with an input buffer depth

of only two flits and its area is much less than that of the IP

cores. For instance, compare to Plasma [50], a small

synthesizable 32-bit RISC microprocessor, the switch area

is 1/5 of the processor area. Therefore, the overhead on the

whole NoC including IPs is very small. Considering switch,

NI, and a small sized IP core the area overhead of all

modules with TMR is 21 percent to cover stuck-at, delay,

and bridging faults and 8 percent to cover only stuck-at and
delay faults.

Test units with their TMR support may have effects on
the maximum operational frequency of baseline router. The
Xpipes switch is a soft IPs and the timing impact of our
testability extensions depends on how it is instantiated. If we
do not use any output buffer, the critical path of the router is
from the input buffers through output ports and links. As
already mentioned and shown in Fig. 4, TPG and TRA
operate in parallel with the router and their critical paths are
very small, hence they do not decrease the speed of the
router. However, as shown in Fig. 13, in case of no output
buffers MUXes that are added to the output ports with their
related TMR are on the critical path of the router. To have a
reliable and high-speed TMR, we used the architecture
shown in Fig. 13 for the voter of all TMRs, which is proposed
in [51]. We synthesized our testable router and extracted the
data related to the delay of the MUX 2� 1 and the voter. The
nominal delay of the path starting from MUX and ending at
the output of the voter is 390 ps. If we consider a baseline
Xpipes switch working at 500 mHz (critical path ¼ 2 ns)
with no output buffer, we see that the working frequency of
the testable switch will be 418 mHz (critical path ¼ 2.39 ns),
which is a 15 percent speed overhead.

The no-output-buffer configuration of Xpipes is only
for low-speed operation. For high-performance NoCs,
output buffers are needed to avoid having critical paths
through the output links. In this case, adding testability
support has minimal overhead. The critical path is from
input buffers to the output buffers and the testing
components shown in Fig. 13 are placed after the output
buffers. Here, the testing components may reduce the
clock frequency only if Pclk �Dt < Dl < Pclk, where Dl is
the delay of the output link, Pclk is the period of the clock
without testing components, and Dt is the delay of the
MUX 2� 1 and the voter which is 390 ps. We should not
that the TMR support which is added to the output ports
is not only for the testing purposes but is also useful
during the normal operation of the router and makes the
output ports fault tolerant.

Focusing on power consumption, it is clear that all test-
mode components (except MUXes and the voter shown in
Fig. 13) are not used during the normal mode of the NoC.
TPG and TRA should be turned on only if one of the

KAKOEE ET AL.: AT-SPEED DISTRIBUTED FUNCTIONAL TESTING TO DETECT LOGIC AND DELAY FAULTS IN NOCS 713

TABLE 4
Synthesis Results of TPG and TRA with Walking-One
Sequence (Area of 5� 5 Switch þ NI ¼ 8; 766 �m2)

TABLE 5
Synthesis Results of TPG and TRA without Walking-One

Sequence (Area of 5� 5 Switch þ NI ¼ 8; 766 �m2)

Fig. 13. TMR for TPG and output port.



neighbors is in the test mode, and FDM should be turned
on only if the router itself is being tested. Therefore, we use
clock-gating to disable switching activities inside these
modules during off-state. This helps us to decrease the
power consumption of the router during the normal
operation. Table 6 shows the power consumption of our
testable router when all testing components are active, and
Table 7 shows the results when all of them are turned off.
As can be seen, during the test mode the difference
between dynamic power consumption of the baseline
router and that of our testable router (with all testing
components and TMR) is only 510 �W; this difference for
the leakage power consumption is 0:13 �W. As shown in
Table 7, during the normal mode our testable router has a
very small overhead of 90 �W on dynamic power and
0:14 �W on the leakage power.

We should again note that our baseline switch is very
small and if we consider a medium sized switch with NI
and a small sized IP core, the power overhead of all testing
components is negligible even during the test mode.

6.2 Fault Coverage

We used Synopsys Tetramax to evaluate the fault coverage
of our testing approach. We synthesized the Xpipes switch
and simulated our nine testing phases on it. Then, we
collected the corresponding VCD file to perform fault
simulation. Table 8 shows the number of stuck-at faults
related to each component in the Xpipes switch. As it was
expected, the number of faults inside each component is
proportional to the area of that component.

We applied the VCD vectors obtained from the simula-
tion of nine phases on the synthesized design in Tetramax to
see the fault coverage of the vectors. Fig. 14 shows the
related results. These results are for stuck-at faults. Note
that, for bridging faults, the test vectors give us 100 percent
coverage on the links in the first four phases. As can be seen,
the stuck-at fault coverage of the entire switch for the first
four phases of the test is 68 percent, which is not quite good.
After applying the next five phases (total nine phases), we
could improve it to 85 percent, which is an acceptable
coverage for a functional test without any traditional test
technique like scan.

Using the same VCD vectors, we achieved 67 percent
coverage for the transitional delay faults. This is because not
all the transitional delay faults lead to a functional failure,
and the coverage for transition delay faults is always less
than that of stuck-at faults.

For the path delay faults, we first imported the
synthesized netlist of the switch into PrimeTime, the static
timing analysis tool from Synopsys, and extracted those
paths whose delays were more than 80 percent of the clock
period. Then, we analyzed the extracted paths and found
two groups of paths. The first group was related to sending
the flit from the input buffer to the output port when the
grant is given by the arbiter. As we already discussed in
Section 5.4, delay faults on these paths lead to the dropped
data failure mode and we detect them in TRAs. The second
group was similar to the first one and was related to shifting
the FIFO content when the grant is given by the arbiter and
the flit located at the head of the FIFO is sent out from the
switch. Delay faults on these paths lead to either a flit
duplication or a dropped flit. Both of these failure modes
can be detected in TRAs.

Note that the achieved fault coverage can still be
increased by adding to the test phases other network
functional configurations (arbitration possibilities that were
not applied, for example). However, insisting in a com-
pletely functional test approach will require an increasing
number of test configurations and phases, for a decreasing
number of detected faults. The tradeoff seems to be not in
favor of pushing further the functional testing approach.
From the point of view of a functional test, about 10 percent
of the remaining logic faults are undetectable because they
are related to unreachable control states [22].

6.3 Online Testing Evaluation in Simulation

To see the effect of our online testing mechanism on the
latency of the packets, we performed system simulation. We

714 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

TABLE 7
Power Results of Testable Router in Normal Mode

(Clock Gating Enabled)

TABLE 8
Number of Stuck-At Faults of Different Components Inside

the 5� 5 Switch Extracted from Tetramax

Fig. 14. Stuck-at fault coverage of our online functional test approach.

TABLE 6
Power Results of Testable Router in Test Mode



used Noxim [52], a cycle accurate NoC simulator imple-

mented in SystemC. The switch model in this simulator has

a two-stage pipeline and, therefore, has two cycles mini-

mum latency. We extended it for performing our online
testing approach.

We periodically place a switch under test and hold all
the packets traversing it. This is performed by arbiters in
the neighbors. They do not give grant to the packets
traversing the switch under test, until the test is finished.
We compared the average latency of the packets in
different synthetic and real traffics with and without online
testing. We implemented a token-based mechanism in the
simulator to avoid having multiple routers under test at the
same time. We have a counter inside each router that
counts the number of flits forwarded by the switch. When
the counter reaches the threshold value if the router has the
token it can start testing. We swept the threshold value
from 1,000 to 20,000. The simulation has been performed
on an 8� 8 Mesh with XY routing algorithm.

Fig. 15 shows the average packet latency of different
synthetic traffics in the NoC while using our online testing
mechanism. We performed simulation with and without
walking-one sequence, which is for covering bridging
faults. As can be seen, when the threshold value of the test
counter is low (less than 10,000 flits) the latency overhead is

quite high, especially when the test packet includes
walking-one sequence. This is due to the fact that with
lower threshold values the switches go to the test mode
more frequently. However, for threshold values greater
than 10,000 flits, the latency overhead of our online testing
is almost negligible.

In addition to the synthetic traces, we also performed
simulation to see the effect of online testing on real traffic
traces from the PARSEC benchmarks, a suite of next-
generation shared-memory programs for CMPs [53]. The
traces used are for a 64-node shared memory CMP arranged
as a 8� 8 mesh. Each processor node has a private L1 cache
of 32 KB and 1 MB L2 cache (64-MB shared distributed L2
for the entire system). There are four memory controllers at
the corners. To obtain the traces, we used Virtutech Simics
[54] with the GEMS toolset [55], augmented with GARNET
[56], simulating a 64-core NoC.

Like for the previous experiments, we swept the test
counter threshold from 1,000 to 20,000 flits. We performed
the simulation for two types of test packets: with walking-
one sequence and without that. The results are shown in
Fig. 16. As can be seen, for all benchmarks with a threshold
value of 10,000 the latency overhead is almost zero even
with walking-one sequence. Based on our experiments,
10,000 flits is an appropriate value for the test counter’s
threshold for both synthetic and real traffic.

KAKOEE ET AL.: AT-SPEED DISTRIBUTED FUNCTIONAL TESTING TO DETECT LOGIC AND DELAY FAULTS IN NOCS 715

Fig. 15. Simulation results for our online testing approach on different synthetic traffics with various test counter thresholds.

Fig. 16. Simulation results on PARSEC benchmarks with various test counter thresholds.



7 CONCLUSIONS

A technique for online detection and diagnosis of faults in
NoC’s routers and links has been proposed. This method
can be applied on any topology and routing algorithm. Each
router in the NoC is tested using test pattern generators and
test response analyzers in the neighbors and its own NI.
During the testing, only the router under test is in test
mode, while other parts of the network are operational. The
proposed testing mechanism covers all the short wire, and
stuck-at faults on the links. It also covers 100 percent of the
data path faults and 85 percent of the control-path faults
inside the router.

ACKNOWLEDGMENTS

This work was supported by EU FP7 project Pro3D (GA n.
248776) and ENIAC project Modern (GA 120003).

REFERENCES

[1] ITRS Home-2010, Int’l Technology Roadmap for Semiconductors,
http://www.itrs.net/home.html, 2010.

[2] http://techresearch.intel.com/articles/Tera-Scale/1421.html,
2013.

[3] http://techresearch.intel.com/articles/Tera-Scale/1449.html,
2013.

[4] Intel, “Intel News Release: Intel Unveils New Product Plans for
High Performance Computing,” http://www.intel.com/
pressroom/archive/releases/20100531comp.htm, May 2010.

[5] L. Seiler et al., “Larrabee: A Many-Core x86 Architecture for
Visual Computing,” IEEE Micro, vol. 29, no. 1, pp. 10-21, Jan./Feb.
2009.

[6] http://www.tilera.com/products/processors.php, 2013.
[7] J.W. McPherson, “Reliability Challenges for 45nm and Beyond,”

Proc. ACM/IEEE 43rd Design Automation Conf., pp. 176-181, 2006.
[8] S. Borkar, “Microarchitecture and Design Challenges for Gigascale

Integration,” Proc. ACM/IEEE 37th Int’l Symp. Microarchitecture
(MICRO-37), p. 3, 2004.

[9] S. Mitra et al., “Robust System Design to Overcome CMOS
Reliability Challenges,” IEEE J. Emerging and Selected Topics in
Circuits and Systems, vol. 1, no. 1, pp. 30-41, Mar. 2011.

[10] S. Borkar, “Designing Reliable Systems from Unreliable Compo-
nents: The Challenges of Transistor Variability and Degradation,”
IEEE Micro, vol. 25, no. 6, pp. 10-16, Nov./Dec. 2005.

[11] T. Bjerregaard and S. Mahadevan, “A Survey of Research and
Practices of Network-on-Chip,” ACM Computing Surveys, vol. 38,
no. 1, article 1, 2006.

[12] M.R. Kakoee et al., “ReliNoC: A Reliable Network for Priority-
Based On-Chip Communication,” Proc. ACM/IEEE Design, Auto-
mation& Test in Europe Conf. & Exhibition (DATE), pp. 667-672, 2011.

[13] S. Rodrigo et al., “Addressing Manufacturing Challenges with
Cost-Efficient Fault Tolerant Routing,” Proc. ACM/IEEE Fourth
Int’l Symp. Networks-on-Chip (NOCS), pp. 25-32, 2010.

[14] D. Fick et al., “A Highly Resilient Routing Algorithm for Fault-
Tolerant NoCs,” Proc. ACM/IEEE Design, Automation & Test in
Europe Conf. & Exhibition (DATE), pp. 21-26, 2009.

[15] M.E. Gomez et al., “An Efficient Fault-Tolerant Routing Metho-
dology for Meshes and Tori,” IEEE Computer Architecture Letters,
vol. 3, no. 1, p. 3, Jan.-Dec. 2004.

[16] C.-T. Ho and L. Stockmeyer, “A New Approach to Fault-Tolerant
Wormhole Routing for Mesh-Connected Parallel Computers,”
IEEE Trans. Computers, vol. 53, no. 4, pp. 427-439, Apr. 2004.

[17] D. Park et al., “Exploring Fault-Tolerant Network-On-Chip
Architectures,” Proc. ACM/IEEE Int’l Conf. Dependable Systems
and Networks (DSN), pp. 93-104, 2006.

[18] W. Song, D. Edwards, J.L. Nunez-Yanez, and S. Dasgupta,
“Adaptive Stochastic Routing in Fault-Tolerant On-Chip Net-
works,” Proc. ACM/IEEE Third Int’l Symp. Networks-on-Chip
(NoCS), pp. 32-37, 2009.

[19] C. Grecu et al., “Online Fault Detection and Location for NoC
Interconnects,” Proc. IEEE 12th Int’l On-Line Testing Symp. (IOLTS),
pp. 6-11, 2006.

[20] A. Alaghi, N. Karimi, M. Sedghi, and Z. Navabi, “Online NoC
Switch Fault Detection and Diagnosis Using a High Level Fault
Model,” Proc. IEEE 22nd Int’l Symp. Defect and Fault-Tolerance in
VLSI Systems (DFT), pp. 21-29, 2007.

[21] Y.H. Kang, T.-J. Kwon, and J. Draper, “Fault-Tolerant Flow
Control in On-Chip Networks,” Proc. ACM/IEEE Fourth Int’l Symp.
Networks-on-Chip (NOCS), pp. 79-86, 2010.

[22] E. Cota, F.L. Kastensmidt, M. Cassel, M. Herve, P. Almeida, P.
Meirelles, A. Amory, and M. Lubaszewski, “A High-Fault-
Coverage Approach for the Test of Data, Control and
Handshake Interconnects in Mesh Networks-On-Chip,” IEEE
Trans. Computers, vol. 57, no. 9, pp. 1202-1215, Sept. 2008.

[23] M. Herve, P. Almeida, F.L Kastensmidt, E. Cota, and M.
Lubaszewski, “Concurrent Test of Network-on-Chip Intercon-
nects and Routers,” Proc. IEEE 11th Latin Am. Test Workshop
(LATW), pp. 1-6, 2010.

[24] M. Cuviello, S. Dey, X. Bai, and Y. Zhao, “Fault Modeling and
Simulation for Crosstalk in System-on-Chip Interconnects,”
Proc. IEEE/ACM Int’l Conf. Computer-Aided Design, pp. 297-303,
1999.

[25] P.P. Pande et al., “Design of Low Power and Reliable Networks on
Chip through Joint Crosstalk Avoidance and Forward Error
Correction Coding,” Proc. IEEE 21st Int’l Symp. Defect and Fault
Tolerance in VLSI Systems, pp. 466-476, 2006.

[26] T. Bengtsson et al., “Offline Testing of Delay Faults in NoC
Interconnects,” Proc. Ninth EUROMICRO Conf. Digital System
Design: Architectures, Methods and Tools, pp. 677-680, 2006.

[27] J. Raik, V. Govind, and R. Ubar, “Test Configurations for
Diagnosing Faulty Links in NoC Switches,” Proc. IEEE 12th
European Test Symp. (ETS), 2007.

[28] C. Aktouf, “A Complete Strategy for Testing an On-Chip Multi-
processor Architecture,” IEEE Design & Test of Computers, vol. 19,
no. 1, pp. 18-28, Jan./Feb. 2002.

[29] Y. Wu and P. MacDonald, “Testing ASICs with Multiple Identical
Cores,” IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 22, no. 3, pp. 327-336, Mar. 2003.

[30] C. Liu, Z. Link, and D.K. Pradhan, “Reuse-Based Test Access and
Integrated Test Scheduling for Network-on-Chip,” Proc. Design,
Automation and Test in Europe, vol. 1, pp. 303-308, Mar. 2006.

[31] E. Cota, L. Carro, and M. Lubaszewski, “Reusing an On-Chip
Network for the Test of Core-Based Systems,” ACM Trans.
Design Automation of Electronic Systems, vol. 9, no. 4, pp. 471-499,
2004.

[32] A.M. Amory, E. Briao, E. Cota, M. Lubaszewski, and F.G. Moraes,
“A Scalable Test Strategy for Network-on-Chip Routers,” Proc.
IEEE Int’l Test Conf., p. 9, 2005.

[33] C. Grecu et al., “Methodologies and Algorithms for Testing
Switch-Based NoC Interconnects,” Proc. IEEE 20th Int’l Symp.
Defect and Fault Tolerance in VLSI Systems, pp. 238-246, 2005.

[34] K. Stewart and S. Tragoudas, “Interconnect Testing for Networks
on Chips,” Proc. IEEE 24th VLSI Test Symp., p. 6, 2006.

[35] Y. Zheng et al., “Accelerating Strategy for Functional Test of NoC
Communication Fabric,” Proc. IEEE 19th Asian Test Symp., pp. 224-
227, 2010.

[36] J. Raik, V. Govind, and R. Ubar, “An External Test Approach for
Network-on-a-Chip Switches,” Proc. 15th Asian Test Symp.,
pp. 437-442, 2006.

[37] S.Y. Lin, C.C. Hsu, and A.Y. Wu, “A Scalable Built-In Self-Test/
Self-Diagnosis Architecture for 2D-Mesh Based Chip Multipro-
cessor Systems,” Proc. IEEE Int’l Symp. Circuits and Systems,
pp. 2317-2320, 2009.

[38] A. Strano et al., “Exploiting Network-on-Chip Structural Redun-
dancy for a Cooperative and Scalable Built-In Self-Test Architec-
ture,” Proc. ACM/IEEE Design, Automation & Test in Europe Conf. &
Exhibition (DATE), pp. 1-6, Mar. 2011.

[39] D. Bertozzi and L. Benini, “Xpipes: A Network-on-Chip Archi-
tecture for Gigascale Systems-on-Chip,” IEEE Circuits and Systems
Magazine, vol. 4, no. 2, pp. 18-31, Sept. 2004.

[40] M.R. Kakoee et al., “A New Physical Routing Approach for
Robust Bundled Signaling on NoC Links,” Proc. ACM/IEEE 20th
Symp. Great Lakes Symp. VLSI (GLSVLSI), pp. 3-8, 2010.

[41] E. Mintarno et al., “Self-Tuning for Maximized Lifetime Energy-
Efficiency in the Presence of Circuit Aging,” IEEE Trans. Computer-
Aided Design of Integrated Circuits and Systems, vol. 30, no. 5,
pp. 760-773, May 2011.

716 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014



[42] J. Henkel et al., “Design and Architectures for Dependable
Embedded Systems,” Proc. ACM Ninth Int’l Conf. Hardware/
Software Codesign and System Synthesis (CODES+ISSS), 2011.

[43] P. Songwei, L. Huawei, and L. Xiaowei, “A Unified Test
Architecture for Online and Off-Line Delay Fault Detections,”
Proc. IEEE 29th VLSI Test Symp. (VTS), pp. 272-277, May 2011.

[44] S. Natarajan et al., “Path Coverage Based Functional Test
Generation for Processor Marginality Validation,” Proc. IEEE Int’l
Test Conf. (ITC), pp. 1-9, Nov. 2010.

[45] A. Krstic and K.T. Cheng, Delay Fault Testing for VLSI Circuits.
Kluwer Academic Publishers, 1998.

[46] M. Sharma and J.H. Patel, “Testing of Critical Paths for Delay
Faults,” Proc. IEEE Int’l Test Conf., pp. 634-641, 2001.

[47] T. Bengtsson, S. Kumar, and Z. Peng, “Application Area Specific
System Level Fault Models: A Case Study with a Simple NoC
Switch,” Proc. IEEE Third Int’l Workshop Electronic Design, Test and
Applications (IDT), 2006.

[48] M.R. Kakoee and L. Benini, “Fine-Grained Power and Body-Bias
Control for Near-Threshold Deep Sub-Micron CMOS Circuits,”
IEEE Trans. Emerging and Selected Topics in Circuits and Systems,
vol. 1, no. 2, pp. 131-140, June 2011.

[49] A. Ghosh et al., “A Centralized Supply Voltage and Local Body
Bias-Based Compensation Approach to Mitigate Within-Die
Process Variation,” Proc. ACM/IEEE 14th Int’l Symp. Low Power
Electronics and Design (ISLPED), pp. 45-50, 2009.

[50] Plasma microprocessor description, http://www.opencores.org,
2013.

[51] T. Ban and L.A. de Barros Naviner, “A Simple Fault-Tolerant
Digital Voter Circuit in TMR Nanoarchitectures,” Proc. IEEE
Eighth Int’l NEWCAS Conf. (NEWCAS), pp. 269-272, June 2010.

[52] F. Fazzino et al., Noxim: Network-on-Chip Simulator, http://
noxim.sourceforge.net, 2013.

[53] C. Bienia et al., “The PARSEC Benchmark Suite: Characterization
and Architectural Implications,” Proc. ACM 17th Int’l Conf. Parallel
Architectures and Compilation Techniques (PACT), pp. 72-81, 2008.

[54] P.S. Magnusson et al., “Simics: A Full System Simulation
Platform,” Computer, vol. 35, no. 2, pp. 50-58, Feb. 2002.

[55] M.M.K. Martin et al., “Multifacet’s General Execution-Driven
Multiprocessor Simulator (GEMS) Toolset,” ACM SIGARCH
Computer Architecture News, vol. 33, no. 4, pp. 92-99, 2005.

[56] N. Agarwal et al., “GARNET: A Detailed On-Chip Network
Model Inside a Full-System Simulator,” Proc. IEEE Int’l Symp.
Performance Analysis of Systems and Software (ISPASS), pp. 33-42,
2009.

Mohammad Reza Kakoee received the BS
degree in computer engineering from Isfahan
University of Technology, Iran, in 1999, the MS
degree in computer architecture from the Uni-
versity of Tehran, Iran, in 2003, and the PhD
degree in electrical and computer engineering
from the University of Bologna in 2012. From
2003 to 2009, he was a research assistant at the
University of Tehran, working on hardware
verification and system on chips. From June

2010 to December 2010, he was a visiting scholar at the University of
Michigan, Ann Arbor. He was a postdoctoral fellow at the University of
Bologna from January 2012 to November 2012. In November 2012, he
joined Qualcomm Technologies in San Diego, California, as a senior
researcher and engineer. His research interests include SoC design and
reliability, PVT variation, and low-power design. He has published
several papers on these topics in journals and visible conferences. He is
a member of the IEEE.

Valeria Bertacco received the computer engi-
neering degree from the University of Padova,
Italy, in 1995. She received the MS and PhD
degrees in electrical engineering from Stanford
University in 1998 and 2003, respectively. She is
an associate professor of electrical engineering
and computer science at the University of
Michigan. Her research interests are in the area
of design correctness, with emphasis on digital
system reliability, postsilicon and runtime valida-

tion, and hardware-security assurance. She joined the faculty at Michigan
in 2003, after being in the Advanced Technology Group of Synopsys for
four years as a lead developer of Vera and Magellan. During the winter of
2012, she was on sabbatical at the Addis Ababa Institute of Technology.
She has served on several conference program committees, including
DATE, DAC, and DSN, and has been an associate editor for the IEEE
Transactions on Computer Aided Design and Microelectronics Journal.
She is the author of three books on design’s functional correctness. She
received the IEEE CEDA Early Career Award, US National Science
Foundation (NSF) CAREER award, the US Air Force Office of Scientific
Research’s Young Investigator award, the IBM Faculty Award, and the
Vulcans Education Excellence Award from the University of Michigan.
She is a senior member of the IEEE.

Luca Benini received the PhD degree in
electrical engineering from Stanford University.
He is a full professor at the University of Bologna
and the chair of Digital Circuits and Systems at
ETHZ, Switzerland. His research interests are in
energy-efficient system design and multicore
SoC design. He is also active in the area of
energy-efficient smart sensors and sensor net-
works for biomedical and ambient intelligence
applications. He has published more than 600

papers in peer-reviewed international journals and conferences, four
books, and several book chapters. He is a fellow of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KAKOEE ET AL.: AT-SPEED DISTRIBUTED FUNCTIONAL TESTING TO DETECT LOGIC AND DELAY FAULTS IN NOCS 717


