
AT&T RESEARCH AT TRECVID 2006

Zhu Liu, David Gibbon, Eric Zavesky, Behzad Shahraray, Patrick Haffner

AT&T Labs – Research

200 Laurel Avenue South

Middletown, NJ 07748

{zliu, dcg, ezavesky, behzad, haffner}@research.att.com

ABSTRACT

TRECVID (TREC Video Retrieval Evaluation) is sponsored by

NIST to encourage research in digital video indexing and retrieval.

It was initiated in 2001 as a “video track” of TREC and became an

independent evaluation in 2003. AT&T participated in three tasks

in TRECVID 2006: shot boundary determination (SBD), search,

and rushes exploitation. The proposed SBD algorithm contains a

set of finite state machine (FSM) based detectors for pure cut, fast

dissolve, fade in, fade out, dissolve, and wipe. Support vector

machine (SVM) is applied to cut and dissolve detectors to further

boost the SBD performance. AT&T collaborated with Columbia

University in the search and rushes exploitation tasks. In this

paper, we mainly focus on the SBD system and briefly introduce

our effort on the search and the rushes exploitation. The AT&T

SBD system is highly effective and its evaluation results are

among the best.

I. INTRODUCTION

TRECVID started as a video track of TREC (Text Retrieval

Conference) in 2001 to encourage research in automatic

segmentation, indexing, and content-based retrieval of digital

video. Since 2003, it became an independent evaluation.

TRECVID 2006 contains three system tasks: shot boundary

determination, high-level feature extraction, search (interactive,

manually-assisted, and/or fully automatic), and one exploratory

task: rushes exploitation. AT&T has been active in the multimedia

processing, indexing, and search areas for many years. TRECVID

provides us a good opportunity to learn from the other research

groups and to share our experience with our colleagues. For the

first time, AT&T participated in TRECVID 2006. We submitted

results for shot boundary determination (SBD), and we also

submitted search and BBC Rush task results in collaboration with

Columbia University. For the rushes exploitation task, we

demonstrated a content based video browsing and query system,

which was built on the MIRACLE (Multimedia information

retrieval by content) platform from AT&T Labs and the high level

feature extraction technologies developed at Columbia University.

Shot boundary determination has been widely studied for the last

decade. Some of the early work can be found in [1-4]. TRECVID

further stimulates the interest and effort in a much broader research

community. New systems and algorithms have been constantly

reported from all TRECVID participants over the years, e.g., IBM,

Tsinghua University, Columbia University, CMU, KDDI, etc..

Researchers at AT&T started to tackle multimedia content

processing and indexing back in the 1990s, and Shahraray reported

a scene change detection algorithm in 1995 [3]. With the limited

computation power (90M CPU) and system memory (8M)

available at that time, as well as the constraints of real time and

low latency, the original algorithm was designed to be effective

and highly efficient. The adopted visual features were intensity

histogram and image matching with 1 dimensional motion

compensation by projection. A single finite sate machine (FSM)

[6] was designed to detect all types of scene changes and report

camera motions, including panning and tilting.

Thanks to the current computation power (Intel 3.7GHz Xeon

CPU) and the non real time requirement, there is a lot of room to

extend the existing algorithm. Three major improvements are: 1)

Two-dimension motion compensation is utilized. 2) In addition to

the intensity values, color information is taken into account. 3)

Instead of using a single FSM, multiple FSM-based detectors are

adopted to track different types of transitions, e.g., cut, fade in/out,

dissolve, wipe, etc.. The new architecture is more flexible and

modularized: each detector is independently designed and adjusted,

and additional detectors can be easily plugged in to capture any

new types of shot transitions.

For the search task, we only participated in the fully automatic

search evaluation task, collaborating with Columbia University

(CU). The baseline submissions are based on the existing systems

built in CU, and query expansions based on the name entities

extracted from various external data are built on top of the baseline

systems.

We combined several tools from existing systems to better

organize the BBC data and showcased it in the MIRACLE system.

A large set of the LSCOM visual concepts, as trained on the TV05

dataset by Columbia University, were extracted for the rushes data

and an audio sound-type classifier (roughly trained on the BBC06

data) was applied to mark interested audio events, e.g., speech,

silence, and noise. We also automatically generated a semi-

synchronized script from the scanned documents provided by

NIST to provide certain search capability.

This paper is organized as follows. Section II gives a detailed

description of the shot boundary determination system. Sections III

and IV briefly address our work on the search and rushes

exploitation, respectively. Evaluation results are also presented in

these sections. Finally, we draw our conclusions in Section V.

II. SHOT BOUNDARY DETERMINATION

2.1 Overview

Fig. 1 shows the high level diagram of the shot boundary

determination system. To decode the TRECVID evaluation

sequences which are in the MPEG-1 format, we use the open

source MPEG decoder, developed by the MPEG Software

Simulation Group (MSSG) [5]. Although this codec is not the most

efficient choice, it is easy to manipulate and is portable, such that

we can run the SBD system on both Windows and Unix platforms.

There are three main components in the system: visual feature

extraction, shot boundary detectors, and result fusion. The top level

of the algorithm runs in a loop, and every loop processes one

image frame. Each new frame is saved in a circular frame buffer,

whose size is 256 frames. The extracted visual features are saved

in a circular feature buffer with the same size. For ease of

developing the algorithm, most parameters that we mention (e.g.,

the buffer size) in this section can be configured in a control file.

To simplify the notation, we will refer to the adopted values

directly in the rest of this section. The frame and feature buffers are

shared by all shot detectors, such that common features can be

reused, and detector specific features can be easily computed. The

size of the buffer is determined by the maximum duration of shot

transitions. The loop continues until all frames in the MPEG file

are processed.

Fig. 1. Overview of the SBD system

Given the wide varieties of shot transitions, it is difficult to

handle all of them using one super detector. Our system adopts a

“divide and conquer” strategy for SBD. We built six independent

detectors, targeting for six dominant shot boundaries in the SBD

task. These detectors are cut detector, fast dissolve (less than 5

frames) detector, fade in detector, fade out detector, dissolve

detector, and wipe detector. With this architecture, each detector

can be tuned separately, and new detectors can be easily plugged in

when necessary.

Essentially, each detector is a finite state machine (FSM), whose

state is changed by checking the new frame. Each FSM may have a

different number of states, but for all FSMs, we intentionally use

state 1 as the shot detected state. The advantage is that at the end of

each loop, we can easily find out whether new shot boundaries are

detected by checking the states of all FSMs. The results of all

detectors are merged together in the temporal order.

The top level loop of the algorithm terminates when all frames

in the MPEG file are processed. Then, the results generated by the

six detectors are fused. Since these results may be overlapped (e.g.,

a cut overlapped with a fast dissolve), the fusion block needs to

merge and clean up the overlapped shot boundaries. Finally, to

comply with the TRECVID SBD format, we map all shot

boundaries except cuts into gradual.

2.2 Feature Extraction

For each frame, we extracted a set of visual features. They can be

classified into two types: intra-frame visual features and inter-

frame features. The intra-frame features are extracted from the

single, specific frame, and they are color histogram, edge, and

related statistical features. The inter-frame features rely on the

current frame and one previous frame. They capture the motion

compensated intensity matching errors and histogram changes.

Fig. 2. Visual feature extraction

Fig. 2 illustrates how these visual features are computed. The

resolution of the TRECVID evaluation sequences is 240x352

pixels. The visual features are extracted from a central portion of

the picture, which we called the region of interest (ROI). The ROI

is marked by a dashed rectangle in Fig. 2 overlaid on the original

image. The choice of the ROI size is based on two considerations:

1) The ROI covers the majority of the image and normally the

center of the image captures more content. 2) The ROI gets rid of

the border of the image where usually sliding text or black bands

(when showing wide screen content) appear.

Within the ROI, we extract the histogram of red, green, blue,

and intensity channels. Based on the histogram, we compute a set

of common statistics, including the average, the variance, the

skewness (the 3
rd

 order moment), and the flatness (the 4
th

 order

moment). We also extract a visual feature called histogram

dynamic range, which roughly measures how wide the histogram

spreads. Fig. 3 shows the intensity histogram of a frame. To

compute the intensity dynamic range, we first search the histogram

from both ends, until the accumulated mass of both sides is more

than 2%. Then the dynamic range is the difference of these two

values. In Fig. 3, the low intensity value L is 16 and the high

intensity value H is 175, and consequently, the dynamic range is H

- L = 159. Similarly, we compute the dynamic range for red, green,

and blue channels.

Fig. 3. The computation of histogram dynamic range

For each pixel in the ROI, we compute its discontinuities in the

horizontal (respectively, vertical) direction by Sobel operators [7].

If the value is higher than a threshold, the pixel is labeled as

horizontal (respectively, vertical) edge pixel. Finally, we use the

ratio of the total number of horizontal (respectively, vertical) edge

pixels to the size of ROI as an edge based feature.

We compute two sets of inter-frame features, one is based on the

current frame (frame c) and the previous frame (frame c-1), and the

other is based on the current frame (frame c) and the frame that is

N frames away, where N=6 (frame c-6). The first one is to capture

frame by frame changes, and the second one is to capture the

change over a longer period, which is useful for detecting smooth

changes in the video. In this section, we describe how the first set

of inter-frame features is computed, and the second set of features

can be computed in a similar fashion.

 The temporal derivative (delta) of a feature (e.g., histogram

mean) is fitted by a second-order polynomial to make it smooth

[8]. The delta values of histogram mean, variance, dynamic range

are computed. The distance between two single channel (e.g., red)

histograms is computed based on the quadratic color histogram

distance [9]. Assume g and h are two histogram vectors and A=[aij]

is the similarity matrix, the distance between g and h is computed

by,

d(g, h) = (g - h)
t
A(g - h), where aij=1 – |i-j|/255.

The overall difference (e.g., histogram mean) is computed as a

weighted summation of the difference of channels R, G, and B.

The weighting factors are 0.299, 0.587, and 0.114, respectively.

In addition to the red, green, blue (RGB) based histogram

distance, we also compute the histogram distance in hue,

saturation, value (HSV) space. Basically, the HSV space is vector

quantized into 256 bins, where H and V values are assigned 8

levels each, and the S value is assigned 4 levels. We compute the

corresponding A matrix using the centers of each bin.. Assume the

centers of two bins i and j are {hi, si, vi} and { hj, sj, vj}, then aij is

computed as,

() () ()[]2
1

222
)sin()sin()cos()cos(

5

1
1 jjiijjiijiij hshshshsvva !+!+!!= .

Motion features are extracted based on square blocks within the

ROI. Specifically, in Fig. 2, we split the ROI (192x288 pixels) into

24 blocks (4 by 6), each with the size 48x48 pixels. Based on our

observations, the motion information extracted from bigger block

sizes (e.g., 48x48) is more reliable than those from smaller sizes

(e.g., 8x8). The search range of motion vector for each block is set

to 32x32. It could be either an exhaustive search for better

accuracy or a hierarchical search for higher efficiency. The motion

features for each block include the motion vector (mvk), the

matching error (mek), and the matching ratio (mrk). The matching

ratio is the ratio of the best matching error with the average

matching error within the searching range. mrk measures how good

the match is, the lower value the better. mrk is low when there is

perfect matching and the block has significant texture. After the

motion features of all blocks are available, we pick the dominant

motion vector and its percentage (the ratio of the number of blocks

with this motion vector to the total number of blocks) as frame

level features. If the percentage is high enough and the motion

vector is not (0, 0), we set the motion flag to 1, otherwise we set it

to 0. We then sort the arrays of matching error (respectively,

matching ratio), and compute the mean, ME
A
 (resp. MR

A
); the

median, ME
M

 (resp. MR
M

); the average value (high) of the top N/3

blocks, ME
H
 (resp. MR

H
); and the average value (low) of the

bottom N/3 blocks, ME
L
 (resp. MR

L
). Table I summaries all

features extracted from one frame.

Table I. List of visual features

Type Visual feature Dimension

Histogram mean (HMR, HMG,

HMB, HMI)

4

Histogram variance (HVR, HVG,

HVB, HVI)

4

Histogram skewness (HSR, HSG,

HSB, HSI)

4

Histogram flatness (HFR, HFG,

HFB, HFI)

4

Histogram dynamic range (HDRR,

HDRG, HDRB, HDRI)

4

Intra-

frame

Edge ratio (Horizontal and

Vertical)

2

Delta histogram mean (DHMR,

DHMG, DHMB, DHMI, DHMA)

5

Delta histogram variance (DHVR,

DHVG, DHVB, DHVI, DHVA)

5

Delta histogram dynamic range

(DHDRR, DHDRG, DHDRB,

DHDRI, DHDRA)

5

Histogram distance (HDR, HDG,

HDB, HDI, HDA)

5

Histogram distance in HSV space 1

Motion flag and block percentage 2

Motion vector (horizontal,

vertical)

2

Average (MEA), low (MEL), high

(MEH), median (MEM)of

matching error

4

Inter-

frame

(1 frame)

Average (MRA), low (MRL), high

(MRH), median (MRM) of

matching ratio

4

Inter-

frame

(6 frames)

The same as inter-frame (1 frame) 33

Total 88

2.3 Shot boundary detectors

In this section, we describe 6 detectors, which detect 6 common

shot boundaries: cut, fast dissolve (less than 5 frames), fade in,

fade out, dissolve, and wipe. These 6 types of transitions cover

most shot transitions in TRECVID sequences and they can be

detected relatively reliably.

Each detector is implemented as a finite sate machine. Before

we touch the specific details of each detector, we first introduce

their common characteristics. Each FSM has a set of states, labeled

from 0 to N, where N is equal to 3 or 4. State 0 is the initial state,

waiting for the trigger of a certain event. State 1 is used to flag the

detection of certain shot boundaries. The other states are used to

represent the intrinsic patterns of various shot boundaries. The

state of the FSM is determined by a set of state variables. There are

three basic state variables that are common for all FSMs: state_id,

which is the state of current FSM, start_frame, which is the last

frame of previous shot, end_frame, which is the first frame of the

new shot. Some detectors may have an additional state variable to

track an adaptive threshold value used for determining the state

transitions.

2.3.1 Cut detector

Fig. 4 illustrates the FSM for cut detector and its state variables.

There are four states in the cut FSM and one of its state variables,

AverageME, is used to track the average value of matching errors.

Its initial value is set to 5.0, and it is updated whenever the state is

0 with the following infinite impulse response (IIR) filter,

AverageME = AverageME * 0.85 + MEA * 0.15 (1)

Fig. 4. Cut detector

The function IsAbruptChange compares the average matching

error (MEA) of the current frame (frame c) with a threshold, which

is 5 times of AverageME. If the current MEA is bigger than the

threshold and it is bigger than those of five previous frames,

function IsAbruptChange returns true, otherwise, it returns false. If

the current frame satisfies the abrupt change criteria, the FSM

enters state 2, and the start_frame and end_frame are set to c - 1

and c respectively. Using AverageME to determine the threshold

adaptively, instead of a fixed threshold enables the cuts in low

intensity frames to be reliably detected.

When the FSM is in state 2, it tests whether the current frame is

a valid neighboring frame of a cut. Basically, the function

IsAbruptNeighbor compares the matching errors of current frame

and the previous frame. If the MEA of the current frame is smaller,

the function returns true, otherwise it returns false. If the current

frame is still an abrupt change, the FSM stays at state 2, updating

the start_frame and end_frame, otherwise, it returns to state 0.

State 3 simply waits for 3 more frames such that we can verify the

cut using more neighboring frames. The VerifyCut function

compares frame start_frame with all frames from end_frame + 1 to

end_frame + 3, and frame end_frame with all frames from

start_frame – 4 to start_frame – 1. The similarity is determined by

both motion compensated matching errors and pixel-wise image

correlation. The purpose is to detect any camera flash related false

alarms.

 We found that the cases when cut happens only on a portion of

a frame are not consistently labeled in TRECVID references. We

call these cases local cut, and this occurs, for example when there

is a cut in a video that has been inserted into a small window in a

static shot. In our system, we use the low matching error MEL to

control whether a local cut is detected or not. Enabling local cut

detection leads to higher recall, but lower precision.

Besides the threshold based cut verification method, we also

developed a support vector machine (SVM) [10] based cut

verification engine. Fig. 5 illustrates the feature extraction method

for SVM input. Assume k is the end_frame of a candidate cut, and

we extract four groups of features. The first group is the original

visual features (88 dimensions) of frame k. The second group is the

mean and the standard deviation of all features within an 11 frame

window centered at k. The third group is the same statistics on a 21

frame window. The last group of features is based on a 31 frame

window. All these features are concatenated together into a 616

dimension feature vector and it is used for SVM input. More

details about SVM training can be found in Section 2.3.7.

Fig. 5. Feature extraction for cut verification using SVM

2.3.2 Fast dissolve detector

Fig. 6 shows the fast dissolve detector FSM, which contains 4

states, and has 4 state variables.

Fig. 6. Diagram of fast dissolve detector

The fast dissolve is triggered by a medium change of the matching

error, where MEA is bigger than 2 * AverageME. AveageME is

initiated by a value of 5.0, and it is updated using formula (1)

whenever the FSM is in state 0. When the FSM changes from state

0 to 2, state variables start_frame and end_frame are set to c - 1

and c. State 2 stays at the same state if the current frame keeps

being a medium change, or it jumps to state 3 and updates

end_frame to be c. State 3 simply waits for 3 more frames, and

then it verifies whether the candidate transition is really a fast

dissolve.

Fig. 7. Typical fast dissolve

Fig. 7 shows a typical fast dissolve, which spans 3 frames. Let

X, Y, and Z denote the start_frame, end_frame, and a middle frame

of the fast dissolve transition. We require that the duration of the

fast dissolve transition be less than 5 frames, so it is reasonable to

assume that there is no motion involved in the transition. With this

assumption, Z can be written as a linear combination of X and Y, Z

= αX + (1 - α)Y, where 0 ≤ α ≤ 1. The value of α can be

determined by a min square error criteria. If the fitting error is

smaller than a preset threshold and 0.2 ≤ α ≤ 0.8 for all middle

frames of the transition, then the VerifyFastDissolve function

returns true, otherwise, false.

2.3.3 Fade in detector

Fade in can be reliably detected using the intensity histogram

variance. Low variance (not necessarily low intensity) is a strong

indicator for the beginning of fade in. Normally, fade in transitions

start from a group of low variance frames and then the variance

gradually increases until it becomes stabilized. Fig. 8 shows the

diagram of fade in detector FSM. The FSM contains 5 states and 3

state variables. State 2 is activated when the current frame is in low

variance mode and the start_frame is set to record the starting of

the transition. When the frame is no longer of low variance, the

FSM moves to state 3, and stays there as long as the variance

increases significantly. Once the variance is stable or starts to

decrease, FSM enters state 4, where the verification is conducted.

Fig. 8. Fade in detector

The verification code pinpoints the start and end frames of the

candidate fade in transition based on the variance value, and it then

measures the linearity of the standard deviation (STD) of the

intensity (the square root of intensity variance). We use r2 as a

measure of linearity in linear regression. Assume we have a set of

pairs: {xi, yi}, 1 ≤ i ≤ N. By min square error, we get the optimal a

and b, such that the following error is minimized,

()!
=

""=
N

i

iireg baxyE
1

2

r2 is defined as,

tot

reg

E

E
r != 12

, where ()!
=

"=
N

i

itot yyE
1

2
, (2)

and y is the mean of {yi}. If the linearity of the STD curve is

higher than a certain threshold, the VerifyFadeIn function returns

true, otherwise, it returns false.

2.3.4 Fade out detector

The fade out detector is also triggered by low variance frames.

The corresponding FSM is shown in Fig. 9. State 2 is the low

variance state, and it goes to state 3 when the current frame’s

intensity variance is no longer low. State 3 pinpoints the starting

and ending frame of the transition, and verifies whether the

candidate transition is a fade out or not. The verification procedure

is similar to that of the fade in detector. The main method is to

check the linearity of the standard deviation of the intensity

variance.

Very often, fade in and fade out transitions are adjacent, and the

overlapped fade in and fade out transitions are merged into a FOI

transition in the result fusion stage to be consistent with the

TRECVID labeling conventions.

Fig. 9. Fade out detector

2.3.5 Dissolve detector

Dissolve is the main gradual transition, and we will present more

details in this section. It is well known that the intensity variance is

a good indicator for detecting dissolve. Assume that the dissolve is

a procedure of linearly mixing of two different scenes X and Y,

and Zi is one intermediate frame, then we can use the following

formula to represent Zi,

YXZ
iii
)1(!! "+= ,

where {αi} are a set of monotonically increasing values that are in

the range of [0, 1]. Let the variances of X, Y, and Zi be σ
2

X, σ
2

Y,

and σ
2

Zi. If we also assume X and Y are independent, then we

have,

() 22222
1

YiXiZ
i

!"!"! #+=

If σ
2

X = σ
2

Y, the curve for σ
2

Zi is a symmetric quadratic function,

shown as in Fig. 10 (a). But in typical cases, the curve is more like

that shown in Fig. 10 (b), where σ
2

X is not equal to σ
2

Y, and X and

Y are not independent. When the variance of either X or Y is

small, the variance curve may not contain both the decreasing and

increasing patterns such as in Fig. 10 (c) which shows an example

where σ
2

Y is small.

Fig. 10. The variance curves of some typical dissolve transitions

The dissolve detector is designed to capture the characteristic

curves shown in Fig. 10. Fig. 11 illustrates the proposed dissolve

detector, which has 5 states and 4 state variables. AverageVariance

is used for pinpointing the start_frame and end_frame of the

dissolve transition. Its initial value is 3.5 and it is updated by

following IIR filter in state 0,

AverageVariance = AverageVariance * 0.85 + HVI * 0.15

State 2 is the variance decreasing state, which corresponds to the

decreasing part in Fig. 10 (a), and state 3 is the variance increasing

state, which corresponds to the increasing part in Fig. 10 (a). The

design of the FSM allows that the cases when either σ
2

X or σ
2

Y is

small are reliably handled.

Fig. 11. Dissolve detector

The verification part is the key component of the FSM, and its

main purposes are 1) precisely determines the boundaries of the

dissolve, and 2) verifies the candidate dissolve. The main challenge

is that the variance curve may not be smooth due to motion or

camera flashes in the original sequences X and/or Y. For

verification purposes, we extract a set of heuristic features based

on the entire transition. The following example illustrates the

details.

Fig. 12 shows a typical dissolve, and the numbers below the

images are their frame numbers. The dissolve starts from frame

20445, and ends at frame 20458. Corresponding variance and delta

variance curves are plotted in Fig. 13.

Fig. 12. An example of dissolve

From the variance curve, we first pinpoint the starting and

ending frames. To do that, we start from the minimum variance

frame in the candidate transition, and then search forward and

backward for the maximum absolute delta variance frames, which

are fmin and fmax in the figure. Then from fmin, we further search

backward until the delta variance of the current frame is less than

half of the delta variance of the next frame or 2*AverageVariance.

This frame is set as the Start_frame of the candidate dissolve.

Similarly, we search from fmin forward, and locate the End_frame.

The middle of the transition is Middle_frame = (Start_frame +

End_frame)/2.

Fig. 13. The curves of variance and delta variance

Then a set of heuristic measurements are taken from the

variance and delta variance curves. The height of the variance

curve, Δ, is the difference of the maximum and minimum variances

within the transition. Ratios hr1 = Δ / min{variance(start_frame),

variance(end_frame)} and hr2 = Δ / max{variance(start_frame),

variance(end_frame)} are computed to measure the relative height

of the variance curve. Knowing that the variance curve is roughly a

second order polynomial function, the delta variance should be

roughly a linear curve. We do a linear regression for the delta

variance within this range, and measure the r2 which is defined in

formula (2). As byproducts of the linear regression, we also have

the slope s. Similarly, we fit the intensity mean by a linear curve,

and compute the corresponding r2 and s. We also use the duration

between fmin and fmax, as one feature, and its ratio to the transition

duration, denoted by r = l/L, as another feature.

Then, we measure how well each image in the transition can be

estimated from neighboring images. We used five ways to estimate

Zi, i = 3,…, L-2: 1) by Zi-2, 2) Zi-1, 3) by Zi+2, 4) by (Zi-2 + Zi+2)/2,

and 5) by αiZi-2 + (1-αi)Zi+2. The estimation errors are denoted by

DEPi, DEOi, DEFi, DEEi, and DELi. The maximum of {DEOi} is

Max_DEO. For the fourth estimation, we compute the estimation

confidence, DEE_Confi, as sqrt(min(DEPi, DEFi) / DEEi). The

maximum of {DEEi}, Max_DEE, and the average of

{DEE_Confi}, Avg_DEE_Conf, are also used for verification

purposes. For the last estimation, we have {αi} and confidence

{DEL_Confi}, which is computed by sqrt(min(DEPi, DEFi) /

DELi). Based on these, we compute the maximum of {DELi},

Max_DEL, the average confidence of {DEL_Confi},

Avg_DEL_Conf, and the worst {αi}, WorstAlpha, which is

computed as max{abs|αi-0.5|}. For dissolves, ideally, WorstAlpha

is 0 (since αi is 0.5).

To find out the spatial distribution of matching errors, we

compute the absolute pixel-wise difference image between frame

Middle_frame-2 and frame Middle_frame+2. The average value of

the difference image, and its horizontal and vertical centroids are

used as extra features, which are denoted as AvgDiff, DiffCH,

DiffCV.

Finally, we want to make sure that the dissolve introduces

significant content change. We compute the histogram distance,

motion matching errors, and pixelwise correlations for 3 pairs of

frames: (Start_frame, End_frame), (Start_frame, Middle_frame),

and (Middle_frame, End_frame).

Similarly as with the cut detector, we need to differentiate those

dissolves that are framewise or partially framewise. We have a

flag, GlobalFlag, which is determined by DiffCH, DiffV, and MEL

between Start_frame and End_frame. If DiffCH and DiffV are

small and MEL is high, GlobalFlag = 1, otherwise, 0.

Table II lists all the features we used for dissolve verification.

Some features are omitted (e.g., edge related features) because they

are not as promising as the others.

Table II. Features for dissolve verification

Type Feature #

Variance Height, hr1, hr2, r2, s, l, r 7

Intensity r2, s, 2

Skewness Height 1

Flatness Height 1

Delta

variance

Max_delta_variance

Min_delta_variance

2

Estimation Max_DEO, Max_DEE,

Avg_DEE_Conf, Max_DEL,

Avg_DEL_Conf, WorstAlpha

6

Middle_frame AvgDiff, DiffCH, DiffCV 3

Matching

error

Max MEA, max MEL, max MEA,(6

frames apart), max MEL (6 frames

apart), max histogram distance (6

frames apart)

5

Global Global flag 1

Vertical edge Max_Delta_Edge, Height, hr1, hr2, r2 5

Horizontal

edge

Max_Delta_Edge, Height, hr1, hr2, r2 5

Start_frame

&

End_frame

CorrelationSE, RGB histogram

distance, HSV histogram distance,

MEM, MEL. MEH, MRM, MRL, MRH

9

Start_frame

&

Middle_frame

CorrelationSM, RGB histogram

distance, HSV histogram distance,

MEM, MEL. MEH, MRM, MRL, MRH

9

Middle_frame

& End_frame

CorrelationME, RGB histogram

distance, HSV histogram distance,

MEM, MEL. MEH, MRM, MRL, MRH

9

Correlation CorrelationSE–0.5(CorrelationSM

+CorrelationSM)

1

Total 66

The baseline dissolve verification employs a sequence of

threshold based criteria relying on these 66 features. A more robust

approach is to apply SVM on this feature vector. More details

about SVM training can be found in Section 2.3.7.

2.3.6 Wipe detector

Wipe is the most ill defined transition. There are more than 20

different types of wipe that are commonly used in video editing

and there is no single rule that applies to all of them. In this

section, we describe our approach for detecting certain kinds of

wipes.

Fig. 14 shows the FSM we developed for wipe detection.

AverageME is an adaptive state variable updated by formula,

AverageME = AverageME * 0.85 + MEA * 0.15, and its initial

value is set to 5.0.

A frame is considered as a smooth change if its matching error

MEA is bigger than 1.5*AverageME and less than 4*AverageME.

State 2 is the smooth change state, and state 3 is the end of

smooth change, and it also verifies the candidate transition is a

wipe. If the verification logic passed, the detector enters state 1.

Fig. 14. The Wipe detector

In this system, we only consider one popular type of wipe,

which is shown in Fig. 15. The transition starts from frame 21360,

ends at frame 21378. Basically, the wipe starts from one scene, and

it gradually changes to the second scene, where the dominant

portion of every intermediate frame comes from either scene 1 or

scene 2. Fig. 16 shows how we measure the fit of this model.

Fig. 15. A sample of wipe transition

In Fig. 16, we denote the starting and ending frames of the

candidate wipe transition as X and Y, and one intermediate frame

as Zi, i = 1, ..., L -1, where L is the duration of the transition.

Fig. 16. Illustration of wipe verification

For frame Zi, we partition it into 8x8 blocks, and for each block,

we find the best match with motion compensation from both X and

Y. The highlighted block k shows this procedure. If the best

matching error is smaller than a preset threshold, it is considered as

a valid match. In Fig. 16, for Zi, we mark those blocks that have

valid matches from X in red, and those from Y in blue. The blocks

that do not have valid match are painted in green. Then we

compute the portion of blocks with valid match from X, denoted as

xi, which is the ratio of red blocks to the number of all blocks, and

the portion of blocks with valid match from Y, denoted as yi.

Fig. 17 illustrates the ideal patterns of xi and yi. We use the

linearity of xi and yi of the wipe candidate to verify it.

Fig. 17. Curve of xi and yi for wipe verification

2.3.7 SVM Models

Support vector machines are now standard for fast and robust

classification. While this discriminative classifier greatly reduces

training time by analyzing only marginal samples, care must be

given to the training parameters and underlying kernel used in an

SVM. For our experiments, we evaluated both linear and radial

basis functions in a 3-fold validation process. We searched 7 linear

settings and 70 RBF settings with random subsets of our training

set split into 80/20 training/testing partitions. All features are

globally normalized to one before they are analyzed by the SVM.

During the development of our classifier, we performed cross-

validation testing across permutations of both the TRECVID2005

and TRECVID2004 datasets. We saw a performance degradation

around 10% F1 when combining different data sets, so the final

model was constructed with the TRECVID2005 data alone.

2.4 Fusion of Detector Results

Currently, fusion of detector results is conducted at the end,

when all frames are processed. Fig. 18 shows a segment of the raw

results from all detectors. Because some of the detectors may

report the detected transition with delays, we need to sort the list of

raw results by their starting frame (preFNum in the figure).

Fig. 18. Segment of raw results

Then we merge the overlapped fade out and fade in transitions,

and rename them FOI, as used by the TRECVID reference. For

example, the last two transitions in Fig. 18 become <trans

type=“FOI” preFNum=“1728” postFNum=“1743” />

The next task is to merge all overlapped transitions with certain

priorities assigned to different transitions. Currently, the order of

priority we used is (from the highest to the lowest), FOI, dissolve,

fast dissolve, cut, and wipe. The final step is to map the system

types into two categories: cut and gradual. All shot boundaries

except cuts are mapped into gradual.

2.5 System Development Tools

In order to effectively locate the weakness of the algorithm, we

developed a set of tools to show the ground truth, the system

results, and all false positives and false negatives. Fig. 19 is an

interface that shows the ground truth and the system results. Fig.

20 shows the false positives and false negatives.

Fig. 19. Interface for showing the reference and system results

Fig. 20. Interface for showing the system errors

The interface is basically dynamic HTML written in JavaScript.

The user can choose different evaluation sequences, and for each

chosen sequence, the interface shows all frames of any selected

shot, either from the reference or from the system result. The

transition filter is also a useful feature, where the user can choose

to show certain types of shots in the pull down menu on the left. In

Fig. 19, only dissolves are shown for the reference transitions, and

the selected dissolve is from 3823 to 3825. Note that these frames

are marked in red and bold, and five extra frames on both side of

the boundary are also shown. For efficiency, all frames are

decoded and saved in advance for fast interactive response. The

user can also specify a frame number, and browse 25 frames

around that frame. The next 20 frames and the previous 20 frames

<trans type="CUT" preFNum="1572" postFNum="1573" />
<trans type="CUT" preFNum="1604" postFNum="1605" />
<trans type="DISSOLVE" preFNum="1614" postFNum="1624"

/>
<trans type="CUT" preFNum="1672" postFNum="1673" />
<trans type="FADEOUT" preFNum="1728" postFNum="1739"

/>
<trans type="FADEIN" preFNum="1733" postFNum="1743" />

buttons allow the user to check more neighboring frames around

the frame of interest.

Fig. 20 represents a second user interface showing the system

errors based on the evaluation tools provided by NIST. The

insertion and deletion errors can be displayed separately, and

similar to Fig. 19, the transition filter feature helps to show only

interested types of errors, e.g., cut or dissolve only.

While developing and adjusting our system, we found that

combining these two interfaces were very effective and useful to

analyze the weaknesses of the system and to easily figure out the

common errors of the system.

Table III. AT&T’s 10 submissions for SBD

Run Block

size

Allowing

local change

SVM kernel

for cut

SVM kernel

for Dissolve

1 Y

2
48x48

N

3 Y

4
32x32

N

N/A

5 Y

6 N

Linear

kernel

N/A

7 Y

8 N
Linear

9 RBF 1

10

48x48

Y

N/A

RBF 2

2.6 Evaluation Results

Table III shows the 10 runs we submitted for shot boundary

determination task. The first two runs are similar, and the only

difference is that the first run allows local change for cut and

dissolve, and the second one does not. The pair of the third and the

fourth runs is similar to the first two, but the block size is different.

The major difference between the last six runs and the first four

runs is that the SVM is used for verification in runs 5 to 10, either

for cut or dissolve. Runs 5 and 6 use linear kernel SVM for cut

verification. Runs 7 to 10 use SVM for dissolve verification, with

linear, and two RBF kernels trained with different kernel

parameters.

Table IV. The best runs of AT&T’s SBD submissions

Performance (%)
Run Category

Recall Precision F-Measure

Overall 85.5 89.2 87.3

Cut 88.9 90.4 89.6

Gradual 76.5 85.6 80.8
8

Frame based 87.1 91.9 89.4

Overall 85.1 87.6 86.3

Cut 89.4 90.4 89.9

Gradual 73.6 79.5 76.4
2

Frame based 86.9 93.0 89.8

Overall 83.8 90.5 87.0

Cut 86.2 92.2 89.1

Gradual 77.5 85.8 81.4
10

Frame based 87.4 92.3 89.8

Overall 82.6 90.9 86.6

Cut 86.1 92.3 89.1

Gradual 73.1 86.9 79.4
9

Frame based 88.9 92.1 90.5

The best results of AT&T’s submissions in different categories

are shown in Table IV. For example, run 8 achieves the best

overall result, and run 9 achieved the best frame based gradual

detection result. The performance of cut is a bit lower than what

we expected since better results were achieved on the TRECVID

2005 and 2004 datasets. Gradual transition detectors provide good

performance, which enabled the AT&T system to be one of the top

contenders. In terms of F-measure, the SVM based dissolve

verification boosts the overall performance by 2.5% and the

gradual transition performance by 3.4%, which is significant.

The frame based gradual transition performance of AT&T

system achieves the best among all the participants, which means

that the proposed gradual transition (mainly the dissolve) boundary

location approaches are very effective.

III. SEARCH

3.1 Overview

Automated search is an important first line approach for the

exploration of complex multi-modal environments. The TRECVID

environment provides a formal to evaluate complex query topics

on a large database of multilingual video sources. In our

experiments, we focused on text-search techniques and evaluated a

system that automatically performs query expansion with named

entities (NE’s); the addition of new proper names of people,

organizations, and locations to an initial query topic. Our results

show promise but need additional investigation before being

deployed in a general framework. While the work in this section

was developed at AT&T, it is purely exploratory research for the

TRECVID evaluation and may or may not be included in future

revisions of the MIRACLE framework.

3.1.1 Related Work

The information retrieval community at large has explored both

query expansion and named entity detection independently. Most

mature text search engines allow a user to perform query

expansion automatically with a method called pseudo relevance

feedback (PRF). With PRF, the most frequent words from a query's

top scoring documents are identified and added to the initial query

topic and then the revised query is evaluated again. Named entity

detectors have also been studied for quite some time, with state-of-

the-art detectors achieving accuracy above 90% for people,

organizations, and location.

In one of the first works that named entities are employed to

refine search results, [20] used named entities to re-rank text

results by calculating the intersection of search results and a corpus

of news articles published in the same time period. Other

participants of TRECVID in the manual search category allowed

operators to append named entities directly to the initial query to

improve search results with domain specific information. In our

approach, we combined these earlier methods with two important

distinctions: we automatically search over an external document

set for the expansion terms and we only consider named entities for

expansion.

3.2 Feature Extraction

Basic query expansion is a simple task that has three steps:

perform a search on a document dataset, collect the most frequent

terms from the highest ranking documents, and finally execute

another search using the new terms in addition to the initial query.

The following sections describe the datasets, necessary pre-

processing, and finally our algorithm for query expansion.

3.2.1 Dataset formulation

In this experiment, we have two types of datasets: internal and

external. The internal dataset is derived from the ASR scripts of

the TRECVID data. We further partition the ASR scripts into story

documents by automatically detected story boundaries. The

external dataset is derived from data collected in the same time

span as the TRECVID training (October 30, 2004 - December 1,

2004) and testing (November 2, 2005 - December 30, 2005)

partitions. No manual annotation was performed for either data set.

3.2.2 External data

For this task, external documents were collected from two

sources: MIRACLE and NewsBlaster. The first data source was

AT&T' MIRACLE system, which captures several broadcast

programs of different genres (news, entertainment, sports, etc.) and

performs a complete multimedia indexing on those programs. The

most relevant component here is the closed caption (CC) with ASR

time alignment. A second data source was [12], a system that

collects online news from hundreds of sources and summarizes the

content of those sources. This data set is much larger in magnitude

because hundreds of unique news articles were collected every

day. Table V summarizes a few attributes of each document

source.

Table V. Summary of external data sources for QE search task

 MIRACLE NewsBlaster

train 311 programs 54499 articles

test 339 programs 302624 articles

Data type Aligned ASR+CC from

recorded broadcast

television

Text articles from online

news sources

Frequent

sources

Nightly News, World

News Tonight

washingtonpost.com,

dallasnews.com

The motivation for collecting two distinct data sources was to

test how much the original medium (broadcast television vs. online

news) would affect the performance of expansion. Our intuition

was that the NewsBlaster set may offer a richer set of NE

expansion choices, but perhaps documents in the MIRACLE set

would have much higher relevance because they came from the

same domain as the TRECVID data and have a much smaller

vocabulary.

3.2.3 Story segmentation

We employed a method developed in [18] for automatic story

segmentation, developed by Columbia University. This method

uses a probabilistic framework to learn and then identify story

boundaries in each TRECVID broadcasts. Both visual and prosodic

features are used in the boundary detection process, but we refer to

the original paper for more detail. The actual model used in this

task was trained labeled boundaries on the TRECVID2005 training

set (a subset of the TRECVID2006 training set) and evaluated on

all other broadcasts in the TRECVID2006 set. These boundaries

were donated to the TREC community at large, so we feel that they

are acceptable for a baseline of comparison.

3.3 Document Preprocessing

After the search documents have been created, either from the

raw data collection in section 3.2.2 or by automatic story

segmentation in section 3.2.3, they are processed for named

entities. We used the named entity extraction and co-reference

tracking routines included in the open source tool lingpipe [19].

The NE model was trained on the MUC6 English corpus. This

software choice was important because it provided co-reference

identification that was used to further link the found NE's.

3.3.1 Enhanced entities

We refer to enhanced entities as NE's that have additional

information like a person's first and last name, a formal or role title

(Mr., President, Senator, etc.), or a regional location context for

people and organizations. With this additional information, we

hope to disambiguate NE's across documents and even across data

sets. The rules below describe how enhanced entities are

constructed from the tagged output of this tool.

• For people and organizations,

1. Preceding word is of type NN, append it to the role (i.e.

Mayor Bloomberg).

2. More than one NE in a sentence and the preceding word

is of type NP, set it as the regional location for this

person or organization (i.e. NYC Mayor Bloomberg)

3. More than one NE in a sentence and the word in two

positions prior is of type NP or JJ, prefix it to the role of

this NE (i.e. Senator Clinton of New York).

• For locations, if the word immediately before the NE is of

type IN and there are multiple NE’s in the sentence, then set

the regional location attribute to this word (i.e. in Columbus,

Ohio).

We add both the raw NE and the enhanced NE to our lexicon of

NE's. At the time of this writing, we require all fields to match for

a lexicon match. In future versions of this system, we would like

to employ a more systematic matching of NE's in the lexicon so

that the goal of disambiguation achieved across more documents.

3.4 Query Topic Processing

Query topic processing is a very rich subject and has entire

evaluations within NIST devoted to it alone; the most popular

conferences are TREC-9 and TREC-10 or ACQUIANT. We

choose to use a very simple query processing approach that

consists of NE and keyword identification. Section 3.5.2 discusses

a revision to this system that creates class-dependent models for

input queries, but only one, global model was evaluated for the

submitted TV06 runs. For any single text query, we evaluate its

performance by retrieving its source shots and scoring them with

the standard AP metric.

3.4.1 Initial query formation

Initial query formation uses a set of cascading rules that stop

upon the first identification of NE's, nouns, or verbs. The refined

input query is then stemmed and stop words are pruned. This

formulation worked well for prior TREC evaluations but we note

that it looses strength as query topics get more qualitative.

3.4.2 Expansion candidates

We define an expansion candidate as the initial query with

additional named entities that were automatically detected. An

expansion candidate is formulated differently depending on

parameters that control the depth and richness of the query

executed on the external database. We form a single expansion

candidate with the following steps.

• Execute the initial query on an external data set (defined in

section 3.2.2)

• Keep only the top K scoring documents from the external

search.

• Accumulate counts for all named entities found in the external

search and order by decreasing count. Append the top N

entities from this list to the initial query.

• Generate an expansion candidate where only people NE's are

kept in the last step, where O is true.

We created different parameter ranges based on limits on the

total documents available and the number of NE's present in either

data set. In total, there are 100 different parameter settings that are

evaluated for a single initial query; K as values (5, 10, 25, 50, 100)

and N as values (1, 2, 3, 4, 5, 10, 50, 100, 150, 200) and O as

values (true, false).

3.4.3 Predicting best expansion

Our goal for query expansion is to produce the expansion

candidate with the highest AP. The primary constraint in choosing

the best expansion was that the system needed to offer a gain on

the AP score of the initial query, described in 3.4.1. We evaluated

the TRECVID2005 topics on the TRECVID2005 test set as

training data and found no consistent parameter setting that worked

well for all query topics. For example, on the topics that saw the

largest AP increase (“Find shots of Condoleeza Rice” at 0.168 and

“Find shots of Omar Karami, the former prime minister of

Lebenon” at 0.046), we used different expansion settings of K=5,

N=200, O=false and K=5, N=10, O=false respectively. One way to

satisfy the AP gain requirement is to automatically select the best

parameter settings from the entire set of expansion candidates.

Related work in [13] predicted the gain in AP by labeling images

versus automatically acquiring a new set of images for the task of

concept detection. We analyzed this approach and its inspiration,

which predicted query difficulty [14], to develop our framework.

Using an SVM classifier, we created a regression model using the

following 32 features that compare the ranked lists of shots

generated by the initial query and an expansion candidate.

• Intersection histogram - calculate the number of intersecting

documents in the top 10 results of sub-queries executed for

each word in an expansion candidate (see [14] for details),

• Distance statistics - the mean, standard deviation, minimum,

and maximum of distances between the initial query and the

expansion candidate,

• Pearson correlation coefficient,

• Spearman rank coefficient and Student's-t test,

• Fisher score,

• Average dynamic recall,

• Discount cumulated gain.

3.5 IB Reranking

In a method based on the probabilistic framework from section

3.2.3, we also analyzed results after using Columbia University's

information bottleneck (IB) reranking tool in [15]. This method

uses probabilistic smoothing over all shots and local kernel

estimation from a ranked list to reorder shots within a list. Please

refer to the original paper for details on the algorithm itself.

3.6 Result Analysis

We configured our submitted runs in a way such that the

components in each run built upon each other; refer to Table VI for

specific configurations and names of the submitted runs. Note that

for runs S2, S4, S5, S6 logic in the algorithm only selected a query

expansion candidate if its AP score was predicted to be better than

its corresponding baseline.

• S1: Our baseline text run demonstrates that our text search

utility (MySQL full-text search) is quite competitive and

sufficient for this application.

• S2: Unfortunately our story baseline run was lackluster when

compared to S1. This result was much lower than expected

and we are currently investigating the underlying cause.

• S3: Our model predicted better performance for three

expansion topics: 178 (Cheney), 181, 182.

• S4: Our model only selected topic 179 (Hussein) for

expansion. There is marginal improvement in overall MAP,

but almost 13% relative AP gain on this topic.

• S5: Story baseline expanded with NE's from NewsBlaster.

This run had lower AP than even S2 because the regression

model only correctly predicted AP gain on two of the six

topics that were enabled.

• S6: Post-processed S4 with the IB reranking tool (section 3.5).

This run demonstrates that cross-modality searching is always

better than text search alone. The only AP loss was seen on

topics where S4 originally achieved less than 0.01 AP.

Table VI. Description of submitted AT&T search runs for TV06

Run MAP Components

S1 0.0331 text (baseline

S2 0.0342 story

S3 0.0330 text + MIRACLE

S4 0.0348 story + MIRACLE

S5 0.0298 story + NewsBlaster

S6 0.0383 story + MIRACLE + IB

The story told by score progression is reassuring; as we add

multi-modal analysis (text to story), query expansion, and even IB

reranking, there is an apparent gain in scores. Fig. 21 displays the

performance of the different runs described above.

Finally, we were surprised to see that the NewsBlaster model

performed worse than the baseline when chosen for queries

containing named entities. This is contrary to traditional behavior

of NE expansion tasks, where named queries and sports queries

usually experience the most benefit.

Fig. 21. AP scores for AT&T search submissions.

3.6.1 Prediction accuracy

Prediction accuracy was mixed for the different query topics and

story or text baseline searches. While we are still investigating the

strength of the regression models, we attribute this volatility to two

reasons: data set size differences, more qualitative description in

query topics.

First, the training dataset for the regression model (the test

partition of TV05) only encompassed one half of a month while the

testing dataset (the test partition of TV06) was almost two months.

In numerical terms, this equates to 140 programs and 45766 shots

for training versus 259 programs and 79484 shots for testing. Not

only does this influence the number of results that could be

returned in a text search, it dilutes ranking distances and

correlation statistics, which are the majority of features for the

regression model. We must also concede that training on 24 topics

alone (the TV05 topics) is not ideal and could have lead to

increased sensitivity to certain types of queries.

Our second intuition for low prediction accuracy was the

increase in qualitative requirements fro the TV06 query topics. As

described in section 3.4.1, our topic filtering process is quite

simple. Unfortunately, logical operators like or, not, and, except

and numerical operators are not preserved in the formulation of the

initial query. For example, “Find shots of at least one person and

at least 10 books” becomes “person books” (topic 190) and the

query “Find shots with a view of one or more tall buildings (more

than 4 stories) and the top story visible” becomes “view buildings

stories story” (topic 174). Consequently, for topics that had a

logical or numerical requirement scored roughly zero AP.

A final point could be argued that the query topics for TV06

contained fewer named entity and sports topics, which seemed to

benefit the most from query expansion, but we do not believe that

the factor should affect the prediction accuracy of the regression

models.

3.6.2 Class dependent models

Recent work by other members in [21] has suggested that a

query class dependent strategy may work best for this broad range

of topics. If we used a query class strategy with this algorithm, it

may also eliminate the need for the regression modeling stage and

allow for fixed parameter settings, whose optimal selection has the

largest potential for performance degradation.

We are currently investigating this topic and plan to update this

report with an in-depth performance analysis soon.

3.6.3 Conclusions

Our experiments demonstrate that named entity query expansion

does improve automated search performance within the TRECVID

setting. This conclusion is meaningful because it offers a fully

automatic method to improve query formulation. At this time,

however, the gains from the NE-QE framework are marginal. We

plan to investigate how the automatically trained regression models

can be improved, why gain prediction failed in some cases, and

whether using a strict on/off decision performs better than selecting

the expansion candidate with the highest predicted gain.

We also observe that using the IB reranking scheme, S5,

(discussed in 3.5) will almost always improve the scores of the

expanded query. This is not surprising because the queries

themselves are executed only in the text domain and therefore have

numerous false positives.

Finally, we hope to analyze performance of this algorithm using

general expansion terms; for example, using lexically similar

expansions and words within definitions of terms or concepts in a

query topic.

IV. BBC RUSHES EXPLOITATION

We combined several tools from existing systems to better

organize the BBC data and showcase it in the MIRACLE system.

We used our motion-based shot segmentation (not the one used in

the SBD task this year) that may help to determine important shot

operations like panning and tilting but is semi-resilient to non-

steady camera handling. We also used a large set of the LSCOM

visual concepts, as trained on the TV05 dataset by Columbia

University. On the audio side, we applied an audio sound-type

classifier and a speaker segmentation algorithm. Finally, for text

search, we have automatically generated a semi-synchronized

script from the scanned documents you provided. We will present a

demo and prepare background on the techniques and the system for

a poster presentation.

4.1 Main Approaches

We applied a multi-modal approach to more intuitively parse and

search the BBC data. The BBC data included very little annotation,

which is traditionally the strongpoint for text-based search

strategies. Additionally, the annotation included was most

descriptive of camera actions and events that occurred over a large

amount of time, so common approaches that exploit semantic

expansion and lexical ontology would be generally weaker for this

dataset. In the following sections, we explore user browsing

strategies strongly focused on audio and video content, which are

easily integrated into MIRACLE’s XML-based framework.

4.1.1 Concept Browsing

We used concept models trained at Columbia University that

were derived from the LSCOM annotation. These models provided

374 different classifiers based on three core visual features: color

moments, Gabor textures, and edge direction histograms. Please

refer to Columbia University’s TRECVID 2006 report for specific

details. Keyframes for the BBC data were derived from the

MIRACLE’s shot segmentation engine [11]. It should be noted that

because of development concerns, this engine is not the model that

was used in the shot boundary task described in section II.

Fig. 22. Concept AP scores on TRECVID2006 and BBC datasets.

Cross-domain application of models is not a trivial task. We

applied the concept models described above directly on the

keyframes generated for the BBC data. The AP for the best

performing BBC and TRECVID concepts are shown in Fig. 22.

While we expected different model performance on the BBC and

TRECVID datasets, we were pleased to find that some concept

models were robust enough to handle the drastically different data.

For example, general scene concepts like outdoor, crowd, person

all worked well in both BBC and TRECVID data sets. However,

specific object concepts, like cars or ties performed very poorly on

the BBC dataset.

We attribute the performance loss seen in Fig. 22 between the

two datasets to not only a low-level data difference (like color), but

also a difference in concept frequencies. The further illustrate this

point, we have included the frequency of positive classifications in

the BBC data set in both graphs. In future work, we plan to analyze

methods to adapt these models to the new BBC data domain with

minimal re-labeling of the BBC data.

4.1.2 Visual similarity

We use the features computed for the concept browsing task to

compute image similarity within a single BBC video. First, we

concatenate all of the visual features to make a single vector of 346

dimensions. Next, distances between all images are computed with

a kernelized inner product. The distances are then normalized by

the maximum distance between all images in a single video to

produce a frame-level similarity between zero and one.

We further leverage frame-level distance to produce a

hierarchical scene representation, as seen in Fig. 23. Scenes are

constructed by greedily clustering frames by their frame distance

until the ratio of the newest frame in a cluster to all other frames in

a cluster exceeds some threshold. In future revisions, these

automatically formulated scenes can be used as an aide for video

summarization.

Fig. 23. Scene-level BBC image clustering

4.1.3 Audio sound-type classification

We manually annotated 18 videos from the BBC data. These

videos were randomly selected from the development set so as to

maximize the diversity of class labels. A total of 15 audio classes

were annotated, but we found that the data for most of these classes

was too sparse or inconsistent to train accurate sound models. For

the actual task and model development only male and female

speech were analyzed; all other labels were grouped into a noise

class.

We classify the audio sound types at two levels. At the first

level, an audio file is classified into speech and non-speech

segments. At the second level, speech segments are further

classified into male and female speech segments. Although both

use the Gaussian mixture model (GMM) classifier, different sets of

audio features are adopted for the two tasks.

For speech and non-speech classification, we segment an audio

signal into audio clips, which are 3 seconds long on average. Each

clip in turn consists of overlapping frames. The features of each

audio clip are determined from the sub-features of the associated

frames. Each frame is 32 millisecond (ms) long, overlapping with

the previous one by 22 ms. Eight features are computed for each

frame. They are root mean square volume, zero crossing rate,

pitch, frequency centroid, frequency bandwidth, and 3 energy

ratios in subbands. We extract 14 features for each audio clip based

on frame-level features. The 14 clip-level features are 1) volume

standard deviation (VSD), 2) volume dynamic range (VDR), 3)

volume undulation (VU), 4) non-silence ratio (NSR), 5) standard

deviation of zero crossing rate (ZSTD), 6) 4-Hz modulation energy

(4ME), 7) standard deviation of pitch (PSTD), 8) smooth pitch

ratio (SPR), LIU et al.: MAJOR CAST DETECTION IN VIDEO

USING BOTH SPEAKER AND FACE INFORMATION 7 9)

non-pitch ratio (NPR), 10) frequency centroid (FC), 11) frequency

bandwidth (BW), 12-14) energy ratio in subbands 1 - 3 (ERSB1,

ERSB2, and ERSB3). For detailed description of these features,

please refer to [16]. Based on our prior experiments, GMMs with 4

mixtures provide good performance of speech and non-speech

classification. In this paper, we assume that the covariance matrix

of each Gaussian mixture is diagonal.

For male and female classification, we use Mel-frequency

cepstral coefficients (MFCC) [8], because these features have been

shown to reflect the speaker characteristics. For each frame, we

extract 13 MFCCs, as well as their first and second order temporal

delta values. Totally we have 39 features for each frame. Our

experiments showed that when the number of GMM mixtures is

2048, the results are reasonably good.

More audio sound types, including noise, music, speech on

music, etc., can also be effectively extracted based on the same

approach. But given the limit of time and resources, we defer this

investigation as the future work.

4.1.4 Speaker segmentation

The audio is first segmented into short segments on phoneme

level, where the duration of each segment is in the range of 200 ms

to 1 second. Similar to the speaker gender classification, we adopt

the same 39 MFCC features, and each speaker is modeled using a

GMM model. We employ Bayesian Information Criteria (BIC)

[17] to measure how the speaker models fit the data. Fig. 24 shows

the diagram of the developed algorithm.

The iterative speaker segmentation contains a loop of speaker

splitting procedure. In each iteration, the algorithm first increases

the number of speakers (NS), and then evaluates all possible splits:

splitting speaker i (i = 1, ..., NS-1) into speakers i and NS. For each

possible split, the speaker split procedure is applied, and

corresponding BIC value (BICNS) and speaker labels (LNS) are

computed. Among the NS-1 ways of splitting, the one with

maximum BIC value is chosen, and its BIC value and speaker

labels are kept as the overall BIC value (BICNS) and speaker labels

(LNS) for the current iteration. The iteration terminates when BIC

value no longer increases.

The speaker label refinement is also an iterative procedure. For

each iteration, a set of GMM’s are built for all speakers based on

current segment labels. Then all segments are relabeled using the

maximum likelihood method based on current speaker models. If

the speaker labels converge or the number of iteration reaches a

preset value, the refinement iteration stops. Otherwise, a new

iteration starts.

The post-processing step merges adjacent segments with the

same speaker labels, and smoothes the segments that are too short,

e.g., less than 300 ms. Short segments are merged into the longer

neighboring segments.

Fig. 24. Speaker segmentation diagram

4.1.5 Text annotation processing

The text data for the BBC rushes passed through several stages

of potential degradation. First, they were manual notes that were

scanned and passed through an OCR system. After this processing,

we analyzed the annotations to create a basic organization of topics

and annotation sentences for every line in the OCR output while

using manually defined rules to correct common OCR failures and

non-English characters.

4.2 Results

Figures 25 and 26 show two interfaces we developed for

browsing the BBC rushes data by the extracted content events.

The video data is played back at the top of the interface, and the

extracted content events, including speech segments, male and

female speaker segments, speaker segments, shot and scene

boundaries, as well as face shots are plotted in different color

underneath. From this interface, the user is able to efficiently

understand the embedded content, and easily jump to the points of

interest to see more detailed information.

The second interface (in Fig. 26) demonstrates a frame-level

view of a video clip, which gives a detailed description of the

detected concepts and, frame time, and detected camera motion.

Fig. 25. Interface for browsing the BBC content

 Fig. 26. Frame-level interface for BBC content

V. CONCLUSIONS

In this paper, we reported the AT&T system that we developed for

NIST TRECVID 2006 evaluation. AT&T participated in three

tasks: shot boundary determination, search, and rushes

exploitation. In this paper, we described our shot boundary

determination system in detail, and briefly introduced our work on

the other two tasks. The evaluation results show that the SBD

algorithm we proposed is effective and promising.

VI. REFERENCES

[1] H. J. Zhang, A. Kankanhalli, s. W. Smoliar, “Automatic

Partitioning of Full-motion Video,” ACM Multimedia

System, Vol. 1, No. 1, pp. 10-28, 1993.

[2] B. L. Yeo and B. Liu, “Rapid Scene Analysis on Compressed

Video,” IEEE Transactions on Circuits and Systems for Video

Technologies, 5(6), pp. 533-544, 1995.

[3] B. Shahraray, “Scene Change Detection and Content-based

Sampling of Video Sequences,” in Digital Video

Compression: Algorithms and Technologies 1995, Proc. SPIE

2419, February 1995.

[4] Y. Wang, Z. Liu, and J. Huang, “Multimedia Content

Analysis Using Audio and Visual Information,” IEEE Signal

Processing Magazine, pp.12-36, Nov. 2000.

[5] MPEG Software Simulation Group (MSSG),

http://www.mpeg.org/MPEG/MSSG/

[6] J. Hopcroft and J. D. Ullman, “Introduction to Automata

Theory, Languages, and Computation,” Addison Wesley,

1979.

[7] R. C. Gonzalez and R. E. Woods, Digital Image Processing,

Addison Wesley, 1993.

[8] L. Rabiner and B. Juang, “Fundamentals of Speech

Recognition,” Prentice Hall PTR, 1993.

[9] J. Hafner, H. S. Sawhney, W. Equits, M. Flickner and W.

Niblack, "Efficient Color Histogram Indexing for Quadratic

Form Distance Functions", IEEE Trans. on Pattern Analysis

and Machine Intelligence, Vol. 17, No. 7, July 1995.

[10] V. N. Vapnik, “Statistical Learning Theory,” John Wiley &

Sons, 1998.

[11] D. Gibbon, Z. Liu, and B. Shahraray, “The MIRACLE video

search engine,” IEEE CCNC, Jan. 2006.

[12] K. McKeown, R. Barzilay, J. Chen, D. Elson, J. Klavans D.

Evans, A. Nenkova, B. Schiffman, and S. Sigelman,

“Columbia’s newsblaster: New features and future directions

(demo),” NAACL-HLT, 2003.

[13] L. Kennedy, S. Chang, and I. Kozintsev, “To search or to

label? Predicting the performance of search-based automatic

image classifiers,” Multimedia Information Retrieval

Workshop (MIR), Santa Barbara, CA, USA, 2006.

[14] E. Yom-Tov, S. Fine, D. Carmel, and A. Darlow, “Learning

to estimate query difficulty: including applications to missing

content detection and distributed information,” SIGIR, pp.

512-519, New York, NY, 2005.

[15] W. Hsu and S. Chang, “Visual cue cluster construction via

information bottleneck principle and kernel density

estimation,” International Conference on Content-Based

Image and Video Retrieval (CIVR), Singapore, November

2005.

[16] Y. Wang, Z. Liu, and J. Huang, "Multimedia Content

Analysis Using Audio and Visual Information," IEEE Signal

Processing Magazine (invited paper), pp.12-36, Nov. 2000.

[17] S. S. Chen and P. S. Gopalakrishnan, “Speaker, environment

and channel change detection and clustering via the Bayesian

information criterion,” DARPA Broadcast News Transcription

and Understanding Workshop, Landsdowne, VA, 1998.

[18] W. Hsu, L. Kennedy, S. Chang, M. Franz, and J. Smith.

“Columbia-IBM news video story segmentation in

TRECVID” 2004. Advent technical report #207-2005-3,

Columbia University, 2005.

[19] “LingPipe Home". http://www.alias-i.com/lingpipe/

index.html, October 2006.

[20] T. Chua, S. Neo, H. Goh, M. Zhao, Y. Xiao, G. Wang, S.

Gao, K. Chen, Q. Sun, and T. Qi. “Trecvid 2005 by NUS

PRIS”. TREC Video Retrieval Evaluation Online

Proceedings, 2005.

[21] L. Kennedy, P. Natsev, and S. Chang. “Automatic discovery

of query class dependent models for multimodal search”.

ACM Multimedia Conference, Singapore, November 2005.

