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ABSTRACT 

 

TRECVID (TREC Video Retrieval Evaluation) is sponsored by 

NIST to encourage research in digital video indexing and retrieval. 

It was initiated in 2001 as a “video track” of TREC and became an 

independent evaluation in 2003. AT&T participated in three tasks 

in TRECVID 2006: shot boundary determination (SBD), search, 

and rushes exploitation. The proposed SBD algorithm contains a 

set of finite state machine (FSM) based detectors for pure cut, fast 

dissolve, fade in, fade out, dissolve, and wipe. Support vector 

machine (SVM) is applied to cut and dissolve detectors to further 

boost the SBD performance. AT&T collaborated with Columbia 

University in the search and rushes exploitation tasks. In this 

paper, we mainly focus on the SBD system and briefly introduce 

our effort on the search and the rushes exploitation. The AT&T 

SBD system is highly effective and its evaluation results are 

among the best.  

 

I. INTRODUCTION 

 

TRECVID started as a video track of TREC (Text Retrieval 

Conference) in 2001 to encourage research in automatic 

segmentation, indexing, and content-based retrieval of digital 

video. Since 2003, it became an independent evaluation. 

TRECVID 2006 contains three system tasks: shot boundary 

determination, high-level feature extraction, search (interactive, 

manually-assisted, and/or fully automatic), and one exploratory 

task: rushes exploitation. AT&T has been active in the multimedia 

processing, indexing, and search areas for many years. TRECVID 

provides us a good opportunity to learn from the other research 

groups and to share our experience with our colleagues. For the 

first time, AT&T participated in TRECVID 2006. We submitted 

results for shot boundary determination (SBD), and we also 

submitted search and BBC Rush task results in collaboration with 

Columbia University.  For the rushes exploitation task, we  

demonstrated a content based video browsing and query system, 

which was built on the MIRACLE (Multimedia information 

retrieval by content) platform from AT&T Labs and the high level 

feature extraction technologies developed at Columbia University.  

Shot boundary determination has been widely studied for the last 

decade. Some of the early work can be found in [1-4]. TRECVID 

further stimulates the interest and effort in a much broader research 

community. New systems and algorithms have been constantly 

reported from all TRECVID participants over the years, e.g., IBM, 

Tsinghua University, Columbia University, CMU, KDDI, etc.. 

Researchers at AT&T started to tackle multimedia content 

processing and indexing back in the 1990s, and Shahraray reported 

a scene change detection algorithm in 1995 [3]. With the limited 

computation power (90M CPU) and system memory (8M) 

available at that time, as well as the constraints of real time and 

low latency, the original algorithm was designed to be effective 

and highly efficient. The adopted visual features were intensity 

histogram and image matching with 1 dimensional motion 

compensation by projection. A single finite sate machine (FSM) 

[6] was designed to detect all types of scene changes and report 

camera motions, including panning and tilting. 

Thanks to the current computation power (Intel 3.7GHz Xeon 

CPU) and the non real time requirement, there is a lot of room to 

extend the existing algorithm. Three major improvements are: 1) 

Two-dimension motion compensation is utilized. 2) In addition to 

the intensity values, color information is taken into account. 3) 

Instead of using a single FSM, multiple FSM-based detectors are 

adopted to track different types of transitions, e.g., cut, fade in/out, 

dissolve, wipe, etc.. The new architecture is more flexible and 

modularized: each detector is independently designed and adjusted, 

and additional detectors can be easily plugged in to capture any 

new types of shot transitions. 

For the search task, we only participated in the fully automatic 

search evaluation task, collaborating with Columbia University 

(CU). The baseline submissions are based on the existing systems 

built in CU, and query expansions based on the name entities 

extracted from various external data are built on top of the baseline 

systems.  

We combined several tools from existing systems to better 

organize the BBC data and showcased it in the MIRACLE system.  

A large set of the LSCOM visual concepts, as trained on the TV05 

dataset by Columbia University, were extracted for the rushes data 

and an audio sound-type classifier (roughly trained on the BBC06 

data) was applied to mark interested audio events, e.g., speech, 

silence, and noise. We also automatically generated a semi-

synchronized script from the scanned documents provided by 

NIST to provide certain search capability.  

This paper is organized as follows. Section II gives a detailed 

description of the shot boundary determination system. Sections III 

and IV briefly address our work on the search and rushes 

exploitation, respectively. Evaluation results are also presented in 

these sections. Finally, we draw our conclusions in Section V.  

 

II. SHOT BOUNDARY DETERMINATION 

 

2.1 Overview  

Fig. 1 shows the high level diagram of the shot boundary 

determination system. To decode the TRECVID evaluation 

sequences which are in the MPEG-1 format, we use the open 

source MPEG decoder, developed by the MPEG Software 

Simulation Group (MSSG) [5]. Although this codec is not the most 



efficient choice, it is easy to manipulate and is portable, such that 

we can run the SBD system on both Windows and Unix platforms.  

There are three main components in the system: visual feature 

extraction, shot boundary detectors, and result fusion. The top level 

of the algorithm runs in a loop, and every loop processes one 

image frame. Each new frame is saved in a circular frame buffer, 

whose size is 256 frames. The extracted visual features are saved 

in a circular feature buffer with the same size. For ease of 

developing the algorithm, most parameters that we mention (e.g., 

the buffer size) in this section can be configured in a control file. 

To simplify the notation, we will refer to the adopted values 

directly in the rest of this section. The frame and feature buffers are 

shared by all shot detectors, such that common features can be 

reused, and detector specific features can be easily computed. The 

size of the buffer is determined by the maximum duration of shot 

transitions. The loop continues until all frames in the MPEG file 

are processed. 

 
Fig. 1. Overview of the SBD system 

 

Given the wide varieties of shot transitions, it is difficult to 

handle all of them using one super detector. Our system adopts a 

“divide and conquer” strategy for SBD. We built six independent 

detectors, targeting for six dominant shot boundaries in the SBD 

task. These detectors are cut detector, fast dissolve (less than 5 

frames) detector, fade in detector, fade out detector, dissolve 

detector, and wipe detector. With this architecture, each detector 

can be tuned separately, and new detectors can be easily plugged in 

when necessary. 

Essentially, each detector is a finite state machine (FSM), whose 

state is changed by checking the new frame. Each FSM may have a 

different number of states, but for all FSMs, we intentionally use 

state 1 as the shot detected state. The advantage is that at the end of 

each loop, we can easily find out whether new shot boundaries are 

detected by checking the states of all FSMs. The results of all 

detectors are merged together in the temporal order.  

The top level loop of the algorithm terminates when all frames 

in the MPEG file are processed. Then, the results generated by the 

six detectors are fused. Since these results may be overlapped (e.g., 

a cut overlapped with a fast dissolve), the fusion block needs to 

merge and clean up the overlapped shot boundaries. Finally, to 

comply with the TRECVID SBD format, we map all shot 

boundaries except cuts into gradual. 

 

2.2 Feature Extraction  

For each frame, we extracted a set of visual features. They can be 

classified into two types: intra-frame visual features and inter-

frame features. The intra-frame features are extracted from the 

single, specific frame, and they are color histogram, edge, and 

related statistical features. The inter-frame features rely on the 

current frame and one previous frame. They capture the motion 

compensated intensity matching errors and histogram changes.  

 
Fig. 2. Visual feature extraction 

 

Fig. 2 illustrates how these visual features are computed. The 

resolution of the TRECVID evaluation sequences is 240x352 

pixels. The visual features are extracted from a central portion of 

the picture, which we called the region of interest (ROI). The ROI 

is marked by a dashed rectangle in Fig. 2 overlaid on the original 

image. The choice of the ROI size is based on two considerations: 

1) The ROI covers the majority of the image and normally the 

center of the image captures more content. 2) The ROI gets rid of 

the border of the image where usually sliding text or black bands 

(when showing wide screen content) appear. 

Within the ROI, we extract the histogram of red, green, blue, 

and intensity channels. Based on the histogram, we compute a set 

of common statistics, including the average, the variance, the 

skewness (the 3
rd

 order moment), and the flatness (the 4
th

 order 

moment). We also extract a visual feature called histogram 

dynamic range, which roughly measures how wide the histogram 

spreads. Fig. 3 shows the intensity histogram of a frame. To 

compute the intensity dynamic range, we first search the histogram 

from both ends, until the accumulated mass of both sides is more 

than 2%. Then the dynamic range is the difference of these two 

values. In Fig. 3, the low intensity value L is 16 and the high 

intensity value H is 175, and consequently, the dynamic range is H 

- L = 159. Similarly, we compute the dynamic range for red, green, 

and blue channels.  

 
Fig. 3. The computation of histogram dynamic range 

 

For each pixel in the ROI, we compute its discontinuities in the 

horizontal (respectively, vertical) direction by Sobel operators [7]. 

If the value is higher than a threshold, the pixel is labeled as 

horizontal (respectively, vertical) edge pixel. Finally, we use the 



ratio of the total number of horizontal (respectively, vertical) edge 

pixels to the size of ROI as an edge based feature.  

We compute two sets of inter-frame features, one is based on the 

current frame (frame c) and the previous frame (frame c-1), and the 

other is based on the current frame (frame c) and the frame that is 

N frames away, where N=6 (frame c-6). The first one is to capture 

frame by frame changes, and the second one is to capture the 

change over a longer period, which is useful for detecting smooth 

changes in the video. In this section, we describe how the first set 

of inter-frame features is computed, and the second set of features 

can be computed in a similar fashion. 

  The temporal derivative (delta) of a feature (e.g., histogram 

mean) is fitted by a second-order polynomial to make it smooth 

[8]. The delta values of histogram mean, variance, dynamic range 

are computed. The distance between two single channel (e.g., red) 

histograms is computed based on the quadratic color histogram 

distance [9]. Assume g and h are two histogram vectors and A=[aij] 

is the similarity matrix, the distance between g and h is computed 

by,  

d(g, h) = (g - h)
t
A(g - h), where aij=1 – |i-j|/255. 

The overall difference (e.g., histogram mean) is computed as a 

weighted summation of the difference of channels R, G, and B. 

The weighting factors are 0.299, 0.587, and 0.114, respectively. 

In addition to the red, green, blue (RGB) based histogram 

distance, we also compute the histogram distance in hue, 

saturation, value (HSV) space. Basically, the HSV space is vector 

quantized into 256 bins, where H and V values are assigned 8 

levels each, and the S value is assigned 4 levels. We compute the 

corresponding A matrix using the centers of each bin.. Assume the 

centers of two bins i and j are {hi, si, vi} and { hj, sj, vj}, then aij is 

computed as, 
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Motion features are extracted based on square blocks within the 

ROI. Specifically, in Fig. 2, we split the ROI (192x288 pixels) into 

24 blocks (4 by 6), each with the size 48x48 pixels. Based on our 

observations, the motion information extracted from bigger block 

sizes (e.g., 48x48) is more reliable than those from smaller sizes 

(e.g., 8x8). The search range of motion vector for each block is set 

to 32x32. It could be either an exhaustive search for better 

accuracy or a hierarchical search for higher efficiency. The motion 

features for each block include the motion vector (mvk), the 

matching error (mek), and the matching ratio (mrk). The matching 

ratio is the ratio of the best matching error with the average 

matching error within the searching range. mrk measures how good 

the match is, the lower value the better. mrk is low when there is 

perfect matching and the block has significant texture. After the 

motion features of all blocks are available, we pick the dominant 

motion vector and its percentage (the ratio of the number of blocks 

with this motion vector to the total number of blocks) as frame 

level features. If the percentage is high enough and the motion 

vector is not (0, 0), we set the motion flag to 1, otherwise we set it 

to 0. We then sort the arrays of matching error (respectively, 

matching ratio), and compute the mean, ME
A
 (resp. MR

A
); the 

median, ME
M

 (resp. MR
M

); the average value (high) of the top N/3 

blocks, ME
H
 (resp. MR

H
); and the average value (low) of the 

bottom N/3 blocks, ME
L
 (resp. MR

L
). Table I summaries all 

features extracted from one frame.  

 

 

 

 

Table I. List of visual features 

Type Visual feature Dimension 

Histogram mean (HMR, HMG, 

HMB, HMI) 

4 

Histogram variance (HVR, HVG, 

HVB, HVI) 

4 

Histogram skewness (HSR, HSG, 

HSB, HSI) 

4 

Histogram flatness (HFR, HFG, 

HFB, HFI) 

4 

Histogram dynamic range (HDRR, 

HDRG, HDRB, HDRI) 

4 

Intra-

frame 

Edge ratio (Horizontal and 

Vertical) 

2 

Delta histogram mean (DHMR, 

DHMG, DHMB, DHMI, DHMA) 

5 

Delta histogram variance (DHVR, 

DHVG, DHVB, DHVI, DHVA) 

5 

Delta histogram dynamic range 

(DHDRR, DHDRG, DHDRB, 

DHDRI, DHDRA) 

5 

Histogram distance (HDR, HDG, 

HDB, HDI, HDA) 

5 

Histogram distance in HSV space 1 

Motion flag and block percentage 2 

Motion vector (horizontal, 

vertical) 

2 

Average (MEA), low (MEL), high 

(MEH), median (MEM)of  

matching error 

4 

Inter-

frame 

(1 frame) 

Average (MRA), low (MRL), high 

(MRH), median (MRM) of  

matching ratio 

4 

Inter-

frame 

(6 frames) 

The same as inter-frame (1 frame) 33 

Total  88 

 

2.3 Shot boundary detectors 

In this section, we describe 6 detectors, which detect 6 common 

shot boundaries: cut, fast dissolve (less than 5 frames), fade in, 

fade out, dissolve, and wipe. These 6 types of transitions cover 

most shot transitions in TRECVID sequences and they can be 

detected relatively reliably. 

Each detector is implemented as a finite sate machine. Before 

we touch the specific details of each detector, we first introduce 

their common characteristics. Each FSM has a set of states, labeled 

from 0 to N, where N is equal to 3 or 4. State 0 is the initial state, 

waiting for the trigger of a certain event. State 1 is used to flag the 

detection of certain shot boundaries. The other states are used to 

represent the intrinsic patterns of various shot boundaries. The 

state of the FSM is determined by a set of state variables. There are 

three basic state variables that are common for all FSMs: state_id, 

which is the state of current FSM, start_frame, which is the last 

frame of previous shot, end_frame, which is the first frame of the 

new shot. Some detectors may have an additional state variable to 

track an adaptive threshold value used for determining the state 

transitions. 

2.3.1 Cut detector 

Fig. 4 illustrates the FSM for cut detector and its state variables. 

There are four states in the cut FSM and one of its state variables, 



AverageME, is used to track the average value of matching errors. 

Its initial value is set to 5.0, and it is updated whenever the state is 

0 with the following infinite impulse response (IIR) filter, 

AverageME =  AverageME * 0.85 + MEA * 0.15 (1) 

 
Fig. 4. Cut detector 

 

The function IsAbruptChange compares the average matching 

error (MEA) of the current frame (frame c) with a threshold, which 

is 5 times of AverageME. If the current MEA is bigger than the 

threshold and it is bigger than those of five previous frames, 

function IsAbruptChange returns true, otherwise, it returns false. If 

the current frame satisfies the abrupt change criteria, the FSM 

enters state 2, and the start_frame and end_frame are set to c - 1 

and c respectively. Using AverageME to determine the threshold 

adaptively, instead of a fixed threshold enables the cuts in low 

intensity frames to be reliably detected.   

When the FSM is in state 2, it tests whether the current frame is 

a valid neighboring frame of a cut. Basically, the function 

IsAbruptNeighbor compares the matching errors of current frame 

and the previous frame. If the MEA of the current frame is smaller, 

the function returns true, otherwise it returns false. If the current 

frame is still an abrupt change, the FSM stays at state 2, updating 

the start_frame and end_frame, otherwise, it returns to state 0. 

State 3 simply waits for 3 more frames such that we can verify the 

cut using more neighboring frames. The VerifyCut function 

compares frame start_frame with all frames from end_frame + 1 to 

end_frame + 3, and frame end_frame with all frames from 

start_frame – 4 to start_frame – 1. The similarity is determined by 

both motion compensated matching errors and pixel-wise image 

correlation. The purpose is to detect any camera flash related false 

alarms. 

 We found that the cases when cut happens only on a portion of 

a frame are not consistently labeled in TRECVID references. We 

call these cases local cut, and this occurs, for example when there 

is a cut in a video that has been inserted into a small window in a 

static shot. In our system, we use the low matching error MEL to 

control whether a local cut is detected or not. Enabling local cut 

detection leads to higher recall, but lower precision.  

Besides the threshold based cut verification method, we also 

developed a support vector machine (SVM) [10] based cut 

verification engine. Fig. 5 illustrates the feature extraction method 

for SVM input. Assume k is the end_frame of a candidate cut, and 

we extract four groups of features. The first group is the original 

visual features (88 dimensions) of frame k. The second group is the 

mean and the standard deviation of all features within an 11 frame 

window centered at k. The third group is the same statistics on a 21 

frame window. The last group of features is based on a 31 frame 

window. All these features are concatenated together into a 616 

dimension feature vector and it is used for SVM input. More 

details about SVM training can be found in Section 2.3.7. 

 
Fig. 5. Feature extraction for cut verification using SVM 

 

2.3.2 Fast dissolve detector 

Fig. 6 shows the fast dissolve detector FSM, which contains 4 

states, and has 4 state variables.  

 
Fig. 6. Diagram of fast dissolve detector 

 

The fast dissolve is triggered by a medium change of the matching 

error, where MEA is bigger than 2 * AverageME. AveageME is 

initiated by a value of 5.0, and it is updated using formula (1) 

whenever the FSM is in state 0. When the FSM changes from state 

0 to 2, state variables start_frame and end_frame are set to c - 1 

and c. State 2 stays at the same state if the current frame keeps 

being a medium change, or it jumps to state 3 and updates 

end_frame to be c. State 3 simply waits for 3 more frames, and 

then it verifies whether the candidate transition is really a fast 

dissolve. 

 
Fig. 7. Typical fast dissolve 

 

Fig. 7 shows a typical fast dissolve, which spans 3 frames. Let 

X, Y, and Z denote the start_frame, end_frame, and a middle frame 

of the fast dissolve transition. We require that the duration of the 

fast dissolve transition be less than 5 frames, so it is reasonable to 

assume that there is no motion involved in the transition. With this 

assumption, Z can be written as a linear combination of X and Y, Z 

= αX + (1 - α)Y, where 0 ≤ α ≤ 1. The value of α can be 

determined by a min square error criteria. If the fitting error is 



smaller than a preset threshold and 0.2 ≤ α ≤ 0.8 for all middle 

frames of the transition, then the VerifyFastDissolve function 

returns true, otherwise, false. 

2.3.3 Fade in detector 

Fade in can be reliably detected using the intensity histogram 

variance. Low variance (not necessarily low intensity) is a strong 

indicator for the beginning of fade in. Normally, fade in transitions 

start from a group of low variance frames and then the variance 

gradually increases until it becomes stabilized. Fig. 8 shows the 

diagram of fade in detector FSM. The FSM contains 5 states and 3 

state variables. State 2 is activated when the current frame is in low 

variance mode and the start_frame is set to record the starting of 

the transition. When the frame is no longer of low variance, the 

FSM moves to state 3, and stays there as long as the variance 

increases significantly. Once the variance is stable or starts to 

decrease, FSM enters state 4, where the verification is conducted.  

 
Fig. 8. Fade in detector 

 

The verification code pinpoints the start and end frames of the 

candidate fade in transition based on the variance value, and it then 

measures the linearity of the standard deviation (STD) of the 

intensity (the square root of intensity variance). We use r2 as a 

measure of linearity in linear regression. Assume we have a set of 

pairs: {xi, yi}, 1 ≤ i ≤ N. By min square error, we get the optimal a 

and b, such that the following error is minimized, 
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and y is the mean of {yi}. If the linearity of the STD curve is 

higher than a certain threshold, the VerifyFadeIn function returns 

true, otherwise, it returns false. 

2.3.4 Fade out detector 

The fade out detector is also triggered by low variance frames. 

The corresponding FSM is shown in Fig. 9. State 2 is the low 

variance state, and it goes to state 3 when the current frame’s 

intensity variance is no longer low. State 3 pinpoints the starting 

and ending frame of the transition, and verifies whether the 

candidate transition is a fade out or not. The verification procedure 

is similar to that of the fade in detector. The main method is to 

check the linearity of the standard deviation of the intensity 

variance.  

Very often, fade in and fade out transitions are adjacent, and the 

overlapped fade in and fade out transitions are merged into a FOI 

transition in the result fusion stage to be consistent with the 

TRECVID labeling conventions. 

 
Fig. 9. Fade out detector 

 

2.3.5 Dissolve detector 

Dissolve is the main gradual transition, and we will present more 

details in this section. It is well known that the intensity variance is 

a good indicator for detecting dissolve. Assume that the dissolve is 

a procedure of linearly mixing of two different scenes X and Y, 

and Zi is one intermediate frame, then we can use the following 

formula to represent Zi, 

YXZ
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where {αi} are a set of monotonically increasing values that are in 

the range of [0, 1]. Let the variances of X, Y, and Zi be σ
2

X, σ
2

Y, 

and σ
2

Zi. If we also assume X and Y are independent, then we 

have, 
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If σ
2

X = σ
2

Y, the curve for σ
2

Zi is a symmetric quadratic function, 

shown as in Fig. 10 (a). But in typical cases, the curve is more like 

that shown in Fig. 10 (b), where σ
2

X is not equal to σ
2

Y, and X and 

Y are not independent. When the variance of either X or Y is 

small, the variance curve may not contain both the decreasing and 

increasing patterns such as in Fig. 10 (c) which shows an example 

where σ
2

Y is small. 

 
Fig. 10. The variance curves of some typical dissolve transitions 

 

The dissolve detector is designed to capture the characteristic 

curves shown in Fig. 10. Fig. 11 illustrates the proposed dissolve 

detector, which has 5 states and 4 state variables. AverageVariance 

is used for pinpointing the start_frame and end_frame of the 

dissolve transition. Its initial value is 3.5 and it is updated by 

following IIR filter in state 0, 

AverageVariance =  AverageVariance * 0.85 + HVI * 0.15 

State 2 is the variance decreasing state, which corresponds to the 

decreasing part in Fig. 10 (a), and state 3 is the variance increasing 



state, which corresponds to the increasing part in Fig. 10 (a). The 

design of the FSM allows that the cases when either σ
2

X or σ
2

Y is 

small are reliably handled.  

 
Fig. 11. Dissolve detector 

 

The verification part is the key component of the FSM, and its 

main purposes are 1) precisely determines the boundaries of the 

dissolve, and 2) verifies the candidate dissolve. The main challenge 

is that the variance curve may not be smooth due to motion or 

camera flashes in the original sequences X and/or Y. For 

verification purposes, we extract a set of heuristic features based 

on the entire transition. The following example illustrates the 

details. 

Fig. 12 shows a typical dissolve, and the numbers below the 

images are their frame numbers. The dissolve starts from frame 

20445, and ends at frame 20458. Corresponding variance and delta 

variance curves are plotted in Fig. 13.  

 
Fig. 12. An example of dissolve 

 

From the variance curve, we first pinpoint the starting and 

ending frames. To do that, we start from the minimum variance 

frame in the candidate transition, and then search forward and 

backward for the maximum absolute delta variance frames, which 

are fmin and fmax in the figure. Then from fmin, we further search 

backward until the delta variance of the current frame is less than 

half of the delta variance of the next frame or 2*AverageVariance. 

This frame is set as the Start_frame of the candidate dissolve. 

Similarly, we search from fmin forward, and locate the End_frame. 

The middle of the transition is Middle_frame = (Start_frame + 

End_frame)/2. 

 
Fig. 13. The curves of variance and delta variance 

 

Then a set of heuristic measurements are taken from the 

variance and delta variance curves. The height of the variance 

curve, Δ, is the difference of the maximum and minimum variances 

within the transition. Ratios hr1 = Δ / min{variance(start_frame), 

variance(end_frame)} and hr2 = Δ / max{variance(start_frame), 

variance(end_frame)} are computed to measure the relative height 

of the variance curve. Knowing that the variance curve is roughly a 

second order polynomial function, the delta variance should be 

roughly a linear curve. We do a linear regression for the delta 

variance within this range, and measure the r2 which is defined in 

formula (2). As byproducts of the linear regression, we also have 

the slope s. Similarly, we fit the intensity mean by a linear curve, 

and compute the corresponding r2 and s. We also use the duration 

between fmin and fmax, as one feature, and its ratio to the transition 

duration, denoted by r = l/L, as another feature. 

Then, we measure how well each image in the transition can be 

estimated from neighboring images. We used five ways to estimate 

Zi, i = 3,…, L-2: 1) by Zi-2, 2) Zi-1, 3) by Zi+2, 4) by (Zi-2 + Zi+2)/2, 

and 5) by αiZi-2 + (1-αi)Zi+2. The estimation errors are denoted by 

DEPi, DEOi, DEFi, DEEi, and DELi. The maximum of {DEOi} is 

Max_DEO. For the fourth estimation, we compute the estimation 

confidence, DEE_Confi, as sqrt(min(DEPi, DEFi) / DEEi).   The 

maximum of {DEEi}, Max_DEE, and the average of 

{DEE_Confi}, Avg_DEE_Conf, are also used for verification 

purposes. For the last estimation, we have {αi} and confidence 

{DEL_Confi}, which is computed by sqrt(min(DEPi, DEFi) / 

DELi). Based on these, we compute the maximum of {DELi}, 

Max_DEL, the average confidence of {DEL_Confi}, 

Avg_DEL_Conf, and the worst {αi}, WorstAlpha, which is 

computed as max{abs|αi-0.5|}. For dissolves, ideally, WorstAlpha 

is 0 (since αi is 0.5). 

To find out the spatial distribution of matching errors, we 

compute the absolute pixel-wise difference image between frame 

Middle_frame-2 and frame Middle_frame+2. The average value of 

the difference image, and its horizontal and vertical centroids are 

used as extra features, which are denoted as AvgDiff, DiffCH, 

DiffCV. 

Finally, we want to make sure that the dissolve introduces 

significant content change. We compute the histogram distance, 

motion matching errors, and pixelwise correlations for 3 pairs of 

frames: (Start_frame, End_frame), (Start_frame, Middle_frame), 

and (Middle_frame, End_frame).  

Similarly as with the cut detector, we need to differentiate those 

dissolves that are framewise or partially framewise. We have a 

flag, GlobalFlag, which is determined by DiffCH, DiffV, and MEL 



between Start_frame and End_frame. If DiffCH and DiffV are 

small and MEL is high, GlobalFlag = 1, otherwise, 0.  

Table II lists all the features we used for dissolve verification. 

Some features are omitted (e.g., edge related features) because they 

are not as promising as the others. 

 

Table II. Features for dissolve verification 

Type Feature # 

Variance  Height, hr1, hr2, r2, s, l, r  7 

Intensity  r2, s, 2 

Skewness Height 1 

Flatness  Height 1 

Delta 

variance 

Max_delta_variance 

Min_delta_variance 

2 

Estimation Max_DEO, Max_DEE, 

Avg_DEE_Conf, Max_DEL, 

Avg_DEL_Conf, WorstAlpha 

6 

Middle_frame AvgDiff, DiffCH, DiffCV 3 

Matching 

error 

Max MEA, max MEL, max MEA,(6 

frames apart), max MEL (6 frames 

apart), max histogram distance (6 

frames apart) 

5 

Global  Global flag 1 

Vertical edge  Max_Delta_Edge, Height, hr1, hr2, r2 5 

Horizontal 

edge 

Max_Delta_Edge, Height, hr1, hr2, r2 5 

Start_frame 

& 

End_frame 

CorrelationSE, RGB histogram 

distance, HSV histogram distance, 

MEM, MEL. MEH, MRM, MRL, MRH 

9 

Start_frame 

& 

Middle_frame 

CorrelationSM, RGB histogram 

distance, HSV histogram distance, 

MEM, MEL. MEH, MRM, MRL, MRH 

9 

Middle_frame  

& End_frame 

CorrelationME, RGB histogram 

distance, HSV histogram distance, 

MEM, MEL. MEH, MRM, MRL, MRH 

9 

Correlation CorrelationSE–0.5(CorrelationSM 

+CorrelationSM) 

1 

Total  66 

The baseline dissolve verification employs a sequence of 

threshold based criteria relying on these 66 features. A more robust 

approach is to apply SVM on this feature vector. More details 

about SVM training can be found in Section 2.3.7. 

2.3.6 Wipe detector 

Wipe is the most ill defined transition. There are more than 20 

different types of wipe that are commonly used in video editing 

and there is no single rule that applies to all of them. In this 

section, we describe our approach for detecting certain kinds of 

wipes. 

Fig. 14 shows the FSM we developed for wipe detection. 

AverageME is an adaptive state variable updated by formula, 

AverageME = AverageME * 0.85 + MEA * 0.15, and its initial 

value is set to 5.0.  

A frame is considered as a smooth change if its matching error 

MEA is bigger than 1.5*AverageME and less than 4*AverageME.  

State 2 is the smooth change state, and state 3 is the end of 

smooth change, and it also verifies the candidate transition is a 

wipe. If the verification logic passed, the detector enters state 1.  

 

 
Fig. 14. The Wipe detector 

 

In this system, we only consider one popular type of wipe, 

which is shown in Fig. 15. The transition starts from frame 21360, 

ends at frame 21378. Basically, the wipe starts from one scene, and 

it gradually changes to the second scene, where the dominant 

portion of every intermediate frame comes from either scene 1 or 

scene 2. Fig. 16 shows how we measure the fit of this model. 

 
Fig. 15. A sample of wipe transition 

 

In Fig. 16, we denote the starting and ending frames of the 

candidate wipe transition as X and Y, and one intermediate frame 

as Zi, i = 1, ..., L -1, where L is the duration of the transition.  

 
Fig. 16. Illustration of wipe verification 

 

For frame Zi, we partition it into 8x8 blocks, and for each block, 

we find the best match with motion compensation from both X and 

Y. The highlighted block k shows this procedure. If the best 

matching error is smaller than a preset threshold, it is considered as 

a valid match. In Fig. 16, for Zi, we mark those blocks that have 

valid matches from X in red, and those from Y in blue. The blocks 

that do not have valid match are painted in green. Then we 

compute the portion of blocks with valid match from X, denoted as 



xi, which is the ratio of red blocks to the number of all blocks, and 

the portion of blocks with valid match from Y, denoted as yi.  

Fig. 17 illustrates the ideal patterns of xi and yi. We use the 

linearity of xi and yi of the wipe candidate to verify it. 

 
Fig. 17. Curve of xi and yi for wipe verification 

 

2.3.7 SVM Models 

Support vector machines are now standard for fast and robust 

classification. While this discriminative classifier greatly reduces 

training time by analyzing only marginal samples, care must be 

given to the training parameters and underlying kernel used in an 

SVM. For our experiments, we evaluated both linear and radial 

basis functions in a 3-fold validation process. We searched 7 linear 

settings and 70 RBF settings with random subsets of our training 

set split into 80/20 training/testing partitions. All features are 

globally normalized to one before they are analyzed by the SVM. 

During the development of our classifier, we performed cross-

validation testing across permutations of both the TRECVID2005 

and TRECVID2004 datasets. We saw a performance degradation 

around 10% F1 when combining different data sets, so the final 

model was constructed with the TRECVID2005 data alone. 

 

2.4 Fusion of Detector Results 

Currently, fusion of detector results is conducted at the end, 

when all frames are processed. Fig. 18 shows a segment of the raw 

results from all detectors. Because some of the detectors may 

report the detected transition with delays, we need to sort the list of 

raw results by their starting frame (preFNum in the figure). 

 
 

Fig. 18. Segment of raw results 

 

Then we merge the overlapped fade out and fade in transitions, 

and rename them FOI, as used by the TRECVID reference. For 

example, the last two transitions in Fig. 18 become <trans 

type=“FOI” preFNum=“1728” postFNum=“1743” /> 

The next task is to merge all overlapped transitions with certain 

priorities assigned to different transitions. Currently, the order of 

priority we used is (from the highest to the lowest), FOI, dissolve, 

fast dissolve, cut, and wipe. The final step is to map the system 

types into two categories: cut and gradual. All shot boundaries 

except cuts are mapped into gradual. 

 

2.5 System Development Tools 

In order to effectively locate the weakness of the algorithm, we 

developed a set of tools to show the ground truth, the system 

results, and all false positives and false negatives. Fig. 19 is an 

interface that shows the ground truth and the system results. Fig. 

20 shows the false positives and false negatives.  

 

 
Fig. 19. Interface for showing the reference and system results 

 

 
Fig. 20. Interface for showing the system errors 

 

The interface is basically dynamic HTML written in JavaScript. 

The user can choose different evaluation sequences, and for each 

chosen sequence, the interface shows all frames of any selected 

shot, either from the reference or from the system result. The 

transition filter is also a useful feature, where the user can choose 

to show certain types of shots in the pull down menu on the left. In 

Fig. 19, only dissolves are shown for the reference transitions, and 

the selected dissolve is from 3823 to 3825. Note that these frames 

are marked in red and bold, and five extra frames on both side of 

the boundary are also shown. For efficiency, all frames are 

decoded and saved in advance for fast interactive response. The 

user can also specify a frame number, and browse 25 frames 

around that frame. The next 20 frames and the previous 20 frames 

<trans type="CUT" preFNum="1572" postFNum="1573" />  
<trans type="CUT" preFNum="1604" postFNum="1605" />  
<trans type="DISSOLVE" preFNum="1614" postFNum="1624" 

/>  
<trans type="CUT" preFNum="1672" postFNum="1673" />  
<trans type="FADEOUT" preFNum="1728" postFNum="1739" 

/>  
<trans type="FADEIN" preFNum="1733" postFNum="1743" />  



buttons allow the user to check more neighboring frames around 

the frame of interest. 

Fig. 20 represents a second user interface showing the system 

errors based on the evaluation tools provided by NIST. The 

insertion and deletion errors can be displayed separately, and 

similar to Fig. 19, the transition filter feature helps to show only 

interested types of errors, e.g., cut or dissolve only. 

While developing and adjusting our system, we found that 

combining these two interfaces were very effective and useful to 

analyze the weaknesses of the system and to easily figure out the 

common errors of the system. 

 

Table III. AT&T’s 10 submissions for SBD 

Run Block 

size 

Allowing 

local change 

SVM kernel 

for cut 

SVM kernel 

for Dissolve 

1 Y 

2 
48x48 

N 

3 Y 

4 
32x32 

N 

N/A 

5 Y 

6 N 

Linear 

kernel 

N/A 

7 Y 

8 N 
Linear 

9 RBF 1 

10 

48x48 

Y 

N/A 

RBF 2 

 

 

2.6 Evaluation Results 

Table III shows the 10 runs we submitted for shot boundary 

determination task. The first two runs are similar, and the only 

difference is that the first run allows local change for cut and 

dissolve, and the second one does not. The pair of the third and the 

fourth runs is similar to the first two, but the block size is different. 

The major difference between the last six runs and the first four 

runs is that the SVM is used for verification in runs 5 to 10, either 

for cut or dissolve. Runs 5 and 6 use linear kernel SVM for cut 

verification. Runs 7 to 10 use SVM for dissolve verification, with 

linear, and two RBF kernels trained with different kernel 

parameters.  

 

Table IV. The best runs of AT&T’s SBD submissions 

Performance (%) 
Run Category 

Recall Precision F-Measure 

Overall 85.5 89.2 87.3 

Cut 88.9 90.4 89.6 

Gradual 76.5 85.6 80.8 
8 

Frame based 87.1 91.9 89.4 

Overall 85.1 87.6 86.3 

Cut 89.4 90.4 89.9 

Gradual 73.6 79.5 76.4 
2 

Frame based 86.9 93.0 89.8 

Overall 83.8 90.5 87.0 

Cut 86.2 92.2 89.1 

Gradual 77.5 85.8 81.4 
10 

Frame based 87.4 92.3 89.8 

Overall 82.6 90.9 86.6 

Cut 86.1 92.3 89.1 

Gradual 73.1 86.9 79.4 
9 

Frame based 88.9 92.1 90.5 

 

The best results of AT&T’s submissions in different categories 

are shown in Table IV. For example, run 8 achieves the best 

overall result, and run 9 achieved the best frame based gradual 

detection result. The performance of cut is a bit lower than what 

we expected since better results were achieved on the TRECVID 

2005 and 2004 datasets. Gradual transition detectors provide good 

performance, which enabled the AT&T system to be one of the top 

contenders. In terms of F-measure, the SVM based dissolve 

verification boosts the overall performance by 2.5% and the 

gradual transition performance by 3.4%, which is significant. 

The frame based gradual transition performance of AT&T 

system achieves the best among all the participants, which means 

that the proposed gradual transition (mainly the dissolve) boundary 

location approaches are very effective. 

 

III. SEARCH 

 

3.1 Overview 

Automated search is an important first line approach for the 

exploration of complex multi-modal environments. The TRECVID 

environment provides a formal to evaluate complex query topics 

on a large database of multilingual video sources. In our 

experiments, we focused on text-search techniques and evaluated a 

system that automatically performs query expansion with named 

entities (NE’s); the addition of new proper names of people, 

organizations, and locations to an initial query topic. Our results 

show promise but need additional investigation before being 

deployed in a general framework. While the work in this section 

was developed at AT&T, it is purely exploratory research for the 

TRECVID evaluation and may or may not be included in future 

revisions of the MIRACLE framework. 

3.1.1 Related Work 

The information retrieval community at large has explored both 

query expansion and named entity detection independently. Most 

mature text search engines allow a user to perform query 

expansion automatically with a method called pseudo relevance 

feedback (PRF). With PRF, the most frequent words from a query's 

top scoring documents are identified and added to the initial query 

topic and then the revised query is evaluated again. Named entity 

detectors have also been studied for quite some time, with state-of-

the-art detectors achieving accuracy above 90% for people, 

organizations, and location. 

In one of the first works that named entities are employed to 

refine search results, [20] used named entities to re-rank text 

results by calculating the intersection of search results and a corpus 

of news articles published in the same time period. Other 

participants of TRECVID in the manual search category allowed 

operators to append named entities directly to the initial query to 

improve search results with domain specific information. In our 

approach, we combined these earlier methods with two important 

distinctions: we automatically search over an external document 

set for the expansion terms and we only consider named entities for 

expansion.   

 

3.2 Feature Extraction 

Basic query expansion is a simple task that has three steps: 

perform a search on a document dataset, collect the most frequent 

terms from the highest ranking documents, and finally execute 

another search using the new terms in addition to the initial query. 

The following sections describe the datasets, necessary pre-

processing, and finally our algorithm for query expansion. 



3.2.1 Dataset formulation 

In this experiment, we have two types of datasets:  internal and 

external.  The internal dataset is derived from the ASR scripts of 

the TRECVID data. We further partition the ASR scripts into story 

documents by automatically detected story boundaries. The 

external dataset is derived from data collected in the same time 

span as the TRECVID training (October 30, 2004 - December 1, 

2004) and testing (November 2, 2005 - December 30, 2005) 

partitions. No manual annotation was performed for either data set.   

3.2.2 External data 

For this task, external documents were collected from two 

sources: MIRACLE and NewsBlaster. The first data source was 

AT&T' MIRACLE system, which captures several broadcast 

programs of different genres (news, entertainment, sports, etc.) and 

performs a complete multimedia indexing on those programs.  The 

most relevant component here is the closed caption (CC) with ASR 

time alignment. A second data source was [12], a system that 

collects online news from hundreds of sources and summarizes the 

content of those sources. This data set is much larger in magnitude 

because hundreds of unique news articles were collected every 

day. Table V summarizes a few attributes of each document 

source. 

 

Table V. Summary of external data sources for QE search task 

 MIRACLE NewsBlaster 

# train 311 programs 54499 articles 

# test 339 programs 302624 articles 

Data type Aligned ASR+CC from 

recorded broadcast 

television 

Text articles from online 

news sources 

Frequent 

sources 

Nightly News, World 

News Tonight 

washingtonpost.com, 

dallasnews.com  

 

The motivation for collecting two distinct data sources was to 

test how much the original medium (broadcast television vs. online 

news) would affect the performance of expansion. Our intuition 

was that the NewsBlaster set may offer a richer set of NE 

expansion choices, but perhaps documents in the MIRACLE set 

would have much higher relevance because they came from the 

same domain as the TRECVID data and have a much smaller 

vocabulary. 

3.2.3 Story segmentation 

We employed a method developed in [18] for automatic story 

segmentation, developed by Columbia University. This method 

uses a probabilistic framework to learn and then identify story 

boundaries in each TRECVID broadcasts. Both visual and prosodic 

features are used in the boundary detection process, but we refer to 

the original paper for more detail. The actual model used in this 

task was trained labeled boundaries on the TRECVID2005 training 

set (a subset of the TRECVID2006 training set) and evaluated on 

all other broadcasts in the TRECVID2006 set. These boundaries 

were donated to the TREC community at large, so we feel that they 

are acceptable for a baseline of comparison. 

 

3.3 Document Preprocessing 

After the search documents have been created, either from the 

raw data collection in section 3.2.2 or by automatic story 

segmentation in section 3.2.3, they are processed for named 

entities. We used the named entity extraction and co-reference 

tracking routines included in the open source tool lingpipe [19]. 

The NE model was trained on the MUC6 English corpus. This 

software choice was important because it provided co-reference 

identification that was used to further link the found NE's. 

3.3.1 Enhanced entities 

We refer to enhanced entities as NE's that have additional 

information like a person's first and last name, a formal or role title 

(Mr., President, Senator, etc.), or a regional location context for 

people and organizations. With this additional information, we 

hope to disambiguate NE's across documents and even across data 

sets. The rules below describe how enhanced entities are 

constructed from the tagged output of this tool. 

• For people and organizations,  

1. Preceding word is of type NN, append it to the role (i.e. 

Mayor Bloomberg). 

2. More than one NE in a sentence and the preceding word 

is of type NP, set it as the regional location for this 

person or organization (i.e. NYC Mayor Bloomberg) 

3. More than one NE in a sentence and the word in two 

positions prior is of type NP or JJ, prefix it to the role of 

this NE (i.e. Senator Clinton of New York). 

• For locations, if the word immediately before the NE is of 

type IN and there are multiple NE’s in the sentence, then set 

the regional location attribute to this word (i.e. in Columbus, 

Ohio). 

We add both the raw NE and the enhanced NE to our lexicon of 

NE's.  At the time of this writing, we require all fields to match for 

a lexicon match.  In future versions of this system, we would like 

to employ a more systematic matching of NE's in the lexicon so 

that the goal of disambiguation achieved across more documents. 

 

3.4 Query Topic Processing 

Query topic processing is a very rich subject and has entire 

evaluations within NIST devoted to it alone; the most popular 

conferences are TREC-9 and TREC-10 or ACQUIANT. We 

choose to use a very simple query processing approach that 

consists of NE and keyword identification. Section 3.5.2 discusses 

a revision to this system that creates class-dependent models for 

input queries, but only one, global model was evaluated for the 

submitted TV06 runs. For any single text query, we evaluate its 

performance by retrieving its source shots and scoring them with 

the standard AP metric. 

3.4.1 Initial query formation 

Initial query formation uses a set of cascading rules that stop 

upon the first identification of NE's, nouns, or verbs. The refined 

input query is then stemmed and stop words are pruned. This 

formulation worked well for prior TREC evaluations but we note 

that it looses strength as query topics get more qualitative. 

3.4.2 Expansion candidates 

We define an expansion candidate as the initial query with 

additional named entities that were automatically detected. An 

expansion candidate is formulated differently depending on 

parameters that control the depth and richness of the query 

executed on the external database. We form a single expansion 

candidate with the following steps. 

• Execute the initial query on an external data set (defined in 

section 3.2.2) 

• Keep only the top K scoring documents from the external 

search. 

• Accumulate counts for all named entities found in the external 

search and order by decreasing count. Append the top N 

entities from this list to the initial query. 

• Generate an expansion candidate where only people NE's are 

kept in the last step, where O is true.   



We created different parameter ranges based on limits on the 

total documents available and the number of NE's present in either 

data set. In total, there are 100 different parameter settings that are 

evaluated for a single initial query; K as values (5, 10, 25, 50, 100) 

and N as values (1, 2, 3, 4, 5, 10, 50, 100, 150, 200) and O as 

values (true, false). 

3.4.3 Predicting best expansion 

Our goal for query expansion is to produce the expansion 

candidate with the highest AP. The primary constraint in choosing 

the best expansion was that the system needed to offer a gain on 

the AP score of the initial query, described in 3.4.1. We evaluated 

the TRECVID2005 topics on the TRECVID2005 test set as 

training data and found no consistent parameter setting that worked 

well for all query topics. For example, on the topics that saw the 

largest AP increase (“Find shots of Condoleeza Rice” at 0.168 and 

“Find shots of Omar Karami, the former prime minister of 

Lebenon” at 0.046), we used different expansion settings of K=5, 

N=200, O=false and K=5, N=10, O=false respectively.  One way to 

satisfy the AP gain requirement is to automatically select the best 

parameter settings from the entire set of expansion candidates. 

Related work in [13] predicted the gain in AP by labeling images 

versus automatically acquiring a new set of images for the task of 

concept detection. We analyzed this approach and its inspiration, 

which predicted query difficulty [14], to develop our framework.  

Using an SVM classifier, we created a regression model using the 

following 32 features that compare the ranked lists of shots 

generated by the initial query and an expansion candidate. 

• Intersection histogram - calculate the number of intersecting 

documents in the top 10 results of sub-queries executed for 

each word in an expansion candidate (see [14] for details), 

• Distance statistics - the mean, standard deviation, minimum, 

and maximum of distances between the initial query and the 

expansion candidate, 

• Pearson correlation coefficient,  

• Spearman rank coefficient and Student's-t test, 

• Fisher score, 

• Average dynamic recall, 

• Discount cumulated gain. 

 

3.5 IB Reranking 

In a method based on the probabilistic framework from section 

3.2.3, we also analyzed results after using Columbia University's 

information bottleneck (IB) reranking tool in [15].  This method 

uses probabilistic smoothing over all shots and local kernel 

estimation from a ranked list to reorder shots within a list.  Please 

refer to the original paper for details on the algorithm itself. 

 

3.6 Result Analysis 

We configured our submitted runs in a way such that the 

components in each run built upon each other; refer to Table VI for 

specific configurations and names of the submitted runs.  Note that 

for runs S2, S4, S5, S6 logic in the algorithm only selected a query 

expansion candidate if its AP score was predicted to be better than 

its corresponding baseline. 

• S1: Our baseline text run demonstrates that our text search 

utility (MySQL full-text search) is quite competitive and 

sufficient for this application.   

• S2: Unfortunately our story baseline run was lackluster when 

compared to S1. This result was much lower than expected 

and we are currently investigating the underlying cause. 

• S3: Our model predicted better performance for three 

expansion topics: 178 (Cheney), 181, 182.  

• S4: Our model only selected topic 179 (Hussein) for 

expansion. There is marginal improvement in overall MAP, 

but almost 13% relative AP gain on this topic. 

• S5: Story baseline expanded with NE's from NewsBlaster. 

This run had lower AP than even S2 because the regression 

model only correctly predicted AP gain on two of the six 

topics that were enabled. 

• S6: Post-processed S4 with the IB reranking tool (section 3.5). 

This run demonstrates that cross-modality searching is always 

better than text search alone. The only AP loss was seen on 

topics where S4 originally achieved less than 0.01 AP. 

 

Table VI. Description of submitted AT&T search runs for TV06 

Run MAP Components 

S1 0.0331 text (baseline 

S2 0.0342 story 

S3 0.0330 text + MIRACLE 

S4 0.0348 story + MIRACLE 

S5 0.0298 story + NewsBlaster 

S6 0.0383 story + MIRACLE + IB 

 

The story told by score progression is reassuring; as we add 

multi-modal analysis (text to story), query expansion, and even IB 

reranking, there is an apparent gain in scores.  Fig. 21 displays the 

performance of the different runs described above. 

Finally, we were surprised to see that the NewsBlaster model 

performed worse than the baseline when chosen for queries 

containing named entities. This is contrary to traditional behavior 

of NE expansion tasks, where named queries and sports queries 

usually experience the most benefit. 

 
Fig. 21. AP scores for AT&T search submissions. 

 

3.6.1 Prediction accuracy 

Prediction accuracy was mixed for the different query topics and 

story or text baseline searches. While we are still investigating the 

strength of the regression models, we attribute this volatility to two 

reasons: data set size differences, more qualitative description in 

query topics.   

First, the training dataset for the regression model (the test 

partition of TV05) only encompassed one half of a month while the 

testing dataset (the test partition of TV06) was almost two months. 

In numerical terms, this equates to 140 programs and 45766 shots 

for training versus 259 programs and 79484 shots for testing. Not 

only does this influence the number of results that could be 

returned in a text search, it dilutes ranking distances and 

correlation statistics, which are the majority of features for the 

regression model. We must also concede that training on 24 topics 



alone (the TV05 topics) is not ideal and could have lead to 

increased sensitivity to certain types of queries. 

Our second intuition for low prediction accuracy was the 

increase in qualitative requirements fro the TV06 query topics. As 

described in section 3.4.1, our topic filtering process is quite 

simple. Unfortunately, logical operators like or, not, and, except 

and numerical operators are not preserved in the formulation of the 

initial query. For example, “Find shots of at least one person and 

at least 10 books” becomes “person books” (topic 190) and the 

query “Find shots with a view of one or more tall buildings (more 

than 4 stories) and the top story visible” becomes “view buildings 

stories story” (topic 174). Consequently, for topics that had a 

logical or numerical requirement scored roughly zero AP. 

A final point could be argued that the query topics for TV06 

contained fewer named entity and sports topics, which seemed to 

benefit the most from query expansion, but we do not believe that 

the factor should affect the prediction accuracy of the regression 

models. 

3.6.2 Class dependent models 

Recent work by other members in [21] has suggested that a 

query class dependent strategy may work best for this broad range 

of topics. If we used a query class strategy with this algorithm, it 

may also eliminate the need for the regression modeling stage and 

allow for fixed parameter settings, whose optimal selection has the 

largest potential for performance degradation. 

We are currently investigating this topic and plan to update this 

report with an in-depth performance analysis soon. 

3.6.3 Conclusions 

Our experiments demonstrate that named entity query expansion 

does improve automated search performance within the TRECVID 

setting. This conclusion is meaningful because it offers a fully 

automatic method to improve query formulation. At this time, 

however, the gains from the NE-QE framework are marginal. We 

plan to investigate how the automatically trained regression models 

can be improved, why gain prediction failed in some cases, and 

whether using a strict on/off decision performs better than selecting 

the expansion candidate with the highest predicted gain. 

We also observe that using the IB reranking scheme, S5, 

(discussed in 3.5) will almost always improve the scores of the 

expanded query. This is not surprising because the queries 

themselves are executed only in the text domain and therefore have 

numerous false positives.   

Finally, we hope to analyze performance of this algorithm using 

general expansion terms; for example, using lexically similar 

expansions and words within definitions of terms or concepts in a 

query topic. 

 

IV. BBC RUSHES EXPLOITATION 

 

We combined several tools from existing systems to better 

organize the BBC data and showcase it in the MIRACLE system. 

We used our motion-based shot segmentation (not the one used in 

the SBD task this year) that may help to determine important shot 

operations like panning and tilting but is semi-resilient to non-

steady camera handling. We also used a large set of the LSCOM 

visual concepts, as trained on the TV05 dataset by Columbia 

University. On the audio side, we applied an audio sound-type 

classifier and a speaker segmentation algorithm. Finally, for text 

search, we have automatically generated a semi-synchronized 

script from the scanned documents you provided. We will present a 

demo and prepare background on the techniques and the system for 

a poster presentation. 

 

4.1 Main Approaches 

We applied a multi-modal approach to more intuitively parse and 

search the BBC data. The BBC data included very little annotation, 

which is traditionally the strongpoint for text-based search 

strategies. Additionally, the annotation included was most 

descriptive of camera actions and events that occurred over a large 

amount of time, so common approaches that exploit semantic 

expansion and lexical ontology would be generally weaker for this 

dataset. In the following sections, we explore user browsing 

strategies strongly focused on audio and video content, which are 

easily integrated into MIRACLE’s XML-based framework. 

4.1.1 Concept Browsing 

We used concept models trained at Columbia University that 

were derived from the LSCOM annotation. These models provided 

374 different classifiers based on three core visual features: color 

moments, Gabor textures, and edge direction histograms. Please 

refer to Columbia University’s TRECVID 2006 report for specific 

details. Keyframes for the BBC data were derived from the 

MIRACLE’s shot segmentation engine [11]. It should be noted that 

because of development concerns, this engine is not the model that 

was used in the shot boundary task described in section II. 

 

 
Fig. 22. Concept AP scores on TRECVID2006 and BBC datasets. 

 

Cross-domain application of models is not a trivial task. We 

applied the concept models described above directly on the 

keyframes generated for the BBC data.  The AP for the best 

performing BBC and TRECVID concepts are shown in Fig. 22. 

While we expected different model performance on the BBC and 

TRECVID datasets, we were pleased to find that some concept 

models were robust enough to handle the drastically different data.  

For example, general scene concepts like outdoor, crowd, person 

all worked well in both BBC and TRECVID data sets.  However, 



specific object concepts, like cars or ties performed very poorly on 

the BBC dataset.  

We attribute the performance loss seen in Fig. 22 between the 

two datasets to not only a low-level data difference (like color), but 

also a difference in concept frequencies.  The further illustrate this 

point, we have included the frequency of positive classifications in 

the BBC data set in both graphs. In future work, we plan to analyze 

methods to adapt these models to the new BBC data domain with 

minimal re-labeling of the BBC data. 

4.1.2 Visual similarity  

We use the features computed for the concept browsing task to 

compute image similarity within a single BBC video. First, we 

concatenate all of the visual features to make a single vector of 346 

dimensions. Next, distances between all images are computed with 

a kernelized inner product. The distances are then normalized by 

the maximum distance between all images in a single video to 

produce a frame-level similarity between zero and one. 

We further leverage frame-level distance to produce a 

hierarchical scene representation, as seen in Fig. 23.  Scenes are 

constructed by greedily clustering frames by their frame distance 

until the ratio of the newest frame in a cluster to all other frames in 

a cluster exceeds some threshold.  In future revisions, these 

automatically formulated scenes can be used as an aide for video 

summarization. 

 
Fig. 23. Scene-level BBC image clustering 

 

4.1.3 Audio sound-type classification 

We manually annotated 18 videos from the BBC data. These 

videos were randomly selected from the development set so as to 

maximize the diversity of class labels. A total of 15 audio classes 

were annotated, but we found that the data for most of these classes 

was too sparse or inconsistent to train accurate sound models. For 

the actual task and model development only male and female 

speech were analyzed; all other labels were grouped into a noise 

class. 

We classify the audio sound types at two levels. At the first 

level, an audio file is classified into speech and non-speech 

segments. At the second level, speech segments are further 

classified into male and female speech segments. Although both 

use the Gaussian mixture model (GMM) classifier, different sets of 

audio features are adopted for the two tasks. 

For speech and non-speech classification, we segment an audio 

signal into audio clips, which are 3 seconds long on average. Each 

clip in turn consists of overlapping frames. The features of each 

audio clip are determined from the sub-features of the associated 

frames. Each frame is 32 millisecond (ms) long, overlapping with 

the previous one by 22 ms. Eight features are computed for each 

frame. They are root mean square volume, zero crossing rate, 

pitch, frequency centroid, frequency bandwidth, and 3 energy 

ratios in subbands. We extract 14 features for each audio clip based 

on frame-level features. The 14 clip-level features are 1) volume 

standard deviation (VSD), 2) volume dynamic range (VDR), 3) 

volume undulation (VU), 4) non-silence ratio (NSR), 5) standard 

deviation of zero crossing rate (ZSTD), 6) 4-Hz modulation energy 

(4ME), 7) standard deviation of pitch (PSTD), 8) smooth pitch 

ratio (SPR), LIU et al.: MAJOR CAST DETECTION IN VIDEO 
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non-pitch ratio (NPR), 10) frequency centroid (FC), 11) frequency 

bandwidth (BW), 12-14) energy ratio in subbands 1 - 3 (ERSB1, 

ERSB2, and ERSB3). For detailed description of these features, 

please refer to [16]. Based on our prior experiments, GMMs with 4 

mixtures provide good performance of speech and non-speech 

classification. In this paper, we assume that the covariance matrix 

of each Gaussian mixture is diagonal. 

For male and female classification, we use Mel-frequency 

cepstral coefficients (MFCC) [8], because these features have been 

shown to reflect the speaker characteristics. For each frame, we 

extract 13 MFCCs, as well as their first and second order temporal 

delta values. Totally we have 39 features for each frame. Our 

experiments showed that when the number of GMM mixtures is 

2048, the results are reasonably good. 

More audio sound types, including noise, music, speech on 

music, etc., can also be effectively extracted based on the same 

approach. But given the limit of time and resources, we defer this 

investigation as the future work. 

4.1.4 Speaker segmentation 

The audio is first segmented into short segments on phoneme 

level, where the duration of each segment is in the range of 200 ms 

to 1 second. Similar to the speaker gender classification, we adopt 

the same 39 MFCC features, and each speaker is modeled using a 

GMM model. We employ Bayesian Information Criteria (BIC) 

[17] to measure how the speaker models fit the data. Fig. 24 shows 

the diagram of the developed algorithm.  

The iterative speaker segmentation contains a loop of speaker 

splitting procedure. In each iteration, the algorithm first increases 

the number of speakers (NS), and then evaluates all possible splits: 

splitting speaker i (i = 1, ..., NS-1) into speakers i and NS. For each 

possible split, the speaker split procedure is applied, and 

corresponding BIC value (BICNS) and speaker labels (LNS) are 

computed. Among the NS-1 ways of splitting, the one with 

maximum BIC value is chosen, and its BIC value and speaker 

labels are kept as the overall BIC value (BICNS) and speaker labels 

(LNS) for the current iteration. The iteration terminates when BIC 

value no longer increases.  

The speaker label refinement is also an iterative procedure. For 

each iteration, a set of GMM’s are built for all speakers based on 

current segment labels. Then all segments are relabeled using the 

maximum likelihood method based on current speaker models. If 

the speaker labels converge or the number of iteration reaches a 

preset value, the refinement iteration stops. Otherwise, a new 

iteration starts.  

The post-processing step merges adjacent segments with the 

same speaker labels, and smoothes the segments that are too short, 

e.g., less than 300 ms. Short segments are merged into the longer 

neighboring segments. 

 



  
Fig. 24. Speaker segmentation diagram 

 

4.1.5 Text annotation processing 

The text data for the BBC rushes passed through several stages 

of potential degradation. First, they were manual notes that were 

scanned and passed through an OCR system. After this processing, 

we analyzed the annotations to create a basic organization of topics 

and annotation sentences for every line in the OCR output while 

using manually defined rules to correct common OCR failures and 

non-English characters.  

 

4.2 Results 

Figures 25 and 26 show two interfaces we developed for 

browsing the BBC rushes data by the extracted content events.  

The video data is played back at the top of the interface, and the 

extracted content events, including speech segments, male and 

female speaker segments, speaker segments, shot and scene 

boundaries, as well as face shots are plotted in different color 

underneath. From this interface, the user is able to efficiently 

understand the embedded content, and easily jump to the points of 

interest to see more detailed information.  

The second interface (in Fig. 26) demonstrates a frame-level 

view of a video clip, which gives a detailed description of the 

detected concepts and, frame time, and detected camera motion. 

 
Fig. 25. Interface for browsing the BBC content 

 

 Fig. 26. Frame-level interface for BBC content 

 

V. CONCLUSIONS 

 

In this paper, we reported the AT&T system that we developed for 

NIST TRECVID 2006 evaluation. AT&T participated in three 

tasks: shot boundary determination, search, and rushes 

exploitation. In this paper, we described our shot boundary 

determination system in detail, and briefly introduced our work on 

the other two tasks. The evaluation results show that the SBD 

algorithm we proposed is effective and promising.  
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