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Chronic obstructive pulmonary disease
(COPD) is a prevalent, heterogeneous
disorder with varying presentation and
progression but with a limited number
of disease-modifying therapies (1).
This marked heterogeneity impedes
identification of subpopulations at risk
for accelerated progression, thwarting
therapeutic advances. Most COPD studies
have included populations with mean ages
older than 60 years (2). However, it is
increasingly evident that lung function
trajectories in COPD differ significantly
and that differences are detectable in young
adulthood (3–5). In this Perspective, we
highlight the need to distinguish “early
disease” from late “mild disease,” propose
an operational definition of early COPD for
use in research studies, and attempt to
unify current views on potential disease
mechanisms. We focus on smoking, the
chief etiologic factor for COPD in the
industrialized world. Whether pathogenic
mechanisms and effective treatments are
shared with the sizable fraction of COPD in
never-smokers or resulting from biomass

fuel, electronic nicotine delivery systems,
and other exposures, are separate,
significant questions. We argue that
refocusing investigation on early COPD
could revolutionize understanding and
therapies of this leading cause of worldwide
death.

Limitations of Previous
Concepts of COPD
Development

Defining early COPD is crucial to design
individualized interventions to arrest
progression before irreversible damage.
Although the degree of airflow obstruction
has been used to distinguish mild disease, no
accepted definition exists for “early
disease”—due to lack of consensus on what
constitutes “early” and “disease” in this
context. Prior concepts of COPD derived
from analysis of older individuals with
established disease, emphasized incompletely
reversible obstruction, and postulated
accelerated decline from normal lung

function in early adulthood (6). However,
recent data suggest that only half of COPD
cases result from accelerated adult loss of
lung function related to adult smoking, with
the remainder resulting from failure to
achieve normal lung function in early
adulthood followed by age-appropriate
rates of decline (3). If smoking ceases
sufficiently early, the rate of spirometric
decline appears to return to that of
normal aging, and symptoms of cough
and sputum reverse (7). Smoking cessation
at an older age may fail to prevent
spirometric decline at rates faster than
normal (8).

However, smoking is now known to
lead to COPD via multiple trajectories
acting at disparate life stages (2) (Figure 1).
Such heterogeneity may explain the absence
of accelerated short-term spirometric
decline in half of middle-aged patients with
COPD (3), who are best classified as having
“late mild” disease (2). In the broadest view,
COPD pathogenesis may begin before
birth, because passive fetal smoke exposure
in utero is associated with increased adult
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COPD risk, independent of later active
smoking (9). The same is true for both
passive smoke exposure in childhood
and active smoking in adolescence (9).
Individuals sustaining childhood respiratory
impairment are also at increased risk of
reduced adult lung function (5). Potential

mechanisms include compromised lung
development and growth, epigenetic
changes, and altered lung microbiome
composition (9). Currently, distinguishing
between these processes in individuals or
untangling their interrelationships is
impossible. Although COPD prevention

will ultimately require a global
understanding of mechanisms potentially
spanning generations, these factors are
beyond the scope of an operational
definition of early COPD to guide
development of therapies for use in
adults, our focus in this Perspective.
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Figure 1. Proposed trajectories for lung function. (A) Normal lung function natural history; (B) reduced lung growth during fetal development, childhood, or
adolescence, which can reduce maximally attained lung function; (C) shortened plateau; (D) accelerated lung function loss during adulthood; (E) episodic
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A further difficulty in defining early
COPD is the frequent discordance between
spirometric results or patient-reported
respiratory symptoms and structural
changes in the lung. Three large prospective
studies of middle-aged adults recently
showed the prognostic significance of
symptoms and lung structure independent
of airflow limitation (10–12). Cough and
sputum production were originally believed
to be key COPD risk factors (the “British
hypothesis”), but their importance was
minimized after the observation that cough
and sputum relate only weakly to disease
progression (6). Although there does
appear to be an association of cough and
sputum with excess FEV1 decline, as seen in
long-term follow-up of the Copenhagen
City Heart Study (4, 13), that study also
demonstrated that most individuals who
eventually developed airflow obstruction
did not report cough and sputum
production (13).

Respiratory symptoms clearly herald
the presence of a pathological process
that will progress in some individuals
and are unquestionably burdensome to
all. More recent studies demonstrate
that symptoms are associated with
excess exacerbations and radiographic
abnormalities (10, 11, 14). Thus, features
inadequately captured by spirometric
airflow limitation are now recognized as
independent clinical manifestations of
COPD-related disease (15).

Proposed Operational
Definition of Early COPD

Ideally, early COPD would be defined
by detecting the initial events responsible
for ultimate development of pathology.
Although this is currently not possible, a
surrogate form of evidence could be lung

pathology unequivocally associated with
subsequent accelerated lung function
decline leading to objectively confirmed
incompletely reversible airflow obstruction
and other COPD-related manifestations.
Fully validating that approach would require
serial invasive sampling in sizeable, long-
lasting prospective cohorts. Alternatively, a
definition could be based solely on currently
available intermediate endpoints, such as
symptom presence (5), or changes in lung
structure on computed tomography (CT),
such as abnormalities in the small and large
airways and early emphysema (16), all of
which increase progression risk in some
(possibly distinct) individuals (17). Two
studies of smokers with normal pulmonary
function tests demonstrated centriacinar
emphysema; the group with CT-detectable
emphysema was distinguished by reversible
alterations in peripheral pulmonary vascular
function (18, 19).

We propose that early changes leading
to COPD (“early COPD”) should be studied
in those younger than 50 years with 10
or more pack-years smoking history and
any of these abnormalities: 1) early airflow
limitation (post-bronchodilator
FEV1/FVC, lower limit of normal), 2)
compatible CT abnormalities, 3) rapid
decline in FEV1 (>60 ml/yr) that is
accelerated relative to FVC. This definition
(Table 1) assumes the exclusion of other
chronic lung diseases, such as pulmonary
fibrosis. Elaboration on the rationale for
these choices is warranted.

We chose 10 pack-years on the basis of
data suggesting that it is both the minimum
exposure resulting in lung function decline
in early adulthood and the point at
which accelerated lung function decline is
detectable (3). Pathological studies associate
a similar exposure threshold with structural
lung abnormalities (20). We acknowledge
that this operational definition does not

include other environmental exposures
implicated in COPD development,
including biomass fuel inhalation. Such
exposures are more difficult to quantify
objectively and require targeted research to
define minimum exposure levels.

We chose age younger than 50 years
from a pragmatic perspective and a review of
older necropsy studies. A recent review of
early COPD notes that most COPD studies
have focused on subjects 60 years or older
(2). This limitation is certainly true of
cohorts with detailed imaging and biologic
data collection, including COPDGene
and SPIROMICS (Subpopulations and
Intermediate Outcome Measures in COPD
Study), which have large numbers of subjects
with “mild” disease (Global Initiative for
Chronic Obstructive Lung Disease [GOLD]
stage 0–1). The mean age of GOLD 0
subjects in these two cohorts at enrollment
was z60 years, with almost no data among
individuals younger than 50 years old.
Given their lack of development of airflow
obstruction by that age, many will likely
never develop significant COPD, precluding
these cohorts from defining early COPD
pathogenesis. Similarly, older consecutive
necropsy studies suggested that likelihood of
histological of emphysema (20) or airway
remodeling (21) became more prominent in
individuals in their 40s to early 50s.

CT abnormalities were included
because good evidence associates visually
assessed emphysema of moderate severity
or greater (22) and greater than 10% low
attenuation area (23, 24) with more rapid
lung function decline in middle-aged
subjects. Airway wall thickening (25) and
small airway abnormality (17) are also
associated with accelerated spirometric
decline. Refining age-specific thresholds for
each of these abnormalities will require
collection of considerably greater imaging
data in younger patient populations.
Whether longitudinal changes in imaging
parameters, especially parametric response
mapping (PRM), described below, can
robustly identify clinically relevant disease
progression requires additional evaluation.

Regarding rapidity of FEV1 decline,
60 ml/year is likely a specific but potentially
insensitive threshold. This rate is roughly
double that cited as normal for never-
smokers, roughly 25 to 30 ml/year
(3, 26–28). Furthermore, in a recent
multicohort analysis of lung function
trajectory by Lange and colleagues, among
those not ultimately developing COPD, less

Table 1. Components of Operational Definition for Early Chronic Obstructive
Pulmonary Disease

Required One or More of the Following:

,50 yr of age FEV1/FVC less than lower limit of normal
>10 pack-years smoking history Compatible computed tomography abnormalities

(visual emphysema, air trapping, or bronchial
thickening graded mild or worse)

Evidence of accelerated FEV1 decline (>60 ml/yr)

Exclusion criteria include other known chronic lung diseases, including interstitial lung diseases, but
not asthma (see text).
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than 3% experienced a rate of decline greater
than 2 SDs beyond the mean (246 17
ml/year), or roughly 60 ml/year (3).

Noticeably absent from our operational
definition are patient-reported respiratory
symptoms, because of their frequent
discordance from structural lung changes. A
subset of symptomatic individuals probably
has pathologic changes that will lead to
COPD, but additional research is needed to
identify that subgroup unambiguously.

Burden of Early COPD

Our proposed definition depends in part on
smoking history and accepts anatomical
changes in the absence of airflow obstruction.
An 8- to 10-pack-year smoking history has
been linked to lung function decline in
subjects aged 35 to 53 years (29). Moreover,
contemporary studies confirm that
“chronic bronchitis” or “chronic mucus
hypersecretion” predict future COPD
incidence (30), especially among younger
adults (4). Studying individuals aged 20
to 44 years, the European Community
Respiratory Health Survey (ECRHS)
associated chronic cough or phlegm with
higher COPD incidence at 9 years of
follow-up (31). Likewise, within the
Medical Research Council National Survey
of Health and Disease (NSHD), smokers
reporting chronic cough or phlegm at ages
36 and 43 years were, respectively, 3.70 and
4.11 times more likely to have developed
spirometrically defined COPD by age 63
years than asymptomatic counterparts (4).

Respiratory symptoms are common
among smokers, reported by 16% during
ECRHS and 40% by age 43 years in NSHD
(31). At that age, chronic productive cough
was present among 13% of smokers but
only 2.6% of never-smokers (4). NSHD also
demonstrated that the relationship between
chronic respiratory symptoms and smoking
evolves with age. Its finding of marked
symptomatic escalation during midlife
plausibly indicates onset of COPD (4).
Known worldwide variations in respiratory
symptom burdens (32) likely reflect
differing prevalence of smoking (33), with
which chronic cough and phlegm are
closely associated, among both those with
(34) and those without (4) COPD.
Collectively, these data indicate a strong
association of smoking in early adulthood
with lung function decline and imply
that the impact in susceptible smokers is

detectable with exposures as little as 8 to
10 pack-years, when they are aged in their
late 30s to early 40s.

Importantly, our early COPD
definition does not exclude previous asthma,
which recent evidence supports as an
important risk factor for development of
fixed airflow obstruction (35, 36). Among
15,668 ECRHS subjects, early-onset asthma
was observed in 26% of those diagnosed
with COPD at a mean age of 37 years, a
20-fold increased risk of adult airway
obstruction, compared with those without
asthma diagnosis (37). Similarly, in the
Childhood Asthma Management Program
cohort of 949 subjects enrolled at ages 5
to 12 years, 11% had spirometric values
meeting COPD criteria at a mean age of
26 years (38). Childhood asthma affected
12% of the Aberdeen WHEASE (What
Happens Eventually to Asthmatic Children:
Sociologically and Epidemiologically)
study, a general population cohort; those
affected were 6.37 times more likely to have
spirometric COPD by their seventh decade
(35). An acknowledged limitation of these
studies is that they defined development
of COPD using fixed spirometric airflow
obstruction, thus likely encompassing both
severe asthma and COPD, which are
difficult to distinguish in epidemiologic
studies. However, these studies highlight
one path toward COPD development.

Severe respiratory infections (especially
viral) during infancy impair lung
development (39), but their relevance to
adult COPD is not well characterized.
Smoking during adolescence reduces
peak lung function values (40) and may
worsen the impact of early life events (5).
Nevertheless, patients younger than 50 years
old with COPD have similar severity
distributions and FEV1 decline trajectories as
patients older than 75 years (41). Hence,
although adverse early-life exposures are
common, their precise contributions to adult
COPD remain unclear, merit exploration,
but also need not be considered exclusionary
in an operational definition of early COPD.

Detecting Early COPD and
Evaluating Its Progression

Central to the concept of early COPD is
identifying those in whom clinically evident
disease will develop over time. Validating
this prediction prospectively is one of the
field’s most pressing needs. We submit that

for research purposes (though not yet
for clinical practice), such validation
requires multiple endpoints, extending the
traditional COPD definition based solely on
chronic airflow obstruction (1) and measured
by rate of FEV1 decline (42). An analogy
is the progression from asymptomatic
atherosclerosis to overt ischemic heart disease.
Mechanistic insights into the former provided
important targets to prevent and treat the
latter. Similarly, accepting an asymptomatic
preclinical phase in COPD, without equating
underlying pathologic processes and
clinical disease, is essential to advance from
palliative care to prevention.

Airflow obstruction remains an
important metric for future studies, despite
heterogeneity in spirometric trajectories
(3, 43) and controversies regarding optimal
spirometric thresholds (2). However,
both detecting early small airway disease
and assessing its progression might be
accomplished noninvasively using more
sensitive physiological studies, such as
impedance oscillometry, nitrogen washout
techniques, and measures of expiratory flow
(44). Similarly, altered DLCO has proven
predictive of subsequent spirometric
obstruction in a small cohort of healthy
smokers (45). Despite decades of expertise
with these techniques (44), their ability to
assess progressive disease in early COPD
requires longitudinal evaluation, an important
goal for cohort studies.

A complementary approach uses
imaging features reflecting anatomic lung
abnormalities (46). Qualitative, semiquantitative,
and quantitative techniques have all
proven valuable to assess the presence and
impact of emphysema in large studies
(46–48). Each can guide therapeutic
decisions (1) and serve as an intermediate
outcome of therapy (49). Although directly
quantifying airway disease radiographically
has been challenging, methods assessing air
trapping as a functional measure of small
airway abnormality have recently proven
promising (46). One such technique,
PRM, uses dynamic image registration of
paired scans to quantify regional changes in
lung density (16). By applying separate
density thresholds to the inspiratory and
expiratory voxel measurements, this
technique can distinguish regions of
“normal” lung from “functional small
airways disease” (defined as regions of
lung .2950 Hounsfield units [HU] on
inspiration and ,2856 HU on expiration)
and “emphysema” (regions of lung ,2950
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HU on inspiration and ,2856 HU on
expiration). Its real world relevance is shown
by preliminary analyses using ex vivo
microCT data of lung explants, in which
functional small airways disease PRM
(PRMfSAD) has been linked to narrowing
and loss of terminal and transitional
bronchioles (50).

High-resolution CT imaging might also
serve as an outcome biomarker for therapies
designed to block progression of early
structural airway changes into emphysema.
Supporting this possibility, analysis of
5-year COPDGene follow-up data (17)
established an association between baseline
PRMfSAD and subsequent FEV1 decline, not
only in those with established COPD in
their early 60s but also among individuals
with chronic respiratory symptoms but no
airflow limitation (so-called GOLD 0)
(mean age, 58 yr). Preliminary analyses of a
small group of SPIROMICS subjects (mean
ages, early to mid-60s) (51) also suggest
an association between baseline PRMfSAD

and development of emphysema PRM
(PRMemph) 1 year later. Similarly, lower
total airway count in a separate older
cohort was associated with accelerated loss
of FEV1 (52). Collectively, these recent
studies complement classic pathological
studies that defined the small airways
as the earliest site of smoking-induced
abnormalities (53–55), evident by ages
40 to 59 years with moderate smoking
exposure (21). In addition, dual-energy
computed tomography of smokers with
pulmonary function test results within
the normal range linked centriacinar
emphysema to increased perfusion
heterogeneity and enlarged segmental-level
pulmonary arteries, both reversible with
sildenafil (18, 19). All these findings are
central to the unified hypothesis of early
COPD development presented below.
Gaining crucial mechanistic insights
required to develop novel, disease-
modifying therapies in early COPD could
be hastened by coupling this imaging
biomarker with thorough profiling of early
COPD airway samples.

Finally, we acknowledge that COPD is a
systemic disease. Lung injury may be one
part of a global vascular process damaging
other organs, especially the cardiovascular
(56) and renal systems (57). Smoking-
induced dysfunction of other organs likely
contributes to dyspnea, and in the case of
hematopoietic and immune systems might
even be crucial to COPD progression.

Screening for damage to other organs might
help to diagnose early COPD (56) (e.g.,
patients with COPD frequently have
increased albumin-to-creatinine ratios,
indicative of renal endothelial injury [57]),
but prospective evaluation in young populations
is needed.

Possible Host Mechanisms in
Early COPD Development
and Progression

Recent evidence implies that cigarette
smoke exposure induces sequential,
stereotypical changes in distal airways
culminating, in susceptible individuals, in
COPD development (Figure 2). To date,
several genetic factors have been identified
that increase susceptibility and appear to
relate to pathogenesis (58, 59). In addition
to alpha-1 antitrypsin deficiency, variants
coding for Hedgehog interacting factor,
glutathione-S-transferase, transforming
growth factor-b1, tumor necrosis factor-a,
and superoxide dismutase-3 have been
linked to COPD development and may
provide insights into both pathogenesis and
identifying at-risk individuals (60).

Focusing on histologic changes, the
earliest detectable step is epigenetic
reprogramming of the basal epithelial cells
that maintain the epithelial barrier (61, 62).
Relative to young nonsmokers (mean age,
40 yr), reprogramming was shown in
epithelium in 4th- through 6th-generation
and 10th- through 12th-generation airways
in smokers without obstruction (mean age,
43 yr) and smokers with COPD (mean age,
52 yr) (63). Epigenetic reprogramming
induces in distal airways a proximal airway
gene signature (64, 65) that is more
prominent in those 44 years or older with
FEV1/FVC ratios less than or equal to 0.8
(63). The result is an ecological transition,
from a distal epithelial community of
diverse cell types, well-suited to local self-
defense and efficient clearance (66), to one
dominated by mucus hypersecretion,
squamous metaplasia and damaged cilia
(Figures 2A and 2B). Importantly, this
transition initially occurs in the initial
absence of inflammatory cell infiltration
of the epithelium. Mechanistically, this
phenotype is linked to increased signaling
in distal airway basal stem cells of
epidermal growth factor receptor (EGFR),
a pathway implicated in multiple airway
changes in smokers (63, 67). Alterations

in other pathways crucial to distal lung
epithelium, including the Notch (68–73)
and Wnt pathways (72–74), may contribute
to early bronchoalveolar remodeling, a
process termed “accelerated aging” (75).

Epithelial reprogramming also induces
multiple alterations to the healthy airway
surface liquid (ASL), which comprises an
upper mucus layer containing secreted
mucins and an underlying, aqueous,
periciliary layer (76). Homeostasis depends
both on ASL volume (76, 77) and on the
relative concentration of the mucus and
periciliary layers (78). Smoking changes the
balance of mucin gene products and
induces mucus hyperconcentration (79)
due to smoking-induced cystic fibrosis
transmembrane conductance regulator
disruption (80). The net effect, mucus that
is less readily cleared, leads to the chronic
bronchitic phenotype and an age-related
risk of COPD development (4) (Figure 2B).

Focal airway injury is central to another
eventful consequence of epithelial reprogramming,
pIgR (polymeric immunoglobulin receptor)
downregulation. Epithelial expression of
PIgR is essential to transcytose secretory IgA
into the lumens of distal airways (81)
(Figure 2C). In areas lacking this crucial
opsonin, bacteria selectively invade
epithelial cells, inducing focal NF-kB
(nuclear factor-kB) activation (82)
(Figure 2D). Because NF-kB typically
upregulates pIgR, this change is further
evidence that epithelial reprogramming
drives the earliest changes of COPD. The
role of other innate airway defenses in
early COPD clearly merits investigation,
although, interestingly, b-defensin-1 airway
concentrations are increased in established
COPD (83, 84) relative to healthy
nonsmokers, suggesting a compensatory
rather than causal contribution. This
response might be an example of how
host-derived danger-associated molecular
patterns sustain airway inflammation (85).

COPD is characterized by a
combination of airway narrowing and frank
distal airway disappearance, which silently
increases airway resistance and precedes
emphysema development (15). Airways are
narrowed by both mucus plugging and
remodeling (53). The tight association
of airway injury with focal loss of
luminal secretory IgA staining (82) suggests
that inflammation driven by bacterial
invasion may be a key trigger, a possibility
requiring validation. Remodeling is
associated with upregulation of multiple
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transforming growth factor-b superfamily
members (86) and the zinc finger transcription
factor Krüppel-like factor 5 (87). Distal airway
dropout might represent the extreme of airway
remodeling, heightening the importance of
understanding fibrotic processes in early
COPD.

In addition, global gene analysis
demonstrated that in COPD, tissue
degradation around small airways
predominates over repair (88). Hence,
matrix destruction might also cause airway
dropout via anoikis, leading to the epithelial
apoptosis observed by multiple groups in

established disease but unstudied in early
COPD. Activated lung NK cells likely
also induce epithelial apoptosis (89, 90).
These two cytolytic processes (not mutually
exclusive and perhaps synergistic) might
overwhelm compensatory epithelial cell
proliferation in some individuals, leading to
progression from distal small airway injury to
centrilobular emphysema. Advanced CT
analytical techniques (12, 91) demonstrate
that significant emphysema can exist despite
preserved FEV1% predicted. Hence,
centrilobular emphysema is relevant not only
to advanced COPD but also to early COPD.

Emphysemamight also develop in early
COPD because of loss of pulmonary
endothelial cell (PEndC)-derived
(“angiocrine”) factors (92) essential to
sustain epithelial proliferation, especially
given the prominent role of increased
EGFR signaling in smoking-reprogramed
basal epithelial stem cells. The importance
of PEndC production of angiocrine factors
is supported by the murine model of
lung hypertrophy after unilateral adult
pneumonectomy. PEndC were essential
for the earliest regenerative change,
proliferation of cells at the bronchoalveolar
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duct junction. Coculture experiments
supported a role for PEndC elaboration of
the membrane-anchored metalloproteinase
MMP-14, which unmasks cryptic ligands
for EGFR (93). Loss of angiocrine
signals might be the “final straw” that
overcomes epithelial proliferative capacity
and dooms the damaged terminal airway
to centrilobular emphysema.

Perhaps the thorniest question
regarding mechanisms of early COPD is
the precise role of inflammatory cells.
Pigmented macrophages prominently
accumulated around and within respiratory
bronchioles of male smokers dying suddenly
at a mean age of 25 years (94); such
infiltration is often assumed to affect all
young smokers, but the high mean exposure
(20.16 4.1 pack-years) in this study must
be considered. Relative to smokers without
obstruction, COPD is associated with
progressive activation of lung dendritic cell
subsets in lung parenchyma (95, 96) and loss
of cells with a T-regulatory phenotype there
(97, 98) and in BAL (99). These changes have
motivated years of attempts to modify COPD
progression by antiinflammatory therapy,
yet it is unproven that every inflammatory
cell type infiltrating the lungs in the transition
from asymptomatic smoking to early COPD
is actually harmful. A key recent advance is
recognition of unique innate and innate-like
lymphocyte cell types that are largely
restricted to mucosal surfaces, including the
airways, and appear to play crucial roles in
host defense (100, 101). We contend that
the role of specific hematopoietic cell types
can only be understood in the context of
the lung microbiome.

The Lung Microbiome in Early
COPD

Differences in lung microbial community
structures might explain why not all
smokers develop COPD. Bacteria are well
established to contribute to established
COPD, especially during exacerbations
and in the case of potentially pathogenic
microorganisms, such as Streptococcus
pneumoniae, Haemophilus influenzae, or
Moraxella catarrhalis. However, exactly
when during early COPD evolution lung
microbes transition from exploiting
smoking-damaged ASL to driving airway
pathology, and which microbes are essential
for progression, are among the most
important unanswered questions.

Advances in sequence-dependent
microbiology have established that the lower
respiratory tract of healthy individuals is not
sterile and that procedural contamination,
although a valid concern, is far less an issue
than post-procedure contamination (102,
103). Instead, the healthy lungs sustain a
very low burden of bacteria that, with few
exceptions, is a neutral subset of those
inhabiting the oropharynx (104–106).
Thus, the paradigm that COPD is neatly
characterized by a change from sterility to
bacterial colonization is untenable.

Previous data indicated that smoking in
the absence of airflow obstruction does not
alter the global community structure of the
bacterial lung microbiome as assessed using
BAL (102, 107). However, the averaging effect
of this technique, relative to protected-
specimen brushings, might miss highly
localized microbiome changes. A more recent
study in younger healthy smokers and
nonsmokers showed an association of a lung
microbiome enriched for oral bacteria with
augmented lung inflammation (108). These
considerations support the need to understand
local patterns of microbial–host interaction
in the lower airways. For example, this could be
accomplished by obtaining protected-specimen
brush sampling, for microbiome analysis,
plus conventional cytological brushing, for
genomic and epigenetic analysis, in identical
areas of distal human airways (109).
Simultaneous analysis of the lower airway
virome and mycome is another important goal
but may need to await resolution of the
technical challenges of high-coverage RNA
sequencing and better reference libraries.

Unquestionably, potentially pathogenic
microorganisms could perpetuate small
airway inflammation by many mechanisms
(110–112), including damaging cilia,
stimulating mucin production, degrading
humoral immunity, and triggering NK
cell recognition of infected epithelial cells
(113, 114). Bacterial molecules such as
endotoxins, membrane lipoproteins,
peptidoglycan fragments, and lipoteichoic
acid exacerbate inflammation (115). In a
recent pilot placebo-controlled randomized
trial, macrolide administration in early
emphysema was associated with changes
in microbiota and decreased levels of
inflammatory cytokines in lower airways
(116). Importantly, the net antiinflammatory
effect seemed to be mediated more by
bacterial stress–induced metabolites than
by direct macrolide effects on the host. Hence,
rather than globally suppressing inflammatory

cell function, future therapies to arrest early
COPD might focus on containing the
microbial invasion that drives inflammation.

Future Therapeutic Trials in
Early COPD

To reduce COPD’s long-term societal
impact, the goal of interventions must
change, from the sole intent of reducing
symptoms and exacerbations in advanced
disease to halting progression in early
disease. Current U.S., European, and
Japanese regulatory definitions of disease
progression rely on primary outcomes of
mortality or rate of FEV1 decline, on the
basis of studies in moderate to severe
COPD. Such studies typically require 3- to
4-year trials in 8,000 to 16,000 participants
(117–120). Focusing on early COPD
provides an opportunity to treat the
patients most likely to experience long-term
benefit while also improving trial efficiency,
because FEV1 decline is fastest in patients
with GOLD 1 and 2 disease (17). The Lung
Health Study, one of the few studies to
examine early COPD, demonstrated the
benefit of smoking cessation on FEV1

decline over a 5-year period (121). Two
recent large studies of milder (although
not early) COPD investigated FEV1

decline. The first showed a trend toward
attenuation over 2 years of follow-up with
long-acting antimuscarinic treatment (122);
the second demonstrated significant
reduction over up to 3 years of follow-up
with a combination of a long-acting
b-agonist and inhaled corticosteroid (123).

With improved understanding of
COPD subtypes and risk factors for rapid
progression, drug development programs
may become more efficient. Strategies
to enrich a younger trial population
for more rapidly progressing subjects
include selection for: 1) symptoms plus
environmental exposure (pack-year history,
occupational risk, geographic location) (4);
2) mild to moderate airflow limitation,
the stage at which spirometry deteriorates
most rapidly (17, 117, 118, 120); 3) history
of lung function decline, retrievable from
electronic health records; 4) emphysema or
airways disease from thoracic CT imaging
(17, 23); 5) blood biomarkers such as sRAGE
(soluble form of receptor for advanced
glycation end products) for emphysema
progression (124) or club cell protein 16 for
FEV1 decline (125); and 6) genetic risk
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factors such as variants in CHRNA3/5,
HHIP, and FAM13A (126), possibly
combined as genetic risk scores; and other
approaches of individualized risk on the
basis of anatomic and molecular profiling.

Given the complexity of the experience
of the patient with COPD, additional
measures of functional impact or systemic
manifestations may prove valuable to define
early COPD presence or progression (42,
43). Health status is impaired in patients
with mild COPD (11, 127) (less prominently
than with worse airflow obstruction
[42]), but how health status changes
longitudinally in those with early disease,
who are mostly undiagnosed, remains
unclear. In established COPD, acute
exacerbations are clinically relevant, but
variable, manifestations across a range of
spirometric severities (11, 128–131).
Longitudinal exacerbation frequency is
important in older patients with mild
COPD (127). Similar analyses in patients
with early COPD are sorely required.
Whether abnormalities in muscle function,
exercise capacity, or response are relevant
manifestations of early COPD (132) will
require longitudinal studies.

Appropriate outcome measures must
depend on the mechanism of action of
specific interventions but should use feasible
metrics that document arrest of disease
progression. Such metrics might include
digital technologies for real-time monitoring
of symptoms and health-related quality-
of-life measures (St. George’s Respiratory
Questionnaire, COPD Assessment Test,
and Evaluating Respiratory Symptoms in
COPD), lung function decline (mobile
spirometry), physical activity limitation
(Physical Activity as a Crucial Patient
Reported Outcome) (133); exacerbation-
tracking (Exacerbations of Chronic
Pulmonary Disease Tool questionnaire), and
use of composite measures such as the
Clinically Important Deterioration (134).
However, because individuals with early
COPD are largely unstudied, novel

instruments using questions more relevant to
the health status of this younger population
may be needed. Similarly, the utility of blood
biomarkers to aid early-phase, proof-of-
concept, and dose-ranging trials must also be
examined in this population.

We believe that advanced high-
resolution CTmetrics will play a central role
in accelerating progress in early COPD, both
to identify high-risk populations and as
longitudinal outcome measures. Acceptance
of this potentially game-changing modality
should increase with availability of ultra–low-
dose scanners (135) that alter risk–benefit
considerations. Imaging or procedures to
stage other chronic diseases are already
common practice (e.g., dual-energy X-ray
absorptiometry scans for osteoporosis, or
endoscopy in inflammatory bowel disease),
and might become compelling in early COPD.

Future clinical trials will face unique
challenges. Paramount is lack of regulatory
acceptance of novel endpoints, beyond
use as “exploratory outcomes.” Minimal
clinically important differences defined for
advanced disease (e.g., changes of 4 for
SGRQ; 30 m for 6-min-walk test; 50 ml for
FEV1) are likely inappropriate for an early
COPD population with preserved lung
function. Younger study populations pose
a heightened dropout risk, especially in
longer studies, because of geomobility and
possibly lower compliance. As disease-
modifying therapies become available,
placebo-controlled trials are less likely to be
ethically acceptable; noninferiority trials
or superiority trials with an active control
arm may become standard for this at-risk
population. Trial design and analysis will
need to address changing risk profiles
(smoking cessation, electronic cigarettes,
comorbid conditions). Novel therapies
introduced during a study pose the risk of
irrelevance, supporting the need for shorter,
more agile clinical trials.

This is an exciting time for clinical
research in early COPD. The increasingly
obvious need for novel therapies has

motivated regulators, academia, and
industry to work together to accelerate
qualification of drug-development tools and
approval of new medicines, and, through
initiatives like the 21st Century Cures Act, to
enhance the ability to collect real-world
evidence using medical devices. Widespread
acceptance of digital technology by younger
subjects may extend to willingness to
wear monitoring devices and to participating
more interactively in clinical research.
Shorter trials are facilitated when an
agent’s mechanism of action suggests an
immediate effect (e.g., reduced symptoms or
exacerbations). Although current regulations
require inclusion of multiple doses in
phase III trials lacking pharmacodynamic
biomarkers for phase II dose selection,
this burden may be mitigated via event-
driven studies (e.g., SUMMIT [Study to
Understand Mortality and Morbidity])
(120) or by advanced predictive analytics
and machine learning methodologies to
detect therapeutic response.

Conclusions

Although COPD is among the few
noncommunicable disorders with
increasing worldwide morbidity and
mortality, the ability to identify patients
at risk for more rapid disease progression
is limited. This shortcoming jeopardizes
development and validation of disease-
modifying therapies for COPD, a crucial
unmet clinical need. It is time for the
pulmonary community to reconsider its
investigational approach. Focusing on
younger people to understand early COPD
aligns with the goals of the recently released
NHLBI COPD National Action Plan to
develop strategies to prevent the onset and
progression of COPD by studying disease
progression. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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