At what coronary risk level is it cost-effective to initiate cholesterol lowering drug treatment in primary prevention?

M. Johannesson
Centre for Health Economics, Stockholm School of Economics, Stockholm, Sweden

Abstract

Background The entire risk factor profile should be taken into account when considering initiating cholesterol lowering drug treatment. Recent treatment guidelines are therefore based on the absolute risk of coronary heart disease. We estimated at what coronary risk it is cost-effective to initiate cholesterol lowering drug treatment in primary prevention for men and women of different ages in Sweden.

Methods The cost-effectiveness was estimated as the incremental cost per quality-adjusted life-year (QALY) gained of cholesterol lowering drug treatment. Treatment was assumed to lower the risk of coronary heart disease by 31%. The analysis was carried out from a societal perspective including both direct and indirect costs of the intervention and morbidity, and the full future costs of decreased mortality. The coronary risk, in a Markov model of coronary heart disease, was raised until the cost per QALY gained corresponded to a specific threshold value per QALY gained. Three different threshold values were used: $\$ 40000, \$ 60000$ and $\$ 100000$ per QALY gained.

Results The risk cut-off value for when treatment is cost-effective varied with age and gender. If society is willing to pay $\$ 60000$ to gain a QALY it was cost-effective to initiate treatment if the 5 -year-risk of coronary heart disease exceeded $2 \cdot 4 \%$ for 35 -year-old men, $4 \cdot 6 \%$ for 50 -year-old men, and $10 \cdot 4 \%$ for 70 -year-old men. The corresponding risk cut-off values for women were $2 \cdot 0 \%$, $3 \cdot 5 \%$ and $9 \cdot 1 \%$.

Conclusions The results can serve as a basis for treatment guidelines based on cost-effectiveness.
(Eur Heart J 2001; 22: 919-925, doi:10.1053/euhj. 2000.2484)
(C) 2001 The European Society of Cardiology

Key Words: Cholesterol, cost-effectiveness, coronary heart disease, primary prevention.

Introduction

Coronary heart disease is one of the most common causes of death in Western societies ${ }^{[1]}$. The risk of coronary heart disease depends on a number of risk factors, of which the cholesterol level is one of the most important ${ }^{[2,3]}$. Considerable effort has therefore been devoted to developing effective drugs which will lower cholesterol levels, and compelling evidence now exists that the newer generations of drugs (i.e. statins) increase survival in both secondary and primary prevention ${ }^{[4-8]}$.

[^0]In addition to demonstrating that medical interventions are effective, it has become important to demonstrate that they are cost-effective, i.e. provide good value for money ${ }^{[9]}$. This is especially important for interventions, such as cholesterol lowering drugs, that may involve large fractions of the population. In secondary prevention, i.e. in patients with pre-existing coronary heart disease, treatment with cholesterol lowering drugs has been shown to be cost-effective in most patient populations ${ }^{[10]}$. This is due to the high absolute risk of coronary heart disease in this patient population.

In primary prevention, cholesterol lowering treatment is unlikely to be cost-effective for all patients with elevated cholesterol levels, and so it is crucial to determine in which patient populations treatment should be initiated ${ }^{[11]}$. In devising treatment recommendations for cholesterol lowering it is not sufficient to focus on the cholesterol level, the entire risk factor profile of the patient needs to be taken into account ${ }^{[12-15]}$. This is
because the absolute coronary risk reduction will depend on the absolute risk of the patient, which is a function of all the risk factors. This is recognized in recent treatment guidelines for cholesterol lowering, which base treatment recommendations on the absolute coronary risk ${ }^{[13-15]}$. From a cost-effectiveness viewpoint it makes sense to devise treatment recommendations based on the absolute coronary risk. However, it is also necessary to incorporate gender and age into the analysis. This is because avoiding a coronary death will lead to a greater gain in life-years for a younger person than for an older person, and for a woman than for a man.

In this study we estimate at what risk of coronary heart disease it is cost-effective to initiate cholesterol lowering drug treatment in Sweden for men and women of different ages.

Methods

The cost-effectiveness was estimated as the incremental cost per quality-adjusted life-year (QALY) gained of cholesterol lowering drug treatment compared to no treatment. QALYs are the currently recommended outcome measure in cost-effectiveness analysis; they are constructed by weighting different health states between 0 (dead) and 1 (full health) ${ }^{[16]}$. The analysis was carried out from a societal perspective including both direct and indirect costs of the intervention and morbidity, and the full future costs of decreased mortality ${ }^{[17,18]}$.

The estimations were carried out for men and women separately at eight different ages: $35,40,45,50,55,60$, 65 and 70 years. This corresponds to the ages of the patients in the major clinical trials ${ }^{[4-8]}$, for which evidence exists of a beneficial treatment effect. Treatment was assumed to reduce the annual risk of coronary heart disease by 31% each year of treatment in all patient groups, based on the risk reduction in the West of Scotland coronary prevention study of primary prevention ${ }^{[5]}$. Treatment was not assumed to affect the risk of stroke. A treatment duration of 5 years was used, consistent with the treatment duration in the major clinical trials ${ }^{[4,5]}$. It was estimated at what 5 -year-risk of coronary heart disease it would be cost-effective to initiate cholesterol lowering drug treatment. For the treatment to be cost-effective the cost per QALY gained had to be at or below a specific cost-effectiveness threshold. The threshold value corresponds to how much society is willing to spend in order to gain a QALY. The estimations were carried out for three different threshold values: $\$ 40000$, $\$ 60000$ and $\$ 100000$ per QALY gained.

The lowest threshold value ($\$ 40000$) is a rather conservative estimate of the value of a QALY gained, and treatments with a cost per QALY gained below $\$ 40000$ are normally considered highly cost-effective ${ }^{[11,19-21]}$. The middle threshold value of $\$ 60000$ corresponds to the mean value in a recent survey of health economists about what threshold value to use in cost-effectiveness
analysis ${ }^{[22]}$. The highest threshold value ($\$ 100000$) was recently used as the value per QALY gained in a study of the value of the increased health of the US population over time ${ }^{[23]}$.

Both costs and QALYs were discounted using a 3\% discount rate ${ }^{[16]}$. All results were estimated in 1999 Swedish Crowns (SEK), and converted to US dollars using the exchange rate of June 1999 (\$1=SEK 8•50).

The cost-effectiveness model

The cost-effectiveness estimations were carried out with a Markov model used in previous analyses ${ }^{[10,24,25]}$. The starting point of the model is a cohort of men or women at a specific age who are initially free from coronary heart disease. The members of the cohort were followed from their current ages to the age of 110 years, which we took to be the longest possible survival. Each year the members of the cohort ran the risk of having a coronary event or of dying from a non-coronary cause. Coronary events were classified into three classes: myocardial infarction (international disease classification code 410), angina pectoris (international disease classification code 413) and unstable angina pectoris (international disease classification code 411). Persons who had coronary events were considered to be in a temporary state of disease for 1 year after the event (during which they had an increased risk of death); if they survived that year, they were considered to enter a state of chronic disease (during which the risk of death declined but was still greater than that of the normal population). They then either died or continued in that state of chronic disease.
As a basis for the estimations we entered age- and gender-specific data into the model of the annual incidence in Sweden of coronary heart disease for persons previously free of cardiovascular disease. These data were taken from the National Board of Health and Welfare in Sweden, which registers all hospitalizations due to coronary heart disease in Sweden. We used data about all hospitalisations between 1990 and 1994 due to coronary heart disease among persons older than 35 years and previously free from cardiovascular disease. Coronary heart disease was defined as international disease classification codes 410,411 and 413 , and in the model the coronary events were divided into these different types of events according to the fractions in the data set. Data were also collected about mortality in the first and second years after the coronary event for all individuals in our data set who suffered a coronary event. These data were entered into the model to determine survival after the different types of coronary events. Data about the annual risk of death from non-coronary causes among persons free from cardiovascular disease is also needed. These data were taken from the causes of death statistics in Sweden ${ }^{[1,26]}$.

Based on the incidence and survival data, the model can be used to estimate the average 5 -year-risk of a coronary event and the life-expectancy among persons initially free from cardiovascular disease in Sweden.

Table 1 The average risk of coronary heart disease and the predicted life-expectancy for men and women in Sweden who are initially free from cardiovascular disease

Age (years)	5-year risk of a CHD event (\%)		Life-expectancy (years)		
	Men	Women		Men	Women
35					
40	0.23	0.06		43.18	47.74
45	0.61	0.18		38.45	42.90
50	1.29	0.42		33.83	38.13
55	2.36	0.81		29.32	33.49
60	3.83	1.39		25.02	29.00
65	5.41	2.22		20.94	24.67
70	6.99	3.34		17.20	20.56
	8.12	4.64		13.84	16.73

CHD=coronary heart disease.

These estimates are shown in Table 1. The estimated life-expectancy among 35 -year-old men and women corresponds nearly exactly to the life-expectancy in the general population in Sweden ${ }^{[1]}$. Among 70-year-olds the estimated life-expectancy is somewhat higher than the life-expectancy in the general population in Sweden. This is logical since the estimated life-expectancy is for a population initially free from cardiovascular disease.
To estimate at what risk level treatment is costeffective, the coronary risk in the model was raised until the cost per QALY gained of treatment corresponded to the threshold value of a QALY gained used in the estimations. Since an increased risk of coronary heart disease is likely to also increase mortality after a coronary event (due to a higher risk of subsequent coronary events), the annual all-cause mortality after a coronary event was increased by 65% of the increase in the coronary risk. This assumption was based on the estimation that 65% of all-cause mortality in the second year after a coronary event in our Swedish incidence data was due to coronary causes (assuming that the non-coronary mortality is the same among people who suffer coronary events as among the general population). This figure was varied in a sensitivity analysis.

Based on the Swedish incidence data, we also estimated what fraction of men and women of different ages free of cardiovascular disease would be eligible for treatment according to the estimated risk cut-off. To carry out this estimation we assumed that the distribution of the risk of coronary heart disease in the population follows a standard lognormal distribution ${ }^{[27]}$.

Costs

The costs of the intervention were divided into the costs of the drug, the costs of laboratory tests and the costs of physician visits. The annual drug cost was estimated to be $\$ 600$, based on 40 mg of pravastatin daily and the Swedish official retail prices ${ }^{[28]}$. Pravastatin with a dose
of 40 mg per day was used in the West of Scotland coronary prevention study of primary prevention. An annual cost of laboratory tests of $\$ 40$ and an annual cost of physician visits of $\$ 254$ was used, based on a previous estimation of these costs for lipid lowering in primary care in Sweden ${ }^{[25]}$. The cost of physician visits included both the health care costs and the travelling and time costs for the patients. Thus the total annual intervention cost used was $\$ 894$.

The morbidity-associated costs after a coronary event were divided into health care costs (direct costs) and lost productivity (indirect costs) due to the coronary event. The costs were divided into the costs in the first year and the annual costs in subsequent years. The costs were based on estimations of the costs after different types of coronary events in Sweden ${ }^{[29]}$. For myocardial infarction and angina pectoris the direct costs were estimated to be $\$ 5882$ in the first year and $\$ 824$ per year in subsequent years. The corresponding costs used for unstable angina pectoris were $\$ 10000$ and $\$ 824$. In the $35-49$ years age-group the annual indirect costs were estimated to be $\$ 12941$ in the first year after the event and $\$ 7647$ per year in subsequent years for all coronary events. In the 50-64 years age-group the annual indirect costs were estimated to be $\$ 10588$ in the first year and $\$ 6471$ per year in subsequent years for all coronary events. No indirect costs were assumed after the age of 65 years (the retirement age in Sweden).

It has recently been shown that the difference between total consumption and production in added life-years should be included as a cost in cost-effectiveness analyses from a societal perspective ${ }^{[17]}$. We therefore included these full future costs. The annual consumption minus production was estimated to be $-\$ 9882$ in the 35-49 years age-group, $-\$ 4353$ in the $50-64$ years age-group and $\$ 18706$ in the $65-$ years age group, based on a previous analysis for Sweden ${ }^{[30]}$.

Quality of life adjustment

To use QALYs, data about quality of life weights in persons with and without coronary heart disease are needed. For persons free of coronary heart disease we used data from a recent study about the QALY weights in the Swedish general population estimated by the time trade-off method ${ }^{[31]}$. The following quality weights were used in different age-groups: 0.93 ($35-49$ years), 0.91 ($50-64$ years), $0 \cdot 81$ ($65-74$ years), $0 \cdot 65$ ($75-84$ years), and 0.60 (85 years). The reduction in the quality weight due to coronary heart disease was assumed to be $0 \cdot 10$, based on some previous studies ${ }^{[32,33]}$. The treatment as such was not assumed to affect the quality of life.

Sensitivity analysis

Various analyses of sensitivity were performed for a threshold value of a QALY gained of $\$ 60000$. In one

Table 2 The optimal risk cut-off for men and women at different ages for different valuations of a quality-adjusted life-year (QALY) gained. Lipid lowering treatment is cost-effective if the 5-year-risk of coronary heart disease exceeds the per cent risk shown in the table. The percent of the population eligible for treatment according to the risk cut-off is shown in parentheses

Age (years)	The value of a quality-adjusted life-year gained					
	\$40 000		\$60 000		\$100 000	
	Men	Women	Men	Women	Men	Women
35	3.34 (0.07)	$2 \cdot 95(<0.01)$	$2 \cdot 45$ (0.21)	1.99 (<0.01)	$1 \cdot 66$ (0.67)	1.24 (0.02)
40	4.06 (0.84)	$3 \cdot 17$ (0.04)	3.00 (1.82)	$2 \cdot 28$ (0.12)	2.03 (4.46)	1.51 (0.43)
45	$5 \cdot 09$ (3.06)	$3 \cdot 93$ (0.31)	3.71 (6.01)	$2 \cdot 80$ (0.84)	2.47 (12.45)	1.86 (2.36)
50	$6 \cdot 50$ (6.53)	$5 \cdot 07$ (0.99)	4.61 (12.08)	$3 \cdot 51$ (2.47)	3.01 (22.87)	$2 \cdot 27$ (6.33)
55	$8 \cdot 27$ (10.22)	$6 \cdot 80$ (1.84)	$5 \cdot 63$ (18.80)	$4 \cdot 53$ (4.67)	3.60 (33.08)	2.86 (11.09)
60	11.59 (10.37)	10.08 (2.22)	$7 \cdot 19$ (21.63)	$6 \cdot 11$ (6.53)	$4 \cdot 45$ (37.96)	3.53 (16.74)
65	17.33 (7.95)	$15 \cdot 82(2 \cdot 00)$	$9 \cdot 13$ (22.16)	$7 \cdot 55$ (9.42)	$5 \cdot 28$ (41.25)	4.23 (23.00)
70	$21 \cdot 36$ (7.13)	$20 \cdot 30$ (2.42)	$10 \cdot 37$ (22.72)	$9 \cdot 10$ (12.02)	$5 \cdot 90$ (42.84)	4.96 (28.57)

analysis the reduction in risk was varied according to the 95% confidence interval of the relative risk reduction in the West of Scotland coronary prevention study $(17 \%-43 \%)^{[5]}$. In another analysis the relative risk reduction was assumed to be 40% for persons younger than 55 years of age and 27% for persons at or above 55 years of age, based on the subgroup analysis in the West of Scotland coronary prevention study ${ }^{[5]}$. The relative risk reduction did not differ significantly with age in any of the major clinical trials, but there has been a trend towards a lower relative risk reduction at older ages in several studies ${ }^{[4-8]}$.

In another analysis the increase in the mortality risk after coronary heart disease was varied between 30% and 90% of the increase in the risk of coronary heart disease. The annual intervention cost was varied between $\$ 600$ and $\$ 1200$ in one analysis, and in another analysis the annual morbidity-associated costs after a coronary event were raised and lowered by 50%. For comparability with other studies, one analysis was carried out without future costs of decreased mortality. In another analysis both the future costs of decreased mortality and the indirect morbidity costs were excluded, using the cost concept recommended by the Panel on Cost-Effectiveness in Health and Medicine ${ }^{[11]}$. In one analysis the reduction in quality of life after coronary heart disease was varied between 0 and $0 \cdot 20$. Finally, the rate of discounting costs and QALYs was varied between 0% and 5%, and in one analysis costs were discounted by 3% whereas QALYs were not discounted at all.

Results

The optimal risk cut-off

Table 2 shows at what 5 -year-risk of coronary heart disease it is cost-effective to initiate cholesterol lowering drug treatment for men and women at different ages.

The optimal risk cut-off is shown for three different threshold values of a QALY gained (\$40 000, \$60 000 and $\$ 100000$). Irrespective of the threshold value, the optimal risk cut-off increased with age and was higher for men than for women. If society is willing to pay $\$ 60000$ to gain a QALY, it was cost-effective to initiate treatment if the 5-year-risk of coronary heart disease exceeded $2 \cdot 4 \%$ for 35 -year-old men, $4 \cdot 6 \%$ for 50 -year-old men and 10.4% for 70 -year-old men. The corresponding risk cut-off values for women were $2 \cdot 0 \%, 3 \cdot 5 \%$ and $9 \cdot 1 \%$. When the value of a QALY gained was varied between $\$ 40000$ and $\$ 100000$ the risk cut-off varied between $3 \cdot 0 \%$ and $6 \cdot 5 \%$ for 50 -year-old men and between $2 \cdot 3 \%$ and $5 \cdot 1 \%$ for 50 -year-old women.
The fraction of the population eligible for treatment according to the different risk cut-offs is also shown in Table 2. The fraction of the population eligible for treatment increased with age and was higher for men than women. With a value of a QALY gained of $\$ 60000$, less than 1% of 35 -year-old men and women were eligible for treatment, whereas about 20% of older men and 10% of older women were eligible for treatment.

Sensitivity analysis

In Tables 3 and 4 the result of the sensitivity analysis is shown for a value of a QALY gained of $\$ 60000$. In the various sensitivity analyses, the risk cut-off for 50 -yearold men varied between $2 \cdot 9 \%$ and $7 \cdot 8 \%$ and the risk cut-off for 50 -year-old women varied between $2 \cdot 2 \%$ and 5.9%. The result was most sensitive towards the variations in the risk reduction, the intervention cost, and the rate of discounting costs and QALYs.

Discussion

We have estimated at what risk of coronary heart disease it is cost-effective to initiate cholesterol lowering

Table 3 Sensitivity analysis of the optimal risk cut-off for men for a value of a quality-adjusted life-year (QALY) gained of \$60 000

	Age							
	35	40	45	50	55	60	65	70
Baseline estimate (from Table 2)	$2 \cdot 45$	3.00	3.71	$4 \cdot 61$	$5 \cdot 63$	$7 \cdot 19$	$9 \cdot 13$	$10 \cdot 37$
Reduction in risk								
By 17\%	4.38	$5 \cdot 17$	$6 \cdot 33$	$7 \cdot 85$	$9 \cdot 36$	12.09	15.46	$17 \cdot 13$
By 43\%	$1 \cdot 81$	$2 \cdot 23$	$2 \cdot 80$	$3 \cdot 46$	$4 \cdot 21$	$5 \cdot 41$	$6 \cdot 99$	7.96
By $40 \%<55$ years and $27 \% \geq 55$ years	1.95	$2 \cdot 41$	$2 \cdot 95$	3.71	$6 \cdot 33$	$8 \cdot 02$	$10 \cdot 33$	11.82
Increase in mortality risk after CHD when the CHD risk increases								
30% of the relative increase in CHD risk	3.05	3.59	$4 \cdot 21$	4.95	5.96	$7 \cdot 51$	$9 \cdot 53$	$10 \cdot 75$
90\% of the relative increase in CHD risk	$2 \cdot 23$	$2 \cdot 76$	$3 \cdot 46$	$4 \cdot 40$	$5 \cdot 44$	6.99	$8 \cdot 87$	$10 \cdot 14$
Intervention costs								
Intervention costs \$600 per year	$1 \cdot 70$	$2 \cdot 11$	$2 \cdot 60$	$3 \cdot 29$	3.91	$5 \cdot 04$	$6 \cdot 51$	$7 \cdot 33$
Intervention costs \$1200 per year	$3 \cdot 25$	$3 \cdot 89$	$4 \cdot 84$	$5 \cdot 86$	$7 \cdot 18$	$9 \cdot 16$	11.63	13.47
Annual morbidity-associated costs after CHD								
Increased by 50%	2.34	$2 \cdot 79$	$3 \cdot 40$	$4 \cdot 22$	$5 \cdot 07$	$6 \cdot 62$	$8 \cdot 67$	$10 \cdot 06$
Decreased by 50%	$2 \cdot 56$	3.21	4.03	5•00	$6 \cdot 18$	$7 \cdot 77$	$9 \cdot 53$	$10 \cdot 68$
Cost concept								
Future costs excluded	$2 \cdot 65$	$2 \cdot 94$	$3 \cdot 37$	3.99	$4 \cdot 58$	$5 \cdot 57$	$6 \cdot 44$	$7 \cdot 18$
Future costs and indirect morbidity costs excluded	$2 \cdot 90$	3.41	3.96	$4 \cdot 63$	$5 \cdot 22$	$5 \cdot 94$	$6 \cdot 44$	$7 \cdot 18$
Quality of life with CHD								
Same as for persons without CHD	$2 \cdot 59$	$3 \cdot 30$	4.21	$5 \cdot 36$	$6 \cdot 81$	8.95	$10 \cdot 98$	12.57
$0 \cdot 20$ below that for persons without CHD	$2 \cdot 32$	$2 \cdot 70$	$3 \cdot 21$	$3 \cdot 92$	$4 \cdot 58$	$5 \cdot 94$	$7 \cdot 46$	$8 \cdot 67$
Rate of discounting costs and QALYs								
Costs 5\%, QALYs 5\%	$2 \cdot 96$	3.65	4.47	$5 \cdot 36$	6.44	$8 \cdot 13$	$10 \cdot 33$	11.36
No discounting	1.68	$2 \cdot 05$	$2 \cdot 61$	$3 \cdot 34$	$4 \cdot 21$	$5 \cdot 57$	$7 \cdot 19$	$8 \cdot 67$
Costs 3\%, QALYs undiscounted	1.61	1.87	$2 \cdot 32$	$2 \cdot 90$	$3 \cdot 60$	$4 \cdot 77$	$6 \cdot 03$	$7 \cdot 18$

CHD = coronary heart disease.
drug treatment in primary prevention in Sweden. Irrespective of the threshold value of a QALY gained, the optimal risk cut-off increased with age and was higher for men than for women. If society is willing to pay $\$ 60000$ to gain a QALY, it was cost-effective to initiate treatment if the 5 -year-risk of coronary heart disease exceeded $2 \cdot 4 \%$ for 35 -year-old men, $4 \cdot 6 \%$ for 50 -year-old men, and $10 \cdot 4 \%$ for 70 -year-old men. The corresponding risk cut-off values for women were $2 \cdot 0 \%, 3 \cdot 5 \%$ and $9 \cdot 1 \%$. Even though the risk cut-off value increased with age, the fraction of the population eligible for treatment increased with age. With a value of a QALY gained of $\$ 60000$, less than 1% of 35 -year-old men and women were eligible for treatment, whereas about 20% of older men and 10% of older women were eligible for treatment.
The results can serve as a basis for developing treatment guidelines for cholesterol lowering in primary prevention based on cost-effectiveness. Data from epidemiological studies such as the Framingham study can be used to determine the absolute risk of coronary heart disease of individual patients as done in current treatment guidelines based on absolute risk ${ }^{[12-15,34]}$. By comparing the absolute risk of a patient with the risk cut-off value for that age and gender it can be determined if
cholesterol lowering drug treatment is cost-effective. Such an approach would be easy to use in clinical practice and provides a convenient way to incorporate risk factors other than the cholesterol level into the treatment decision.

Some current guidelines for cholesterol lowering treatment base treatment recommendations on the absolute risk of coronary heart disease ${ }^{[13-15]}$. In the Sheffield table for primary prevention, lipid lowering treatment was recommended if the 1 -year-risk of coronary heart disease exceeded $3 \%{ }^{[13,14]}$, and in the recommendations by the European Society of Cardiology treatment was recommended if the 10 -year-risk of coronary heart disease exceeded $20 \%{ }^{[15]}$. A problem with these recommendations, from a costeffectiveness viewpoint, is that the risk cut-off for treatment is independent of age and gender. As shown by our results, the optimal risk cut-off value varied greatly, especially with age. The risk cut-off values in the above guidelines are reasonably similar to our estimates at older ages, but are well above our estimates at younger ages. Thus from a cost-effectiveness viewpoint, the guidelines seem overly conservative as a basis for treatment decisions in younger and middle-aged men and women.

Table 4 Sensitivity analysis of the optimal risk cut-off for women for a value of a quality-adjusted life-year (QALY) gained of \$60 000

	Age							
	35	40	45	50	55	60	65	70
Baseline estimate (from Table 2)	1.99	$2 \cdot 28$	$2 \cdot 80$	$3 \cdot 51$	$4 \cdot 53$	$6 \cdot 11$	$7 \cdot 55$	$9 \cdot 10$
Reduction in risk								
By 17\%	$4 \cdot 07$	4.08	$4 \cdot 82$	5.93	$7 \cdot 59$	$10 \cdot 28$	$13 \cdot 13$	15.89
By 43\%	1.39	1.70	2.10	$2 \cdot 72$	$3 \cdot 45$	$4 \cdot 61$	$5 \cdot 63$	$6 \cdot 89$
By $40 \%<55$ years and $27 \% \geq 55$ years	1.51	1.81	$2 \cdot 27$	$2 \cdot 88$	$5 \cdot 07$	$6 \cdot 74$	$8 \cdot 50$	$10 \cdot 41$
Increase in mortality risk after CHD when the CHD risk increases								
30% of the relative increase in CHD risk	2.35	$2 \cdot 78$	$3 \cdot 37$	$4 \cdot 18$	$5 \cdot 20$	$6 \cdot 74$	$8 \cdot 50$	$9 \cdot 89$
90\% of the relative increase in CHD risk	$1 \cdot 90$	$2 \cdot 11$	$2 \cdot 60$	$3 \cdot 29$	$4 \cdot 26$	$5 \cdot 68$	$7 \cdot 23$	$8 \cdot 66$
Intervention costs								
Intervention costs $\$ 600$ per year	$1 \cdot 30$	$1 \cdot 60$	1.98	$2 \cdot 56$	$3 \cdot 17$	$4 \cdot 18$	$5 \cdot 30$	$6 \cdot 45$
Intervention costs \$1200 per year	$2 \cdot 80$	$3 \cdot 00$	$3 \cdot 65$	$4 \cdot 53$	$5 \cdot 87$	$7 \cdot 80$	9.76	$11 \cdot 70$
Annual morbidity-associated costs after CHD								
Increased by 50%	1.93	$2 \cdot 18$	$2 \cdot 64$	$3 \cdot 31$	$4 \cdot 26$	$5 \cdot 68$	$7 \cdot 33$	$8 \cdot 80$
Decreased by 50\%	$2 \cdot 05$	$2 \cdot 39$	$2 \cdot 96$	$3 \cdot 71$	$4 \cdot 80$	$6 \cdot 47$	$7 \cdot 77$	$9 \cdot 41$
Cost concept								
Future costs excluded	$2 \cdot 26$	$2 \cdot 34$	$2 \cdot 64$	$3 \cdot 04$	$3 \cdot 62$	$4 \cdot 39$	$5 \cdot 04$	5.91
Future costs and indirect morbidity costs excluded	$2 \cdot 41$	2.53	2•88	$3 \cdot 35$	$3 \cdot 99$	$4 \cdot 61$	$5 \cdot 04$	$5 \cdot 91$
Quality of life with CHD								
Same as for persons without CHD	$2 \cdot 05$	2.39	$3 \cdot 00$	$3 \cdot 90$	$5 \cdot 07$	$6 \cdot 96$	$8 \cdot 82$	$10 \cdot 41$
$0 \cdot 20$ below that for persons without CHD	1.93	2.18	$2 \cdot 60$	$3 \cdot 20$	$3 \cdot 99$	5.04	$6 \cdot 59$	7.78
Rate of discounting costs and QALYs								
Costs 5\%, QALYs 5\%	2.47	$2 \cdot 74$	3.33	$4 \cdot 14$	$5 \cdot 20$	$6 \cdot 96$	$8 \cdot 82$	$10 \cdot 41$
No discounting	1.33	1.60	$2 \cdot 02$	$2 \cdot 64$	$3 \cdot 45$	4.61	$5 \cdot 95$	$7 \cdot 34$
Costs 3\%, QALYs undiscounted	$1 \cdot 27$	1.46	1.78	$2 \cdot 25$	$2 \cdot 79$	$3 \cdot 75$	$4 \cdot 65$	$5 \cdot 68$

CHD = coronary heart disease.

References

[1] Statistics Sweden. Statistical Yearbook of Sweden 1999. Stockholm: Statistics Sweden, 1998.
[2] Anderson KM, Odell PM, Wilson PWF, Kannel WB. Cardiovascular disease risk profiles. Am Heart J 1990; 121: 293-8.
[3] LaRosa JC, Hunninghake D, Bush D et al. The cholesterol facts: a summary of the evidence relating dietary fats, serum cholesterol, and coronary heart disease: a joint statement by the American Heart Association and the National Heart, Lung, and Blood Institute. Circulation 1990; 81: 1721-33.
[4] Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383-9.
[5] Shepherd J, Cobbe SM, Ford I et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med 1995; 333: 1301-7.
[6] Sacks FM, Pfeffer MA, Moye LA et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 1996; 335: 1001-9.
[7] The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 1998; 339: 1349-57.
[8] Downs JR, Clearfield M, Weis S et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels. Results of AFCAPS/TexCAPS. JAMA 1998; 279: 1615-22.
[9] Russel LB, Gold MR, Siegel JR, Daniels N, Weinstein MC. The role of cost-effectiveness analysis in health and medicine. JAMA 1996; 276: 1172-7.
[10] Johannesson M, Jönsson B, Kjekshus J, Olsson AG, Pedersen TR, Wedel H. Cost-effectiveness of simvastatin treatment to lower cholesterol levels in patients with coronary heart disease. N Engl J Med 1997; 336: 332-6.
[11] Goldman L, Weinstein MC, Goldman PA, Williams LW. Cost-effectiveness of HMG-CoA reductase inhibition for primary and secondary prevention of coronary heart disease. JAMA 1991; 265: 1145-51.
[12] National Cholesterol Education Program Expert Panel. Summary of the second report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel II). JAMA 1993; 269: 3015-23.
[13] Ramsay LE, Haq IU, Jackson PR, Yeo WW, Pickin DM, Payne JN. Targeting lipid-lowering drug therapy for primary prevention of coronary heart disease: an updated Sheffield table. Lancet 1996; 348: 387-8.
[14] Ramsay LE, Haq IU, Jackson PR, Yeo WW. The Sheffield table for primary prevention of coronary heart disease: corrected. Lancet 1996; 348: 1251-2.
15] Wood D, DeBacker G, Faergeman O, Graham I, Mancia G, Pyörälä K. Prevention of coronary heart disease in clinical practice: recommendations of the Second Joint Task Force of European and other Societies on Coronary Prevention. Atherosclerosis 1998; 140: 199-270.
[16] Weinstein MC, Siegel JE, Gold MR, Kamlet KS, Russel LB. Recommendations of the Panel on Cost-Effectiveness in Health and Medicine. JAMA 1996; 276: 1253-8.
[17] Meltzer D. Accounting for future costs in medical cost-effectiveness analysis. J Health Econ 1997; 16: 33-64.
[18] Johannesson M, Meltzer D. Some reflections on costeffectiveness analysis. Health Econ 1998; 7: 1-7.
[19] Tosteson AN, Rosenthal DI, Melton LJ III, Weinstein MC. Cost-effectiveness of screening perimenopausal white women for osteoporosis: bone densitometry and hormone replacement therapy. Ann Intern Med 1990; 113: 594-603.
[20] Littenberg G, Garber AM, Sox HC Jr. Screening for hypertension. Ann Intern Med 1990; 112: 192-202.
[21] Hay JW, Wittels EH, Gotto AM Jr. An economic evaluation of lovastatin for cholesterol lowering and coronary artery disease reduction. Am J Cardiol 1991; 67: 789-96.
[22] Newhouse JP. US and UK health economics: two disciplines separated by a common language? Health Econ 1998; 7: S79-S92.
[23] Cutler D, Richardson E. The value of health: 1970-1990. American Economic Review Papers and Proceedings 1998; 88 : 97-100.
[24] Johannesson M, Hedbrant J, Jönsson B. A computer simulation model for cost-effectiveness analysis of cardiovascular disease prevention. Med Inf 1991; 16: 355-62.
[25] Johannesson M, Borgquist L, Jönsson B, Lindholm LH. The cost-effectiveness of lipid lowering in Swedish primary health care. J Intern Med 1996; 240: 23-9.
[26] The National Board of Health and Welfare. Causes of Death 1995. Statistics - Health and Diseases 1997: 3. Stockholm: The National Board of Health and Welfare, 1997.
[27] van Doorslaer E, Wagstaff A, Bleichrodt H et al. Incomerelated inequalities in health: some international comparisons. J Health Econ 1997; 16: 93-112.
[28] Läkemedelsinformation AB. FASS 1998, Pharmaceutical Specialities in Sweden. Stockholm: Läkemedelsinformation AB, 1998.
[29] Zethraeus N, Molin T, Henriksson P, Jönsson B. Costs of coronary heart disease and stroke: the case of Sweden. J Intern Med 1999; 246: 151-9.
[30] Johannesson M, Meltzer D, O'Conor RM. Incorporating future costs in medical cost-effectiveness analysis: implications for the cost-effectiveness of the treatment of hypertension. Med Decis Making 1997; 17: 382-9.
[31] Lundberg L, Johannesson M, Isacson DGL, Borgquist L. Health-state utilities in a general population in relation to age, gender, and socioeconomic factors. Eur J Public Health 1999; 9: 211-7.
[32] Tsevat J, Goldman L, Soukup JR et al. Stability of timetradeoff utilities in survivors of myocardial infarction. Med Decis Making 1993; 13: 161-5.
[33] Glasziou PP, Bromwich S, Simes RJ. Quality of life six months after myocardial infarction treated with thrombolytic therapy. Med J Aust 1994; 161: 532-6.
[34] Grundy SM, Ballady GJ, Criqui MH et al. Primary prevention of coronary heart disease: guidance from Framingham. A statement for health care professionals from the AHA Task Force on Risk Reduction. Circulation 1998; 97: 1876-87.

[^0]: Revision submitted 22 September 2000, and accepted 4 October 2000.

 Correspondence: Magnus Johannesson, PhD, Centre for Health Economics, Stockholm School of Economics, Box 6501, S-113 83 Stockholm, Sweden.

