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ATAC-seq footprinting unravels kinetics of
transcription factor binding during zygotic
genome activation
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While footprinting analysis of ATAC-seq data can theoretically enable investigation of

transcription factor (TF) binding, the lack of a computational tool able to conduct different

levels of footprinting analysis has so-far hindered the widespread application of this method.

Here we present TOBIAS, a comprehensive, accurate, and fast footprinting framework

enabling genome-wide investigation of TF binding dynamics for hundreds of TFs simulta-

neously. We validate TOBIAS using paired ATAC-seq and ChIP-seq data, and find that

TOBIAS outperforms existing methods for bias correction and footprinting. As a proof-of-

concept, we illustrate how TOBIAS can unveil complex TF dynamics during zygotic genome

activation in both humans and mice, and propose how zygotic Dux activates cascades of TFs,

binds to repeat elements and induces expression of novel genetic elements.
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E
pigenetic mechanisms governing chromatin organization
and transcription factor (TF) binding are critical compo-
nents of transcriptional regulation and cellular transitions.

In recent years, rapid improvements of pioneering sequencing
methods such as ATAC-seq (Assay of Transposase Accessible
Chromatin)1, have allowed for systematic, global scale investi-
gation of epigenetic mechanisms controlling gene expression.
While ATAC-seq can uncover accessible regions where TFs might
bind, reliable identification of specific TF binding sites (TFBS)
still relies on chromatin immunoprecipitation methods such as
ChIP-seq. However, ChIP-seq methods require high input cell
numbers, are limited to one TF per assay, and are further
restricted to TFs for which antibodies are readily available.
Therefore, it remains costly, or even impossible, to study the
binding of multiple TFs in parallel.

Current limits to the investigation of TF binding become
particularly apparent when investigating processes involving a
very limited number of cells, such as preimplantation develop-
ment (PD) and zygotic genome activation (ZGA) of early zygotes.
Integration of multiple omics-based profiling methods have
revealed a set of key TFs that are expressed at the onset of and
during ZGA including Dux2, Zscan43, and other homeobox-
containing TFs4. However, due to the limitations of ChIP-seq, the
exact genetic elements bound and regulated by different TFs
during PD remain to be fully discovered. Consequently, the global
network of TF binding dynamics throughout PD remains mostly
obscure.

A computational method known as digital genomic foot-
printing (DGF)5 has emerged as an alternative means, which can
overcome some of the limitations of ChIP-based methods. DGF is
a computational analysis of chromatin accessibility assays such as
ATAC-seq, which employs DNA effector enzymes that only cut
accessible DNA regions. Similarly to nucleosomes, bound TFs
hinder cleavage of DNA, resulting in defined regions of decreased
signal strength within larger regions of high signal—known as
footprints6 (Fig. 1a).

Surprisingly, although this concept shows considerable poten-
tial to survey genome-wide binding of multiple TFs in parallel
from a single experiment, DGF analysis is rarely applied when
investigating TF binding mechanisms. The skepticism towards
DGF has been driven by the discovery that enzymes used in
chromatin accessibility assays (e.g., DNase-I) are biased towards
certain sequence compositions, an effect which has been well
characterized for DNase-seq7,8. The influence of Tn5 transposase
bias in the context of ATAC-seq footprinting has, however, only
been described very recently9,10 and still represents an uncer-
tainty during discovery of true footprints. Besides the identifica-
tion of footprints, comparing footprints across biological
conditions remains challenging as well. While there have been
efforts to estimate differential TF binding on a genome-wide
scale11,12, investigation of epigenetic processes often requires
more in-depth information on the individual differentially bound
TFBS and genes targeted by these TFs. Furthermore, many
footprinting methods suffer from performance issues due to
missing support for multiprocessing, inflexible software archi-
tecture, and the use of non-standard file-formats. These obstacles
complicate the assembly of different tools for advanced analysis
workflows. Consequently, despite its compelling potential, these
issues have rendered footprinting on ATAC-seq cumbersome to
apply to biological questions. Essentially, a comprehensive fra-
mework enabling large-scale ATAC-seq footprinting is missing.

Here, we describe TOBIAS (Transcription factor Occupancy
prediction By Investigation of ATAC-seq Signal), a comprehen-
sive computational framework that we created for footprinting
analysis (Fig. 1b–f). TOBIAS is a collection of command-line
tools utilizing a minimal input of ATAC-seq reads, TF motifs and

genome information (Fig. 1b) to perform all levels of footprinting
analysis including bias correction (Fig. 1c), footprinting (Fig. 1d),
and comparison between conditions (Fig. 1e). Furthermore,
TOBIAS includes a variety of auxiliary tools such as TF network
inference and visualization of footprints, which allow for various
downstream analysis (Fig. 1f, Supplementary Fig. 1). In this
investigation, we apply TOBIAS to ATAC-seq data from both
human and mouse PD and show how visible TF footprints cor-
relate with the timings of TF activity throughout development.
We additionally focus on the TF Dux, an important TF during
ZGA, and use TOBIAS to unravel its target genes and influence
on the global transcriptional network throughput PD.

Results
Impact of bias correction on footprint visibility. To validate the
results of the TOBIAS method, we utilized 217 paired ChIP-seq/
ATAC-seq datasets across four different cell types (GM12878,
A549, HepG2, and K562). Here, the ChIP-seq peaks represent the
true binding sites for each TF, which we used for validating the
accuracy of the binding sites predicted by footprinting (see
Supplementary Methods part 3).

As it has been shown that the Tn5 transposase has a large effect
on footprinting10, the first step of the TOBIAS footprinting
pipeline is Tn5 bias correction. The TOBIAS bias correction
module (named ATACorrect) utilizes a dinucleotide weight
matrix (DWM)13 to estimate the background bias of the Tn5
transposase (Fig. 1c). This DWM is used to calculate an expected
Tn5 signal for each genomic region, representing the influence of
the Tn5 bias (Fig. 1c; expected cutsites). Subtracting these
expected cuts from the uncorrected signals yields a corrected
track, highlighting the effect of protein binding (details are
available in Supplementary Methods part 1). In order to evaluate
the performance of TOBIAS in comparison to existing bias
correction tools, we utilized the paired ChIP-seq/ATAC-seq data
mentioned above to visualize aggregated footprints across bound
and unbound subsets of TFBS. We found TOBIAS to outperform
other bias correction tools in uncovering footprints and thereby
distinguishing between bound/unbound sites (Supplementary
Fig. 2a, Supplementary Data 1). Next, we wanted to quantify
the depths of the aggregated footprints and utilized a footprint
depth (FPD) metric as described by Baek et al.12 (Supplementary
Fig. 2b). In line with the visual impression, TOBIAS has the most
significant difference in FPD between bound and unbound
subsets of TFBS (Supplementary Fig. 2c). Importantly, the FPD’s
of unbound sites are minimally affected by bias correction,
indicating that bias correction only uncovers footprints for truly
bound sites.

Of note, the TOBIAS ‘ATACorrect’ method relies on the
calculation of the expected Tn5 cuts based on the influence of
Tn5 bias. Interestingly, besides identifying cases where the
footprint was hidden by Tn5 bias (Supplementary Fig. 2d;
JDP2), the track of expected signal also identifies TFs for which
the motif itself disfavors Tn5 integration, thereby creating a false-
positive footprint in uncorrected signals (Supplementary Fig. 2d;
FOXD3). We wanted to investigate this effect in more detail and
found that there is a high correlation between the footprint
depths of uncorrected and expected Tn5 signals across all TFs,
which vanishes after TOBIAS correction (Supplementary Fig. 2e).
This observation demonstrates that bias correction effectively
uncovers TF footprints, which were otherwise superimposed by
Tn5 bias. It has previously been suggested that only 20% of all
TFs leave measurable footprints12, and we were able to confirm
this observation using the uncorrected footprint depths and the
same metric (Supplementary Fig. 2f; uncorrected). However, in
contrast, we observed a measurable footprint for 59% of the TFs
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when using the TOBIAS corrected signals (Supplementary Fig. 2f;
corrected). As the fitted two-component model is a limited
estimator to classify bound/unbound sites, we additionally
calculated null distributions of randomized corrected footprints.
By this approach, we similarly found the number of measurable
footprints to be consistent at ~65% across all four cell types
investigated (Supplementary Fig. 2g). This demonstrates that
failure to correct for Tn5 bias can lead to false negative footprints,
while bias correction uncovers the true amount of measurable
footprints to be above 50%.

Validation of TOBIAS footprinting. For the task of protein
binding prediction (i.e., footprinting), we collected four popular
tools for ATAC-seq footprinting (HINT-ATAC, PIQ, Wellington,
and msCentipede) and compared these to the individual TOBIAS
framework features where applicable. While we found that some
functionalities are overlapping between tools, we found a sub-
stantial set of features, such as differential footprinting for more
than two conditions, to be exclusively covered by TOBIAS
(Supplementary Table 1). Evaluating the results of each tool, we
found that TOBIAS significantly outperformed the other de novo
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Fig. 1 The TOBIAS digital genomic footprinting framework. a The concept of footprinting using ATAC-seq. Tn5 transposase cleaves DNA and inserts
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NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18035-1 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4267 | https://doi.org/10.1038/s41467-020-18035-1 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


tools HINT-ATAC, PIQ, and Wellington (Supplementary Fig. 3a)
and performed equally well as msCentipede overall (Supple-
mentary Fig. 3b). Notably, TOBIAS also showed robust perfor-
mance across individual cell types (Supplementary Fig. 3c).
Looking at individual TFs, TOBIAS outperforms msCentipede for
factors such as CEBPB, which has a notable gain of footprints
after Tn5 bias correction (Supplementary Fig. 3d), once again
highlighting the advantage of taking Tn5 bias into account.
Although msCentipede implements a motif centric learning
approach, which can take TF specific binding patterns into
account, it did not yield overall higher accuracy in comparison to
TOBIAS. Additionally, the approach of building individual TF
models took 300 times longer to compute than performing
footprinting using TOBIAS (Supplementary Fig. 3e). Such
learning approaches are therefore greatly limited in the number of
TFs and conditions, which can realistically be analyzed.

Although we have shown that more than half of TFs create
visible aggregated footprints, the footprints at individual loci are
much more difficult to detect due to the sparsity of the ATAC-seq
signal (as seen in Fig. 1f; Local footprints). In order to take this
sparsity into account, we have designed the TOBIAS footprinting
score as a combined score taking into account both depletion and
accessibility (Supplementary Fig. 3f). In comparison, previous
scoring methods such as the Footprint Occupancy Score (FOS)14,
calculate the difference in signal level between the background and
the footprint (Supplementary Fig. 3g). To test the impact of this
novel scoring approach, we compared the results of the TOBIAS
(depletion+ accessibility) score (as calculated from corrected
cutsites) with the FOS score (pure depletion) (Supplementary
Fig. 3h). While there is a limited improvement in the FOS
footprinting score by using TOBIAS corrected cutsites, we found
that there is a significant increase in predictive ability by using the
TOBIAS score. This shows that, although bias correction is highly
important for visualizing aggregated footprints, the influence of
accessibility in the calculation of footprint scores is of considerable
importance as well. Along this line, these findings illustrate the
relationship between aggregated footprints and individual TFBS
footprints. While the number of TFs with footprints in aggregated
signals is above 50%, the proportion of individual TFBS supported
by footprints might be considerably lower. Consequently, a score
like FOS, which requires a footprint depletion for prediction, is
inherently limited when predicting protein binding. In conclusion,
we found that TOBIAS exceeded other tools in terms of
uncovering footprints hidden by bias and correctly identifying
bound TF binding sites. The improvement in accuracy is achieved
by the alternative approaches for bias correction as well as by the
novel footprinting score.

TF binding dynamics in mammalian ZGA. To demonstrate the
potential of TOBIAS to predict differential TF binding across
multiple conditions, in particular in the investigation of processes
involving only few cells, we analyzed a series of ATAC-seq
datasets derived from both human and murine preimplantation
embryos at different developmental stages ranging from 2C, 4C,
8C to ICM in addition to embryonic stem cells of their respective
species15,16 (Fig. 2a). Altogether, TOBIAS was used to calculate
footprint scores for a list of 590 and 464 individual TFs across the
entire process of PD of human and mouse embryos, respectively.
After clustering TFs into co-active groups within one or multiple
developmental timepoints, we first asked whether the predicted
timing of TF activation reflects known processes in human PD.
Intriguingly, we found 10 defined clusters of specific binding
patterns, the majority of which peaked between 4C and 8C, fully
concordant with the transcriptional burst and termination of
ZGA (Fig. 2b).

Two clusters of TFs (Cluster 1+ 2; n= 83) displayed highest
activity at the 2–4C stage and strongly decreased thereafter,
suggesting that factors within these clusters are likely involved in
ZGA initiation. We set out to classify these TFs, and observed a
high overlap with known maternally transferred transcripts17

(LHX8, BACH1, EBF1, LHX2, EMX1, MIXL1, HIC2, FIGLA,
SALL4, and ZNF449), explaining their activity before ZGA onset.
Importantly, DUX4 and DUXA, which are amongst the earliest
expressed TFs during ZGA2,18, were also contained in these
clusters. Additional TFs included HOXD1, which is known to be
expressed in human unfertilized oocytes and preimplantation
embryos19 and ZBTB17, a TF mandatory to generate viable
embryos20. Cluster 6 (n= 67) displayed a particularly prominent
8C specific signature, that harbored well-known TFs involved in
lineage specification such as PITX1, PITX3, SOX8, MEF2A,
MEF2D, OTX2, PAX5, and NKX3.2. Furthermore, overlapping
TFs within Cluster 6 with RNA expression datasets ranging from
the germinal vesicle to cleavage stage2, 12 additional TFs (FOXJ3,
HNF1A, ARID5A, RARB, HOXD8, TBP, ZFP28, ARID3B,
ZNF136, IRF6, ARGFX, MYC, and ZSCAN4) were confirmed
to be exclusively expressed within this time frame. Taken
together, these data show that TOBIAS reliably uncovers
massively parallel TF binding dynamics at specific timepoints
during early embryonic development.

TF binding correlates with visible footprints. To confirm that
TOBIAS-based footprinting scores are indeed associated with
leaving bona fide footprints, we utilized the ability to visualize
aggregated footprint plots as implemented within the framework.
Indeed, bias corrected footprint scores were highly congruent
with explicitly defined footprints (Fig. 2c) of prime ZGA reg-
ulators at developmental stages in which these have been shown
to be active3. For example, footprints associated with DUX4, a
master inducer of ZGA, were clearly visible from 2C–4C,
decreased from 8C onwards and were completely lost in later
stages, consistent with known expression levels15 and ZGA onset
in humans. Footprints for ZSCAN4, a primary DUX4 target2,
were exclusively visible at the 8C stage. Interestingly, GATA2
footprints were exhibited from 8C to ICM stages which is in line
with its known function in regulating trophoblast differentia-
tion21. As expected, CTCF creates footprints across all timepoints.
Strikingly, we observed that these defined footprints were not
detectable without TOBIAS-mediated Tn5 bias correction (Sup-
plementary Fig. 4a). These data show that footprint scores can be
reliably confirmed by footprint visualizations, which further allow
to infer TF binding dynamics.

To test if the global footprinting scores of individual TFs
correlate with the incidence and level of their RNA expression, we
matched them to RNA expression datasets derived from
individual timepoints throughout zygotic development, taking
TF motif similarity into account. Indeed, we found that TOBIAS
scores for the majority of TFs either correlated well with the
timing of their expression profiles or displayed a slightly delayed
activity after expression peaked (Supplementary Fig. 4b). This is
important because it shows that in conjunction with expression
data, TOBIAS can indicate the kinetics between TF expression
(mRNA) and the actual binding activity of their translated
proteins. The value of this added information becomes particu-
larly apparent when analyzing activities of TFs that did not
correlate with the timing of their RNA expression (Supplemen-
tary Fig. 4b; not correlated).

For example, within the non-correlated cluster 13 TFs were
identified, which are of putative maternal origin17 including
SALL4. In mice, Sall4 protein is maternally contributed to the
zygote, subsequently degraded at 2C and then re-expressed after
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zygotic transcription has initiated22. Consistent with this, SALL4
expression increases dramatically from 8C onwards (see Source
Data file). In contrast to the expression values, TOBIAS predicted
SALL4 to have the highest activity in 2C, with decreasing activity
in 8C, which is in line with the presence of maternal SALL4 in the
zygote. Comparing this change to all TF changes between 2C and
8C (log2 fold-changes estimated from TOBIAS activity scores),

we find that SALL4 is at the 7th percentile of all changes ranked
from decreasing to increasing, which is consistent with the
degradation of the protein after the 2C stage. These data show
that TOBIAS can provide significant insight into TF activities, in
particular for those where determining their expression patterns
alone does not suffice to explain when they exert their biological
function.
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Comparison of TF binding between human and mouse ZGA.
The timing of ZGA varies between mice (2C) and humans
(4C–8C) (reviewed in ref. 23). By integrating the TOBIAS scores
from human and mouse (Supplementary Fig. 4c), and instru-
mentalizing the capability of TOBIAS to generate differential TF
binding plots for all timepoints automatically, we investigated
similarities and differences of PD between these species. Firstly,
reflecting the shift of ZGA onset, we identified 30 TFs, which
appeared to be ZGA specific in both human and mouse (Fig. 2d),
including OTX1, GSC, CPHX, and HLTF, which already have
described functions within ZGA4,24. Moreover, this list also
includes ARID3A, which has been shown to play a role in cell fate
decisions in creating trophectoderm25.

Next, we wanted to investigate specific differentially bound
TFs, not only across the whole timeline, but also between
individual conditions. We therefore utilized the differential TF

binding plots created by TOBIAS, and chose to focus on the
cellular transition initiated at and following ZGA, which
corresponds to the transition between 2C and 4C in mice
(Fig. 3a, Supplementary Note 1 for all pairwise comparisons),
and between 8C and ICM in humans (Fig. 3b, Supplementary
Note 2 for all pairwise comparisons). In mice, we observed a
shift of Obox-factor activity in 2C to an activation of Tead
(Tead1-4) and AP-2 (Tfap2a/c/e) motifs in 4C. Notably, AP-2/
Tfap2c is required for normal embryogenesis in mice26 and
was also recently shown to act as a chromatin modifier that
opens enhancers proximal to pluripotency factors in human27.
We observed a similar shift of TF activity for homeobox
factors such as PITX1-3, RHOXF1, CRX, and DMBX1 at the
human 8C stage towards higher scores in ICM for known
pluripotency factors, such as POU5F1 (OCT4) and other POU-
factors.
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Throughout the pairwise comparisons, we observed that TFs
from the same families often display similar binding kinetics
within species, which is not surprising since they often possess
highly similar binding motifs (Fig. 3a; right). To characterize TF
similarity, TOBIAS clusters TFs based on the overlap of TFBS
within investigated samples (Fig. 3c, d). This enables quantifica-
tion of the similarity and clustering of individual TFs that appear
to be active at the same time. Thereby, we observed a group of
homeobox motifs, which cluster together with more than 50%
overlap of their respective binding sites in mouse (Fig. 3c). In
contrast, other TFs such as Tead and AP-2 cluster separately,
indicating that these factors utilize independent motifs (the full
tree is found in Supplementary Note 1). While this might appear
trivial, this clustering of TFs in fact also highlights differences in
motif usage between human and mouse. One prominent example
is the RHOXF1 motif, which shows high binding-site overlap
with Obox 1/3/5 and Otx2 binding sites in mouse (Fig. 3c; ~60%
overlap), but does not cluster with OTX2 in human (Fig. 3d;
~35% overlap). This observation could suggest important
functional differences of RHOX/Rhox TFs between mice and
humans. In support of this hypothesis, RHOXF1, RHOXF2, and
RHOXF2B are exclusively expressed at 8C and ICM in humans,
whereas Rhox factors are not expressed in corresponding
developmental stages of preimplantation in mice (expression
values are given in the Source Data file). Conceivably, this
observation, together with the finding that murine Obox factors
share the same motif as RHOX-factors in humans, suggests that
Obox TFs might function similarly to RHOX-factors during
ZGA. Altogether, the TOBIAS-mediated TF clustering based on
TFBS overlap allows for quantification of target-similarity and
divergence of TF function between motif families.

Dux expression induces massive changes in TF networks.
Throughout the investigations of human and mouse development
we became particularly interested in the Dux/DUX4 TF, which
TOBIAS predicted to be one of the earliest factors to be active in
both organisms (Fig. 2b and Supplementary Fig. 4c). Interest-
ingly, despite the fact that Dux has already been proved to play a
prominent role in ZGA2, there is still a poor understanding of
how Dux regulates its primary downstream targets, and conse-
quently its secondary targets, during this process. We therefore
applied TOBIAS to identify Dux binding sites utilizing an ATAC-
seq dataset of Dux overexpression (DuxOE) in mESC2.

As expected, the differential TF activity predicted by TOBIAS
showed an increase in activity of Dux and Obox TFs, as well as
Hltf, which was already highlighted to be common between
mouse and human ZGA (Fig. 4a). Interestingly, this was
accompanied by a massive loss of TF binding for pluripotency
markers, such as Nanog, Pou5f1 (OCT4), and Sox2 upon DuxOE,
indicating that Dux renders previously accessible chromatin sites
associated with pluripotency inaccessible.

Consistently, Dux footprints (Fig. 4b; left) were clearly evident
upon DuxOE. In comparison to existing bias correction methods,
we found TOBIAS to be better at uncovering this footprint
between Control and DuxOE conditions (Supplementary Fig. 5a).
Importantly, TOBIAS additionally discriminated ~30% of all
potential binding sites within open chromatin regions to be
bound in the DuxOE condition (Fig. 4b; right). To rank the
biological relevance of the individually changed binding sites
between control and DuxOE conditions, we linked all annotated
gene loci to RNA expression. A striking correlation between the
gain-of-footprint and gain-of-expression of corresponding loci
was clearly observed and mirrored by the TOBIAS predicted
bound/unbound state (Fig. 4c). Among the genes within the list of
bound Dux binding sites were well-known Dux targets including

Zscan4c and Pramef2528, for which local footprints for Dux were
clearly visible (Fig. 4d). The high resolution of footprints is
particularly pronounced for Tdpoz1, which harbors two potential
Dux binding sites of which one is clearly footprinted in the score
track, while the other is predicted to be unoccupied (Fig. 4d;
bottom). In line with this, Tdpoz1 expression is significantly
upregulated upon DuxOE as revealed by RNA-seq (log2FC: 6,95).
Consistently, Tdpoz1 expression levels are highest at 2C and
decrease thereafter, indicating that Tdpoz1 is likely a direct target
of Dux during PD both in vitro and in vivo. Footprinting scores
also directly correlated with ChIP-seq peaks for Dux in the
Tdpoz1 promoter (Supplementary Fig. 5b), an observation which
we also found at other positions (Supplementary Fig. 5c, d).

Many of the TOBIAS-predicted Dux targets encode TFs
themselves. Therefore, we applied the TOBIAS network module
to subset and match all activated binding sites to TF target genes
with the aim of inferring how these TF activities might connect.
Thereby, we could model an intriguing pseudo timed TF-
activation network. This directed network predicted a TF-
activation cascade initiated by Dux, resulting in the activation
of 7 primary TFs which appear to subsequently activate 32 further
TFs (first three layers depicted in Fig. 4e). As Dux is a regulator of
ZGA, we asked how the in vitro activated Dux network compared
to gene expression throughout PD in vivo. Strikingly, the in vivo
RNA-seq data of the developmental stages16 confirmed an early
2C specific expression of Dux, followed by a slightly shifted
activation pattern for all direct Dux targets except for Rxrg
(Fig. 4f). However, it is of note that Rxrg is significantly
upregulated in the in vitro DuxOE from which the network is
inferred (see Source Data for Fig. 4c), pointing to both the
similarities and differences between the in vivo 2C and in vitro
2C-like stages induced by Dux. In conclusion, these data suggest
that beyond identifying specific target genes of individual TFs,
TOBIAS can promote biological insight by predicting entire TF-
activation networks.

Dux targets repeat elements. Notably, many of the predicted
Dux binding sites (40%) are not annotated to genes (Fig. 4g),
raising the question what role these sites play in ZGA. Dux is
known to induce expression of repeat regions such as long
terminal repeats (LTRs)2 and consistently, we found that more
than half of the DUX-bound sites without annotation to genes are
indeed located within known LTR sequences (Fig. 5a), which
were transcribed both in vitro and in vivo (Fig. 5b; LTR). Inter-
estingly, we additionally found that 28% of all non-annotated
Dux binding sites overlap with genomic loci encoding LINE1
elements. Although LINE1 expression does not appear to be
altered in mESC, there is a striking pattern of increasing LINE1
transcription from 4C–8C (Fig. 5b; LINE1) in vivo, pointing to a
possible role of LINE1 regulation throughout PD. Finally, we
found a portion of the Dux binding sites, which do not overlap
with any annotated gene nor with putative regulatory repeat
sequences, even though transcription clearly occurs at these sites
(Fig. 5b; no overlap). One example is a predicted Dux binding
site on chromosome 13, which coincides with a spliced region
of increased expression between control mESC/DuxOE and
comparable high expression in 2C, 4C, and 8C (Supplementary
Fig. 6). These data suggest the existence of novel transcribed
genetic elements, the function of which remains unknown,
but which are likely controlled by Dux and may play a role
during PD.

In conclusion, TOBIAS predicted the locations of Dux binding
in promoters of target genes, and could propose how Dux
initiates TF-activation networks and induces expression of repeat
regions. Importantly, these data further show that TOBIAS
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predicts any TFBS with increased binding, not only those limited
to annotated genes, which aids in uncovering novel regulatory
genetic elements.

Discussion
To the best of our knowledge, this is the first application of a DGF
approach to visualize gain and loss of individual TF footprints in
the context of time series, TF overexpression, and TF-DNA
binding for a wide-range of TFs in parallel. Importantly, we found
that these advances could in large part be attributed to the fra-
mework approach we took in developing TOBIAS, which enabled
us to simultaneously compare global TF binding across samples
and quantify changes in TF binding at specific loci. The mod-
ularity of the framework also allowed us to apply a multitude of
downstream analysis tools to easily visualize footprints and gain
even more information about TF binding dynamics as exempli-
fied by the prediction of the Dux TF-activation network.

The power of this framework to handle time-series data
becomes especially apparent when integrating the TOBIAS-based
prediction of TF binding with RNA-seq data from the same
timepoints. For instance, TOBIAS predicted that the maternally
transferred TF SALL4 is active in 2C, while its gene expression
pattern alone suggests later activation. While SALL4 was one of
the TFs with the largest decrease in binding from 2C to 8C, it is,
however, also worth noting that since TFs have different baseline
activities, large changes between timepoints can also arise from
very low activity scores. Although the scores are normalized
towards global TF activity, differences in the quality of foot-
printing (due to sample-specific biases) can also influence the
prediction of differential TF binding between conditions, and this
should be considered as a limitation of this method. In this
context, it is tempting to speculate that TFs for which foot-
printing scores are low, even though their RNA expression is
high, might act as transcriptional repressors, because footprinting
relies on the premise that TFs will increase chromatin
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one TF. b Aggregated footprint plots for Dux. The aggregated plots are centered on the predicted binding sites for Dux between Control and DuxOE

conditions (left: all genomic sites). The total possible binding sites for DuxOE (n= 12,095) are separated into bound and unbound sites (right). The dashed

lines represent the edges of the Dux motif. c Change in expression of genes near Dux binding sites. The heatmap shows n= 2664 Dux binding sites found

in gene promoters. Footprint log2(FC) and RNA log2(FC) represent the matched changes between Control and DuxOE for footprints and gene expression,

respectively. Log2(FC) is calculated as log2(DuxOE/Control). The column Binding prediction depicts whether the binding site was predicted by TOBIAS to

be bound/unbound in the DuxOE condition. d Genomic tracks indicating three exemplary Dux binding sites and their target gene promoters and respective

tracks for corrected cutsite signals (red/blue), TOBIAS footprint scores (blue), detected motifs (black boxes), and gene locations (solid black boxes with

arrows indicating gene strand). e Dux transcription factor network. The TF-TF network is built of all TFBS with binding in TF promoters with increasing

strength in DuxOE (log2(FC) > 0). Sizes of nodes represent the level of the network starting with Dux (Large: Dux, Medium: 1st level, Small: 2nd level).

Nodes are colored based on corresponding RNA level in the DuxOE condition. Directed edges indicate binding sites in the respective gene promoter found

by the TOBIAS CreateNetwork module. f Correlation of the Dux transcription factor network to expression during development. The heatmap depicts the

in vivo gene expression during developmental stages. The right-hand group annotation highlights the difference in mean expression for each timepoint. The

heatmap is split into Dux and target genes of Dux. Source data are available in the Source Data file.
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accessibility around the binding site. In support of this hypoth-
esis, recent investigations have suggested that repressors display a
decreased footprinting effect in comparison to activators29.
Therefore, the integration of ATAC-seq footprinting and RNA-
seq is an important step in revealing additional information such
as classification of TFs into repressors and activators, as well as
the kinetics between expression and binding.

In the context of TF target prediction, we showed that TOBIAS
could identify almost all known Dux targets. In addition to
coding genes, our analysis disclosed novel Dux binding sites and
significant footprint scores at LINE1 encoding genomic loci,
which appear to be activated at the 4C/8C stage. This finding is
especially interesting because a recent study has shown that
LINE1 RNA can interact with Nucleolin and Kap1 to repress Dux
expression30. Therefore, our findings suggest a kinetics driven
model in which Dux not only initiates ZGA but also regulates its
own termination by a temporally delayed negative feedback loop.
How exactly this feedback loop could be controlled remains to be
determined.

Despite the striking capability of DGF analysis, some limita-
tions and dependencies of this method still remain. Among these
is the need of high-quality TF motifs for matching footprint
scores to individual TFs with high confidence. In other words,
while the binding of a TF might create an effect that can be
interpreted as a footprint, without a known motif, this effect
cannot be matched to the corresponding TF. It also needs to be
noted that footprinting analysis cannot take effects into account
that arise from heterogeneous mixtures of cells wherein TFs are
bound in some cells and in others not. Therefore, if not separated,
the classification of differential binding will be an observation
averaged across many cells, possibly masking subpopulation
effects. Recent advances have enabled the application of ATAC-
seq in single cells, but this generates sparse matrices, rendering
footprinting approaches on single cells elusive. However, we
speculate that by creating aggregated pseudo-bulk signals from
large clustered single-cell ATAC datasets, DGF analysis might
also become possible in single cells.

In conclusion, we present TOBIAS as the first comprehensive
software that performs all steps of DGF analysis, natively

supports multiple experimental conditions and performs visua-
lization within one single framework. Although we utilized the
process of PD as a proof of principle, the modularity and uni-
versal nature of the TOBIAS framework enables investigations of
various biological conditions beyond PD. We believe that con-
tinued work in the field of DGF, including advances in both
software and wet-lab methods, will validate this method as a
resourceful tool to extend our understanding of a variety of
epigenetic processes involving TF binding.

Methods
Processing of ATAC-seq data. Raw sequencing fastq files were assessed for
quality, adapter content and duplication rates with FastQC v0.11.7, trimmed using
cutadapt31 and aligned with STAR v2.6.0c32 (parameters: --alignEndsType End-
ToEnd --outFilterMismatchNoverLmax 0.1 --outFilterScoreMinOverLread 0.66
--outFilterMatchNminOverLread 0.66 --outFilterMatchNmin 20 --alignIntronMax
1 --alignSJDBoverhangMin 999 --alignEndsProtrude 10 ConcordantPair --align-
MatesGapMax 2000 --outMultimapperOrder Random --outFilterMultimapNmax
999 --outSAMmultNmax 1) to either the mouse or human genome using Mus_-
musculus.GRCm38 or Homo_sapiens.GRCh38 versions from Ensembl33. Acces-
sible regions were identified by peak calling for each sample separately using
MACS2 (parameters: --nomodel --shift -100 --extsize 200 --broad)34. Peaks from
each sample were merged to a set of union peaks across all conditions using
bedtools merge. Each union peak was annotated to the transcriptional start site of
genes (GENCODE35) in a distance of −10000/+1000 from the gene start using
UROPA36.

Processing of RNA-seq data. Raw reads were assessed for quality, adapter
content and duplication rates with FastQC v0.11.7, trimmed using cutadapt31

and aligned with STAR v2.6.0c32 (parameters: --out-
FilterMismatchNoverLmax 0.1 --outFilterScoreMinOverLread 0.9 --out-
FilterMatchNminOverLread 0.9 --outFilterMatchNmin 20 --alignIntronMax
200000 --alignMatesGapMax 2000 --alignEndsProtrude 10 ConcordantPair
--outMultimapperOrder Random --outFilterMultimapNmax 999) to either the
mouse or human genome using Mus_musculus.GRCm38 or Homo_sapiens.
GRCh38 versions from Ensembl33.

Processing of ChIP-seq data. Raw sequencing files in fastq format were
quality assessed by Trimmomatic by trimming reads after a quality drop below a
mean of Q15 in a window of five nucleotides37. All reads longer than 15 nucleo-
tides were aligned versus the mouse genome version mm10, keeping just unique
alignments (parameters: --outFilterMismatchNoverLmax 0.2 --out-
FilterScoreMinOverLread 0.66 --outFilterMatchNminOverLread 0.66 --out-
FilterMatchNmin 20 --alignIntronMax 1 --alignSJDBoverhangMin 999
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--outFilterMultimapNmax 1 --alignEndsProtrude 10 ConcordantPair) by using the
STAR mapper32. Read deduplication was done by Picard (http://broadinstitute.
github.io/picard/).

Processing of TF motifs. TF motifs were downloaded from JASPAR CORE
201838, the JASPAR PBM HOMEO collection and Hocomoco V1139 databases. We
further included the human ARGFX_3 motif from footprintDB40 which originates
from a HT-SELEX assay41. In addition to the Dux/Dux4 motifs of JASPAR
and Hocomoco, we also included two TF motifs for Dux/DUX4 created
using MEME-ChIP42 with standard parameters on the ChIP-seq peaks of28

(GSE87279).
JASPAR motifs were linked to Ensembl gene ids by mapping the provided

Uniprot id to the Ensembl gene id through biomaRt43. Hocomoco motifs were
likewise linked to genes through the provided HGNC/MGI annotation. Due to the
redundancy of motifs between JASPAR and Hocomoco, we further filtered the TF
motifs to one motif per gene, preferentially choosing motifs originating from
mouse/human, respectively. For each TOBIAS run, we created sets of expressed
TFs as estimated from RNA-seq in the respective conditions. This amounted to 590
motifs for the dataset on human preimplantation stages, 464 motifs for the dataset
on mouse preimplantation, and 459 for the DuxOE dataset.

Maternal genes. Maternal genes for human and mouse were downloaded from the
REGULATOR database17. Entrez gene ids were converted to Ensembl gene ids
using biomaRt43 and subsequently matched to available TF motifs as previously
explained.

Overlap of Dux binding sites with repeat elements. Repeat elements for mm10
were downloaded from UCSC (http://hgdownload.cse.ucsc.edu/goldenpath/mm10/
database/rmsk.txt.gz). Overlap of Dux sites to individual repeat elements was
performed using bedtools intersect. The sum of overlaps were counted per repeat
class (LINE1/LTR).

Visualization. All TF-score heatmaps were generated by R Version 3.5.3 and
ComplexHeatmap package version 3.644. Individual gene views were generated by
loading TOBIAS output tracks into IGV version 2.6.245 or using the TOBIAS
PlotTracks module, which is a wrapper for the svist4get visualization tool46. TF
networks were drawn with Cytoscape version 3.7.147. Heatmaps of genomic signal
density were generated using Deeptools version 3.3.048. All other figures, such as
footprint plots, volcano plots and motif clustering dendrograms were generated by
the TOBIAS visualization modules.

The TOBIAS framework. Details on the TOBIAS algorithms and framework setup
are found in the Supplementary Methods part 1 and 2.

Comparison of TOBIAS to existing methods. Details on the validation and
comparison of TOBIAS to existing methods for bias correction and footprinting
are found in the Supplementary Methods part 3.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The source data for Figs. 2b, 4c, f, Supplementary Figs. 2c, e, f, g, 3, 4b, c, as well as

expression values for Rhox and Obox genes throughout human and mouse development

are available in the Source Data file. Raw ATAC-seq and RNA-seq data for human and

mouse embryonic development are available from GEO under the accessions GSE66390

(mouse) and GSE101571 (human). Raw ATAC-seq, RNA-seq, and ChIP-seq data from

Dux overexpression experiments are available from GEO under the accession GSE85632.

Data for validation are available from ENCODE as explained in Supplementary Methods.

Excerpts of the TOBIAS analysis results are accessible for dynamic visualization at:

http://loosolab.mpi-bn.mpg.de/tobias-meets-wilson. UCSC track hubs (for viewing in the

UCSC genome browser) of corrected Tn5 and footprint signals are available at: https://

genome.ucsc.edu/cgi-bin/hgTracks?hubUrl=https://s3.mpi-bn.mpg.de/data-tobias-ucsc/

hub.txt&genome=mm10 and https://genome.ucsc.edu/cgi-bin/hgTracks?

hubUrl=https://s3.mpi-bn.mpg.de/data-tobias-ucsc/hub.txt&genome=hg38 for mouse

and human respectively. All data are available from the authors upon reasonable request.

Code availability
The TOBIAS software is publicly available at GitHub (https://github.com/loosolab/

TOBIAS) and can additionally be obtained through PyPI and Bioconda.
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