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AtALMT12 represents an R-type anion channel required for
stomatal movement in Arabidopsis guard cells

Abstract

Stomatal pores formed by a pair of guard cells in the leaf epidermis control gas exchange and
transpirational water loss. Stomatal closure is mediated by the release of potassium and anions from
guard cells. Anion efflux from guard cells involves slow (S-type) and rapid (R-type) anion channels.
Recently the SLAC1 gene has been shown to encode the slow, voltage-independent anion channel
component in guard cells. In contrast, the R-type channel still awaits identification. Here, we show that
AtALMT12, a member of the aluminum activated malate transporter family in Arabidopsis, represents a
guard cell R-type anion channel. AtALMT12 is highly expressed in guard cells and is targeted to the
plasma membrane. Plants lacking AtALMT12 are impaired in dark- and CO₂ -induced stomatal closure,
as well as in response to the drought-stress hormone abscisic acid. Patch-clamp studies on guard cell
protoplasts isolated from atalmt12 mutants revealed reduced R-type currents compared with wild-type
plants when malate is present in the bath media. Following expression of AtALMT12 in Xenopus
oocytes, voltage-dependent anion currents reminiscent to R-type channels could be activated. In line
with the features of the R-type channel, the activity of heterologously expressed AtALMT12 depends on
extracellular malate. Thereby this key metabolite and osmolite of guard cells shifts the threshold for
voltage activation of AtALMT12 towards more hyperpolarized potentials. R-Type channels, like
voltage-dependent cation channels in nerve cells, are capable of transiently depolarizing guard cells, and
thus could trigger membrane potential oscillations, action potentials and initiate long-term anion and
K(+) efflux via SLAC1 and GORK, respectively.
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Stomatal pores formed by a pair of guard cells in the leaf epidermis control gas 

exchange and transpirational water loss. Stomatal closure is mediated by release of 

potassium and anions from guard cells. Anion efflux from guard cells involves anion 

channels of the S- and R-type. Recently the SLAC1 gene has been shown to encode 

the slow, voltage-independent anion channel component in guard cells. In contrast, 

the R-type channel still awaits identification. Here we show that AtALMT12, a member 

of the ALuminum activated Malate Transporter family in Arabidopsis, represents a 

guard cell R-type anion channel. AtALMT12 is highly expressed in guard cells and 

targeted to the plasma membrane. Plants lacking AtALMT12 are impaired in dark- and 

CO2-induced stomatal closure as well as in response to the drought-stress hormone 

abscisic acid. Patch clamp studies on guard cell protoplasts isolated from atalmt12 

mutants revealed reduced R-type currents compared to wild-type plants when malate 

is present in the bath media. Following expression of AtALMT12 in Xenopus oocytes, 

voltage-dependent anion currents reminiscent to R-type channels could be activated. 

In line with the features of the R-type channel, activity of heterologously expressed 

AtALMT12 depends on extracellular malate. Thereby this key metabolite and osmolite 

of guard cells shifts the threshold for voltage activation of AtALMT12 towards more 

hyperpolarized potentials. R-Type channels, like voltage-dependent cation channels in 

nerve cells, are capable to transiently depolarize guard cells and thus could trigger 

membrane potential oscillations, action potentials and initiate long-term anion and K+ 

efflux via SLAC1 and GORK, respectively. 
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Introduction 

 

Stomatal closure is initiated by the release of anions which in turn depolarizes the membrane 

potential and activates the outward-rectifying potassium channels (Roelfsema and Hedrich, 

2005). The rapid (R-type) and the slow (S-type) activating anion channel are responsible for 

anion efflux (Schroeder and Keller, 1992; Raschke et al., 2003). The slow, voltage-

independent anion channel component in guard cells was recently shown to require the 

SLAC1 gene (Negi et al., 2008; Vahisalu et al., 2008). In this multisensory cell type SLAC1 

activation and associated stomatal closure depend on the protein kinase OST1 and distinct 

CPKs (Geiger et al., 2009; Geiger et al., 2010). SLAC1 activation by the latter kinases is 

prevented by PP2C protein phosphatases ABI1 and 2 (Leung et al., 1997; Merlot et al., 

2001) which are addressed by a cytosolic abscisic acid (ABA) receptor (Ma et al., 2009; Park 

et al., 2009). The water stress hormone ABA activates both the S-type as well as the voltage-

dependent R-type channel (Roelfsema et al., 2004; Levchenko et al., 2005). However, the 

nature of channels, underlying the rapid component, remains yet unknown. This guard cell 

anion channel – also named GCAC1 (Guard Cell Anion Channel 1)/QUAC (QUick activating 

Anion Channel) - exhibits voltage-dependent features of neuronal calcium and sodium 

channels (Hedrich et al., 1990; Kolb et al., 1995; Hille, 2001). Upon depolarization this 

channel type activates with fast kinetics, while hyperpolarization causes deactivation. Malate 

represents both a key metabolite and major organic osmolite in guard cells (Fernie and 

Martinoia, 2009; Meyer et al., 2010). During stomatal closure malate is partially converted to 

osmotic inactive starch, but malate is also released from the cell to the apoplast (van Kirk 

and Raschke, 1978; Roelfsema and Hedrich, 2005). External malate shifts the voltage gate 

of the R-type channel towards more negative membrane potentials, favoring channel 

opening at the resting state and in turn depolarization of the guard cell (Hedrich and Marten, 

1993; Raschke et al., 2003; Konrad and Hedrich, 2008). Additionally it has also been shown 

that apoplastic malate is required for an efficient stomatal opening (Lee et al., 2008).  



  4 

ALMT channels (ALuminum activated Malate Transporter) have been first described as 

plasma membrane located, Al
3+

-activated malate channels by patch clamp studies in root 

cells (Kollmeier et al., 2001; Pineros and Kochian, 2001) and genetically identified in Triticum 

aestivum (TaALMT1) (Sasaki et al., 2004) and Arabidopsis thaliana (AtALMT1) (Hoekenga et 

al., 2006). These channels play a central role in aluminum resistance by releasing malate 

from the root tip thereby chelating aluminum in the rhizosphere (Sasaki et al., 2004; 

Hoekenga et al., 2006). In a later study it has been shown that certain AtALMTs can also 

reside on the tonoplast acting as vacuolar malate channels (Kovermann et al., 2007). 

Interestingly, one member of the ALMT protein family, ZmALMT1, however, activates Al
3+

-

independently and transports inorganic anions such as Cl
-
, NO3

-
, and SO4

2-
 rather than 

malate (Pineros et al., 2008). Very recently an Arabidopsis ALMT protein (AtALMT12) has 

been described to be strongly expressed in guard cells and to be permeable for chloride and 

nitrate (Sasaki et al., 2010). Loss-of-function mutants were impaired in stomatal closure. 

However, under the conditions used by the Sasaki laboratory, neither the S-type nor the R-

type channel activities appeared altered in guard cells. Since the authors observed the GFP 

fluorescence predominatly in the endoplasmic reticulum (ER), they predicted AtALMT12 to 

function in release of inorganic anions from the ER. Thus the role of AtALMT12 for stomatal 

closure remains elusive.  

Based on independent, parallel studies to those of the Sasaki laboratory (2010) we here 

provide convincing evidence evidence i) that AtALMT12 is expressed in the plasma 

membrane of guard cells; ii) that guard cells of loss-of-function mutants are impaired in 

malate dependent R-type channel activity and iii) that AtALMT12 is malate permeable and 

thus well suited for release of malate from guard cells as shown for Vicia faba (Keller et al., 

1989; Dietrich and Hedrich, 1994).  
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Results 

 

Tissue specific expression analysis of AtALMT12 

In order to identify potential candidates for R-type channels we searched for ALMTs 

expressed in guard cells. Gene expression data from microarray experiments 

(http://www.bar.utoronto.ca/) indicated strong mRNA accumulation of AtALMT12 in guard 

cells. To verify the microarray data we transformed Arabidopsis plants with the ß-

Glucuronidase (GUS) gene under the control of a 2018 base pairs (bp) promoter region 

(pAtALMT12) upstream of the genomic sequence of AtALMT12. Strong GUS activity in 

pALMT12::GUS transformants was detected in guard cells of different tissues (Figure 1 a, b; 

Figure SI1 a, b). Additionally, a signal was also observed in the pollen tissue as well as in the 

stele of roots (Figure SI1 b, c). These observations were consistent with the microarray gene 

expression data and data presented by Sasaki et al. (2010).  

 

Subcellular localization of an AtALMT12-GFP fusion protein 

In order to investigate the subcellular localization of AtALMT12, the green fluorescence 

protein (GFP) was fused to the C- as well as the N-terminal end of AtALMT12. Transient 

expression of these constructs in Arabidopsis protoplasts under the control of the 35S-

promoter revealed that AtALMT12-GFP was targeted to the plasma membrane (Figure 1 c-f). 

In order to verify plasma membrane localization of AtALMT12 in guard cells, where its 

promoter activity has been detected, we also performed independent confocal laser scanning 

microscopy analyses of stable transformed Arabidopsis. In general most channels are 

present only at very low protein numbers and can therefore hardly be visualized using their 

own promoter. We thus generated transgenic Arabidopsis plants expressing the AtALMT12-

GFP construct under the control of the stomata-specific promoter AtMYB60 (Cominelli et al., 

2005, Nagy et al., 2009). Confocal microscopy analysis showed GFP fluorescence along the 

guard cell periphery thus confirming plasma membrane localization recognized by transient 

expression in Arabidopsis protoplasts before (Figure 1 g, h). Taken together, our studies 
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identified AtALMT12 as a protein of the Arabidopsis guard cell plasma membrane rather than 

intracellular membrane systems. 

 

Analysis of mutant lines carrying a T-DNA insertion in the AtALMT12 gene 

Guard cells are sensitive to environmental- and endogenous changes including light, CO2 

and ABA. To unravel the physiological role of AtALMT12 in guard cells we analyzed stomatal 

movements in two independent atalmt12 mutant lines (atalmt12-1 and atalmt12-2) identified 

in the JIC T-DNA insertion mutant collection (Tissier et al., 1999). The absence of the 

AtALMT12 transcripts in the mutants was demonstrated by RT-PCR (Figure SI2). In a first 

step we investigated whether wild-type plants and atalmt12 mutants differ in their reaction to 

the plant hormone abscisic acid (ABA), which is synthesized in response to drought stress. 

As observed by Sasaki et al. (2010) in the presence of ABA stomata of wild-type guard cells 

closed efficiently. In contrast, both atalmt12 mutant plants barely responded to ABA and 

stomata remained largely open even after 2 h of incubation with ABA (Figure 2). In all 

experiments light stimulated opening of guard cells was similar in wild-type and mutant 

plants. In order to see whether the difference in ABA response could also be observed in 

response to other stimuli at the whole plant level, we monitored the stomatal conductance in 

atalmt12 mutants and wild-type plants in response to light and CO2. Compared to wild-type 

plants atalmt12 mutants exhibited a much slower decline of stomatal conductance in 

response to light-dark transitions (Figure 3 a, b). Furthermore, increase of [CO2] from 365 

p.p.m. to 800 p.p.m caused a rapid stomatal closure in wild-type which was less pronounced 

in mutant plants (Figure 3 c, d).  

 

Electrophysiological studies on atalmt12 guard cell protoplasts and AtALMT12 

expressing Xenopus laevis oocytes 

The fact that atalmt12 mutant plants are impaired in stomatal closure and members of this 

family operate as anion channels (Pineros et al., 2008), directed us to examine the electrical 

properties of this potential anion channel in guard cells. To study the anion channel transport 
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capacity of Arabidopsis guard cells, we performed patch clamp studies with protoplasts 

isolated from wild-type plants and atalmt12-1 mutants. The slac1 mutant exhibits a largely 

reduced S-type current, while R-type currents remained unaffected by the loss of this anion 

channel function (Vahisalu et al., 2008; Geiger et al., 2009; Geiger et al., 2010). 

Consequently, we tested whether guard cells isolated from the atalmt12 mutants appear 

altered in plasma membrane R-type anion currents. In contrast to Vicia faba (Hedrich et al., 

1990; Marten et al., 1991; Raschke et al., 2003), R-type channels in Arabidopsis guard cells 

have not been characterized in detail. Therefore in the first place we analyzed the R-type 

properties of wild-type guard cells because knowledge about the R-type characteristic 

represents a basic requirement to understand the phenotype of the atalmt12 mutants. To 

resolve R-type-specific anion release currents we performed patch clamp studies using 75 

mM sulfate-based pipette solutions (cf. Vahisalu et al., 2008). With 20 mM sulfate in the 

extracellular medium and the plasma membrane clamped to a holding potential of -180 mV, 

depolarizing voltage pulses elicited inward currents (Figure SI3 a; cf. Sasaki et al., 2010). 

Under these conditions anion currents reversed around the Nernst potential of sulfate and 

displayed fast activation and deactivation kinetics. Thus Arabidopsis guard cells appear to 

express plasma membrane anion channels with voltage dependent properties of the R-type 

channel GCAC1/QUAC found in Vicia faba (Kolb et al., 1995; Schulz-Lessdorf et al., 1996; 

Raschke et al., 2003). However, no difference in anion channel activity could be detected 

between wild-type and atalmt12 mutant plants under these conditions (Figure SI3 b). In Vicia 

faba malate was shown to activate R-type currents (Hedrich and Marten, 1993; Raschke et 

al., 2003). We thus challenged Arabidopsis wild-type and almt12-1 mutant guard cell anion 

channels with malate. In the presence of extracellular malate, R-type anion currents of 

almt12-1 mutants appeared reduced by 40% when compared to wild-type guard cells (Figure 

4 a, b). Subtracting wild type currents from those observed in atalmt12 guard cells resulted in 

a bell-shaped current-voltage curve. This electrical behaviour points to strong voltage 

dependence and channel activation upon depolarization which both are hallmarks of the R-

type anion channels. Such differential R-type currents between wild type and atalmt12-1 



  8 

guard cell protoplasts have been not observed by Sasaki et al. (2010) because their 

experiments were performed solely under external chloride-based conditions meaning in the 

absence of the R-type channel gating modifier malate. Thus based on the characteristic 

voltage-dependent features of the malate-dependent currents (Figure 4), the loss-of-function 

phenotype suggested that AtALMT12 likely encodes a malate-sensitive component of the R-

type anion channel of Arabidopsis guard cells.  

To study the malate-sensitive component of the R-type current in guard cells, we expressed 

AtALMT12 in Xenopus oocytes. Following injection of AtALMT12 cRNA into oocytes, 

depolarizing voltages elicited outward currents under chloride-based external solutions 

(Figure SI4 a). The amplitudes of these anion uptake currents appeared to depend on the 

external chloride concentration (Figure SI4 b; cf. Sasaki et al., 2010). Upon replacement of 

external chloride by malate, however, voltage pulses elicited both inward and outward 

currents of up to 7 µA (Figure 5 a, b). Interestingly, Sasaki et al. (2010) could only observe 

outward currents (anion uptake) and no inward currents (anion release) in the presence of 

external malate and sulfate (Figure 5, SI5). This discrepancy to our results may arise from 

the use of less physiological external pH conditions by Sasaki et al. (2010). For further 

characterization we examined the voltage-dependent gating of AtALMT12 with a double 

voltage pulse protocol under extracellular ionic conditions similar to those used in patch 

clamp experiments with guard cell protoplasts. Therein the pulse to -200 mV was followed by 

a depolarizing pulse to +60 mV, before applying trains of hyperpolarizing pulses (Figure 5 a). 

After opening of AtALMT12 channels at +60 mV they were forced to deactivate as a function 

of the subsequent negative-going voltage steps. In line with the R-type currents in 

protoplasts (Figure 4), the voltage dependence of these steady-state currents could be also 

described by a bell-shaped current-voltage curve (Figure 5 b). In the presence of comparable 

external malate concentrations (Figure 5 b: 25 mM in oocytes; Figure 4: 20 mM in 

protoplasts) channel activation already occurred at less depolarized potentials in oocytes 

than in protoplasts very probably because of the divergent cytosolic composition (Figure 4, 5 

b). Channel gating depended on the concentration of malate (Figure 5 b, c). Upon an 
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increase in the malate concentration the half-maximal activation potential shifted towards 

more negative membrane potentials (Figure 5 c; Table SI1; Hedrich and Marten, 1993; 

Raschke et al., 2003). When sulfate was injected into oocytes, AtALMT12-mediated inward 

currents increased (Figure SI5), indicating that also sulfate is a preferred substrate of the 

anion channel (Roberts, 2006). This is in agreement with the finding that presence of K2SO4 

reduces the impact of Cl
-
 in stomatal action (Schnabl and Raschke, 1980). In contrast to 

AtALMT1, AtALMT12 currents were not stimulated by extracellular Al
3+

 treatment (Figure 6 

a). 

Malate is not only a key metabolite and signaling component for guard cells, but was shown 

to represent a substrate for R-type channels in Vicia faba guard cells (Keller et al., 1989; 

Hedrich and Marten, 1993). Following injection of malate (20 mM final cytosolic 

concentration) buffered to pH 7.5 inward currents were recorded with moderate negative-

going membrane potentials (Figure 6 b). Note, that malate injection activates pronounced R-

type like currents with AtALMT12 in the absence of malate in the oocyte external medium. 

Addition of 10 mM malate into the external medium further maximized these inward currents. 

These experiments show that similarly to the Vicia faba R-type channel (Hedrich and Marten, 

1993) malate functions as a gating modifier as well as a permeating substrate of AtALMT12. 

 

 

Discussion 

 

In Arabidopsis the ALMTs constitute a small gene family of 14 members which can be 

subdivided into three clades (Kovermann et al., 2007). The best characterized AtALMT1 

which is located to the root plasma membrane is a member of clade 1 while the vacuolar 

AtALMT9, mainly expressed in the leave mesophyll, is assigned to clade 2 (Hoekenga et al., 

2006; Kovermann et al., 2007). Microarray data suggest that AtALMT12, a member of clade 

3, is strongly expressed in guard cells. Our present study and an independent one recently 

published by Sasaki et al. (2010) could confirm the predicted predominant expression of 



  10 

AtALMT12 in this cell type. Using two different AtALMT12 loss-of-function mutants we 

observed an impaired stomatal closure when leaves were exposed to ABA. Similar results 

were obtained by Sasaki et al. (2010) with independent mutant lines. These authors could 

also show  impaired stomatal closure in the presence of Ca
2+

 and in the dark. In our study, 

furthermore gas exchange measurements revealed a delayed and not complete stomatal 

closure in plants lacking the AtALMT12 protein. These results convincingly show that 

AtALMT12 is required for efficient stomatal closure. 

 

AtALMT12 is a strongly voltage-dependent plasma membrane anion channel 

Sasaki et al. (2010) stated that AtALMT12 is an outward rectifying (anion uptake into the 

cytosol) channel permeable for chloride and nitrate, but not sulfate and malate as 

demonstrated in our work. From Sasaki`s studies AtALMT12 function in stomatal movement 

remained elusive since the localization for AtALMT12 was observed in both, the endoplasmic 

reticulum as well as the plasma membrane. This equivocal localization may be due to the 

transient expression used by these authors, while in our study a clear plasma membrane 

localization of AtALMT12 was observed in plants stably transformed with a similar construct. 

Particularly the predicted direction of the anion movements makes it difficult to attribute a role 

in stomatal closure to AtALMT12 located to the plasma membrane. Furthermore working in 

the absence of malate the authors could not detect differences in R-type channel activities 

between guard cells of wild-type and atalmt12 mutant Arabidopsis plants. Therefore, Sasaki 

et al. (2010) postulated a predominant role of AtALMT12 in release of inorganic anions from 

the endoplasmic reticulum into the cytosol. However, since the volume of the endoplasmic 

reticulum is relatively small it is thus rather unlikely that anions released from this 

compartment have a major impact in stomatal closure. Furthermore, AtALMT-mediated 

currents measured on native membranes showed only inward rectification so far (Kovermann 

et al., 2007; Zhang et al., 2008). Assuming a slight negative membrane potential between the 

ER and the cytosol, due to the activity of a V-type ATPase, no anion release to the cytosol 
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would be detectable taking into account the current-voltage curves presented by Sasaki et al. 

(2010). 

In previous studies, ALMTs have been characterized as channels for dicarboxylates such as 

malate and fumarate, but also for inorganic anions like Cl
-
, NO3

-
, and SO4

2- 
(Pineros et al., 

2008). Since the latter substrate specificity was also known for R-type channels (Roberts, 

2006) and the fact that AtALMT12 is highly expressed in guard cells, we here explored 

whether AtALMT12 could act as a so far non-identified plasma membrane R-type channel. 

Our studies on guard cell protoplasts and AtALMT12-expressing oocytes provide evidence 

that AtALMT12 represents a malate-sensitive component of the R-type anion channel in 

guard cells of Arabidopsis. In both systems, protoplasts and oocytes, R-type anion currents 

showed similar voltage dependence and kinetics. In line with ZmALMT1 from Zea mays but 

in contrast to TaALMT1 or AtALMT1, AtALMT12 was not induced by Al
3+ 

(Sasaki et al., 2004; 

Hoekenga et al., 2006; Pineros et al., 2008,). We thus suggest renaming it QUAC1 in 

accordance with the naming of the S-type anion channel of guard cells, SLAC1 (Raschke et 

al., 2003; Negi et al., 2008; Vahisalu et al., 2008). Due to the fact that in the atalmt12/quac1 

mutant guard cells only malate-dependent anion currents appeared to be affected, one would 

predict that QUAC1 is based either on different channels exhibiting similar current-voltage 

curves, but possibly different substrate specificities and malate dependencies. Alternatively, 

QUAC1 could be formed by heteromers with AtALMT12 as one subunit responsible for 

malate sensing. Clade 3 of the AtALMT protein family is constituted by three additional 

members, AtALMT11, 13 and 14 (Kovermann et al., 2007). AtALMT11 is not likely to be a 

candidate for an additional component of the QUAC channel because the predicted structure 

is constituted by only two membrane domains and the protein is weakly expressed in guard 

cells and other tissues (http://www.bar.utoronto.ca/). However, AtALMT13 and AtALMT14 

might be candidates for further members of a heteromeric QUAC complex although no 

expression data are available so far. Future studies on the guard cell expressed QUACs thus 

have to focus on the identification of additional components of the R-type channel.  
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In former studies it has been shown that beside Cl
-
, NO3

-
, and SO4

2-
 the

 
R-type channels 

exhibits also permeability for malate (Keller et al., 1989; Hedrich and Marten, 1993; Roberts, 

2006). Malate in the apoplast has been postulated to play an important role in activating 

anion release possibly by inducing a shift in the voltage dependence of R-type anion 

channels (Hedrich and Marten, 1993; Raschke et al., 2003; Konrad and Hedrich, 2008). As 

shown in Figure 6 b, AtALMT12 is not only sensitive to malate, but also permeable for this 

organic ion and it is therefore tempting to speculate that this component of QUAC might play 

an important role in this feed-forward stimulus for long-term anion release. 

 

AtALMT12/R-type/QUAC and SLAC poise guard cells for voltage- and volume control 

SLAC1, addressed by ABA signaling kinase/phosphatase pairs, seems to be required (i) to 

drive long term efflux of osmotically active anions from guard cells and stomatal closure, and 

(ii) thus for an effective decrease in transpiration when soil water is limiting (Negi et al., 2008; 

Vahisalu et al., 2008; Geiger et al., 2009). QUAC-like channels in Vicia faba also appear to 

be addressed by the water stress hormone (Raschke et al., 2003; Roelfsema et al., 2004). In 

contrast to SLAC1, QUAC1 activation in oocytes did neither require the presence of OST1 

nor plant specific CPKs (cf. Geiger et al, 2009; Geiger et al., 2010). These observations 

strongly suggest that SLAC1 and QUAC1 likely represent response elements on different 

branches of the ABA signaling pathway leading to stomatal closure (Levchenko et al. 2005). 

Voltage-dependent properties (activation, de- and inactivation) of the R-type channels are 

reminiscent of depolarization-activated cation channels in neurons (Hedrich et al., 1990; Kolb 

et al., 1995; Schulz-Lessdorf et al., 1996; Hille 2001). Due to the inverse anion gradients 

across the plasma membrane of plant cells relative to that of animal origin, it is tempting to 

speculate that the malate-sensitive QUAC1 channel is involved in membrane potential 

oscillations (Konrad and Hedrich, 2008; Raschke et al., 2003). This notion is supported by 

the fact that malate promotes oscillations in membrane voltage and thus appears to be 

involved in membrane excitability (Konrad and Hedrich, 2008). Furthermore stimulation by 
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modifiers of the QUAC-type channels gating (Lohse and Hedrich, 1995) seems to trigger 

action potentials in guard cells (Blatt and Thiel, 1994). 
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Experimental procedures 

 

Plant material and growth conditions 

Arabidopsis thaliana wild-type plants (Col-0) and mutant plants were grown in controlled 

environment chambers in potting soil or on agar medium under a 8h/16h light to dark regime 

(90 µmol m
-2

 s
-1

) and dark at 21°C (60 % relative humidity). The floral dip method (Clough 

and Bent, 1998) was used for obtaining transgenic lines. 

 

Selection of atalmt12 T-DNA mutant lines 

T-DNA insertion lines of AtALMT12 were obtained from the JIC collection (Tissier et al., 

1999) and plants homozygous for the T-DNA insertion were isolated by PCR genotyping. 

Two independent T-DNA insertion lines of AtALMT12 were identified (atalmt12-1 and 

atalmt12-2). Wild-type lines were selected as those plants that genotyped as wild-type (WT-

like) during homozygous PCR screening of the JIC mutant line seed batch. In all assays of 

stomatal measurements (Figure 2, 3) atalmt12-1 and atalmt12-2 mutant lines were compared 

to the corresponding WT lines (WT-like -1 and -2). For details see Supporting Information. 

 

Subcellular localization and tissue-specific expression 

Tissue-specific expression of AtALMT12 in Arabidopsis was analysed by amplifying a 2018 

bp promoter region fused to the GUS reporter gene in the pGPTV-Bar vector (Becker et al., 

1992). C- and N-terminal GFP fusion constructs with AtALMT12 were generated in the 

pUC18-GFP5T-sp (Meyer et al., 2006) and a modified pART7 vector (Endler et al., 2006) for 

transient expression and in a modified pMDC83 vector for stable transformation (Nagy et al., 

2009). For details see Supporting Information. 

 

Stomatal aperture and gas exchange measurements 
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Gas exchange was measured with a portable gas exchange system (LI-6400; LI-COR). For 

response to ABA detached rosette leaves were treated with 10 µM ABA after pre-incubation 

in opening buffer. For details see Supporting Information. 

 

Electrophysiological techniques 

Plant growth conditions and isolation of guard cell protoplasts for electrophysiological studies 

were performed as described previously (Geiger et al., 2009). Using the patch clamp 

technique protoplasts were studied in the whole-cell configuration essentially as described 

elsewhere (Wolf et al., 2006). The standard bath solution was composed of (in mM) 2 MgCl2, 

0.5 LaCl3, 10 MES pH 5.6/Tris and either (20 CaGluconate2 plus 20 Cs2SO4) or 20 CaMalate. 

The pipette solution consisted of (in mM) 75 Cs2SO4, 2 MgCl2, 5 Mg-ATP, 10 Hepes pH 

7.1/Tris. To obtain a free Ca
2+

 concentration of 1 µM, the pipette solution additionally 

contained 5 mM EGTA plus 4.2 mM CaCl2. The osmolality of the pipette and bath media was 

adjusted to 440 and 400 mosmol/kg, respectively, with D-sorbitol. Oocyte measurements 

were performed using the two-electrode voltage-clamp technique (TEVC). Oocytes were 

perfused with a standard solution containing 10 mM Mes/Tris pH 5.6, 1 mM CaGluconate2, 1 

mM MgGluconate2, 1 mM LaCl3 and variable concentrations of NaH-malate, NaCl and/or 

NaGluconate. If necessary, osmolality was adjusted to 220 mOsmol/kg using D-sorbitol. 

Injection of 50 nl of a 200 mM Na
+
-malate solution solution resulted in a final malate 

concentration of 18 mM in the oocyte because a mean volume of 500 nl for the spherical 

oocytes was calculated from the averaged oocyte diameter of 1 mm. Voltage pulse protocols 

similar to those used for studies of guard cell R-type channels (Hedrich et al., 1990, Marten 

et al., 1991) were applied from a holding voltage of -20 mV. Details of solutions and pulse 

protocols are mentioned in the figure legends. For further details of data acquisition and 

analysis see Supporting Information. 
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Figure legends 

 

Figure 1. AtALMT12 is expressed in guard cells und localizes to the plasma membrane.  

(a, b) pAtALMT12::GUS gene expression in leaves of young plants (a), close-up of leaf guard 

cells (b). (c, d) Fluorescence microscopy images of Arabidopsis mesophyll protoplast 

transiently expressing AtALMT12-GFP (c) and GFP-AtALMT12 (d) fusion protein. (e, f) 

Transmission pictures of the same Arabidopsis mesophyll protoplasts as in the fluorescent 

images (c) and (d). (g, h) Fluorescence microscopy image (g) and transmission picture (h) of 

an Arabidopsis guard cell stably expressing AtALMT12-GFP fusion protein under control of 

the MYB60 promoter. Chloroplasts show red auto fluorescence in (c, d, g). Scale bars: (a) 

1mm, (b) 20 µm, (c, d, g) 10 µm.  

 

Figure 2. Impaired stomatal closure in atalmt12 mutant plants in response to the 

phytohormone abscisic acid (ABA).  
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ABA (10 µM) was added to detached whole leaves at time = 0 (100%). (n = 3 at 2 h and at 

1 h for atalmt12-2; n = 5 at 1 h for atalmt12-1; about 60 stomata of three to four different 

leaves of one plant were measured in each experiment and at each time point). Stomatal 

apertures at time = 0 corresponded to an average aperture of 3.64 ± 0.26 µm (WT-like -1), 

3.57 ± 0.24 µm (atalmt12-1), 4.32 ± 0.07 µm (WT-like -2) and 4.19 ± 0.07 µm (atalm12-2). 

Data represent means ± S.E.M. 

 

Figure 3. Mutations in AtALMT12 affect stomatal closure in response to various stimuli.  

(a, b) Time courses of stomatal conductance in atlmt12-1 mutants and WT-like -1 plants (a) 

and atalmt12-2 mutants and WT-like -2 plants (b) in response to change in light intensity. 

The number of experiments was n = 6 for WT-like -1 and atlmt12-1, n = 4 for WT-like -2 and 

n = 5 for atalmt12-2. (c, d) Time courses of stomatal conductance in atalmt12-1 mutants and 

WT-like -1 plants (c) and atalmt12-2 mutants and WT-like -2 plants (d) in response to 

elevated CO2 levels The number of experiments was n = 6 for WT-like -1, n = 5 for atlmt12-1 

and n = 4 for atalmt12-2 and WT-like -2. Data represent means ± S.E.M. 

 

Figure 4. Voltage-dependent activation of R-type currents from wild type and atalmt12-1 

guard cell protoplasts.  

(a) Representative current responses elicited upon a voltage ramp from +70 to -180 mV (WT 

in black and atalmt12-1 in red). The holding voltage was -180 mV. (b) Steady-state current 

densities (Iss/Cm) plotted against the clamped voltages. Experiments were performed in the 

presence of 20 mM external malate. AtALMT12 loss-of-function mutants were characterized 

by a decrease in the current density compared to wild-type protoplasts. Data points represent 

mean ± S.E.M. The number of experiments was n = 6 for wild type (WT) and atalmt12-1. The 

inset shows the AtALMT12-mediated current component derived from the subtraction of the 

residual currents of atalmt12-1 protoplasts from currents observed in WT protoplasts.  
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Figure 5. Whole-oocyte current recordings from AtALMT12-expressing oocytes measured in 

malate-based external solutions.  

(a) Representative current responses evoked upon a channel-activating voltage pulse (+60 

mV) followed by test voltage pulses (as indicated). The standard bath medium contained 5 

mM malate. Arrows label the positions at which steady state (Iss) and tail currents (Itail) were 

determined. The latter was used for calculation of the relative open probability. (b) Steady 

state currents Iss and (c) relative open probability Po as a function of voltage are shown at 

different extracellular malate concentrations (as indicated). Note the shift in Po and peak 

inward current towards more negative voltages with increasing extracellular malate 

concentrations. Data points represent mean ± S.D. with the number of experiments n = 6. 

 

Figure 6. Whole-oocyte current recordings from AtALMT12-expressing oocytes in the 

presence of Al
3+

 and in the presence of cytosolic malate. 

(a) Steady state currents of AtALMT12-expressing oocytes in 25 mM external NaCl solution 

in the presence or absence of 1 mM AlCl3 at -100 mV. The final malate concentration of 

injected oocytes was around 20 mM. In contrast to other known ALMT transporters 

AtALMT12 was not activated by Al
3+

. Bars represent mean ± S.E.M.; n = 4 for water-injected 

and n = 5 for malate-injected oocytes. (b) Steady state currents of AtALMT12-expressing 

oocytes at a membrane potential of -150 mV. Oocytes were either injected with water or 

malate (final concentration around 20 mM) prior to current recordings under chloride- or 

malate-based external conditions (i.e. 25 mM chloride or 10 mM malate in the bath solution). 

In the presence of cytosolic and extracellular malate AtALMT12-derived anion currents 

appeared maximized. Bars represent mean ± S.E.M. (n ≥ 4).  
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