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Abstract

Introduction: Ataxia telangiectasia mutated and Rad3 Related (ATR) protein kinase is a key sensor of single-stranded DNA
associated with stalled replication forks and repair intermediates generated during DNA repair. XRCC1 is a critical enzyme in
single strand break repair and base excision repair. XRCC1-LIG3 complex is also an important contributor to the ligation step
of the nucleotide excision repair response.

Methods: In the current study, we investigated synthetic lethality in XRCC1 deficient and XRCC1 proficient Chinese Hamster
ovary (CHO) and human ovarian cancer cells using ATR inhibitors (NU6027). In addition, we also investigated the ability of
ATR inhibitors to potentiate cisplatin cytotoxicity in XRCC1 deficient and XRCC1 proficient CHO and human cancer cells.
Clonogenic assays, alkaline COMET assays, cH2AX immunocytochemistry, FACS for cell cycle as well as FITC-annexin V flow
cytometric analysis were performed.

Results: ATR inhibition is synthetically lethal in XRCC1 deficient cells as evidenced by increased cytotoxicity, accumulation of
double strand DNA breaks, G2/M cell cycle arrest and increased apoptosis. Compared to cisplatin alone, combination of
cisplatin and ATR inhibitor results in enhanced cytotoxicity in XRCC1 deficient cells compared to XRCC1 proficient cells.

Conclusions: Our data provides evidence that ATR inhibition is suitable for synthetic lethality application and cisplatin
chemopotentiation in XRCC1 deficient ovarian cancer cells.
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Introduction

Targeting DNA repair for synthetic lethality is an exciting new

strategy for personalized therapy in ovarian cancer. DNA repair is

essential for processing DNA damage induced by chemotherapy

such as platinating agents (carboplatin, cisplatin) [1]. Intra-strand

crosslink DNA adducts induced by platinating agents, if

unrepaired, ultimately result in cell death [2,3]. DNA intra-strand

crosslinks are repaired predominantly by nucleotide excision

repair (NER) in cells [4,5]. Platinating agents can also generate

oxygen free radicals that induce oxidative base damages that are

processed by the DNA base excision repair (BER) pathway in cells

[6,7].

The XRCC1 (X-ray repair cross- complementing gene 1)

protein is a critical factor in BER and single strand break repair

pathway (SSBR). XRCC1-LIG3 complex is also an important

contributor to the ligation step of the nucleotide excision repair

(NER) response. XRCC1, a 70-kDa protein, has no known

enzymatic activity (reviewed in [8,9,10]). XRCC1 functions as a

molecular scaffold protein and coordinates DNA repair by

interacting with several components of BER/SSBR such as

PARP-1 [Poly(ADP-ribose)polymerases 1], DNA glycosylases,

AP endonuclease (APE1) and others (reviewed in [8,9,10]).

XRCC1 deficiency in cells lead to accumulation of DNA single

strand breaks (SSBs), induce mutations and result in elevated levels

of sister chromatid exchanges. XRCC1 deficiency in cell lines

result in hypersensitivity to ionizing radiation and chemotherapy

[9]. In human association studies, germline polymorphisms in

XRCC1 may influence cancer risk [11,12] and influence response

to platinum based chemotherapy [13,14,15,16]. In human ovarian

cancer we have recently demonstrated that tumours frequently

over-express XRCC1 (48%) and significantly associated with

higher stage (p= 0.006), serous type tumours (p = 0.008), sub-

optimal de-bulking (p = 0.004), a two fold increase of risk of death

(p = 0.007) and progression (p,0.0001) [17]. In the multivariate

analysis, XRCC1 expression was independently associated with

survival in ovarian cancer patients [HR 2.3, p= 0.002]. XRCC1

negative tumours were associated with platinum sensitivity
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(p,0.0001). Pre-clinically we also confirmed that XRCC1

negative cells are hypersensitive to cisplatin compared to XRCC1

positive cells [17]. Hypersensitivity to cisplatin in XRCC1 negative

cells was associated with accumulation of DNA strand breaks and

G2/M cell cycle arrest [17]. Our data therefore suggests that

XRCC1 is a promising biomarker in ovarian cancer.

Ataxia telangiectasia mutated and Rad3 Related (ATR) protein

kinase is a key sensor of single-stranded DNA associated with

stalled replication forks as well as generated during BER and

double strand break repair as DNA repair intermediates. Activated

ATR in turn phosphorylates a number of substrates involved in

cell cycle regulation, DNA replication, DNA repair and apoptosis

(reviewed in [18,19,20,21,22]). In preclinical studies, ATR

inhibition may result in cytotoxic therapy sensitization

[22,23,24]. Small molecule inhibitors of ATR are currently under

development for therapeutic application in cancer [20,21,22].

The ability of PARP inhibitors to induce synthetic lethality in

BRCA deficient ovarian cancers [25,26,27] suggests that addi-

tional factors within BER/SSBR may be suitable for such

personalized approaches. XRCC1 is a critical factor in BER,

SSBR and NER. ATR is a key sensor of SSBs. In the current study

we have investigated and confirmed synthetic lethality in XRCC1

deficient cells treated with ATR inhibitors. Moreover, compared

to cisplatin alone, combination of cisplatin and ATR inhibitor

treatment results in enhanced cytotoxicity in XRCC1 deficient

cells compared to XRCC1 proficient cells.

Materials and Methods

Compounds and Reagents
Small molecule ATR inhibitors NU6027 and VE-821 were

purchased from Tocris Bioscience, UK and Tinib-Tools, Czech

Republic respectively. The compounds were dissolved in 100%

DMSO and stored at 220uC. Cisplatin (1 mg/ml) was obtained

from the Department of Pharmacy, Nottingham University

Hospitals, UK.

Cell Lines and Culture
Previously well characterized Chinese hamster ovary (CHO)

cells; CHO9 (Wild type), EM-C11 (XRCC1-mutant: C389Y

substitution leading to XRCC1protein instability), EM-C12

(XRCC1-mutant: E98K substitution resulting in reduced XRCC1

protein integrity) [28] were provided by Professor Małgorzata Z.

Zdzienicka, Department of Molecular Cell Genetics, Nicolaus-

Copernicus University in Torun, Bydgoszcz 85-094, Poland. Cells

were grown in Ham’s F-10 media (PAA, UK) [supplemented with

10% fetal bovine serum (FBS) (PAA,UK) and 1% penicillin/

streptomycin]. EM9-V (XRCC1 mutant) and EM9 cells stably

transfected with a human XRCC1 expression vector (EM9-XH

cells) [29] were provided by Professor Keith Caldicott, Genome

Damage and Stability Centre, University of Sussex, UK. Cells

were grown in DMEM media (PAA, UK) [supplemented with

10% fetal bovine serum (FBS) (PAA,UK) and 1% penicillin/

streptomycin]. Ovarian cancer cells OVCAR-3 and OVCAR-4

were grown in RPMI media (PAA, UK) [supplemented with 10%

fetal bovine serum (FBS) (PAA,UK) and 1% penicillin/strepto-

mycin].

XRCC1 Knockdown Using siRNAs
Three XRCC1 siRNA constructs (sequences listed in Table 1)

and one negative scrambled control and siRNA for Glyceralde-

hyde 3-phosphate dehydrogenase (GAPDH) (positive control) were

used in these studies. The siRNA constructs were purchased from

Ambion life technologies, UK. The transfection protocol was as

described previously by Fan et.al [30]. Cells were plated in 6-well

plates (2 ml medium/well without antibiotics). At 50% confluence,

transfection was achieved using Lipofectamine TM 2000 (Invitro-

gen) according to the manufacturer’s protocol. Briefly, siRNA

(100 pmol) and Lipofectamine (5 ml) were each separately mixed

with 250 ml Opti- MEM1 (GIBCO/Invitrogen) without FBS.

After 5 minute incubation at room temperature, the siRNA and

Lipofectamine solutions were combined and incubated for another

20 min at room temperature. This mixture was then added to

plated cells, cultured at 37uC overnight and the medium was later

replaced with fresh medium plus penicillin/streptomycin (1%).

When the cells attained 100% confluence, they were trypsinized

and subsequently transferred into 75 cm2 flasks for continued

growth and/or treatment. XRCC1 Knockdown was evaluated by

western blotting at various time points after transfection (days 3, 5

and 7).

Western Blot Analysis
Protein samples were prepared by lysing cells in RIPA buffer

(20 mM Tris, 150 mM Nacl, 1% Nonidet p-40, 0.5% sodium

deoxycholate, 1 mMEDTA, 0.1% SDS) containing protease

inhibitor (Sigma) and phosphatase inhibitor cocktail 2 and 3

(Sigma) and then taken to western blot analyses as described

previously [29]. Primary antibody were a mouse anti -XRCC1

(Thermo Fisher Scientific, Waltham, MA, USA) and rabbit anti-

ATR (Novus Biologicals, USA). HRP conjugate secondary

antibody were a rabbit anti-mouse and goat anti-rabbit respec-

tively (Dako, Glostrup, Denmark).

Clonogenic Survival Assay
Two hundred cells per well were seeded in six-well plates. Cells

were allowed to adhere for 4 hours. NU6027 or VE-821 were

added at the indicated concentrations and the plates were left in

the incubator for 10 days for CHO cells. For siRNA transfected

OVCAR-3 and OVCAR-4 cells, three days after transfection,

NU6027 or VE-821 was added at indicated concentrations and

the plates were left in the incubator for 14 days. For cisplatin and

ATR inhibitor combination studies, cells were initially treated with

cisplatin for 16 hours and then gently washed twice with 1X

phosphate buffered saline and incubated in fresh media with or

without NU6027 (4 mM for CHO cells and 6 mM for OVCAR-3

cells) for 10 days (CH cells) or 14 days (human cancer cells). After

incubation, the media was discarded, fixed (with methanol and

acetic acid mixture) stained with crystal violet and counted.

Surviving Fraction = [No. of colonies formed/(No. of cells seeded

x Plating efficiency)]. All clonogenic assays were done in triplicate.

Alkaline COMET Assay
This assay was performed as described previously [31]. Briefly,

sub-confluent cells were exposed to NU6027 (4 mM). At 24 hours,

cells were extracted and alkaline comet assays were performed.

Alkali electrophoresis buffer consisted of 200 mM NaOH, 1 mM

EDTA and pH 13. The slides were then stained with SYBRH

green (1:10,000 dilution) (Molecular Probes) for 10 minutes and

images were visualized under a rhodamine filter with an Olympus

BX40 microscope. The comets were analysed using Comet Assay

III image analysis software (Perceptive Instruments, Suffolk, UK).

A total of 200 comet images were evaluated for olive tail moment.

cH2AX Immunocytochemistry
Cells were treated for 48 hours with NU6027 (4 mM for CHO

cells and 6 mM for OVCAR-3 cells) and the assay was performed

as described previously [31]. For cisplatin and NU6027 combi-
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nation studies, initially the cells were treated for 16 hours with

cisplatin (1.5 mM for CHO cells and 1 mM for OVCAR-3 or

OVCAR-4 cells) and then gently washed twice with 1X phosphate

buffered saline and incubated in fresh media with or without

NU6027 (4 mM for CHO cells and 6 mM for OVCAR-3 or

OVCAR-4 cells) and the assay was performed as above. The

frequencies of cells containing cH2AX foci were determined in

100 cells per slide in three separate experiments. Nuclei containing

more than six cH2AX foci were considered positive.

Flow Cytometric Analyses (FACS) for Cell Cycle
Progression
Cells were treated for 24 hour with NU6027 (4 mM for CHO

cells and 6 mM for OVCAR-3 or OVCAR-4 cells). Cells were later

collected by trypsinization and centrifugation (1000 rpm for 5

minutes) and FACS analyses were performed as described

previously [31].

Apoptosis Detection by FITC-annexin V Flow Cytometric
Analysis
Cells were treated for 48 hours with NU6027 (4 mM for CHO

cells and 6 mM for OVCAR-3 or OVCAR-4 cells). Cells were later

collected by trypsinization and centrifugation (1000 rpm for 5

minutes) and were washed twice with cold PBS and then re-

suspended cells in 1X Binding buffer at a concentration of 16106

cells/ml. Then 100 ml of the solution (16105 cells) was transferred

to a 5 ml culture tube and 5 ml of FITC Annexin V and 5 ml PI

were added. The cells were then gently vortex and incubated for

15 minutes at room temperature (25uC) in the dark. After the

incubation, 400 ml of binding buffer was added to each tube and

was analyzed by flow cytometry within 1 hour. For cisplatin and

NU6027 combination studies, the cells were initially treated for 16

hours with cisplatin (1.5 mM for CHO cells and 1 mM for

OVCAR-3 or OVCAR-4 cells) and then gently washed twice with

1X phosphate buffered saline and incubated in fresh media with or

without NU6027 (4 mM for CHO cells and 6 mM for OVCAR-3

or OVCAR-4 cells) and the assay was performed as described

previously. Data was analysed using FlowJo7.6.1 software.

Evaluation of Drug Interaction (Combination Index)
To investigate synergistic and additive activity, combination

index was calculated as described previously [30]. Dose-response

curves for cisplatin or NU6027 alone were first generated. The

effect of the combined treatment was then analysed for the

combination of drug A (cisplatin) and B (NU6027), by applying the

following equation: Ac/Ae+Bc/Be=D, where Ac and Bc corre-

spond to the concentrations of drugs used in the combination

treatment, and Ae and Be corresponds to the concentrations of

drugs able to, by themselves, produce the same magnitude of

effect. If D (combination index) is ,1 the effect of the combination

is synergistic, whereas if D= 1 or D is .1 the effect is additive or

antagonistic respectively [32].

Results

Synthetic Lethality
To evaluate synthetic lethality pre-clinically, a panel of XRCC1

deficient and XRCC1 proficient Chinese Hamster Ovary and

human ovarian cancer cell lines were treated with small molecule

inhibitors of ATR (NU6027 and VE-821).

Chinese Hamster Ovary (CHO) cells. CHO9 (Wild type),

EM-C11 (XRCC1 deficient) and EM-C12 (XRCC1 deficient)

were investigated in clonogenic survival assays. We initially

evaluated XRCC1 and ATR expression status in CHO9, EM-

C11 and EM-C12 cells. Western blot analysis in Figure 1A

demonstrates that EM-C11 and EM-C12 have no measurable

XRCC1 protein expression compared to CHO9. EM-C11, EM-

C12 and CHO9 are proficient in ATR expression. Figure 1B

shows that EM-C11 and EM-C12 cells are sensitive to NU6027

treatment compared to CHO9 cells. Similarly, EM-C11 and EM-

C12 cells are also sensitive to VE-821 compared to CHO9 cells

(Figure 1C). To investigate if sensitivity of XRCC1 deficient cells

to the ATR inhibitors can be corrected by expression of wild-type

XRCC1 protein in XRCC1 deficient CHO cells, we performed

clonogenic assays in EM9-V (XRCC1 mutant) and EM9-XH (cells

stably transfected with a human XRCC1 expression vector).

Figure 1D demonstrates that EM9-V cells are sensitive to NU6027

compared to EM9-XH.

We then conducted functional analysis in cells. ATR inhibition

leads to DNA single strand break (SSB) accumulation. Therefore

Alkaline COMET assay was performed. Figure 1E summarizes

the results for CHO9, EM-C11 and EM-C12 cells treated with

4 mM of NU6027. Compared to pre-treatment samples, after 24

hours of exposure to ATR inhibitor, EM-C11 and EM-C12 cells

demonstrate a significantly higher mean tail moment compared to

CHO9 (p,0.01). The data confirms SSB accumulation following

ATR inhibition in XRCC1 deficient cells.

DNA double strand breaks (DSBs) induce phosphorylation of

H2AX at serine 139 (cH2AX). Accumulation of cH2AX foci in

the nucleus is a marker of DSBs. Therefore, cH2AX immunocy-

tochemistry was performed in EM-C11, EM-C12 and CHO9 cells

treated with 4 mM of NU6027. Nuclei containing more than six

cH2AX foci were considered positive. cH2AX immunocytochem-

istry confirmed that XRCC1 deficient EM-C11 and EM-C12 cells

accumulated more cH2AX foci at 48 hours (p = 0.02 and p= 0.05)

compared to CHO9 cells (Figures 1D).

Accumulation of DSBs may delay cell cycle progression. FACS

analyses were therefore performed in EM-C11, EM-C12 and

CHO9 cells treated with NU6027 (4 mM). Cell cycle progression

was evaluated and compared to control samples. At 24 hours, EM-

C11 and EM-C12 were shown to be arrested in G2/M phase of

Table 1. XRCC1 siRNA constructs.

siRNA Sequence

XRCC1_1 siRNA (ID s14940) 59GGCAGACACUUACCGAAAAtt 39-sense sequence
39ttCCGUCUGUGAAUGGCUUUU59-antisense sequence

XRCC1_2 siRNA (ID s14941) 59GGCAAGCACUUCUUUCUUUtt 39-sense sequence
39tcCCGUUCGUGAAGAAAGAAA59-antisense sequence

XRCC1_3 siRNA (ID s14942) 59GCUUGAGUUUUGUACGGUUtt 39-sense sequence
39acCGAACUCAAAACAUGCCAA59 –antisense sequence

doi:10.1371/journal.pone.0057098.t001
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the cell cycle (p = 0.01 and p= 0.03) compared to CHO9 cells

(Figure 2A and 2B).

Accumulation of DSBs, if unrepaired, induces apoptosis in cells.

Therefore, FITC-annexin V flow cytometric analysis was

conducted to quantify apoptosis in cells treated with 4 mM of

NU6027 and apoptotic cells quantified at 48 hours. In EM-C11

cells the proportion of cell in early apoptosis increased to 7.5%

after 48 hours treatment with NU6027 compared to 1.73% in

untreated cells. Similarly in EM-C12 cells, percentage of early

apoptotic cells increased from 2.62% to 9.88%. On the other hand

in CHO9 cells, there was no change in the percentage of early

apoptotic cells (3.22% in untreated and 3.38% after 48 hours of

NU6027 treatment (Figure 2C).

The data presented in Chinese Hamster cells suggests that

XRCC1 deficient cells are sensitive to ATR inhibitors. ATR

inhibition leads to increased DSB accumulation, G2/M cell cycle

arrest and apoptosis. This suggests a synthetic lethality relationship

between XRCC1 and ATR. To confirm this data further we

investigated in human ovarian cancer cell lines.

Human ovarian cancer cells. We generated XRCC1

knockdown human ovarian cancer cell lines using three siRNA

constructs (Table 1). After transfection, cell lysates were sampled

on days 3, 5 and 7 for XRCC1 knock down by western blot

analysis. Figure 3A confirms that all three constructs (siRNA-1,

siRNA-2, siRNA-3) induce efficient knockdown (more than 80%)

of XRCC1 in OVCAR-3 cells on day 3 compared to scrambled

negative control and GAPDH positive control. In clonogenic

survival assays, NU6027 treatment reduced survival in XRCC1

deficient cells compared to proficient cells (Figure 3B). Similar

results were also seen in OVCAR-4 cells (Figure S1 A). cH2AX

immunocytochemistry confirmed that XRCC1 deficient cells

accumulated more cH2AX foci at 48 hours (p = 0.05, p = 0.01

and p=0.007 respectively) compared to scrambled control

(Figure 3C). Moreover, at 24 hours, XRCC1 deficient cells were

shown to be arrested in G2/M phase of the cell cycle (p = 0.05,

p = 0.04 and p= 0.05) compared to CHO9 cells (Figure 3D). In

XRCC1 deficient cells the proportion of cells in apoptosis

increased substantially compared to scrambled controls upon

NU6027 treatment (Figure 3E).

Taken together, the data from CHO cells and human cell lines

provide convincing evidence that ATR inhibitors induce synthetic

lethality in XRCC1 deficient cells.

Cisplatin Chemopotentiation
We have previously demonstrated that XRCC1 deficient cells

are sensitive to cisplatin [17]. In the current study, we first

confirmed this observation in XRCC1 deficient EM-C11 and EM-

C12 cells compared to CHO9 wild type cells (Figure 4A). We then

Figure 1. Western blot analysis in chinese hamster (CH) cells (CHO9, EM-C11, EM-C12) (A). Clonogenic survival assays for CH cells treated
with NU6027 (B) and VE-821 (C) at indicated concentrations (see methods for details). D. Clonogenic survival assays for EM9-V and EM9-XH cells
treated with NU6027. E. Alkaline COMET assay in CH cells treated with NU6027. EM-C11 and EM-C12 demonstrated a higher mean tail moment
compared to CHO9 cells. F. EM-C11 and EM-C12 cells accumulate significantly higher cH2AX foci compared to CHO9 cells upon NU6027 treatment.
Data represent mean values 6SEM (n= 6). Results were analysed using Students t-test. * p,0.05.
doi:10.1371/journal.pone.0057098.g001
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evaluated combination strategies. The cytotoxicity of cisplatin was

enhanced by NU6027 in XRCC1 deficient CH cells compared to

XRCC1 proficient cells. In order to evaluate the interaction

between NU6027 and cisplatin, combination index was calculated

as described previously [32]. Cells were cultured in the presence of

increasing doses of cisplatin (range 0.5–3 mM) in combination with

a concentration of NU6027 able to induce a 50% growth

inhibition. NU6027 potentiated the cytotoxic effect of cisplatin

on XRCC1 deficient cells (Table 2). If combination index (D) is

,1 the effect of the combination is synergistic, whereas if D= 1 or

D is .1 the effect is additive or antagonistic respectively [32]. In

the current study, the combination index was one in EM-C11 and

EM-C12 cells. We concluded that enhancement of cisplatin

cytoxicity by NU6027 in CHO cells was additive rather than

synergistic. We then proceeded to conduct functional analyses in

cells. Cisplatin alone treatment increased DSB accumulation in

XRCC1 deficient cells which was further increased by NU6027

(p = 0.01 and p=0.02) (Figure 4B). The DSB accumulation seen in

XRCC1 deficient cells was also associated with accumulation of

apoptotic cells as shown in Figure 4C.

We then conducted similar studies in siRNA transfected human

OVCAR-3 or OVCAR-4 cells. Similar to the results seen in CH

cells, XRCC1 deficient OVCAR-3 or OVCAR-4 cells were

sensitive to cisplatin. NU6027 enhanced cytotoxicity of cisplatin in

XRCC1 deficient OVCAR-3 cells compared to XRCC1 profi-

cient cells (Figure 5A). Similar results were also seen in OVCAR-4

cells (Figure S1 B). Combination index studies (Table 2) demon-

strated that in most cells was one, except for OVCAR-3 cells

treated with Si RNA_3 (D= 0.93) and OVCAR-4 cells SiRNA_1

(D=0.99). Taken together, we concluded that human ovarian

cancer cells the potentiating effect is likely to be additive. Cisplatin

alone treatment increased DSB accumulation in cells which was

Figure 2. FACS read out in CH cells treated with 24 hours of NU6027 is shown here (A). B. Quantification of various phases of the cell cycle
is shown for CH cell treated with NU6027. Data represent mean values 6SEM (n= 6). Results were analysed using Students t-test. * p,0.05. C. FITC-
Annexin V apoptosis assay is shown here. The proportion of cells in early phase apoptosis is higher in XRCC1 deficient cells treated with NU6027
compared to wild type cells.
doi:10.1371/journal.pone.0057098.g002

XRCC1 and ATR in Ovarian Cancer
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Figure 3. Western blot analysis in siRNA transfected OVCAR-3 cells is shown here (A). B. Clonogenic survival assays for siRNA transfected
OVCAR-3 cells treated with NU6027 at indicated concentrations is shown here (see methods for details). C. XRCC1 deficient cells accumulate
significantly higher cH2AX foci compared to scrambled control cells upon NU6027 treatment. Data represent mean values6SEM (n= 6). Results were
analysed using Students t-test. * p,0.05, ** p,0.01. D. Quantification of various phases of the cell cycle is shown for siRNA transfected OVCAR-3 cell
treated with NU6027 is shown here. Data represent mean values6SEM (n= 3). Results were analysed using Students t-test. * p,0.05. E. FITC-Annexin
V apoptosis assay for siRNA transfected OVCAR-3 cells is shown here. The proportion of cells in late phase apoptosis is higher in XRCC1 deficient cells
treated with NU6027 compared to scrambled control cells.
doi:10.1371/journal.pone.0057098.g003

Table 2. Effect of NU6027 and Cisplatin in Chinese hamster ovary and human ovarian cancer cells.

Cell lines NU6027 (mM;Ac) Cisplatin (mM;Bc) NU6027 (mM;Ae) Cisplatin (mM;Be) D

CHO EM-C11 4 1.5 8 3 1

EM-C12 4 1.5 10 2.5 1

OVCAR-3 siRNA_1 6 1 10 2.5 1

siRNA_2 6 1 12 2 1

SiRNA_3 6 1 10 3 0.93

OVCAR-4 siRNA_1 6 1 9 3 0.99

siRNA_2 6 1 10 2.5 1

SiRNA_3 6 1 10 2.5 1

Ac and Bc, concentrations of drugs used in the combination treatment; Ae and Be concentrations of NU6027 alone and cisplatin alone respectively that produce a
similar magnitude of effect; D (combination index.).
doi:10.1371/journal.pone.0057098.t002
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further increased by NU6027 (p= 0.02, p = 0.007 and p= 004)

(Figure 5B). The DSB accumulation seen in XRCC1 deficient cells

was associated with accumulation of substantial apoptotic cells as

shown in Figure 5C.

The data presented here not only provides further evidence that

XRCC1 deficient cells are sensitive to cisplatin chemotherapy but

also suggests that ATR inhibition additively enhances cisplatin

toxicity in XRCC1 deficient cells compared to XRCC1 proficient

cells.

Conclusions

ATR protein kinase is a key sensor of single-stranded DNA

associated with stalled replication forks and repair intermediates

generated during BER and DSB repair. ATR activation regulates

several cellular processes including cell cycle regulation, DNA

replication, DNA repair and apoptosis. XRCC1 is essential for

BER and SSBR and contributes to the ligation step of the NER

response. We hypothesised that ATR inhibition could be

synthetically lethal in XRCC1 deficient cells.

In the current study we have confirmed that ATR inhibitors are

synthetically lethal in XRCC1 deficient cells. We have concluded

synthetic lethality for the following reasons. First, CHO cells as

well human cancer cells deficient in XRCC1 were highly sensitive

to ATR inhibitors. Second, functional analyses demonstrated that

ATR inhibition in XRCC1 deficient cells led to an accumulation

of DNA DSBs, G2/M cell cycle arrest and increased apoptosis.

This data is consistent with a study by Peasland et al [22] who

demonstrated that NU6027 is synthetically lethal in cell treated

with a PARP inhibitor that blocks BER. Moreover, the authors

also demonstrated that EM9 chinese hamster cells lacking

XRCC1 are also sensitive to NU6027 [22]. The data, including

ours, therefore provides compelling evidence that ATR inhibition

is synthetically lethal in BER deficient cells. We present a working

model for ATR inhibition as a synthetic lethality strategy in

XRCC1 deficient cells. In brief, ATR inhibition leads to SSB

accumulation. Cells deficient in XRCC1 are unable to process

SSBs which are eventually converted to toxic DSBs at replication

forks. Overwhelming DSBs may not only saturate DSB repair, but

ATR inhibition is also known to modulate DSB repair directly

[33,34] contributing to synthetic lethality observed in cells.

We also found that XRCC1 deficient cells are sensitive to

cisplatin. The cisplatin sensitivity in XRCC1 deficient cells

observed in our study is consistent with a recent study in HepG2

Figure 4. Clonogenic survival assays for CH cells treated with cisplatin alone or in combination with NU6027 is shown here (A). X-
axis designates increasing concentration of cisplatin only. NU6027 was fixed at 4 mM. B. XRCC1 deficient CH cells accumulate significantly higher
cH2AX foci compared to XRCC1 proficient CH cells upon cisplatin treatment alone or a combination of cisplatin and NU6027. Data represent mean
values 6SEM (n= 6). Results were analysed using Students t-test. * p,0.05, ** p,0.01. C. FITC-Annexin V apoptosis assay is shown here. The
proportion of cells in early phase as well as late phase apoptosis is higher in XRCC1 deficient cells treated with cisplatin alone or a combination of
cisplatin and NU6027 compared to wild type cells.
doi:10.1371/journal.pone.0057098.g004
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cells where cisplatin sensitivity was demonstrated following

XRCC1 depletion [35]. We did not observe any potentiation of

cisplatin cytotoxicity by ATR inhibitor in XRCC1 wild type cells.

This is in contrast to previous preclinical studies where ATR

inactivation (genetically or with inhibitors) has demonstrated

increased platinum sensitivity in a panel of cell lines [22].

However, a limitation of our study is that our investigation was

restricted to a few cell types only. Nevertheless, our data suggests

that genetic background (such as XRCC1 status) may influence

platinum sensitivity. In conclusion, we have demonstrated a

synthetic lethality application for ATR inhibitors in XRCC1

deficient cells. ATR inhibition may also influence platinum

sensitivity in XRCC1 deficient cells.
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