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ABSTRACT
3D-stacking technology has enabled the option of embed-
ding a large DRAM onto the processor. Prior works have
proposed to use this as a DRAM cache. Because of its large
size (a DRAM cache can be in the order of hundreds of
megabytes), the total size of the tags associated with it can
also be quite large (in the order of tens of megabytes). The
large size of the tags has created a problem. Should we
maintain the tags in the DRAM and pay the cost of a costly
tag access in the critical path? Or should we maintain the
tags in the faster SRAM by paying the area cost of a large
SRAM for this purpose? Prior works have primarily chosen
the former and proposed a variety of techniques for reducing
the cost of a DRAM tag access.

In this paper, we first establish (with the help of a study)
that maintaining the tags in SRAM, because of its smaller
access latency, leads to overall better performance. Moti-
vated by this study, we ask if it is possible to maintain tags in
SRAM without incurring high area overhead. Our key idea
is simple. We propose to cache the tags in a small SRAM tag
cache – we show that there is enough spatial and temporal
locality amongst tag accesses to merit this idea. We propose
the ATCache which is a small SRAM tag cache. Similar to
a conventional cache, the ATCache caches recently accessed
tags to exploit temporal locality; it exploits spatial locality
by prefetching tags from nearby cache sets. In order to avoid
the high miss latency and cache pollution caused by exces-
sive prefetching, we use a simple technique to throttle the
number of sets prefetched. Our proposed ATCache (which
consumes 0.4% of overall tag size) can satisfy over 60% of
DRAM cache tag accesses on average.
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1. INTRODUCTION
3D-stacking technology has enabled the option of embed-

ding a large DRAM onto the processor. Prior works [18]
have proposed to use this as a DRAM cache. Because of its
large size (a DRAM cache can be in the order of hundreds
of megabytes), the total size of the tags associated with it
can also be quite large (in the order of tens of megabytes).

The large size of the tags has created a classic space/time
trade-off issue. On the one hand, we would like the latency
of a tag access to be small as it would contribute to both
hit latency and miss latency. Accordingly, we would like
to store these tags in a faster media such as SRAM (tags-
in-SRAM ). However, with hundreds of megabytes of die-
stacked DRAM cache, the space overhead of the tags would
be huge. For example, it would cost around 12 MB of SRAM
space to store all the tags of a 256MB DRAM cache (if we
used conventional 64B blocks). Clearly this is too large,
considering that some of the current chip multiprocessors
have an L3 that is smaller [6].

In order to solve the above problem, Loh and Hill [10] pro-
posed an approach for storing the tags within the DRAM it-
self (tags-in-DRAM ). To make this approach practical, they
proposed a scheme for embedding the tag and data in the
same row buffer, which would enable both tag and data to
be accessed in a single compound access. Compared to a
naive scheme, performing a compound access optimizes the
hit latency by obviating the need to reopen a row to ac-
cess data as shown in Fig. 2 (saving on tACT, the time to
activate a row). However, it does not optimize the miss la-
tency, since only the tag is accessed on a miss. To reduce
the miss penalty, Loh and Hill also proposed a technique
for tracking the contents of the DRAM cache in a structure
called the MissMap. This enables them to avoid a DRAM
tag access for misses, with only a few megabytes of SRAM
overhead. Subsequently other works [14, 15] proposed miss
predictors to achieve the same effect as a MissMap, but with
significantly lesser SRAM overhead (in the order of a few
kilobytes).

The impracticality of tags-in-SRAM, has led to the above
tags-in-DRAM proposals. But how does the performance of
recently proposed tags-in-DRAM techniques compare with
tags-in-SRAM? We conduct a study to measure the average
DRAM access latency for different configurations of DRAM
cache, as shown in Fig. 1. Here, tags-in-SRAM refers to a
scheme in which tags of all blocks in the DRAM are stored in
the SRAM; tags-in-DRAM refers to a scheme that uses Loh
and Hill’s compound access; MissPred refers to the above,
augmented with an oracle miss predictor (100% accuracy



Figure 2: Access latency of different types of DRAM cache.
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Figure 1: Average latency of the DRAM cache (in-
cluding main memory access latency). The archi-
tectural parameters and workloads are shown in Ta-
ble 5.

and zero latency). For this study, we use an SRAM access
latency of 6 cycles which we modeled using CACTI (32nm,
itrs-hp cell); further, we use 7ns for tACT and tCAS and
2.5ns for tBURST for stacked DRAM (other architectural
parameters used in this study are shown in Table 5). All re-
sults are normalized to the access latency of tags-in-DRAM.
As we can see, using the tags-in-SRAM configuration results
in a 23.7% reduction in DRAM cache access latency. Fur-
thermore, this latency is 10.2% lesser than MissPred (which
is an oracle miss predictor with zero access latency).

Given that there is a significant gap in performance be-
tween tags-in-SRAM and tags-in-DRAM, we want to benefit
from the tags-in-SRAM approach, but without incurring the
cost of a high SRAM overhead. Our key idea is to maintain
the tags in the DRAM cache, but also cache a small amount
of tags in SRAM in a dedicated cache. We call this the Ag-
gressive Tag Cache (ATCache), as we will later show that we
can achieve very good performance with a small tag cache.
In addition to this, having a small cache is beneficial as this
means that the ATCache can be accessed faster than a larger
tags-in-SRAM design.

Like a conventional cache, ATCache exploits temporal lo-
cality by only caching the tags of recently accessed DRAM
cache sets. In a similar vein, it exploits spatial locality by

prefetching the tags of adjacent DRAM cache sets. One po-
tential problem is to know how many sets’ tags to prefetch,
as prefetching too much can lead to cache pollution and also
increased miss penalty. To deal with this, we propose a
scheme in which we prefetch tags of the adjacent sets only
if there is evidence of spatial locality amongst the sets.

We evaluate our approach on the gem5 cycle-accurate sim-
ulator [1]. On memory-intensive single-threaded SPEC 2006
benchmarks, our ATCache can achieve 10.3% performance
improvement on average compared to a tags-in-DRAM (with
compound access) baseline. This compares favorably with
the speedup of 6.8% provided by adding a high-accuracy
miss predictor (MAP-I) to tags-in-DRAM. Our ATCache
can also be integrated with miss predictors. Indeed, on mul-
tiprogrammed workloads, our ATCache is 9.3% faster than
the tags-in-DRAM baseline, but 10.9% faster when we inte-
grate a miss predictor (MAP-I) to ATCache. Finally, our re-
sults are almost as good as a full tags-in-SRAM cache, which
provides a performance improvement of 11.9%. Our AT-
Cache only uses 47.375kB space (including the overheads)
and around 50kB if we include the MAP-I as part of our de-
sign. Therefore, the overall SRAM space consumed is only
around 0.5% of a tags-in-SRAM design.

2. BACKGROUND

2.1 DRAM cache
Reducing the latency of tag accesses is fundamental to

cache design, as this latency would be added to critical path
of the total latency, no matter a hit or miss. Prior works [9,
10, 18] have proposed to use stacked DRAM as a large cache
inside the processor chip. By exploiting the high density of
stacked DRAM, we are able to have multiple hundreds of
megabytes of on-chip DRAM cache. Ideally, we want to
architect this large cache with same cache block size as con-
ventional L1 or L2 (which typically use a block size of 32/64
bytes). Consequently, with multiple hundreds of megabytes
of DRAM cache, the overhead of storing tags of conventional
blocks requires tens of megabytes [3, 9, 10]. In this case, it
would be impossible to naively use SRAM (which provides
faster access latency at the cost of low density) as storage
media.



Table 1: Tag sizes/latencies for different cache sizes.

Cache size 128MB 256MB 512MB 1024MB
Tag size (per block) 24 bits 23 bits 22 bits 21 bits

Total tag size 6MB 11.5MB 22MB 42MB
Latency/hp (cycles) 5 6 7 8
Latency/lstp (cycles) 9 10 12 13

Page-based DRAM cache: A page-based cache (i.e. a
much larger cache block size of 2kB to 4kB) has been pro-
posed in several works [8, 9]. With a larger block size,
the tag overhead is reduced to hundreds of kilobytes or few
megabytes depending on the cache size. With this cache de-
sign, there are two major challenges that prior works have
addressed. First, a larger cache line size means more data
to fetch on a miss. Generally, a DRAM cache miss needs
to fetch data from a low-bandwidth off-chip memory. This
downside becomes one of the performance bottlenecks of a
page-based design. Second, a larger cache line might fetch
a significant amount of unused data to the cache. This de-
creases the effective capacity of the DRAM cache compared
to a conventional block size design. To solve the bandwidth
problem, Jevdjic et al. [8] proposed a footprint cache which
removes the unused blocks from the (page-based) cache line
and shows an effective reduction in bandwidth. Their de-
sign enables paged-based DRAM cache to outperform block-
based caches (tags-in-DRAM, with MissMap) in server work-
loads [5]. However, in their study, desktop workloads (SPEC
2006) shows about 25% of slow down compared to block-
based DRAM cache (with MissMap, 256MB). This is be-
cause the spatial footprint in desktop workloads is generally
lower than server workloads like web search.

Block-based DRAM cache: Loh and Hill [10, 11] pro-
posed a DRAM cache with conventional block size (64 bytes).
In their work, they embedded tags along with their data in
the same row buffer (tags-in-DRAM). They architect a 29-
way DRAM cache with a 2kB row buffer (29 tags and 29
blocks). One issue with this design is that DRAM cache
misses have to pay the high cost of accessing the tags from
the DRAM; consequently they also proposed a MissMap,
which is a SRAM structure which tracks the contents of
DRAM cache in order to skip miss accesses. Since MissMap
consumes a reasonably large amount of SRAM (in the order
of few megabytes) to maintain the required information, sub-
sequent works [14, 15] proposed miss predictors to predict
cache misses with a lower SRAM overhead (in the order of
few kilobytes). Subsequently, Qureshi and Loh [14] pointed
out that instead of a sequential access of the data and tag,
one could use a wider data width (72 bytes) to read tag and
data in parallel. In this design, the hit latency of a direct-
mapped DRAM cache is close to the latency of accessing
only the data. Whereas this approach works great for direct-
mapped caches, the downside of this design, however, is its
inflexibility in scaling to set associate caches. To support a
4-way cache, for example, every access requires additional
3 tBURSTs for reading 3 more blocks from DRAM cache;
assuming a 2.5 ns tBURST for reading a 72-byte block, the
additional latency overhead of supporting a 4-way cache is
23 cycles for a 3 GHz processor.

2.2 Tag size and access latency

In this section, we show how we measure the tag sizes of
different DRAM cache configurations and also their laten-
cies. Generally, a tag for a block refers to several SRAM
bits of storage to accommodate not only the tag for that
cache block, but also status bits (dirty/valid and cache co-
herence states) and state associated with the replacement
policy. In our system model, the DRAM cache is located
a level below the cache coherent shared cache. The mini-
mum requirement of the status register is 2 bits (valid and
dirty bits). The number of tag bits depends on processor’s
addressing capability and the associativity of cache. For a
processor with 40-bit address space and 64-byte cache line,
a 256MB/16-way cache requires 17 bits for the tag. Let us
assume the state associated with the replacement policy re-
quires 4 bits. The overall space requirement for each cache
block then is 23 bits, which amounts to around 11.5 MB in
total.

We model the latency of tag access using CACTI 6.5 [13].
Specifically, we use 32nm technology and two types of SRAM
cell (itrs-hp and itrs-lstp, which represent high performance
configuration and low standby power configuration respec-
tively). We report tag latencies for a 3GHz processor cycle.
The results are shown in Table 1. As we can see, it shows
that even with a low standby power cell, a 11.5MB SRAM
tag access (10 processor cycles) can still be faster than min-
imum tBURST latency (which is about 4 memory cycles
which is about 5ns or 15 processor cycles) in DDR3-1600 in
DRAM. Substituting the values for tag latencies computed
above, it is clear (as shown in Fig. 2) that tags-in-SRAM can
provide both better hit (tag + data) and miss (tag) latency
than tags-in-DRAM with compound access. In this paper,
we will use the above modeled parameters in Table 1 for the
tags-in-SRAM approach.

3. OUR METHODOLOGY AND DESIGN
As our study in Fig. 1 shows, a tags-in-SRAM design pro-

vides an opportunity to improve both hit and miss latency.
The SRAM overhead, however, is a major impediment that
limits its practicality. In this paper, we propose a hybrid
method in which we maintain full tags in DRAM like Loh
and Hill’s work [10] but also cache a small number of tags
in our proposed cache structure called ATCache. To put it
simply, similar to a conventional cache which caches data
from memory, our ATCache caches the tags of the DRAM
cache.

3.1 Terminology
Before describing our approach, we first define several ter-

minologies that can help explain our design.

SetTag : A SetTag refers to the set of tags of the blocks
which belong to the same cache set of a DRAM cache. For
example, if the DRAM cache is 16-way associative, then Set-
Tag refers to all the 16 tags in each set. It is worth noting
that all 16 tags are necessary to check for a hit or miss in
DRAM cache, which is why they are cached together in the
ATCache. In other words, a SetTag of an ATCache is anal-
ogous to a word of a conventional cache.

SetID : A SetID is an identifier for ATCache to identify if
the SetTag for the correct set exists in the ATCache. In
other words, a SetID of an ATCache is analogous to a tag
of a conventional cache.



Caching ratio: The Caching ratio of an AT cache is the
ratio of the size of the ATCache to the total size of the tags
required by the DRAM cache. For example, a 256MB/16-
way DRAM cache requires 11.5 MB for tags. A caching ratio
of 256 corresponds to an ATCache of size 46KB.

Prefetching granularity (PG): In a conventional cache,
whenever a word is accessed we also (pre)fetch additional
adjacent words belonging to a block to exploit spatial local-
ity. In a similar vein, the prefetching granularity (PG) refers
to the number of adjacent SetTags that the ATCache will
fetch on a miss. In other words, the PG of an ATCache is
analogous to a block size of a conventional cache.

3.2 Locality of tag accesses
The idea of caching is founded on the principles of spatial

and temporal locality, which a conventional cache exploits.
In this section, we want to examine if spatial and tempo-
ral locality exists for tag data accesses also. To this end,
we conduct a quick study in which we use a 46kB ATCache
(1/256 of total tag size) to store recently accessed tags. Be-
cause tags of the same cache set would be accessed together,
we store these tags in units of a DRAM cache set (and call
it SetTag). In addition to this, to exploit spatial locality
we fetch the SetTag of adjacent sets on an ATCache miss;
we use the term prefetching granularity (PG) to refer to the
number of adjacent cache sets that the ATCache will fetch
on a miss.

Fig. 3 shows the average miss ratio of the ATCache for
different PGs across all single-thread benchmarks that we
studied (§ 4) in SPEC 2006. From the figure, the miss ratio
of PG/2 is around 63.4%. This means that more than 30%
of the tag accesses can be satisfied (hit) by our ATCache
for a PG of 2, which is significantly better than a uniformly
distributed hit ratio (1/256 ' 0.4%). Furthermore, as the
PG is increased from 2 through 64, the miss ratio decreases
from 63.4% to 20.5%. These all indicate the existence of
locality amongst tag accesses.
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Figure 3: Miss ratio with various PG.

3.3 Hit prefetching
In our prior study, we found that the prefetching granular-

ity (PG) is critical to the performance of ATCache. Prefetch-
ing nearby SetTags to the ATCache, generally speaking, is

beneficial to miss ratio; however, a large PG can possibly
pollute the ATCache which could result in a miss ratio in-
crease, in addition to increasing miss-penalty. We provide a
simple solution to achieve a balance between spatial local-
ity, cache pollution, and miss-penalty. We start by fetch-
ing the SetTag for a relatively small number of cache sets
(say PG/4). Corresponding to the SetTag of each fetched
cache set, we maintain a flag that tracks whether or not
the SetTag of the current cache set is accessed. Even if one
of the prefetched SetTags is actually accessed, we prefetch
the SetTags of the next contiguous 4 cache sets – in do-
ing so, we achieve the effect of a larger PG. In case none
of the prefetched SetTags are accessed, we do not prefetch
any additional SetTags – in doing so, we avoid paying the
space and time costs of a larger PG when a larger PG is not
beneficial. It is worth noting that the space overhead of this
technique is very small. It only requires one additional bit in
the ATCache’s SetID. We conducted a simple experiment to
estimate the benefit of hit prefetching; as shown in Fig. 3, we
find that with hit prefetching the miss ratio of PG/4 (21.5%)
is able to match the miss ratio of PG/32 (22%) without hit
prefetching. Since hit prefetching provides a significant ben-
efit, we include it in our baseline system.

3.4 Size, hit ratio and latency
Another important factor to consider in cache design is

the interplay between size and the access latency. In most
cases, a larger cache size can provide a better hit ratio, but
would also mean a higher access latency. In this section, we
want to study how the cache capacity affects the ATCache’s
hit ratio and its latency. Fig. 4 shows the hit ratio for differ-
ent caching ratios. For this experiment, we use PG/4 with
hit prefetching turned on. As we can see, the miss ratio
degrades gracefully as the caching ratio is increased. Even
with an ATCache size of 11.2KB (caching ratio of 1024), the
ATCache can still satisfy over 50% of tag accesses. On the
other hand, an ATCache of only 11.2KB will enable it to
have a faster access latency of close to 1 cycle in comparison
to about 6 cycles for a full tags-in-SRAM design (the latency
values are computed using CACTI as discussed earlier in the
background section). The reduced tag access latency con-
tributes to better DRAM cache performance as illustrated
in Fig. 2.
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3.5 Integration with miss predictor
Prior works have proposed miss predictors [10, 14, 15]

which help to improve the performance of a tags-in-DRAM
design by reducing the miss penalty. More specifically, they



help avoid a DRAM tag access for (what is predicted to be)
a DRAM cache miss. Although the latency to access a tag
in our design is not as high as the tags-in-DRAM design
(since the tags are now stored in the ATCache which is in
the SRAM), we can still benefit from a miss predictor. In
addition to this, because miss accesses can be handled by the
high accuracy predictor, they can skip the ATCache. This
means that the ATCache does not need to store the tags cor-
responding to misses anymore, which in turn increases the
effective cache capacity of the ATCache. Therefore, we im-
plement two predictors proposed in prior works – HMP [15]
and MAP-I [14]. In our study, we found that both predictors
can provides a very high prediction accuracy (Fig.5) with
very small space overhead as prior works have observed. In
our design we choose to integrate with MAP-I as it provides
marginally better predictability.
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Figure 5: Accuracy of prior proposed predictors.

3.6 Design of ATCache
The design of our ATCache follows the design principles

of a conventional cache: the full tags in the DRAM array
represents the “main memory” and tags in the ATCache
represents the “cached data”. The procedure to access the
ATCache is illustrated in Table 2 and the access logic is
shown in Fig. 6. As we can see, the ATCache requires an
additional SetID checking (Step 2A) – which is similar to
a tag check for a conventional cache. Now, this represents
an additional check compared to a conventional full tags-in-
SRAM design. However, it is worth noting that this (step
2A) can be overlapped with step 2B (which is the tag check
for DRAM cache). Therefore, the ATCache does not need
additional access cycles for an ATCache hit in comparison
to a full tags-in-SRAM design.

However, on an ATCache miss, the tags in DRAM have
to be accessed and fetched back into the ATCache. So miss
processing for ATCache is comparable to a tags-in-DRAM
cache, with one small difference. Since step 2A is still re-
quired to identify if ATCache contains the correct SetTag,
we incur one cycle penalty (step 2A is assumed to take one
cycle) to the total access latency when there is an ATCache
miss.

3.7 Putting it all together
We illustrate how the ATCache works with a spatial pre-

dictor and a miss predictor (MAP-I), with the help of an
example (Table 3). This example consists of 5 consecutive
DRAM cache accesses and each of them is accessing differ-
ent cache sets (#sets). In the 1st access, the outcome of
MAP-I is a hit which means DRAM cache might contain

Table 2: ATCache access procedure (refer to Fig. 6).

Steps Description

Step 1 Locate SetID and SetTag in AT-
Cache by a subset of #cache set
(#sub cache sets).

Step 2A Check SetID to determine if ATCache
set contains SetTag.

Step 2B Check SetTag to determine if DRAM
cache contains requested data (DRAM
cache hit/miss).

Step 3 If step 2A is hit, use step 2B’s result
to determine hit/miss in DRAM cache.
Otherwise, issue compound access to
DRAM cache.

Figure 6: The access logic (also refer to Table 2).

this data. Then, the system accesses the ATCache but it
does not contain the corresponding SetTag. Therefore, sim-
ilar to the tags-in-DRAM approach, an ATCache issues a
DRAM compound access for tag and data. The ATCache
will also fetch the adjacent cache sets after the compound
access. Later, we can see these prefetched adjacent cache
sets are accessed in the 3rd access. It is worth noting that a
hit prefetching event (§3.3) also is generated in the 3rd ac-
cess. In the 2nd access, we show a situation in which MAP-I
is predicting the access as a miss. In this case, system will
skip the access of DRAM cache because of the prediction re-
sult and directly fetch data from main memory. In the 4th
access, a prefetched set (set 3) is accessed but the sets 4-8
is already brought back by the 3rd access. Therefore, there
is no additional access required for our design. Finally, the
5th access is a MAP-I hit and an ATCache miss. Similar
to 1st access, the system will issue a compound access and
fetch adjacent sets.

3.8 Area overhead
In this paper, we use an ATCache with a caching ratio of

256. In other words, we use a 46kB cache for caching total



Table 3: Example showing 5 DRAM cache accesses.

#access #set MAP-I ATCache description

1 0x1 hit miss DRAM compound access
and prefetch set 0,2,3 due
to prefetching granularity
(PG)

2 0x53 miss X predicted miss from MAP-
I, skip the access

3 0x2 hit hit prefetch set 4-8 (hit
prefetching)

4 0x3 hit hit access data in DRAM
cache

5 0x10 hit miss DRAM compound ac-
cess and prefetch set
0x11,0x12,0x13 (same as
1st access)

tags amounting to 11.5MB (256MB/16-way DRAM cache).
As shown in Fig. 6, the additional overhead of a ATCache is
a bunch of SetIDs. The size for each SetID actually depends
on caching ratio and the associativity of the ATCache. Each
ATCache block with caching ratio of 256 and associativity of
4 needs 8 + 2 bits for storing SetID. In addition to SetID, to
implement hit prefetching (§3.3, 1 bit per set), the overhead
of SetID for each ATCache block slightly increases to 11
bits. In a 256MB/16-way cache, there are 256k cache sets.
An ATCache with a caching ratio of 256 would cache only
1k (256k/256) sets. Therefore, the overhead of ATCache is
around 1.375kB (11 ∗ 1024/8 bytes). In total, the ATCache
requires about 48kB SRAM space which is less than 0.5%
SRAM space compared to tags-in-SRAM’s 11.5MB. Table 4
shows the overhead for different cache sizes.

Table 4: Overhead for different cache sizes.

Cache Size 128MB 256MB 512MB 1024MB
Total tag size 6MB 11.5MB 22MB 42MB

ATCache space 24kB 46kB 88kB 168kB
ATCache overhead 704B 1.375kB 2.75kB 5.5kB

4. EXPERIMENTAL METHODOLOGY

4.1 Baseline system
We use the gem5 cycle-accurate simulator [1] in which

we consider the L3 to be the DRAM cache; accordingly,
we implement the DRAM timing model for the L3. The
system parameters that we used are shown in Fig. 5. We
show single-threaded results for 11 benchmarks from SPEC
2006 which are considered to be memory-intensive in prior
works [14, 15]. In addition to single-threaded benchmarks,
we also use the same 11 benchmarks to generate 25 multi-
programmed workloads (4-core, as shown in Table 6) and
evaluate their performance.

4.2 DRAM cache organizations
In this paper, we evaluate the following DRAM cache de-

signs:

Baseline (Tags-in-DRAM): The DRAM cache design we
used as baseline follows Loh an Hill’s work [10]. The SetTag
and their data are stored in the same row. With compound
scheduling, a delay of opening a row (' tRCD) can be saved

Table 5: System parameters

Processor 3GHz, 4-core, 4-issue OoO, 64 ROB
L1 I/D caches each 32kB/2way, LRU, 2-cycle, private

L2 cache 4MB/8way, 9-cycle, LRU, shared
Stacked DRAM 256MB, 2-bit SRRIP [7]

tRCD-tCAS-tRAS 7-7-25 (ns) tBURST: 2.5ns
16 banks per rank, 1 rank per channel, 4 channel

4kB row buffer, open-page policy
Off-chip DRAM 800MHz (DDR3-1600), x64 interface

tRCD-tCAS-tRAS 13.5-13.5-40.5 (ns) tBURST: 5ns
8 banks per rank, 2 ranks per channel, 1 channel

8kB row buffer, open-page policy
On-chip bus 3GHz, 256-bit width
System Bus 1.5GHz, 64-bit width

Miss Predictor MAP-I [14], 256 entries
ATCache Caching Ratio:256 (47.375kB incl. overhead)

4-way, 2-cycle latency, hit prefetching
Benchmarks milc, soplex, omnetpp, gcc, leslie3d, GemsFDTD

astar, mcf, bwaves, lbm, libquantum

Table 6: Workload groupings

1-2 soplex-astar-lbm-mcf lbm-omnetpp-leslie3d-bwaves
3-4 milc-leslie3d-leslie3d-gcc milc-libquantum-bwaves-gcc
5-6 libquantum-lbm-soplex-libquantum libquantum-GemsFDTD-soplex-milc
7-8 gcc-milc-libquantum-astar milc-soplex-bwaves-libquantum
9-10 leslie3d-omnetpp-leslie3d-mcf lbm-astar-leslie3d-libquantum
11-12 leslie3d-leslie3d-libquantum-milc mcf-gcc-milc-astar
13-14 omnetpp-libquantum-milc-soplex gcc-libquantum-libquantum-soplex
15-16 soplex-GemsFDTD-omnetpp-milc milc-soplex-leslie3d-libquantum
17-18 lbm-libquantum-omnetpp-bwaves gcc-milc-leslie3d-milc
19-20 omnetpp-omnetpp-libquantum-leslie3d soplex-mcf-gcc-libquantum
21-22 astar-omnetpp-astar-gcc mcf-soplex-astar-leslie3d
23-24 bwaves-lbm-libquantum-leslie3d astar-leslie3d-lbm-mcf

25 bwaves-soplex-bwaves-GemsFDTD

compared to storing them in separate rows. Our baseline
system uses a 4kB row buffer which is close to a realistic
DRAM organization (1kB per device, 4 devices per rank).
In our system, a 4kB row buffer can store 4 15-way cache
sets (4 x 15 x 64 bytes) and 4 SetTags (4 x 45 bytes). We
use an open page policy to manage DRAM banks because
we found open page policy gives better performance for our
baseline.

NoDRAM (No DRAM cache): In this setting, we re-
move the DRAM cache from our cache hierarchy. The pur-
pose of this setting is to examine if our system has any per-
formance benefit from the DRAM cache in the first place.

MAP-I: As mentioned in §3.5, we use a MAP-I predictor for
predicting misses. We implement a MAP-I predictor with
256 memory access counter (MAC) entries as suggested in
prior work [14].

SRAM (Tags-in-SRAM) We use a tags-in-SRAM design
which requires 11.5MB (§2.2) SRAM space to store all tags
for 256MB DRAM cache. The access latency of the SRAM
array is 6 cycles (high performance cell) as we modeled in
§2.2. It is worth noting that the high SRAM overhead makes
this design impractical.

ATCache: In our proposed design, we use an ATCache
with caching ratio of 256, prefetching granularity (PG) of 4,
and associativity of 4. This means we use 11.5MB/256 =
46 kB SRAM tag with 1.375kB overhead. We assume a
single cycle latency to identify if the ATCache contains a
correct cache set (step 2A in §3.6). A single cycle latency is
reasonable considering that the SetID array is only 1.375kB
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Figure 7: Performance speedup.

90%
100%
110%
120%
130%
140%
150%

milc soplex omnetpp gcc leslie3d GemsFDTD astar mcf bwaves lbm libquantum gmean

MAP-I ATCache ATCache+MAP-I SRAM

100%
105%
110%
115%
120%
125%
130%

WL1
WL2
WL3
WL4
WL5
WL6
WL7
WL8
WL9
WL10
WL11
WL12
WL13
WL14
WL15
WL16
WL17
WL18
WL19
WL20
WL21
WL22
WL23
WL24
WL25
gmean

MAP-I ATCache ATCache+MAP-I SRAM

Figure 8: L2 miss latency reduction (higher the better).

in our design. Since the SRAM array for the ATCache is only
46 kB and step 2A and step 2B in §3.6 can be overlapped,
we use a 2 cycles for the ATCache hit latency. For a miss in
the ATCache, we add a a 1 cycle lookup latency (Step 2A)
to the total access latency. It is worth noting that similar
to miss-predictors in prior works [14], the ATCache does not
cache SetTags for DRAM cache writes. This is because such
writes are not in the critical path of the performance. In
summary, in this design we use less than 0.5% of the SRAM
space used by tags-in-SRAM.
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Figure 9: L3 miss ratio.

5. RESULTS

5.1 Performance
The IPC speedups (normalized to the baseline) are shown

in Figure 7. From the results, we can see that a system with-
out DRAM cache is 8.6% slower than the tags-in-DRAM
baseline; from this we can conclude that the DRAM cache
is effective for our system configuration.

We can also observe that a prior proposed miss predictor
(MAP-I) improves over the baseline by 6.8%. In contrast,
a tags-in-SRAM approach which consumes an impractically
large SRAM space (11.5MB) provides a speedup of 12.2%.
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Figure 10: ATCache hit ratio.

It is worth noting that this is the gap that the ATCache
tries to bridge, while consuming much smaller SRAM space.

We can see that the ATCache achieves 10.3% speedup
without MAP-I predictor and 11.9% with the predictor –
while consuming only 47.375kB (without MAP-I) and 48kB
with MAP-I (256 entries). In other words, we are able to
do almost as well as tags-in-SRAM while consuming 0.5%
SRAM overhead compared to a tags-in-SRAM design.

In order to understand the speedups in individual bench-
marks, we show the miss ratio of each benchmark program
in Fig. 9. One interesting aspect to note here is that, by
skipping miss accesses, MAP-I can provide a good speedup
and even outperforms a tags-in-SRAM design for high miss
ratio workloads such as mcf and bwaves. This is because
the latency of accessing MAP-I structure is only one cycle
(in comparison to 6 cycles access latency we used for a full
tags-in-SRAM cache). However, for benchmarks with a low
miss ratio (such as libquantum), MAP-I is not as effective
and even shows a small slowdown due to its cycle lookup
penalty.

On the other hand, with our ATCache we can observe
benefit on both high and low miss ratio benchmarks. This is



because ATCache reduces both hit latency and miss penalty.
For example, for libquantum which has a low miss ratio, we
are able to achieve a speedup of 38% over the baseline.

When we integrate MAP-I and ATCache together, we can
see a speedup boost in moderate miss ratio workloads such as
lbm and milc. This is because ATCache’s average hit ratio is
around 60% (as shown in Fig. 10), but the high accuracy of
the MAP-I predictor (with a predictability of close to 98%)
can help us further in reducing the DRAM miss penalty.
In addition to this, with MAP-I the ATCache can be more
effectively used for caching only hit tags. This is exemplified
by milc benchmark where using an ATCache with MAP-I
results in a speedup of 28.9% in comparison with a speedup
of 18.9% (MAP-I only) and 11.8% (ATCache only).

However, for low miss ratio benchmarks such as libquan-
tum, ATCache+MAP-I shows a small 1% slowdown com-
pared to only ATCache design. This can be attributed to
the increased hit access latency (extra cycle) for looking up
the MAP-I table.

5.2 L2 miss latency
Fig. 8 shows the L2 miss latency reduction (normalized to

the baseline) for all benchmarks. The L2 miss latency here
refers to the time it takes for a cache block to be transferred
to the L2 from the lower levels upon an L2 miss; in other
words, this only includes the L3 (DRAM cache) latency and
possibly the main memory latency (in case of a DRAM cache
miss). This latency provides us with a more transparent in-
dicator of the benefit of our proposal as it avoids the ob-
fuscating effects of other parameters (such as the effects of
the our-of-order processor). As we can see from Fig. 8, with
our ATCache we can see up to 45.3% (21.2% on average)
reduction in L2 miss latency compared to the baseline. It is
worth noting that this is approximately double the reduction
provided by MAP-I, which provides a reduction of 11.9% on
average. Finally, ATCache+MAP-I is able to provide the
maximum reduction over the baseline of 24.5%. From these
results, we believe that our technique can effectively improve
the performance of the DRAM cache.

5.3 Sensitivity towards caching ratio
In this section, we want to understand the effect of vary-

ing the caching ratio. As introduced in §3.1, caching ra-
tio represents the area gain of our technique in comparison
to tags-in-SRAM. A caching ratio of 1 refers to a tags-in-
SRAM design. Generally, the miss ratio of the ATCache
will increase when caching ratio is increased (smaller cache).
Fig. 11 shows IPC speedup (average of all benchmarks) for
different caching ratios. Here, “IPC (fixed latency)” refers
to a configuration where we fixed the access latency of the
ATCache to 6 cycles. The speedup in terms of IPC reduces
from 12.2% to 9.0% when caching ratio is increased from
1 (tags-in SRAM, 11.5MB) to 256 ('48kB). Even without
accounting for (a) faster access latency that a smaller cache
could provide and (b) the miss predictor, we believe this
trade-off is still interesting – a reduction in 99.5% space for
3.2% reduction in speedup. “IPC (MAP-I + actual latency)”
refers to the realistic configuration in which we consider the
effect of a faster SRAM latency due to a much smaller cache
(Table 7 shows latencies for different caching ratios) and also
the MAP-I predictor. As we can see, the peak speedup in
this configuration (ATCache+MAP-I) is for a caching ratio

of 64 and the speedup is able to match the speedup of a
tags-in-SRAM design (12.2%).

Table 7: Latency in different caching ratios – caching
ratio of 1 equals tags-in-SRAM (6 cycles).

Caching Ratio 2 4 8 16 32
latency (cycles) 5 5 4 4 3
Caching Ratio 64 128 256 512 1024
latency (cycles) 3 2 2 1 1
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Figure 11: Speedups for different caching ratios.
Caching Ratio: 1 means a tags-in-SRAM design.
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Figure 12: Sensitivity study of DRAM cache sizes.

5.4 Sensitivity towards DRAM cache size
Fig. 12 shows the effect of varying DRAM cache size. We

consider 3 different sizes (128MB, 256MB, and 512MB). In
this experiment, we use the latencies that we modeled in
Table 1 for tags-in-SRAM. For ATCache (we fix caching ra-
tio at 256), we use ATCache latency of 1, 2, and 3 cycles
for ATCache size of 24kB (for 128MB DRAM cache), 46kB
(for 256MB DRAM cache), and 88kB (for 512MB DRAM
cache). From the results, we can see that the ATCache
has a 9% to 10% performance improvement over its base-
line (tags-in-DRAM) for all sizes. With MAP-I predictor,
ATCache+MAP-I is 4% to 5% better than the MAP-I-only.

5.5 Sensitivity towards PG
As our prior studies (§3.2 and §3.3) show, the prefetching

granularity (PG) is a key parameter in our design. In this



section, we study the effect of varying the PG. In this study,
we represent the performance of DRAM cache in terms of
its average access latency, normalized to the access latency
for PG/1. MAP-I is integrated with the ATCache for this
study. As we can see from Fig. 13, increasing the PG from
PG/1 to PG/2 , reduces the average latency of DRAM cache
by 8.7%. The average latency reaches a minimum for PG/4
(10.1% reduction) and PG/8 (10.5% reduction). When we
keep increasing PG, however, the ATCache starts to suffer
from cache pollution and increased miss-penalty and shows
a degradation in performance. We can clearly observe this
with PG/64, whose average latency is 2.5% higher than
PG/8. This study also vindicates our decision of choosing
PG/4 for our baseline as it is close to the best performing
PG.
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Figure 13: Sensitivity study to PG (with MAP-I).

5.6 Multiprogrammed workloads
IPC: In this section, we study how our design performs un-
der multiprogrammed workloads. We randomly generate 25
workload groups as shown in Table 6, with each group con-
sisting of 4 workloads. The speedup results compared to
the baseline system are shown in Figure 14. Each workload
group’s result is a geometric mean of 4 workloads’ speedup.
The average is geometric mean of 4 x 25 workloads. As we
can see1, MAP-I provides 5.4% speedup and a full tags-in-
SRAM design gives 11.8% speedup over the baseline. On the
other hand, ATCache+MAP-I provides up to 12.2% speedup
and on average 10.7% speedup over the baseline. Since this
is comparable to the speedups we obtained with our unipro-
cessor workloads, this shows that the ATCache continues to
work well under multiprogrammed workloads.
L2 miss latency: To sidestep the effect of different speedup
metrics that can be potentially used to summarize the per-
formance of multiprogrammed workloads [12, 4], we compare
the L2 miss latency in Fig. 15, as it is arguably a more trans-
parent indicator of the efficacy of ATCache. As we can see
from Fig. 15, ATCache with MAP-I predictor shows a 18.4%
speedup in L2 miss latency over the baseline; in comparison,
tags-in-SRAM shows 21.9% speedup. It is worth noting that
a tags-in-SRAM design consumes about 256 times of SRAM
space than our design. Again, from these results, we can

1It is worth noting that a system without DRAM cache is
22.0% slower than our baseline. This is because multipro-
grammed workloads have significantly more L2 misses.

conclude that our design continues to work effectively in a
more memory-intensive scenario.

6. RELATED WORK
The idea of caching tags has been explored previously.

Wang et al. [16] proposed the CAT cache for reducing the
area overhead of storing tags in the SRAM cache. CAT
cache exploits tag value locality by removing tag value du-
plication – in doing so, they are able to reduce the area
overhead of the tag array with a small performance over-
head. However, this work is not applicable in the DRAM
cache context since CAT involves accessing the data array
first before accessing the tag; this is precisely what works
on DRAM cache seek to avoid. Furthermore, whereas the
CAT cache exploits tag value locality, the ATCache exploits
spatial and temporal locality. It would be interesting to ex-
plore if ATCache can be extended to exploit value locality
of tags also.

Other works [2, 17] have proposed caching tags to im-
prove cache access latency in the generic setting of a mul-
tilevel SRAM cache hierarchy. The key difference between
this and our work is the new context (DRAM cache) in which
target this idea. By targeting the idea to a novel and con-
crete context of DRAM caches, we are able to specialize our
technique in ways over and beyond the prior works. For ex-
ample, hit prefetching, through which we gain a significant
chunk of our performance, has not been discussed in any of
the prior works.

7. CONCLUSION
The advent of the DRAM cache has posed a problem

of how to efficiently manage the tags associated with the
DRAM cache. One naive option is to store all the tags
in SRAM; while this would ensure fast access of the tags,
the associated storage cost would render this approach im-
practical. Consequently prior works have proposed inno-
vative techniques to manage the tags efficiently in DRAM.
Nonetheless, we observe, with a help of a study, that it is
more performance efficient to manage the tags in SRAM.

Having established this, we propose a simple idea to cache
the tags in SRAM so that we can achieve the effect of main-
taining all tags in SRAM, without paying the prohibitive
cost; we show that there is enough spatial and temporal lo-
cality amongst DRAM cache tag accesses to merit caching
the tags. Our experimental results show that we achieve sim-
ilar performance (within 2%) to a very fast tags-in-SRAM
design (6 cycles access latency for 11.5MB), while consum-
ing less than 1% of the SRAM space. If we integrate our
caching idea with prior proposed miss prediction, we show
that we can come within 0.5% of performance achieved with
the tags-in-SRAM approach.
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Figure 14: Performance speedup in multiprogrammed workloads.

90%
100%
110%
120%
130%
140%
150%

milc soplex omnetpp gcc leslie3d GemsFDTD astar mcf bwaves lbm libquantum gmean

MAP-I ATCache ATCache+MAP-I SRAM

100%
105%
110%
115%
120%
125%
130%

WL1
WL2
WL3
WL4
WL5
WL6
WL7
WL8
WL9
WL10
WL11
WL12
WL13
WL14
WL15
WL16
WL17
WL18
WL19
WL20
WL21
WL22
WL23
WL24
WL25
gmean

MAP-I ATCache ATCache+MAP-I SRAM

Figure 15: L2 miss latency reduction in multiprogrammed workloads (higher the better).
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