
ar
X

iv
:0

8
0
4
.0

4
0
2
v
1
  
[a

st
ro

-p
h
] 

 2
 A

p
r 

2
0
0
8

DRAFT VERSION APRIL 2, 2008

Preprint typeset using LATEX style emulateapj v. 25/04/01

ATHENA: A NEW CODE FOR ASTROPHYSICAL MHD

JAMES M. STONE, THOMAS A. GARDINER
1

Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544

PETER TEUBEN

Department of Astronomy, University of Maryland, College Park, MD 20742

JOHN F. HAWLEY AND JACOB B. SIMON

Department of Astronomy, University of Virginia, Charlottesville VA

Draft version April 2, 2008

ABSTRACT

A new code for astrophysical magnetohydrodynamics (MHD) is described. The code has been designed to be

easily extensible for use with static and adaptive mesh refinement. It combines higher-order Godunov methods

with the constrained transport (CT) technique to enforce the divergence-free constraint on the magnetic field.

Discretization is based on cell-centered volume-averages for mass, momentum, and energy, and face-centered

area-averages for the magnetic field. Novel features of the algorithm include (1) a consistent framework for

computing the time- and edge-averaged electric fields used by CT to evolve the magnetic field from the time-

and area-averaged Godunov fluxes, (2) the extension to MHD of spatial reconstruction schemes that involve a

dimensionally-split time advance, and (3) the extension to MHD of two different dimensionally-unsplit inte-

gration methods. Implementation of the algorithm in both C and Fortran95 is detailed, including strategies for

parallelization using domain decomposition. Results from a test suite which includes problems in one-, two-, and

three-dimensions for both hydrodynamics and MHD are given, not only to demonstrate the fidelity of the algo-

rithms, but also to enable comparisons to other methods. The source code is freely available for download on the

web.

Subject headings: hydrodynamics, MHD, methods:numerical

1. INTRODUCTION

Numerical methods are essential for the study of a very wide

range of problems in astrophysical fluid dynamics. As such, the

development of more accurate and more capable algorithms,

along with a description of their implementation on modern

parallel computer systems, is important for progress in the field.

This paper describes a new code for astrophysical magnetohy-

drodynamics (MHD) called Athena, developed through a col-

laborative effort between the authors.

There are many numerical algorithms available for solving

the equations of compressible MHD. One of the most success-

ful is based on operator splitting of the equations, with higher-

order upwind methods used for the advection terms, centered-

differencing for the remaining terms, and artificial viscosity for

shock capturing. This algorithm, as implemented in for exam-

ple the ZEUS code (Stone & Norman 1992a; b; Clarke 1996;

Hayes et al. 2006), has been used for many hundreds of appli-

cations in astrophysics. The key advantage of the method is its

simplicity, making it easy to extend with more complex physics

(for example, Stone & Norman 1992c; Turner & Stone 2001;

De Villiers & Hawley 2003, Hayes & Norman 2003).

However, in the fifteen years since the development of

ZEUS, static and adaptive mesh refinement (SMR and AMR

respectively) have emerged as powerful techniques to resolve a

large range in length scales with grid-based methods. Berger

& Colella (1990) have shown that in order to prevent spurious

reflections, it is important to enforce conservation at internal

boundaries between fine and coarse meshes. Thus, operator-

split methods that do not solve the dynamical equations in con-

servation form such as ZEUS are unsuitable for use with SMR

or AMR. This has been our primary motivation for the devel-

opment of Athena.

The numerical algorithms in Athena are based on

directionally-unsplit, higher-order Godunov methods, which

not only are ideal for use with both SMR and AMR, but also

are superior for shock capturing and evolving the contact and

rotational discontinuities that are typical of astrophysical flows.

Athena is neither the first nor the only MHD code based on

these methods which is designed for use with AMR; others in-

clude RIEMANN (Balsara 2000), BATS-R-US (Powell et al.

1999; Gombosi et al. 2004), AMRVAC (Tóth 1996; Nool &

Keppens 2002), Nirvana (Ziegler 2005), RAMSES (Fromang

et al. 2006), PLUTO (Mignone et al. 2007), and AstroBEAR

(Cunningham et al. 2007). While the wealth of papers describ-

ing AMR MHD codes demonstrates the interest in and impor-

tance of these numerical methods, it also calls into question

the need for another paper describing yet another code. How-

ever, it has been our experience that the precise details of the

algorithm can be important. The numerical methods in Athena
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differ, sometimes in small ways, and sometimes in substan-

tial ways, from those in other codes. Our goals in developing

Athena have been to write an accurate, easy-to-use, adaptable,

and maintainable code. Our hope is that the comprehensive de-

scription provided in this paper will be useful to anyone who

adopts, modifies, or builds upon the code, as well as for others

developing their own codes.

The development of Godunov methods for MHD has re-

quired substantial progress over the past decade. Most of the ef-

fort has focused on two main areas: the multidimensional inte-

gration algorithm, and the method by which the divergence-free

constraint on the magnetic field is enforced. Different options

have been explored in different combinations, including uncon-

strained directionally split integrators (Dai & Woodward 1994),

or directionally split and unsplit integrators that use either a

Hodge projection to enforce the constraint (Zachary et al. 1994;

Ryu et al. 1995; Balsara 1998; Crockett et al. 2005), a non-

conservative formulation that allows propagation and damping

of errors in the constraint (Powell 1994; Falle et al. 1998; Pow-

ell et al. 1999; Dedner et al. 2002), or some form of the con-

strained transport (CT) algorithm of Evans & Hawley (1988)

to enforce the constraint (Dai & Woodward 1998; Ryu et al.

1998; Balsara & Spicer 1999; Tóth 2000, hereafter T2000; Pen

et al. 2003; Londrillo & Del Zanna 2004; Ziegler 2004; Fro-

mang et al. 2006; Mignone et al. 2007; Cunningham et al.

2007). T2000 provides a systematic comparison of many of

these techniques using an extensive test suite.

While the algorithms in Athena build upon this progress, they

also incorporate several innovations, including (1) the extension

of two different directionally unsplit integration algorithms to

MHD, including the corner transport upwind (CTU) method

of Colella (1990 – hereafter the CTU+CT algorithm), and a

simpler predictor-corrector method (see the appendix in Falle

1981) similar to the MUSCL-Hancock scheme described by

van Leer (2006; Toro 1999 – hereafter referred to as the VL+CT

algorithm), (2) the method by which the Godunov fluxes are

used to calculate the electric fields needed by CT, and (3) the ex-

tension of the dimensionally-split spatial reconstruction scheme

in the piecewise parabolic method (PPM) of Colella & Wood-

ward (1984, hereafter CW) to multidimensional MHD. The

mathematical foundations of these ingredients for integration

in two dimensions (2D) is presented in detail in Gardiner &

Stone (2005, hereafter GS05), and for three dimensions (3D)

in Gardiner & Stone (2008, hereafter GS08). The focus of this

paper is on the implementation rather than the mathematics of

the methods.

The use of two distinct unsplit integration algorithms in

Athena, namely the CTU+CT and the VL+CT algorithms, al-

lows us to compare the advantages and disadvantages of both.

We find the CTU+CT algorithm is generally less diffusive and

more accurate than VL+CT. Thus, for simplicity sake, the de-

scription in this paper will be based on the CTU+CT algorithm.

However, for some applications the VL+CT algorithm has def-

inite advantages. A complete description of the 3D VL+CT

algorithm implemented in Athena, including the results of tests

in comparison to the CTU+CT algorithm, is provided in a short

companion paper (Stone & Gardiner 2008, hereafter SG08).

The primary goal of this paper is to provide a comprehensive

description of Athena that will serve as a reference for others to

adopt, modify, and extend the code for their own research. As

with ZEUS, the source code is freely available from the web,

along with documentation and an extensive set of test problems

that are useful for any method. The organization of this paper

is as follows: §2 introduces the equations of motion solved by

Athena, while §3 describes their finite-volume and finite-area

discretizations. Sections 4-6 describe in detail the numerical

algorithms in one, two, and three spatial dimensions respec-

tively, including details such as the reconstruction algorithm,

Riemann solvers used to compute upwind fluxes, and the un-

split CTU+CT integrator used in multidimensions. In §7 the

implementation of the algorithms in both C and Fortran95 on

parallel computer systems is discussed. The results of a com-

prehensive test suite composed of problems in 1D, 2D, and 3D

are given in §8. Finally, we summarize and discuss future ex-

tensions to the code in §9.

2. BASIC EQUATIONS

Athena implements algorithms which solve the equations of

ideal MHD, which can be written in conservative form as

∂ρ

∂t
+∇·[ρv] = 0, (1)

∂ρv

∂t
+∇·

[

ρvv −BB+P
∗
]

= 0, (2)

∂E

∂t
+∇·

[

(E +P∗)v −B(B ·v)
]

= 0, (3)

∂B

∂t
−∇× (v×B) = 0, (4)

where P
∗ is a diagonal tensor with components P∗ = P +B2/2

(with P the gas pressure), E is the total energy density

E =
P

γ −1
+

1

2
ρv2 +

B2

2
, (5)

and B2 = B ·B. The other symbols have their usual meaning.

These equations are written in units such that the magnetic per-

meability µ = 1.

An equation of state appropriate to an ideal gas, P = (γ −1)e

(where γ is the ratio of specific heats, and e is the internal en-

ergy density), has been assumed in writing equation 5. For a

barotropic equation of state P = P(ρ) (for example, P = C2ρ,

where C is the isothermal sound speed), both equations 3 and 5

are dropped from the system. Of course, in this case total en-

ergy is not conserved. The algorithms implemented in Athena

can solve the equations of motion in four regimes: both hy-

drodynamics or MHD with either an ideal-gas or barotropic

equation of state. In each regime the system of equations to

be solved is different in number and form, however the same

general numerical techniques apply. Extension of the numeri-

cal methods to a more complex, e.g. tabular, equation of state

is possible.

It is useful to define vectors of the conserved and primitive

variables, U and W respectively, with components in Cartesian
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coordinates (for adiabatic MHD)

U =























ρ
Mx

My

Mz

E

Bx

By

Bz























, W =























ρ
vx

vy

vz

P

Bx

By

Bz























, (6)

where M = ρv is the momentum density. The conservation laws

can now be written in a compact form (in Cartesian coordinates)

∂U

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= 0, (7)

where F, G, and H are vectors of fluxes in the x−, y−, and

z−directions respectively, with components

F =























ρvx

ρv2
x +P +B2/2 −B2

x

ρvxvy −BxBy

ρvxvz −BxBz

(E +P∗)vx − (B ·v)Bx

0

Byvx −Bxvy

Bzvx −Bxvz























, (8)

G =























ρvy

ρvyvx −ByBx

ρv2
y +P+B2/2 −B2

y

ρvyvz −ByBz

(E +P∗)vy − (B ·v)By

Bxvy −Byvx

0

Bzvy −Byvz























, (9)

H =























ρvz

ρvzvx −BzBx

ρvzvy −BzBy

ρv2
z +P+B2/2 −B2

z

(E +P∗)vz − (B ·v)Bz

Bxvz −Bzvx

Byvz −Bzvy

0























. (10)

Extension to curvilinear coordinates requires adding metric

scale factors to the definitions of the fluxes, or using a non-

conservative formulation that treats grid curvature as source

terms, or a combination of these approaches.

For hydrodynamics, or for a barotropic equation of state (or

for both), the appropriate components of the vectors U, W, and

their fluxes are dropped. While the last three components of

these vectors represents the induction equation in Cartesian co-

ordinates, the numerical algorithm actually used to evolve the

magnetic field is very different in comparison to that used for

the other components, as described in the next section.

3. DISCRETIZATION

Athena integrates the equations of motion on a regular, three-

dimensional Cartesian grid. The continuous spatial coordinates

(x,y,z) are discretized into (Nx,Ny,Nz) cells within a finite do-

main of size (Lx,Ly,Lz) in each direction respectively. The

cell denoted by indices (i, j,k) is centered at position (xi,y j,zk).

For simplicity we describe the algorithm with the assumption

that the sizes of the grid cells in each direction, δx = Lx/Nx,

δy = Ly/Ny, and δz = Lz/Nz respectively, are uniform through-

out the domain; the numerical methods are easily extended to

non-uniform grids.

Time is discretized into N non-uniform steps between the ini-

tial value t0 and the final stopping time t f . Following the usual

convention, we use a superscript to denote the time level, so

tn+1 − tn = δtn. Hereafter we drop the superscript on δt with the

understanding that the time step may vary.

3.1. Mass, Momentum, and Energy: Finite-Volumes

Discretizations based on the integral, rather than the differ-

ential, form of equations 1 through 4 have numerous advan-

tages for flows that contain shocks and discontinuities (LeV-

eque 2002). Integration of equation 7 over the volume of a grid

cell, and over a discrete interval of time δt gives, after applica-

tion of the divergence theorem,

Un+1
i, j,k = Un

i, j,k −
δt

δx

(

F
n+1/2

i+1/2, j,k −F
n+1/2

i−1/2, j,k

)

−
δt

δy

(

G
n+1/2

i, j+1/2,k −G
n+1/2

i, j−1/2,k

)

−
δt

δz

(

H
n+1/2

i, j,k+1/2
−H

n+1/2

i, j,k−1/2

)

(11)

where

Un
i, j,k =

1

δxδyδz

∫ zk+1/2

zk−1/2

∫ y j+1/2

y j−1/2

∫ xi+1/2

xi−1/2

U(x,y,z,tn) dx dy dz (12)

is a vector of volume-averaged variables, while

F
n+1/2

i−1/2, j,k =
1

δyδzδt

∫ tn+1

tn

∫ zk+1/2

zk−1/2

∫ y j+1/2

y j−1/2

F(xi−1/2,y,z,t) dy dz dt

(13)

G
n+1/2

i, j−1/2,k =
1

δxδzδt

∫ tn+1

tn

∫ zk+1/2

zk−1/2

∫ xi+1/2

xi−1/2

G(x,y j−1/2,z,t) dx dz dt

(14)

H
n+1/2

i, j,k−1/2
=

1

δxδyδt

∫ tn+1

tn

∫ y j+1/2

y j−1/2

∫ xi+1/2

xi−1/2

H(x,y,zk−1/2,t) dx dy dt

(15)

are vectors of the time- and area-averaged fluxes. We use the

convention here, and throughout this paper, that half-integer

subscripts denote the edges of the computational cells, that is

xi−1/2 is the location of the interface between the cells centered

at xi−1 and xi. Thus, the fluxes are evaluated at (and are normal

to) the faces of each grid cell (see figure 1). Note the half-

integer superscript on the fluxes denote a time average, rather

than representing the flux evaluated at tn+1/2.

As has been pointed out by many previous authors, equations

11 through 15 are exact: to this point no approximation has
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been made. A numerical algorithm for MHD within the finite-

volume approach requires accurate and stable approximations

for the time- and area-averaged fluxes defined by equations 13

through 15. In principle, one can approximate the fluxes to any

order of accuracy, although in practice most algorithms are re-

stricted to second-order. A variety of authors are exploring the

use of higher than second-order accurate time- and spatial in-

tegration (Londrillo & Del Zanna 2000), especially in the con-

text of WENO schemes (Balsara & Shu 2000; McKinney et al.

2007). Higher-order schemes improve the accuracy primarily

in smooth flow, not in shocks or discontinuities, and are more

difficult to combine with AMR. Based on a set of 1D hydro-

dynamic test problems, Greenough & Rider (2003) conclude

that a second-order Godunov scheme provides more accuracy

per computational cost than a fifth-order WENO scheme. Al-

though it is clear that higher-order schemes will have advan-

tages for some applications, in Athena we shall restrict our-

selves to second-order accuracy in both space and time.

3.2. Magnetic Field: Finite-Areas

The last three components of equations 11 through 15 are the

finite-volume form of the induction equation, which could be

used to integrate the volume-averaged components of the mag-

netic field. Instead, in Athena we use an integral form of the

induction equation that is based on area- rather than volume-

averages. In GS05, we have argued that area-averaging is the

most natural representation of the integral form of the induction

equation. This form conserves the magnetic flux through each

grid cell, and as a consequence automatically preserves the di-

vergence free constraint on the field (Evans & Hawley 1988).

Integration of equation 4 over the three orthogonal faces of

the cell located at (i −1/2, j,k), (i, j −1/2,k) and (i, j,k −1/2)

respectively, gives

Bn+1
x,i−1/2, j,k = Bn

x,i−1/2, j,k −
δt

δy
(En+1/2

z,i−1/2, j+1/2,k −En+1/2

z,i−1/2, j−1/2,k)

+
δt

δz
(En+1/2

y,i−1/2, j,k+1/2
−En+1/2

y,i−1/2, j,k−1/2
)(16)

Bn+1
y,i, j−1/2,k = Bn

y,i, j−1/2,k +
δt

δx
(En+1/2

z,i+1/2, j−1/2,k −En+1/2

z,i−1/2, j−1/2,k)

−
δt

δz
(En+1/2

x,i, j−1/2,k+1/2
−En+1/2

x,i, j−1/2,k−1/2
)(17)

Bn+1
z,i, j,k−1/2 = Bn

z,i, j,k−1/2 −
δt

δx
(En+1/2

y,i+1/2, j,k−1/2
−En+1/2

y,i−1/2, j,k−1/2
)

+
δt

δy
(En+1/2

x,i, j+1/2,k−1/2
−En+1/2

x,i, j−1/2,k−1/2
)(18)

where

Bn
x,i−1/2, j,k =

1

δyδz

∫ zk+1/2

zk−1/2

∫ y j+1/2

y j−1/2

Bx(xi−1/2,y,z,t
n) dy dz (19)

Bn
y,i, j−1/2,k =

1

δxδz

∫ zk+1/2

zk−1/2

∫ xi+1/2

xi−1/2

By(x,y j−1/2,z,t
n) dx dz (20)

Bn
z,i, j,k−1/2 =

1

δxδy

∫ y j+1/2

y j−1/2

∫ xi+1/2

xi−1/2

Bz(x,y,zk−1/2,t
n) dx dy (21)

are the area-averaged components of the magnetic field cen-

tered on each of these faces, and

En+1/2

x,i, j−1/2,k−1/2
=

1

δxδt

∫ tn+1

tn

∫ xi+1/2

xi−1/2

Ex(x,y j−1/2,zk−1/2,t) dx dt

(22)

En+1/2

y,i−1/2, j,k−1/2
=

1

δyδt

∫ tn+1

tn

∫ y j+1/2

y j−1/2

Ey(xi−1/2,y,zk−1/2,t) dy dt

(23)

En+1/2

z,i−1/2, j−1/2,k =
1

δzδt

∫ tn+1

tn

∫ zk+1/2

zk−1/2

Ez(xi−1/2,y j−1/2,z,t) dz dt

(24)

are the components of the electric field E = −v×B (the elec-

tromotive force, or emf) averaged along the appropriate line

element. Note this discretization requires a staggered grid, that

is the area-averaged components of the magnetic field are lo-

cated at the faces (not the centers) of the cells. Figure 1 shows

the relative locations of the cell-centered volume-averaged vari-

ables (Ui, j,k), the face-centered area-averaged components of

the magnetic field (Bx,i−1/2, j,k,By,i, j−1/2,k,Bz,i, j,k−1/2) the face-

centered area-averaged fluxes (Fi−1/2, j,k,Gi, j−1/2,k,Hi, j,k−1/2),

and the edge-centered line-averaged emfs (Ex,i, j−1/2,k−1/2, etc.)..

There are many advantages to using a discretization of the

induction equation based on area- rather than volume-averages

(GS05). The most important is that the finite-volume repre-

sentation, i.e. the cell-volume average, of the divergence-free

constraint constructed using the time-advanced field

(∇·B)n+1
i, j,k =

Bn+1
x,i+1/2, j,k −Bn+1

x,i−1/2, j,k

δx

+
Bn+1

y,i, j+1/2,k −Bn+1
y,i, j−1/2,k

δy

+
Bn+1

z,i, j,k+1/2
−Bn+1

z,i, j,k−1/2

δz
(25)

is kept zero by the discrete form of the induction equation,

equations 16 through 18, provided of course it was zero at tn

(Evans & Hawley 1988). Equivalently, the CT algorithm con-

serves the magnetic flux through each grid cell. The most seri-

ous disadvantage of using CT with face-centered fields is that it

complicates the implementation of the algorithm, and the inter-

face to AMR drivers.

Of course, there are many possible discretizations of the

divergence-free constraint, and the CT algorithm based on face-

centered fields described above preserves only one of them

(equation 25). T2000 has described an extension to CT which

preserves the constraint formulated using several different dis-

cretizations of the divergence operator based on cell-centered

fields. It is difficult to assess, for a given integration algorithm,

whether preserving one discretization is more important than

any other. We have argued (GS05; GS08) that the discretization

based on face-centered fields is more consistent with the finite

volume approach in that it conserves the magnetic flux within

each individual grid cell, equivalently it conserves the volume

integral of the density of magnetic monopoles at the level of

grid cells. In addition, in GS08 (see also §8) we describe a
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simple test problem based on the advection of a field loop that

is sensitive to whether the discretization of the divergence-free

constraint that is preserved is consistent with the numerical al-

gorithm used to update the induction equation. If not, growth

of net magnetic flux will be observed.

In Athena, the primary description of the magnetic field

is taken to be the face-centered area-averages equations 19

through 21. However, cell-centered values for the field are

needed to construct the fluxes of momentum and energy (equa-

tions 8 through 10). Here, we adopt the second-order accurate

averages

Bx,i, j,k =
1

2
(Bx,i+1/2, j,k +Bx,i−1/2, j,k), (26)

By,i, j,k =
1

2
(By,i, j+1/2,k +By,i, j−1/2,k), (27)

Bz,i, j,k =
1

2
(Bz,i, j,k+1/2 +Bz,i, j,k−1/2). (28)

Operationally, the face-centered fields are evolved using equa-

tions 16 through 18, and at the end of each integration step the

cell-centered fields are computed using equations 26 through

28. As shown in GS05 (and discussed further in §5.3), the re-

lationship between the face- and cell-centered components of

the field given above determines how their fluxes (the time- and

line-averaged emfs in equations 22 through 24 and last three

components of the time- and area-averaged fluxes in equations

13 through 15 respectively) are computed from one another.

4. ONE-DIMENSIONAL INTEGRATION ALGORITHM

It is useful (and standard) pedagogy to describe the algorithm

for integration of the equations of motion in 1D first, before in-

troducing methods for multidimensions. However, for MHD,

this approach can be misleading. In 1D the divergence-free

constraint reduces to the condition that the longitudinal com-

ponent of the magnetic field be constant, the CT algorithm is

not needed, and the discrete forms of the induction equation

for the area- and volume-averaged fields are identical. As a

consequence, 1D algorithms for MHD are a simple extension

of those for hydrodynamics. Moreover, 1D test problems for

MHD will not reveal errors associated with the development of

a non-solenoidal field. Any rigorous test suite for MHD must

be based on multidimensional problems.

Nonetheless, we begin a description of the algorithms in

Athena with the 1D integrator as it allows us to introduce ba-

sic components, such as Riemann solvers and methods for spa-

tial reconstruction, required in multidimensions. We emphasize

that the integrators for 2D and 3D MHD, described in detail

in §5 and §6 respectively, are substantially different and more

complex than the 1D integrator introduced here.

In 1D, the equations of adiabatic MHD can be written in

Cartesian coordinates as

∂q

∂t
+

∂f

∂x
= 0 (29)

where the vectors of conserved variables and their fluxes are

q =



















ρ
Mx

My

Mz

E

By

Bz



















, f =



















ρvx

ρv2
x +P+B2/2 −B2

x

ρvxvy −BxBy

ρvxvz −BxBz

(E +P∗)vx − (B ·v)Bx

Byvx −Bxvy

Bzvx −Bxvz



















, (30)

Note these are identical to equations 6 and 8 with the sixth com-

ponent dropped. We introduce the notation that vectors denoted

by lower-case letters are in one spatial dimension (and there-

fore contain 7 components for adiabatic MHD, rather than 8 for

the same vectors written in full 3D). It is important to remem-

ber that the components of the 1D vectors defined in equation

30 will change depending on direction. For example, in the

y−direction for ideal MHD, the order of the three components

are permuted (so the second to fourth components become My,

Mz, and Mx respectively), and the sixth and seventh components

become Bz and Bx respectively.

The finite-volume discretization of equation 29 proceeds as

described in §3.1, giving

qn+1
i = qn

i −
δt

δx

(

f
n+1/2

i+1/2
− f

n+1/2

i−1/2

)

(31)

where

qn
i =

1

δx

∫ xi+1/2

xi−1/2

q(x,tn) dx (32)

is a vector of volume-averaged variables, while

f
n+1/2

i−1/2
=

1

δt

∫ tn+1

tn

f(xi−1/2,t) dt (33)

are the time-averaged fluxes at the interface located at xi−1/2.

In a Godunov method, the time-averaged fluxes (equation 33)

are computed using a Riemann solver (see Toro 1999 for an in-

troduction to the subject). Figure 2 illustrates the process (see

also LeVeque 2002). Starting from the 1D volume-averages

stored at cell-centers qn
i a spatial reconstruction scheme is used

to construct the conserved quantities to the left- and right-

sides of the interface, qL,i−1/2 and qR,i−1/2 respectively. For

the CTU+CT integrator, the reconstruction is performed in the

primitive variables, and includes a time-advance using charac-

teristic variables, with qL,i−1/2 and qR,i−1/2 computed from the

resulting interpolants (this step will be described in detail in

§4.2). Due to the slope-limiters used to keep the interpolants

non-oscillatory, the left- and right-states qL,i−1/2 and qR,i−1/2

will not be equal, except in smooth flow. Thus, they define a

Riemann problem, the solution to which is the time evolution

of the various waves, and the intermediate states that connect

them, that propagate away from the interface. The solution to

the Riemann problem, evaluated at the location of the interface,

can be used to construct the time-averaged flux (details of the

calculation of fluxes using Riemann solvers is given in §4.3).

4.1. Steps in the 1D Algorithm

The 1D algorithm outlined above can be summarized by the

following steps:
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Step 1. From qn
i , the volume averages at time level n, com-

pute the left- and right-states qL,i−1/2 and qR,i−1/2 at every in-

terface using one of the spatial reconstruction algorithms de-

scribed below in §4.2.

Step 2. Compute the time-averaged fluxes at every interface

f
n+1/2

i−1/2
= F (qL,i−1/2,qR,i−1/2,Bx,i−1/2) using one of the Riemann

solvers described in §4.3. Note the face-centered longitudi-

nal component of the magnetic field is passed to the Riemann

solver as a parameter.

Step 3. Update the cell-centered conserved variables and the

transverse components of the magnetic field using the finite-

volume difference equation in 1D, equation 31.

Step 4. Increment the time: tn+1 = tn + δt. Compute a new

timestep that satisfies an estimate of the CFL stability condi-

tion based on wavespeeds at cell centers

δt = C◦δx/max(|vn+1
x,i |+Cn+1

f x,i) (34)

where C◦ ≤ 1 is the CFL number, Cn+1
f x,i is the fast magnetosonic

speed in the x−direction, evaluated using the updated quanti-

ties, and the maximum is taken over all grid cells. Note this

is only an estimate of the CFL stability condition, since the

wavespeeds used in the Riemann solver can be different from

those computed from the cell-centered values.

Step 5. Repeat steps 1-4 until the stopping criterion is

reached, i.e.. tn+1 ≥ t f

The entire 1D integration algorithm is summarized by the

flow chart shown in figure 3.

4.2. MHD Interface States

The first step in the 1D algorithm is to compute the left- and

right-states qL,i−1/2 and qR,i−1/2 that define the Riemann prob-

lem at the interface located at xi−1/2. (Note that in our notation

the left-state qL,i−1/2 is actually on the right side of the cell cen-

ter at xi−1, while the right-state qR,i−1/2 is on the left side of the

cell center at xi, see figure 2). The reconstruction is inherently

1D, and therefore is based on the vector of conserved variables

in 1D (equation 30). This vector contains only the transverse

components of the field: in 1D these are cell-centered quan-

tities. For reconstruction in multidimensions, the cell-centered

averages of the face-centered transverse components of the field

(for example, equations 27 and 28 for reconstruction in the

x−direction) would be used. When the longitudinal component

of the field is needed, the area-averaged value stored at the ap-

propriate interface is adopted. The fact that the longitudinal

component of the field does not need to be reconstructed from

cell-centered values is a further advantage of the CT algorithm

based on staggered (face-centered) fields; it avoids the prob-

lem of the longitudinal component being discontinuous at the

interface due to slope-limited reconstruction from cell centers.

When the CTU+CT unsplit integrator is used in Athena, the

second- and third-order reconstruction algorithms described be-

low include both spatial interpolation with slope-limiting in the

characteristic variables, and a characteristic evolution of the lin-

earized system in the primitive variables. We have found these

steps help to make the reconstruction less oscillatory. However,

they also require an eigenvalue decomposition of the linearized

equations of motion in the primitive variables. Appendix A cat-

alogs the eigenvalues and left- and right-eigenvectors for adia-

batic and isothermal hydrodynamics and MHD in the primitive

variables needed for this approach. For more complex physics

(e.g., relativistic MHD) this eigenvalue decomposition may be

difficult. One advantage of the VL+CT integrator described in

SG08 is that it does not require a characteristic evolution in

the reconstruction step. This avoids the need for an eigenvalue

decomposition in the primitive variables, and therefore this in-

tegrator may be a better choice for more complex physics. The

interface state algorithm used in the VL+CT algorithm is de-

scribed more fully in SG08.

4.2.1. Piecewise constant (first-order) reconstruction

The simplest possible reconstruction algorithm is to assume

the primitive variables are piecewise constant within each cell

(implying the conserved variables are also piecewise constant),

leading to the first-order method

qL,i−1/2 = qi−1 (35)

qR,i−1/2 = qi

First-order reconstruction is far too diffusive for applications,

however it is useful for testing, or in those circumstances when

extra diffusion is in fact desired.

4.2.2. Piecewise linear (second-order) reconstruction

A better approximation is to assume the primitive variables

vary linearly within each cell (meaning that the profile of the

conserved variables within a cell may be steeper than linear).

This approximation leads to the second-order reconstruction al-

gorithm used with the CTU+CT unsplit integrator that is given

by the following steps:

Step 1. Compute the eigenvalues and eigenvectors of the lin-

earized equations in the primitive variables using wi, the cell-

centered primitive variables in 1D (which differs from Wi de-

fined in equation 6 only in that it lacks the longitudinal compo-

nent of the magnetic field). Explicit expressions for these are

given in Appendix A.

Step 2. Compute the left-, right-, and centered-differences of

the primitive variables wi

δwL,i = wi −wi−1,

δwR,i = wi+1 −wi, (36)

δwC,i = (wi+1 −wi−1)/2

(Note that in these equations the subscripts L, R, and C refer to

locations relative to the cell-center at xi.)

Step 3. Project the left, right, and centered differences onto

the characteristic variables

δaL,i = L(wi) · δwL,i,

δaR,i = L(wi) · δwR,i, (37)

δaC,i = L(wi) · δwC,i

where L(wi) is a matrix whose rows are the appropriate left-

eigenvectors computed in Step 1.
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Step 4. Apply monotonicity constraints to the differences

in the characteristic variables, so that the characteristic recon-

struction is total variation diminishing (TVD), e.g. see LeVeque

(2002).

δam
i = SIGN(δaC,i)min(2|δaL,i|,2|δaR,i|, |δaC,i|) (38)

Step 5. Project the monotonized difference in the character-

istic variables back onto the primitive variables

δwm
i = δam

i ·R(wi) (39)

where R(wi) is a matrix whose columns are the appropriate

right-eigenvectors computed in Step 1.

Step 6. Compute the left- and right-interface values using the

monotonized difference in the primitive variables

ŵL,i+1/2 = wi +
[

1

2
−max(λM

i ,0)
δt

2δx

]

δwm
i (40)

ŵR,i−1/2 = wi −
[

1

2
−min(λ0

i ,0)
δt

2δx

]

δwm
i (41)

where λM
i and λ0

i are the largest and smallest eigenvalues com-

puted in Step 1 respectively, at the appropriate cell center. Note

these values are at different cell faces, with ŵL,i+1/2 (ŵR,i−1/2)

located to the right (left) of the cell center at xi.

Step 7. Perform the characteristic tracing, that is subtract

from the integral performed in step 6 that part of each wave

family that does not reach the interface in δt/2, using (CW;

Colella 1990)

wL,i+1/2 = ŵL,i+1/2 +
δt

2δx

∑

λα>0

(

(λM
i −λα

i )Lα · δwm
i

)

R
α (42)

wR,i−1/2 = ŵR,i−1/2 +
δt

2δx

∑

λα<0

(

(λ0
i −λα

i )Lα · δwm
i

)

R
α (43)

where the sums are taken only over those waves that propagate

towards the interface (i.e., whose eigenvalue has the appropri-

ate sign), and L
α and R

α are the rows and columns of the left-

and right-eigenmatrices respectively corresponding to λα.

When using approximate Riemann solvers that average over

intermediate states (like the HLL family of solvers), it is also

necessary to include a correction for waves which propagate

away from the interface in order to make the algorithm higher

than first-order. This is because either the right-interface state

(if the wavespeed is positive) or the left-interface state (if the

wave speed is negative) will not include the half-timestep pre-

dictor evolution in the reconstruction, and will thus be first-

order. Since the numerical flux in the HLL solver is given by

a weighted average of the flux in the left-interface state and the

right-interface state for such waves, the flux itself will be first-

rder. Specifically, an additional term ∆wL,i+1/2 and ∆wR,i−1/2 is

added to each of equations 42 and 43 respectively, where these

terms are

∆wL,i+1/2 = −
δt

2δx

∑

λα<0

(

(λα
i −λM

i )Lα · δwm
i

)

R
α (44)

∆wR,i−1/2 = −
δt

2δx

∑

λα>0

(

(λα
i −λ0

i )Lα · δwm
i

)

R
α (45)

We emphasize these terms are not added when the Roe or exact

solvers are used.

Step 8. Finally, convert the left- and right-states in the prim-

itive to the conserved variables, qL,i−1/2 and qR,i−1/2.

4.2.3. Piecewise parabolic (third-order) reconstruction

Although the numerical algorithms in Athena are formally

only second-order accurate, we have found that using third-

order accurate spatial reconstruction can lower the amplitude

of the truncation error and increase the accuracy of the solution.

Thus, we have implemented the PPM interface state algorithm

of CW in Athena. In §8, we provide a quantitative comparison

of both the second-order (PLM) and third-order (PPM) recon-

struction algorithms for smooth and discontinuous solutions in

1D, 2D and 3D.

The PPM reconstruction algorithm consists of the following

steps.

Steps 1 through 5. These steps are identical to the first five

steps in the second-order algorithm, see §4.2.2.

Step 6. Use parabolic interpolation to compute values at the

left- and right-side of each cell center

wL,i = (wi +wi−1)/2 − (δwm
i +δwm

i−1)/6

wR,i = (wi+1 +wi)/2 − (δwm
i+1 +δwm

i )/6 (46)

where in the above, the subscript L (R) refers to the left (right)

side of cell center at xi.

Step 7. Apply further monotonicity constraints to ensure

the values on the left- and right-side of cell center lie between

neighboring cell-centered values (CW equation 1.10). These

can be written as a series of conditional statements:

if (wR,i −wi)(wi −wL,i) ≤ 0

wL,i = wi

wR,i = wi

if 6(wR,i −wL,i)(wi − (wL,i +wR,i)/2) > (wR,i −wL,i)
2

wL,i = 3wi −2wR,i

if 6(wR,i −wL,i)(wi − (wL,i +wR,i)/2) < −(wR,i −wL,i)
2

wR,i = 3wi −2wL,i

These conditions are applied independently to each component

of w.

Step 8. Compute the coefficients for the monotonized

parabolic interpolation function,

δwm
i = wR,i −wL,i, w6,i = 6(wi − (wL,i +wR,i)/2) (47)

Step 9. Compute the left- and right-interface values using

monotonized parabolic interpolation (CW equation 1.12)

ŵL,i+1/2 = wR,i −λmax δt

2δx

[

δwm
i −
(

1 −λmax 2δt

3δx

)

w6,i

]

(48)

ŵR,i−1/2 = wL,i +λmin δt

2δx

[

δwm
i +
(

1 −λmin 2δt

3δx

)

w6,i

]

(49)

where λmax = max(λM
i ,0) and λmin = min(λ0

i ,0) respectively,

and λM
i and λ0

i are the largest and smallest eigenvalues com-

puted in Step 1 respectively. Note these values are at different
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cell faces, with ŵL,i+1/2 (ŵR,i−1/2) located to the right (left) of

the cell center at xi.

Step 10. Perform the characteristic tracing, that is subtract

from the integral performed in step 9 that part of each wave

family that does not reach the interface in δt/2 (CW; Colella

1990), using

wL,i+1/2 = ŵL,i+1/2 +
∑

λα>0

[

L
α
(

A(δwm
i −w6,i) +Bw6,i

)]

R
α (50)

wR,i+1/2 = ŵR,i+1/2 +
∑

λα<0

[

L
α
(

C(δwm
i +w6,i) +Dw6,i

)]

R
α (51)

where in the above

A =
δt

2δx
(λM −λα) B =

1

3

[

δt

δx

]2

(λMλM −λαλα)

C =
δt

2δx
(λ0 −λα) D =

1

3

[

δt

δx

]2

(λ0λ0 −λαλα)

where the sums are taken only over those waves that propagate

towards the interface (i.e., whose eigenvalue has the appropri-

ate sign), and L
α and R

α are the rows and columns of the left-

and right-eigenmatrices respectively corresponding to λα.

Once again, when using the HLL family of solvers, it is nec-

essary to add a correction for waves which propagate away from

the interface (as was required in step 7 of the PLM integration).

These terms are identical to those in equations 44 and 45, which

are correct to second-order. Again, we emphasize these terms

are not added when the Roe or exact solvers are used.

Step 11. Finally, convert the left- and right-states in the prim-

itive to the conserved variables, qL,i−1/2 and qR,i−1/2.

An important ingredient of the reconstruction algorithm is

the slope limiters used in steps 4 and 7. It is well-known that

these limiters clip extrema in the solutions. We have also imple-

mented the limiters described in Colella & Sekora (2007, here-

after CS), which are designed to prevent clipping of extrema.

We find for some tests, the CS limiters significantly improve

the solution compared to the original PPM limiters used above.

For the test results shown in §8 we will always indicate if the

CS limiters are used. The lesson, however, is that improving the

convergence rate of the reconstruction algorithm is not always

the best way to improve the overall accuracy of the solution.

4.3. Godunov Fluxes

The second step in the 1D algorithm is to compute time-

averaged fluxes using a Riemann solver. Exact Riemann solvers

for MHD (e.g. Ryu & Jones 1995) are generally too expensive

for practical computations with current hardware. Moreover,

since the full solution to the Riemann problem over all space-

time is not required, but only the time-integral of the solution

along the line x = xi−1/2 (which gives the flux through the inter-

face), approximate solvers which provide an accurate estimate

of the flux are all that is needed. In fact, it is not even necessary

to use the same solver to compute the flux at every interface

in the grid. Instead, simple solvers can be used in smooth re-

gions, while more robust (and expensive) solvers are adopted

only when needed, for example in highly nonlinear flow where

simple solvers fail (such as strong rarefactions). Since the lat-

ter generally occupy only a tiny fraction of the total number of

interfaces over the whole grid, this strategy can be very cost

effective.

A wide variety of approximate Riemann solvers for MHD

are possible, including nonlinear solvers such as the HLL flux

(Harten et al. 1983), the HLLD flux (Miyoshi & Kusano 2005),

Toro’s FORCE flux (Toro 1999), Roe’s linear solver (Roe 1991)

extended to MHD (Cargo & Gallice 1997), as well as MHD

solvers based on other approximations (e.g, Dai & Woodward

1994; 1995; Zachary et al. 1994). A range of solvers is imple-

mented in Athena, including exact solvers in the simplest cases

(isothermal hydrodynamics). In the subsections below we de-

scribe some of the most useful.

Finally, it is important to emphasize that Godunov methods

do not require expensive solvers based on complex character-

istic decompositions. Simple solvers based on the local Lax-

Friedrichs (LLF) or HLL fluxes that are typically adopted in

other methods can also be used. Generally, the reason for adopt-

ing more complex and expensive Riemann solvers is that they

reduce dissipation, especially in the neighborhood of disconti-

nuities in the intermediate waves.

4.3.1. HLL Solvers

The simplest Riemann solver implemented in Athena uses

the HLL fluxes as described by Einfeldt et al. (1991), hereafter

termed the HLLE solver. The HLLE flux at the interface xi−1/2

is defined as

FHLLE
i−1/2 =

b+fL,i−1/2 −b−fR,i−1/2

b+ −b− +
b+b−

b+ −b− (qi −qi−1) (52)

where fL,i−1/2 = f(qL,i−1/2) and fR,i−1/2 = f(qR,i−1/2) are the fluxes

evaluated using the left- and right-states of the conserved vari-

ables (using equation 30), and

b+ = max[max(λM,vx,R +cR),0] (53)

b− = min[min(λ0,vx,L −cL),0] (54)

Here λM and λ0 are the maximum and minimum eigenvalues

of Roe’s matrix A (see §4.3.2 and Appendix B), vx,L and vx,R

are the velocity component normal to the interface in the left-

and right-states respectively, and cL and cR are the maximum

wavespeeds (the fast magnetosonic speed in MHD, or the sound

speed in hydrodynamics) computed from the left- and right-

states. The HLLE solver does not require a characteristic de-

composition of the MHD equations; the eigenvalues of Roe’s

matrix A are given by simple, explicit formulae (see Appendix

B). Note that if both λM < 0 and vx,R +cR < 0 (or both λ0 > 0

and vx,L −cL > 0), the HLLE flux will be fR,i−1/2 (or fL,i−1/2), as

expected.

The HLLE solver approximates the solution to the Riemann

problem using a single constant intermediate state computed

from a conservative average, bounded using an estimate for the

maximum and minimum wavespeeds. Thus, for hydrodynam-

ics it neglects the contact wave, and for MHD it neglects the

Alfvén, slow magnetosonic, and contact waves. For this reason,

the HLLE is extremely diffusive for these waves (in fact, even
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if vx = 0, contact discontinuities are diffused with the method).

Thus, in practice, the HLLE solver is of limited use for appli-

cations. However, a distinct advantage of the HLLE solver is

that the intermediate state is positive-definite, that is the pres-

sure and density in the intermediate state can never be negative.

Thus, in 1D it can be used to construct a positive-definite in-

tegration algorithm (Einfeldt et al 1991). This is in contrast

to linearized solvers such as Roe’s method, in which the Rie-

mann solver itself can produce negative densities and pressures

for one or more of the intermediate states. The HLLE flux is

therefore an excellent alternative in the rare circumstance that

a more accurate solver fails. In multidimensions, however, use

of the HLLE flux at higher than first order does not necessarily

guarantee the method is positive definite: this depends on the

details of the multidimensional integrator being used.

For hydrodynamics, the HLL solver has been extended to in-

clude the contact wave, resulting in a solution consisting of two

constant intermediate states bounded by shocks and separated

by a contact discontinuity. The resulting method is termed the

HLLC solver. A basic description of the method is given in

§10.4 of Toro (1999) and will not be repeated here; although

it is important to note in Athena we choose the wavespeeds

following the suggestion in Batten et al. (1997). This choice

has the attractive property that the pressure in the intermediate

states computed from the Rankine-Hugoniot relations across

the left and right shocks is the same. We find that for hydro-

dynamics, this implementation of the HLLC solver produces

results that are as, if not more, accurate than Roe’s method (see

below), but at much lower computational cost. For 1D prob-

lems, it also is a positive definite method (although again, this is

not guaranteed in multidimensions). Thus, the HLLC solver is

highly recommended for adiabatic hydrodynamic simulations

with Athena.

Recently, Miyoshi & Kusano (2005) have described an ex-

tension of the HLL solver to MHD which includes the fast

magnetosonic, Alfvén, and contact waves. The resulting solver

approximates the solution of the Riemann problem with four

constant intermediate states. It reduces exactly to the HLLC

solver when the longitudinal component of the magnetic field

is zero, and is a positive definite method. The implementa-

tion of the solver is detailed in Miyoshi & Kusano (2005), and

will not be repeated here. Tests using Athena indicate that this

solver, termed HLLD, is typically as accurate as the MHD ex-

tension of Roe’s method, although it is much faster. Thus, the

HLLD solver is the best choice for many MHD applications

using Athena.

4.3.2. Roe’s Method

The HLL fluxes are based on an approximate solution to the

nonlinear equations of MHD. Instead, Riemann solvers can be

constructed from exact solutions to an approximate (linearized)

form of the MHD equations, for example

∂q

∂t
= A(q̄)

∂q

∂x
. (55)

The matrix A(q̄) is the Jacobian ∂f/∂q evaluated at some appro-

priate, constant mean state q̄ (treating this matrix as constant is

what makes the system linear). Finding the exact solution to

linear hyperbolic systems is less difficult because only discon-

tinuities (no rarefactions) are allowed.

Of course, the challenge in developing linearized solvers is

finding the appropriate representation for A(q̄). Roe (1981)

proposed one particularly useful linearization, which has sub-

sequently been extended to adiabatic MHD by Cargo & Gal-

lice (1997). In this linearization, the Jacobian is evaluated

using an average state defined in the primitive variables w̄ =

(ρ̄, v̄, P̄, B̄y, B̄z) as follows

ρ̄ =
√

ρL

√
ρR

v̄ = (
√

ρLvL +
√

ρRvR)/(
√

ρL +
√

ρR)

H̄ = (
√

ρLHL +
√

ρRHR)/(
√

ρL +
√

ρR) (56)

B̄y = (
√

ρRBy,L +
√

ρLBy,R)/(
√

ρL +
√

ρR)

B̄z = (
√

ρRBz,L +
√

ρLBz,R)/(
√

ρL +
√

ρR)

where H = (E +P∗)/ρ is the enthalpy (used to compute the pres-

sure), and the subscripts L and R denote the left- and right-states

of each variable at the interface (computed using one of the re-

construction schemes described in §4.2). Explicit forms for the

matrix A, and its eigenvalues and eigenvectors for isothermal

and adiabatic hydrodynamics and MHD are given in Appendix

B.

Given the eigenvalues λα and left- and right-eigenmatrices

L(w̄) and R(w̄) respectively, where α = 1,M denotes the M char-

acteristics in the solution, the Roe fluxes are simply

FRoe
i−1/2 =

1

2

(

fL,i−1/2 + fR,i−1/2 +
∑

α

aα|λα|Rα

)

(57)

where as before fL,i−1/2 = f(qL,i−1/2), fR,i−1/2 = f(qR,i−1/2), and

aα = L
α · δqi−1/2 (58)

δqi−1/2 = qL,i−1/2 −qR,i−1/2 (59)

and the L
α and R

α are the rows and columns of the left- and

right-eigenmatrices corresponding to λα.

The primary advantage of Roe’s method is that it includes all

of the characteristics in the problem, and therefore is less diffu-

sive and more accurate than the HLLE solver for intermediate

waves such as contact discontinuities. Moreover, Roe (1981)

showed that it gives the flux exactly if the solution to the full

nonlinear Riemann problem contains only an isolated discon-

tinuity. However, because it is based on a linearization of the

MHD equations, for some values of the left- and right-states

Roe’s method will fail (Einfeldt et al. 1991); it will return neg-

ative densities and/or pressures in one or more of the interme-

diate states. In Athena, if this occurs we replace the calculation

of the fluxes at that interface with the HLLE solver (which is a

positive-definite method) or some other more accurate (e.g. an

exact) solver. Tests indicate this is only required very rarely.

5. TWO-DIMENSIONAL INTEGRATION ALGORITHM

Probably the most popular method for constructing a 2D inte-

gration algorithm from the 1D method described in §4 is based

on dimensional splitting (Strang 1968). Unfortunately, dimen-

sional splitting cannot be used for MHD if the equations are to

be solved in the conservative form. This is because during each
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one-dimensional update, only the transverse components of the

magnetic field evolve (e.g., from equation 30 it is clear that Bx

is non-evolutionary during an update in the x−direction). How-

ever, the divergence-free constraint can only be maintained if

all three components of the field evolve simultaneously. Thus,

during the update in the x−direction, Bx must evolve. The terms

that describe this evolution cannot be written in conservative

form, leading to for example the ∇ · B source term formula-

tions of Powell (1994) and Powell et al. (1999). However,

there are significant advantages to maintaining the conservative

form (T2000), thus in Athena we adopt dimensionally-unsplit

integrators for MHD, either based on the CTU+CT method (de-

scribed below), or the VL+CT method (SG08). The use of di-

rectionally unsplit integrators in multidimensions is one of the

most important components of the MHD algorithms in Athena.

Even after adopting an unsplit integration algorithm, combin-

ing it with the CT method to enforce the divergence-free con-

straint presents challenges. In particular, the method by which

the corner-centered, line-averaged emfs are constructed from

the face-centered, area-averaged fluxes returned by the Rie-

mann solver is non-trivial. In GS05, we showed that simple

arithmetic averaging does not work for the unsplit integrators

adopted here. Instead, we developed several methods for con-

structing the emfs from the Godunov fluxes, the version actu-

ally used in Athena is described in §5.3. The resulting method

reduces exactly to the 1D algorithm described in §4 for plane-

parallel, grid-aligned flow, and preserves the flux normal to the

plane of the calculation.

5.1. Steps in the 2D Algorithm

The 2D CTU+CT integration algorithm is based on the

method of Colella (1990), and is described in detail in GS05;

below we provide an overview of the main steps.

Step 1. Compute and store the left- and right-states at cell

interfaces in both the x−direction (qL,i−1/2, j,qR,i+1/2, j) and the

y−direction (qL,i, j−1/2,qR,i, j+1/2) simultaneously, using any of

the 1D spatial reconstruction algorithms described in §4.2, for

all the interfaces over the entire grid. Since the 1D reconstruc-

tion algorithms in Athena include a characteristic tracing step,

when applied in multidimensions the 1D reconstruction must

include ∇·B source terms as described in §3.1 in GS05, and

briefly in §5.2. Note that the components of qL (and qR) are

different on the x− and y−interfaces.

Step 2. Compute 1D fluxes of the conserved variables using

any one of the Riemann solvers described in §4.3 at interfaces

in both the x− and y−directions simultaneously
f∗i−1/2, j = F (qL,i−1/2, j,qR,i−1/2, j,Bx,i−1/2, j) (60)

g∗

i, j−1/2 = F (qL,i, j−1/2,qR,i, j−1/2,By,i, j−1/2) (61)
where the appropriate longitudinal component of the magnetic

field has been passed to the Riemann solver as a parameter.

Step 3. Using the algorithm of GS05, described in §5.3, cal-

culate the emf at cell corners E∗

z,i−1/2, j−1/2
from the appropriate

components of the face-centered fluxes returned by the Rie-

mann solver in step 2, and the z−component of a cell center

reference electric field E r,n
i, j, calculated using the initial data at

time level n, i.e. E r,n
z,i, j = −(vn

x,i, jB
n
y,i, j −vn

y,i, jB
n
x,i, j).

Step 4 Evolve the left- and right-states at each interface

by δt/2 using transverse flux gradients. For example, the

mass density, momentum density, energy density, and Bz at the

x−interface located at xi−1/2 are advanced using

q
n+1/2

L,i−1/2, j
= qL,i−1/2, j +

δt

2δy

(

g∗

i−1, j+1/2 −g∗

i−1, j−1/2

)

+
δt

2
sx,i−1, j(62)

q
n+1/2

R,i−1/2, j
= qR,i−1/2, j +

δt

2δy

(

g∗

i, j+1/2 −g∗

i, j−1/2

)

+
δt

2
sx,i, j (63)

Since the components of 1D vectors on the x− and y−interfaces

differ, care must be taken to associate the components of the

left- and right-states with the appropriate components of the

transverse fluxes (for example, the components of qL,i−1/2, j with

the components of g∗

i−1, j+1/2). The updates in equations 62

and 63 are directionally split (only the transverse flux gradi-

ent is used) and are based on the conservative form, therefore

∇ ·B source terms must be added to the momentum density,

energy, and Bz. These are represented by the source term vec-

tor sx, the last term in both equations. For the left- and right-

states on the x−interface, the source term vector has compo-

nents sx = (0,sM,sE ,0,sBz ) where

sM
x,i, j = Bi, j(Bx,i+1/2, j −Bx,i−1/2, j)/δx

sE
x,i, j = (Bzvz)i, j(Bx,i+1/2, j −Bx,i−1/2, j)/δx (64)

s
Bz

x,i, j = vz,i, j(Bx,i+1/2, j −Bx,i−1/2, j)/δx

Expressions similar to equations 62 and 63 are used to up-

date the y−interface states located at y j−1/2, that is qL,i, j−1/2 and

qR,i, j−1/2, for δt/2 using the flux gradient in the x−direction.

Source terms analogous to those in equation 64, but propor-

tional to δBy/δy, also are necessary (see §4.1.2 in GS05). The

in-plane components of the magnetic field are evolved using

CT,

B
n+1/2

x,i−1/2, j
= Bx,i−1/2, j −

δt

2δy

(

E∗

z,i−1/2, j+1/2 −E∗

z,i−1/2, j−1/2

)

(65)

B
n+1/2

y,i, j−1/2
= By,i, j−1/2 +

δt

2δx

(

E∗

z,i+1/2, j−1/2 −E∗

z,i−1/2, j−1/2

)

(66)

using the emfs computed in step 3.

Step 5. Calculate a cell-centered reference electric field at

tn+1/2, E r,n+1/2

i, j, , which is needed as a reference state for the CT

algorithm in step 7. The cell-centered velocities at the half-

timestep needed to compute E r,n+1/2

i, j, come from a conservative

finite-volume update of the initial mass and momentum density,

using the fluxes f∗
i−1/2, j

and g∗

i, j−1/2. The cell-centered compo-

nents of the magnetic field at the half-timestep come from aver-

aging the face centered fields at the half-timestep computed by

equations 65 and 66 in step 4 to cell-centers.

Step 6. Compute new fluxes at cell interfaces using the cor-

rected left- and right-states from step 4 using one of the Rie-

mann solvers described in §4.3, giving

f
n+1/2

i−1/2, j
= F (q

n+1/2

L,i−1/2, j
,q

n+1/2

R,i−1/2, j
,B

n+1/2

x,i−1/2, j
) (67)

g
n+1/2

i, j−1/2
= F (q

n+1/2

L,i, j−1/2
,q

n+1/2

R,i, j−1/2
,B

n+1/2

y,i, j−1/2
) (68)

Note the appropriate face-centered fields updated to the half-

timestep computed in step 4 are passed as parameters to the
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Riemann solver. If needed, the H-correction is used in this step

to eliminate the carbuncle instability (see Appendix C).

Step 7. Apply the algorithm of §5.3 to calculate the CT elec-

tric fields En+1/2

z,i−1/2, j−1/2
using the numerical fluxes from step 6

and the cell center reference electric field calculated in step 5.

Step 8. Update the solution from time level n to n + 1, us-

ing the 2D version of the finite-volume difference discretization

(equation 11) for the mass density, momentum density, energy

density, and Bz, and the CT formulae (equations 16 and 17) for

the in-plane components of the field Bx and By.

Step 9. Compute the cell-centered components of the mag-

netic field from the updated face-centered values using equa-

tions 26 and 27.

Step 10. Increment the time: tn+1 = tn +δt. Compute a new

timestep that satisfies an estimate of the CFL stability condition

based on wavespeeds at cell centers

δt = C◦ min

(

δx

|vn+1
x,i, j|+Cn+1

f x,i, j

,
δy

|vn+1
y,i, j|+Cn+1

f y,i, j

)

(69)

where C◦ ≤ 1 is the CFL number, Cn+1
f x,i, j and Cn+1

f y,i, j are the fast

magnetosonic speeds in the x− and y−directions respectively,

evaluated using the updated quantities, and the minimum is

taken over all grid cells. Note this is only an estimate of the

CFL stability condition, since the wavespeeds used in the Rie-

mann solver can be different from those computed from the

cell-centered values.

Step 11. Repeat steps 1-10 until the stopping criterion is

reached, i.e.. tn+1 ≥ t f

The entire 2D integration algorithm is summarized by the

flow chart shown in figure 4.

5.2. MHD Interface States in 2D

In step 1 of the 2D algorithm discussed above, source terms

must be added to the left- and right-states in the primitive vari-

ables that arise due to the characteristic tracing step in the re-

construction algorithms (see §4.2). These terms are necessary

for a proper accounting of all the evolutionary terms that form

the characteristic tracing step in multidimensioal MHD (see

GS05 and GS08 for a complete discussion of the origin of these

terms). Since the reconstruction is performed in the primitive

variables, the only terms required are for the transverse compo-

nents of the magnetic field (in contrast to step 4 in the 2D al-

gorithm above, where the directional splitting is performed on

the equations in conservative form, and therefore source terms

were needed for M, E , and Bz). Thus, for the left-state at the

x−interface located at xi−1/2, the change to the transverse fields

due to the source term is

δBy,L,i−1/2, j =
δt

2δx
vy,i−1, j

(

Bx,i−1/2, j −Bx,i−3/2, j

)

while for the left- and right-interface values at the y−interface

located at y j−1/2, the change to the transverse field due to the

source term is

δBx,L,i, j−1/2 =
δt

2δy
vx,i, j−1

(

By,i, j−1/2 −By,i, j−3/2

)

Similar expressions are needed for the right-state values at each

interface (GS05). In both cases the terms are added to the prim-

itive variables after the reconstruction, and before converting

back to the conserved variables.

5.3. Calculating the emfs

As discussed in §3, the CT update of the magnetic field re-

quires the line-averaged emfs at cell corners, whereas the Rie-

mann solver returns area-averaged electric fields at cell faces.

For example, figure 5 shows the relative positions of the fluxes

returned by the Riemann solver, and the emfs needed by CT,

for the 2D grid cell with indices (i, j). In GS05, it was shown

that the relationship between the two is determined by the aver-

aging formulae used to convert between the face-centered area-

averages of the magnetic field, and the cell-centered volume-

averages. A variety of different algorithms were explored,

and the best compromise between accuracy and simplicity was

found to be

Ez,i−1/2, j−1/2 =
1

4

(

Ez,i−1/2, j +Ez,i−1/2, j−1 +Ez,i, j−1/2 +Ez,i−1, j−1/2

)

+
δy

8

(

(

∂Ez

∂y

)

i−1/2, j−1/4

−
(

∂Ez

∂y

)

i−1/2, j−3/4

)

+
δx

8

(

(

∂Ez

∂x

)

i−1/4, j−1/2

−
(

∂Ez

∂x

)

i−3/4, j−1/2

)

.(70)

where the derivative of Ez on each grid cell face is computed by

selecting the “upwind” direction according to the contact mode,

e.g.

(

∂Ez

∂y

)

i−1/2

=











(∂Ez/∂y)i−1 for vx,i−1/2 > 0

(∂Ez/∂y)i for vx,i−1/2 < 0
1
2

((

∂Ez

∂y

)

i−1
+
(

∂Ez

∂y

)

i

)

otherwise

(71)

(where the subscript j has been suppressed) with an analogous

expression for the (∂Ez/∂x). The derivatives of the electric field

in equation (71) are computed using the face centered electric

fields (Godunov fluxes) and a cell center “reference” value E r
z,i, j,

e.g.
(

∂Ez

∂y

)

i, j−1/4

= 2

(E r
z,i, j −Ez,i, j−1/2

δy

)

. (72)

where the cell center reference electric field E r
z,i, j is computed

at the appropriate time level (either tn for step 3 of the 2D algo-

rithm, or tn+1/2 for step 7). To help clarify the above, figure 5

diagrams the relative locations of the Godunov fluxes, corner-

centered emf, cell-centered reference states, and the derivatives

of the electric field. Further details are provided in GS05 (and

GS08 for the 3D case).

Note for the 3D CTU+CT algorithm, analogous expressions

to the above are required to convert the x− and y−components

of the electric field to the appropriate cell corners (see figure

1). These expressions follow directly from equations 71 and 72

using a cyclic permutation of the (x,y,z) and (i, j,k).

6. THREE-DIMENSIONAL INTEGRATION ALGORITHM
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The extension of the dimensionally unsplit CTU integrator

due to Colella (1990) used in Athena from 2D to 3D is in fact

quite complex. In particular, for stability with a CFL number

C◦ ≤ 1 requires 12 Riemann solves per cell per timestep, and

multiple fractional timesteps are required to correct the left- and

right-states with transverse flux gradients in a genuinely multi-

dimensional fashion. This extension of CTU to 3D has been

described by Saltzman (1994) for hydrodynamics.

In GS08, we explored the use of the 12-solve CTU+CT al-

gorithm for MHD, as well as a simpler variant that uses only

6-solves per timestep, but formally is only stable for CFL num-

bers C◦ ≤ 0.5. The tests presented in GS08 show that the 6-

solve algorithm is as accurate as the 12-solve method, and re-

quires about the same computational cost. However, the 6-solve

algorithm is dramatically simpler to implement, and therefore

is the primary 3D integrator used in Athena.

The 6-solve CTU+CT 3D algorithm is designed in such a

way that for grid aligned flows it reduces exactly to the 2D

CTU+CT algorithm described in §5, or the 1D algorithm de-

scribed in §4, depending on the symmetry of the problem. Per-

haps even more importantly, in GS08 we introduced a test prob-

lem to demonstrate the 3D CTU+CT algorithm preserves a dis-

crete representation of the divergence-free constraint that pre-

vents anomalous growth of magnetic flux for problems with

certain symmetries. The test involves advection of a cylindri-

cal column of 2D field loops in the x − y plane, with Bz = 0,

and a constant but fully 3D velocity field. In this case the

z−component of the induction equation reduces to

∂Bz

∂t
−vz

(

∂Bx

∂x
+

∂By

∂y

)

= 0

Clearly, the second term is proportional to ∇·B. Thus, if the

discrete form of the induction equation used to update the field

components in 3D is able to preserve Bz = 0 exactly, then the

algorithm must preserve the appropriate discrete representation

of ∇·B = 0. We present results of this field loop test in §8.4 in

2D, and §8.6 in 3D.

6.1. Steps in the 3D Algorithm

The 6-solve version of the dimensionally unsplit 3D

CTU+CT algorithm can be described by the following steps

(see GS08 for details). It may also be useful to compare and

contrast the steps in the 3D algorithm with those in the 2D

method (§5.1).

Step 1. Compute and store the left- and right-states

at cell interfaces in the x−direction (qL,i−1/2, j,k ,qR,i−1/2, j,k),

the y−direction (qL,i, j−1/2,k,qR,i, j−1/2,k), and the z−direction

(qL,i, j,k−1/2,qR,i, j,k−1/2) simultaneously, using any of the 1D spa-

tial reconstruction schemes described in §4.2, for all the inter-

faces over the entire grid. This requires adding ∇ ·B source

terms to the primitive variables, as discussed in GS08 and §6.2.

Step 2. Compute 1D fluxes of the conserved variables using

any one of the Riemann solvers described in §4.3 at interfaces

in all three dimensions

f∗i−1/2, j,k = F (qL,i−1/2, j,k,qR,i−1/2, j,k,Bx,i−1/2, j,k) (73)

g∗

i, j−1/2,k = F (qL,i, j−1/2,k,qR,i, j−1/2,k,By,i, j−1/2,k) (74)

h∗

i, j,k−1/2 = F (qL,i, j,k−1/2,qR,i, j,k−1/2,Bz,i, j,k−1/2). (75)

using the appropriate longitudinal component of the magnetic

field passed as a parameter to the Riemann solver.

Step 3. Apply the algorithm of §5.3 to calculate the CT

electric fields at cell-corners, E∗

x,i, j−1/2,k−1/2, E∗

y,i−1/2, j,k−1/2 and

E∗

z,i−1/2, j−1/2,k, from the appropriate components of the face-

centered fluxes returned by the Riemann solver in step 2, and

a cell center reference electric field calculated using the initial

data at time level n, i.e. E r,n
i, j,k = −(vn

i, j,k ×Bn
i, j,k). (Note the al-

gorithms for computing the x− and y−components of the emf

are a straightforward extension of the algorithm to compute the

z−component described in §5.3, see GS08.)

Step 4. Update the face-centered magnetic field by δt/2 us-

ing the CT difference equations 16 through 18, and the emfs

computed in step 3.

Step 5. Evolve the left- and right-states at each interface by

δt/2 using transverse flux gradients. For example, the hydro-

dynamic variables (mass, momentum and energy density) are

advanced using

q
n+1/2

L,i−1/2, j,k = qL,i−1/2, j,k −
δt

2δy

(

g∗

i, j+1/2,k −g∗

i, j−1/2,k

)

−
δt

2δz

(

h∗

i, j,k+1/2 −h∗

i, j,k−1/2

)

+
δt

2
sx,i−1, j,k (76)

q
n+1/2

R,i−1/2, j,k = qR,i−1/2, j,k −
δt

2δy

(

g∗

i+1, j+1/2,k −g∗

i+1, j−1/2,k

)

−
δt

2δz

(

h∗

i+1, j,k+1/2 −h∗

i+1, j,k−1/2

)

+
δt

2
sx,i, j,k (77)

Once again, care must be taken to associate the components of

the vectors of interface states (e.g. qL,i−1/2, j,k) with the appro-

priate components of the transverse fluxes (e.g., g∗

i, j−1/2,k and

h∗

i, j,k−1/2). Moreover, since these updates are directionally split,

∇·B source terms must be added. These are represented by the

source term vector sx, the last term in both equations. For the

left- and right-states on the x−interface, the source term vector

has components sx = (0,sM,sE ,0,0) where

sM
x,i, j,k = Bi, j,k

(

∂Bx

∂x

)

i, j,k

sE
i, j,k = −(Byvy)i, j,kminmod

(

∂Bz

∂z
,−

∂Bx

∂x

)

i, j,k

−(Bzvz)i, j,kminmod

(

∂By

∂y
,−

∂Bx

∂x

)

i, j,k

. (78)

where the minmod function is defined as

minmod(x,y) =

{

sign(x)min(|x|, |y|) if xy > 0

0 otherwise.
(79)

The use of the minmod operator to limit the source terms ac-

cording to the magnitude of the terms in the divergence of B

is discussed in GS08, it is needed because there are now two
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terms that arise from transverse gradients, instead of only one as

in 2D. The transverse components of the magnetic field stored

at each of the interfaces is evolved using a combination of the

emfs computed in step 3, and ∇·B source terms. For example,

the right-state value of the y− and z−components of the mag-

netic field at the x−interface at xi−1/2 are evolved using

(By)
n+1/2

R,i−1/2, j,k = (By)R,i−1/2, j,k −
δt

4δz

(

E∗

x,i, j+1/2,k+1/2 −E∗

x,i, j+1/2,k−1/2

)

−
δt

4δz

(

E∗

x,i, j−1/2,k+1/2 −E∗

x,i, j−1/2,k−1/2

)

−
δt

2
(vy)i, j,kminmod

(

∂Bz

∂z
,−

∂Bx

∂x

)

i, j,k

(80)

(Bz)
n+1/2

R,i−1/2, j,k = (Bz)R,i−1/2, j,k +
δt

4δy

(

E∗

x,i, j+1/2,k+1/2 −E∗

x,i, j−1/2,k+1/2

)

+
δt

4δy

(

E∗

x,i, j+1/2,k−1/2 −E∗

x,i, j−1/2,k−1/2

)

−
δt

2
(vz)i, j,kminmod

(

∂By

∂y
,−

∂Bx

∂x

)

i, j,k

(81)

with similar expressions for the left-state values (but using

quantities at i −1 on the right hand side of the above equations

as appropriate). The origin of these MHD source terms for the

transverse components of the magnetic field is discussed fur-

ther in GS08. The y- and z-interface states are advanced in an

equivalent manner by cyclic permutation of (x,y,z) and (i, j,k)

in the above expressions.

Step 6. Calculate a cell-centered electric field at tn+1/2 by

using the fluxes f∗
i−1/2, j,k, g∗

i, j−1/2,k, and h∗

i, j,k−1/2
to compute the

cell-centered velocities at the half-timestep using a conserva-

tive finite volume update for the momentum and density, and

by averaging the face centered fields at the half-timestep com-

puted in step 4. This is needed as a reference state for the CT

algorithm in step 8.

Step 7. Compute new fluxes at cell interfaces using the cor-

rected left- and right-states from step 5, and the interface mag-

netic fields at tn+1/2 computed in step 4, using one of the Rie-

mann solvers described in §4.3

f
n+1/2

i−1/2, j,k = F (q
n+1/2

L,i−1/2, j,k,q
n+1/2

R,i−1/2, j,k,B
n+1/2

x,i−1/2, j,k) (82)

g
n+1/2

i, j−1/2,k = F (q
n+1/2

L,i, j−1/2,k,q
n+1/2

R,i, j−1/2,k,B
n+1/2

y,i, j−1/2,k) (83)

h
n+1/2

i, j,k−1/2
= F (q

n+1/2

L,i, j,k−1/2
,q

n+1/2

R,i, j,k−1/2
,B

n+1/2

z,i, j,k−1/2
) (84)

using the appropriate longitudinal component of the magnetic

field passed as a parameter to the Riemann solver. If needed,

the H-correction is used in this step to eliminate the carbuncle

instability (see Appendix C).

Step 8. Apply the algorithm of §5.3 to calculate the CT elec-

tric fields En+1/2

x,i, j−1/2,k−1/2
, En+1/2

y,i−1/2, j,k−1/2
and En+1/2

z,i−1/2, j−1/2,k using

the appropriate components of the numerical fluxes from step 7

and the cell center reference electric field calculated in step 6.

Step 9. Update the solution from time level n to n +1 using

the conservative finite volume update (equation 11) for the hy-

drodynamic variables (mass, momentum and energy density)

and the CT formulae (equations 16 through 18) to update the

area-averaged face-centered components of the magnetic field.

Step 10. Compute the cell-centered components of the mag-

netic field from the updated face-centered values using equa-

tions 26 through 28.

Step 11. Increment the time: tn+1 = tn +δt. Compute a new

timestep that satisfies an estimate of the CFL stability condition

based on wavespeeds at cell centers

δt =C◦ min

(

δx

|vn+1
x,i, j,k|+Cn+1

f x,i, j,k

,
δy

|vn+1
y,i, j,k|+Cn+1

f y,i, j,k

,
δz

|vn+1
z,i, j,k|+Cn+1

f z,i, j,k

)

(85)

where C◦ ≤ 1/2 is the CFL number,Cn+1
f x,i, j,k , Cn+1

f y,i, j,k, and Cn+1
f z,i, j,k

are the fast magnetosonic speeds in the x−, y−, and z−directions

respectively, evaluated using the updated quantities, and the

minimum is taken over all grid cells. Note this is only an esti-

mate of the CFL stability condition, since the wavespeeds used

in the Riemann solver can be different from those computed

from the cell-centered values.

Step 12. Repeat steps 1-11 until the stopping criterion is

reached, i.e., tn+1 ≥ t f .

The steps in the 3D integration algorithm are very similar

to those summarized by the flow chart in figure 4 for the 2D

algorithm.

6.2. MHD Interface States in 3D

As with the 2D integrator, source terms must be added to the

left- and right-states in the primitive variables calculated using

the 1D spatial reconstruction schemes described in §4.2. Since

the reconstruction is in the primitive variables, only the trans-

verse components of the magnetic field require these terms. For

the right-state at the x−interface located at xi−1/2, the change to

the transverse fields due to the source terms are

(δBy)R,i−1/2, j,k = −
δt

2
(vy)i, j,kminmod

(

∂Bz

∂z
,−

∂Bx

∂x

)

i, j,k

(86)

(δBz)R,i−1/2, j,k = −
δt

2
(vz)i, j,kminmod

(

∂By

∂y
,−

∂Bx

∂x

)

i, j,k

(87)

Similar expressions are needed for the left-state values, while

the equations for the left- and right-state values at the y−
and z−interfaces follow from cyclic permutation of the (x,y,z).

These terms are added to the primitive variables after recon-

struction, and before converting back to the conserved vari-

ables.

7. IMPLEMENTATION

The implementation of the numerical algorithms described

in the previous sections into a functioning computer code can

be complex, and warrants at least some discussion.

Athena was developed in C, but many applications scientists

prefer to work with Fortran. Hence, we have written two dif-

ferent versions of Athena: the original C code, and another in

Fortran95. These two versions provide the community with im-

plementations of the Athena algorithm in the two most popular

languages used for scientific computing in astrophysics. The

most important design criteria we have adopted for both ver-

sions are
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1. modularity,

2. documentation,

3. strict adherence to ANSI standards,

4. simple control of physics and runtime options

We briefly discuss each of these below.

By far the most important design priority is modularity.

Thus, the Riemann solvers, 1D reconstruction algorithms, con-

version from conserved to primitive variables, boundary con-

ditions, data output, and the integrators themselves are all bro-

ken into individual functions, with a common interface specific

to each class. This makes adding everything from a new Rie-

mann solver to a new data output format simply a matter of

writing a new function which conforms to the appropriate in-

terface. Moreover, all problem-specific code is contained in a

single file, with functionality provided that makes it easy to add

new boundary conditions or new source terms in the equations.

Although writing documentation is never enjoyable, it is crit-

ical if anyone other than the developer is to use the code. We

have found this to be true even amongst members of our own

research groups. The C version of Athena comes with an exten-

sive User’s Guide which describes installing, compiling, and

running the code, and a Programmer’s Guide which explains

the grid, data structures, and program control and flow. Both

are included with the source code in the download from the

web. The Fortran95 version has its own User’s Guide. Ample

comments are also embedded within the source files.

By adhering to ANSI standards, we ensure Athena can be

compiled and run on any machine with a C or Fortran95 com-

piler, as appropriate. To avoid reliance on external libraries, we

do not use special purpose output formats. The philosophy is

that data can always be converted into other format by post-

processing software if needed, or by writing a new user-defined

output routine. Athena is written to run either as a serial code

on one CPU or in parallel using domain decomposition through

MPI calls. The only external libraries needed by Athena are for

parallelization with MPI (using any version of the MPICH or

OpenMPI libraries). As algorithms become more complex, the

use of external libraries for I/O may become unavoidable. For

example, the HDF5 library has proved to be useful in organiz-

ing the complex data structures associated with AMR grids.

The compile and runtime options in the C version of Athena

are documented in the User’s Guide. Physics and algorithm op-

tions are set at compile time using a configure script generated

by the autoconf toolkit. In the Fortran95 version, these op-

tions are determined by selecting which modules to USE. A perl

build script buildathena is included to simplify the choice

of problem module, physics, and parallel or serial version. A

separate user guide is provided for the Fortran code. Both codes

use a simple block-structured input file with runtime parameter

values. The Fortran95 version uses NAMELIST and the the C

version uses a flexible format that emulates NAMELIST func-

tionality. Although there is nothing special about the specific

way compiler and run options are set in Athena, the key point

is that simple and extensible mechanisms to control both are

provided.

Two final important aspects of code implementation are the

single processor performance, and parallelization on distributed

memory clusters. Aggressive optimization requires mature and

static algorithms, and often comes at the cost of clarity and

adaptability in the code. Athena is intended to be a community

code, and we plan that Athena will continue to be developed

and extended. Thus, optimization has been limited to the basic

concepts guided by the rules of data locality and vectorization.

In the C version, for example, to optimize cache use we define

all variables within a cell as a data structure, and then create 3D

arrays of this structure. This ensures values for each variable

associated with a given cell are contiguous in memory. To pro-

mote vectorization, as much computational work as is possible

is done on 1D pencils drawn from the grid (for example, the

spatial reconstruction step). The Fortran95 version is designed

to take advantage of Fortran array syntax where possible. One

drawback of dimensionally unsplit algorithms is that the left-

and right-states and fluxes must be computed and stored for ev-

ery interface over the entire 3D grid. This requires many 3D

arrays, which increases the memory footprint of the code and

reduces cache-performance. However, unsplit algorithms are

essential for MHD.

Although Athena requires many more floating point opera-

tions per cell than algorithms such as ZEUS (as much as ten

times more), the primary bottleneck on modern processors is

generally accessing cache and interprocess communication for

parallel problems. Thus, the performance of Athena in compar-

ison to ZEUS is not decreased in proportion to the amount of

work per cell in the two codes. One of the most useful mea-

sures of performance is the number of cells updated per cpu

second. This depends on many factors, including the algorithm,

the size of the grid, and the processor speed. Table 1 lists the

performance of the C version of Athena on a 2.2 GHz Opteron

processor, compiled with gcc using an optimization level of

-O3 for various physics and algorithm options and using a 3D

1283 grid. For comparison, a 3D version of ZEUS written in

F77 by one of us (Stone) and run on the same processor gives

404× 103 cell-updates/sec for adiabatic MHD on a 1283 grid.

Thus, while the algorithms in Athena typically require 10× the

work of those in ZEUS, the code is only four times slower when

using the HLLD fluxes.

Parallelization is achieved in Athena using domain decompo-

sition with MPI calls to swap data in ghost cells at grid bound-

aries. The number of ghost cells required depends on the type

of physics used and the order of the reconstruction. For exam-

ple, MHD with third-order reconstruction requires four ghost

cells at every boundary (more are required if the H-correction

is used, see Appendix C). By sequential exchange of boundary

conditions in the x−, y−, and z−directions, we avoid the need

for extra MPI calls to swap values across diagonal domains

at the corners of the grid. Two factors contribute to making

Athena very efficient on distributed memory clusters. First, the

unsplit direct Eulerian update in Athena requires communica-

tion of ghost zones only once per timestep, greatly reducing the



15

number of MPI calls compared to split methods. Second, the

ratio of computational work to data communicated is large in

Athena due to the complexity of the algorithms. Figure 6 plots

the efficiency of the C version of Athena, defined as the speed

per processor in a parallel calculation normalized by the speed

of a single processor calculation, on Red Storm, a Cray XT-3

at Sandia National Laboratory. Even up to 20,000 processors

the efficiency of Athena remains above 85%, and is nearly flat

indicating essentially perfect weak scaling.

8. TESTS

Tests are an integral part of the code development process,

used not only to find bugs in the implementation, but also to

measure the fidelity of the method in comparison to other tech-

niques. In this section we present a selection of tests that we

have found useful in the development of Athena for both hy-

drodynamics and MHD in 1D, 2D and 3D. A more comprehen-

sive set of tests is published on the web. Many of the problems

are drawn from test suites of our own codes (Stone et al. 1992)

or from those published by other authors (Woodward & Colella

1984, hereafter WC; Ryu & Jones 1995, hereafter RJ; T2000;

Liska & Wendroff 2003, hereafter LW). Although we begin by

showing 1D tests for hydrodynamics and MHD, our focus will

be on the multidimensional results that follow, since multidi-

mensinal tests are so critical for MHD.

In only a few of the tests do we show the results from more

than one Riemann solver. In general, we find the most accu-

rate (and often nearly identical) results are obtained with either

the Roe and HLLC solvers in hydrodynamics, or the Roe and

HLLD solver in MHD. Thus, we use these solvers interchange-

ably. If one solver fails on a particular test, it will be mentioned

in the discussion.

8.1. One-Dimensional Hydrodynamics

Linear wave convergence. One of the simplest, yet most dis-

criminating tests is to follow the propagation of linear modes

of each wave family in a periodic domain to measure the am-

plitude of both diffusion and dispersion errors. Exact eigen-

functions of sound, contact, and shear waves are initialized in

a uniform medium with ρ0 = 1, P0 = 3/5, and γ = 5/3. The

wave amplitude A = 10−6, and the wavelength is equal to the

size of the domain L = 1. For sound waves, the background

medium is initially at rest. (It is also useful to try a test in which

vx,0 = −cs, where c2
s = γP/ρ is the sound speed, so that the right-

propagating sound waves are standing waves.) For the contact

and shear waves, the background medium has a constant veloc-

ity vx,0 = 1. The solution is then evolved for 1 crossing time, or

until t f = 1. Figure 7 shows the norm of the L1 error vector for

each wave, defined as

δq =
1

N

∑

i

|qi −q0
i | (88)

where q0
i is the initial solution, as a function of the numerical

resolution up to 1024 zones, using third-order reconstruction

and the HLLE, HLLC, or Roe fluxes. The errors for the HLLC

and Roe fluxes are nearly identical, and converge at second-

order for each wave family. The errors for the HLLE solver

are slightly larger, and converge at a slightly lower rate. By

plotting profiles of the waves, we find the errors are dominated

primarily by diffusion error; with 16 or more grid points per

wavelength the plots show almost no dispersion in any of the

waves. A number of very sensitive tests of the coding can be de-

signed. Firstly, the L1 errors should be identical (to every digit

of accuracy) for left- and right-propagating waves. Secondly,

convergence should continue until either the limits of round-

off error are reached, or nonlinear steeping becomes important

(when L1 ∼ A2). We have found that both double precision, and

very small initial amplitudes, are necessary to see convergence

out to 1024 cells. This suggests that round-off error can dom-

inate truncation error in very high resolution simulations with

higher-order methods such as Athena.

Sod shocktube. Long a standard test for hydrodynamic codes,

the Sod shocktube consists of two constant states separated by

a discontinuity (a Riemann problem). Table 2 lists the values in

the left- and right-states for this test. Figure 8 shows the results

for the density, pressure, velocity, and P/ρ (which is propor-

tional to the specific internal energy density) at t f = 0.25 when

run on a grid of 100 cells in the domain −0.5 < x < 0.5 us-

ing third-order reconstruction, the HLLC Riemann solver, and

an adiabatic index γ = 1.4. When configured for 1D hydrody-

namics, Athena reduces to a direct Eulerian PPM code (e.g. §4

of CW), thus we expect the results should be similar to those

published by e.g., Greenough & Rider (2003). As is typical of

a PPM code, Athena resolves the shock front and contact dis-

continuity with only 2-3 zones. Although we show this test for

posterity, in our opinion the 1D Sod shocktube should no longer

be considered a discriminating test of algorithms.

Two-interacting blast waves. Introduced as a test by WC,

this problem consists of an initially constant density ρ0 = 1 in

a stationary medium in a domain of size Lx = 1 with reflect-

ing boundary conditions, and γ = 1.4. For x < 0.1, the initial

pressure is P = 1000, for x > 0.9 P = 100, while P = 0.01 ev-

erywhere else. The solution is evolved to an arbitrary time of

t f = 0.038, at which point the shocks and rarefactions gener-

ated at the two discontinuities in the initial state have interacted

multiple times in the domain. The test is quite sensitive of the

ability of the method to capture the interaction of shocks with

contact discontinuities and rarefactions. Figure 9 shows the

solution computed with Athena using 400 grid points, third-

order reconstruction, the CS limiters, and the HLLC Riemann

solver, with a reference solution computed using 9600 grid

points shown as a solid line. In addition, the solution can be

compared to figure 2h of WC. Note that the contact discontinu-

ity near x = 0.6 is quite smeared out in the Athena solution, this

seems to be a common property of direct Eulerian methods (see

figures 18 and 19 in Greenough & Rider 2003), the Lagrange-

plus-remap version of PPM seems to capture this feature more

sharply (WC, LW).

Shu & Osher shocktube. Introduced by Shu & Osher (1989),

this test measures the ability of a scheme to capture the inter-

action of shocks with smooth flow. The initial conditions are
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a strong shock, initially located at x = −0.8, propagating into

a background medium with a sinusoidally varying density in a

domain −1 ≤ x ≤ 1 with adiabatic index γ = 1.4. Table 2 lists

the initial conditions for this test. Figure 10 shows the result at

t = 0.47 computed with both 200 and 800 cells using third-order

reconstruction, the CS limiters, and the HLLC solver. Compar-

ison of this plot with, e.g. figure 5 in Balsara & Shu (2000),

shows the Athena solution is similar to a 3rd-order WENO

scheme. The use of the CS limiters significantly improves the

solution in comparison to the original PPM limiters, since with

only 200 cells many of the extrema in the postshock gas are un-

resolved, and are clipped with the PPM limiters. We conclude

that low-order (less than 5th-order) WENO schemes are not

more accurate than 2nd order Godunov methods like Athena

for this test. A more comprehensive comparison of Godunov

and higher-order WENO schemes is provided by Greenough &

Rider (2003). In particular they conclude for problems involv-

ing shocks and discontinuities, second-order Godunov schemes

are more accurate per fixed computational cost.

Einfeldt strong rarefaction tests. Einfeldt et al. (1991) de-

scribed several test problems designed to reveal shortcomings

of various Riemann solvers for hydrodynamics. In particular,

the Roe solver will always fail on these tests, in the sense that

it will produce negative densities and pressures in the interme-

diate states for the initial discontinuity in the first timestep. For

this reason, when using the Roe solver in Athena we test the

intermediate states, and if the density or pressure is negative,

we replace the Roe flux with the HLLE flux for that interface

only. As an example, figure 11 shows the results for the density,

pressure, velocity, and P/ρ (which is proportional to the spe-

cific internal energy) for test 1-2-0-3 in Einfeldt et al. (1991) at

t = 0.1, computed using 200 grid points, γ = 1.4, and second-

order spatial reconstruction (the initial left- and right-states for

this test are given in Table 2). The profiles of density and pres-

sure are captured accurately. We find that the HLLE solver is

only needed for one interface in the first timestep, thereafter the

Roe solver returns positive states. We have also run the 1-1-2-5

test in Einfeldt et al. (1991); we find this test is less challenging.

8.2. One-Dimensional MHD

Linear wave convergence. As in hydrodynamics, the con-

vergence of errors in the propagation of linear amplitude MHD

waves is a sensitive test. For MHD waves, we use a uniform

medium with ρ0 = 1, P0 = 3/5, B = (1,
√

2,1/2) and γ = 5/3 in

a domain of size L = 1. These choices give well separated wave

speeds: C f = 2, CA,x = 1, and Cs = 1/2 for the fast, Alfvén, and

slow magnetosonic speeds respectively. Exact eigenfunctions

for fast and slow magnetosonic, Alfvén, and contact waves for

this background state are given in GS05. These are used to ini-

tialize each wave family with amplitude A = 10−6 and exactly

one wavelength in the domain. Figure 12 shows the norm of the

L1 error vector for each wave family as a function of the numer-

ical resolution up to 1024 zones, using third-order reconstruc-

tion and the HLLE, HLLD, or Roe fluxes. The errors using the

HLLD or Roe fluxes are nearly identical, converge at second-

order, and are slightly lower than the HLLE fluxes. As before,

this problem can be used as the basis for a number of very sen-

sitive tests. For example, standing waves in each family can be

initialized by setting vx,0 to the appropriate wave speed, the L1

error should be identical for left- and right-propagating waves,

and convergence should continue until the limits of round-off

error or wave-steepening effects are reached.

Brio & Wu shocktube. An MHD analog to the Sod shock-

tube was introduced by Brio & Wu (1988), and has now be-

come a standard test for MHD codes. Table 2 gives the val-

ues of the primitive variables in the left- and right-states. The

longitudinal component of the magnetic field is Bx = 0.75, and

is of course constant everywhere. The solution is computed

with γ = 2. Figure 13 shows results computed with second-

order spatial reconstruction and the Roe fluxes, on a grid of 800

zones at time t f = 0.08. A reference solution, computed using

104 grid points, is shown as a solid line. Once again, shocks

and contacts are captured in only 2-3 zones. Small oscillations

are present in the velocity if third-order reconstruction is used,

indicating our TVD limiters could be improved. Recently, Tor-

rilhon (2003) has performed a careful study of the convergence

of finite-volume schemes for MHD Riemann problems similar

(but not identical) to the Brio & Wu shocktube. We have run

the regular, nearly coplanar problem defined in §4.2 of that pa-

per. The left- and right-states for this test are given in Table

2, in addition Bx = 1. The results, computed using third-order

reconstruction and the Roe solver, are nearly identical to those

shown in figure 7 of that paper, although the Athena solution

with 104 grid points is comparable to the solution with twice as

many points in that paper. At lower resolution (800 grid points)

the Athena solution shows the compound wave structure which

appears in dissipative MHD (similar to figure 6 of Torrilhon

2003). As the numerical resolution is increased, the solution

converges to the the exact solution for ideal MHD, which does

not contain this structure. The fact that Athena shows more

rapid convergence to the exact solution for ideal MHD than the

central scheme tested in Torrilhon (2003) is indicative of lower

numerical dissipation.

RJ shocktube 2a. RJ introduced a large number of MHD

shocktube problems as tests of a 1D algorithm they developed.

Figure 14 shows the results for the problem shown in their fig-

ure 2a, which we refer to as the RJ2a test. Table 2 lists the

left- and right-states for this test, in addition Bx = 2. The results

in figure 14 are computed using third-order reconstruction and

the Roe fluxes on a grid of 512 cells. This test is of particu-

lar interest because discontinuities in each MHD wave family

are produced from the initial conditions, that is both left- and

right-propagating fast and slow magnetosonic shocks, left- and

right-propagating rotational discontinuities, and a contact dis-

continuity. The results in figure 14 show that Athena captures

each of these discontinuities with 2-4 cells.

RJ shocktube 4d. A second test introduced by RJ is shown in

their figure 4d, hereafter we refer to this problem as test RJ4d.

The left- and right-states are given in table 2, with Bx = 0.7.

The solution at t f = 0.16 is shown in figure 15 computed with

third-order reconstruction and the HLLD fluxes. The problem

is interesting because it involves a switch-on slow rarefaction
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and a slow shock. Although the HLLD solver does not include

the slow wave explicitly, figure 15 shows these features are all

captured well in the Athena solution using this solver.

8.3. Two-Dimensional Hydrodynamics

Double Mach reflection. Another classic test of hydrody-

namic algorithms introduced by WC, this problem follows the

oblique reflection of a Mach 10 shock in air (γ = 1.4). The in-

teraction of the reflected and incident shocks produces a triple-

point, and between the resulting contact discontinuity and the

reflected shock a short jet is formed along the wall. The struc-

ture of this jet is very sensitive to the numerical diffusion of

contact waves. This test requires a time-dependent boundary

condition be applied along the top edge to follow the propa-

gation of the incident shock; this is easily achieved in Athena

using function pointers. The problem is initialized following

the description in WC. Figure 16 shows contour plots of the so-

lution at t = 0.2 computed with both second- and third-order re-

construction, and at two different numerical resolutions. The H-

correction described in Appendix C is used for all the calcula-

tions to reduce small amplitude noise in the postshock flow. The

low-resolution (260× 80) results (first and third panels) show

small but distinct changes in the jet between the reconstruction

algorithms. The third-order reconstruction is slightly less dif-

fusive. Comparison of the results with those in WC (their fig-

ure 4) demonstrate the differences between the Lagrange-plus-

remap version of PPM, and the direct Eulerian version imple-

mented in Athena. The results can also be compared with those

from ZEUS shown in figures 15 and 16 of Stone & Norman

(1992a).

LW implosion test. LW have provided an extensive compar-

ison of a wide variety of hydrodynamic codes using 1D and

2D problems (including some of the 1D problems presented in

§8.1). We have found the problem discussed in §4.7 in LW,

hereafter the implosion test, to be one of the most informative.

It consists of initial states identical to the Sod shocktube prob-

lem separated by a discontinuity inclined at 45◦ in a 2D domain

of size (Lx,Ly) = (0.3,0.3) with reflecting boundary conditions

everywhere (a more precise description of the initial conditions

and grid is given in LW). It produces a shock wave which ini-

tially propagates into the lower left corner, and a rarefaction

which propagates in the opposite direction. Along the bottom

and left-side walls, the initial evolution is nearly identical to

the double Mach reflection test described above. The jets along

each wall produced in this interaction collide in the lower left

corner, and produce vortices which propagate outwards along

the diagonal. In the meantime, a succession of reflected shocks

interact with the vortices and contact discontinuity, driving the

Richtmyer-Meshkov instability, and complex shock reflections

and rarefactions (animations of the evolution, available on the

Athena web page, are useful for interpreting the evolution).

Figure 17 shows contours of the density at two times (the same

two times shown in LW) for a solution computed using third-

order reconstruction and the HLLC fluxes. The key result of

the test is the production of the jet along the diagonal. Whether

this is the correct dynamics was left uncertain in the discussion

in LW: some codes produce it and others do not. However, we

have found the jet is reliant on maintaining symmetry in the

problem. In directionally-split algorithms, perfect symmetry is

lost, and the collision of the jets in the lower left corner does

not eject vortices along the diagonal. In dimensionally unsplit

algorithms such as the CTU method in Athena, the jet is clearly

formed. We conclude the jet is the correct result, and that it

is a sensitive test of symmetry. We consider the preservation

of symmetry a further advantage of the unsplit integrators used

in Athena, however the primary motivation for their use is the

preservation of the divergence-free constraint in MHD.

LW Rayleigh-Taylor instability test. Another test introduced

by LW in their §4.6 is the nonlinear evolution of a single mode

of the Rayleigh-Taylor instability. Two fluids, with densities

two and one respectively, are initialized at rest in a domain of

size (Lx,Ly) = (1/3,1) with constant vertical gravitational ac-

celeration g = 0.1, and the heavier fluid on top of the light. The

pressure is computed so that the fluids are in hydrostatic equi-

librium, with the sound speed equal to one in the light fluid at

the interface, with γ = 1.4. The interface between the two is per-

turbed with a vertical velocity vy = 0.01sin(6πx). Running this

test requires adding gravitational source terms to the equations

of motion. In Athena, the source terms for a fixed gravitational

potential are added in such a way as to conserve total energy ex-

actly, This extension to the algorithms, along with the addition

of self-gravity in a way that conserves total momentum exactly,

is described in Gardiner & Stone (in preparation). Without ex-

plicit viscosity, or surface tension at the interface, there is no

one correct solution to this problem to which all codes should

converge. Instead, the resulting structure of the interface be-

tween the light and heavy fluids is sensitive to the numerical

diffusion of the method, and to the numerical perturbations in-

troduced by the grid that seed secondary Kelvin-Helmholtz in-

stability. Figure 18 shows the results at time t f = 8.5 computed

with Athena using third-order spatial reconstruction, the HLLC

fluxes, and a grid of 200× 400 cells. It can be compared di-

rectly to the results of other codes shown in figure 4.8 in LW.

The Athena solution shows more fine-scale structure than many

other methods, but less than the Lagrange-plus-remap PPM

codes. This may indicate greater diffusion of contacts in a di-

rect Eulerian PPM code like Athena, or it may also indicate

the effect of a contact steepener (which tends to seed more KH

instability in multidimensions) in the other codes.

8.4. Two-Dimensional MHD

Circularly polarized Alfvén waves. Circularly polarized

Alfvén waves are an exact nonlinear solution to the equations

of MHD. T2000 introduced the propagation of these waves as a

sensitive test of dispersion properties of MHD algorithms. Al-

though such waves are subject to a parametric instability (Del

Zanna et al. 2001), for the parameters adopted by T2000 no

instability should be present. A complete description of this

test, including the procedure for initializing the solution at an

oblique angle to the mesh, is presented in GS05. This test

has proved extremely useful for developing Athena. Figure 19

shows profiles of the waves after propagating 5 crossing times
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as a function of resolution, computed using third-order recon-

struction, the CS limiters, and the Roe fluxes, for both traveling

and standing waves. Dispersion error is seen to be important

only at the lowest resolution, diffusion error generally dom-

inates (this is also true for the linear wave convergence tests

described in §8.1 and §8.2). Even with only 8 grid points per

wavelength, the wave profile is captured well with an ampli-

tude at least 0.8 of the original. With 16 or more grid points

per wavelength, the amplitude is better than 0.95 the original in

both cases. The CS limiter greatly improves the solution at low

resolution, as it prevents the clipping of extrema in the wave

profile. Figure 20 shows the norm of the L1 error vector as

a function of resolution for traveling waves, after propagating

one wavelength, for both second- and third-order reconstruc-

tion. For comparison, the errors on both a 1D and 2D grid are

shown. In all cases, second-order convergence is evident, with

the 2D errors larger by a factor of about two.

Advection of a field loop. This test was introduced and dis-

cussed extensively in GS05; it consists of the advection of a

circular field loop by a constant velocity inclined to the grid

in a periodic 2D domain. For the CT algorithm, solving field

advection problems is non-trivial. This test demonstrates the

importance of constructing the line-averaged corner-centered

emfs used by CT from the area-averaged face-centered elec-

tric fields returned by the Riemann solver using the technique

outlined in §5.3 with the CTU integrator. Along with the circu-

larly polarized Alfvén wave test described above, this test has

been critical to the development of the algorithms. Figure 21

shows the magnetic field lines and contours of the out-of-plane

component of the current density J = ∇×B after advection of

the loop twice around the domain. The current density is par-

ticularly sensitive to diffusion or oscillations in the field. The

figure shows the CTU+CT algorithm in Athena preserves the

shape of the field loop extremely well. We have also checked

that if this test is performed with a uniform vz 6= 0, the code

keeps Bz = 0 to round-off error (provided it was zero to begin

with). As discussed at the beginning of section 6, this confirms

our formulation of CT preserves the appropriate discretization

of the divergence-free constraint.

Orszag-Tang vortex. A 2D MHD test which has now be-

come a standard is the evolution of the vortex of Orszag &

Tang (1979). There is some confusion in the literature as to the

time at which comparisons between solutions are made. The

results shown here are computed with constant initial densities

and pressure, ρ0 = 25/(36π) and P0 = 5/(12π), in a periodic do-

main of size (Lx,Ly) = (1,1), with an initial velocity (vx,vy) =

(−sin(2πy),sin(2πx)), and a magnetic field computed from the

vector potential Az = (B0/4π)cos(4πx)+(B0/2π)cos(2πy), with

B0 = 1/
√

4π. Figure 22 shows contour plots of the density, pres-

sure, magnetic pressure, and specific kinetic energy density at

time t f = 1/2 computed on a grid of 192× 192 cells, which

can be compared directly to the results in, e.g., T2000 at a time

of t f = π. Of particular note is the symmetry in the solutions.

Figure 23 shows horizontal slices of the pressure at y = 0.3125

and y = 0.427 (shown by the horizontal lines in the upper right

panel of figure 22), with the solution on a 5122 grid shown as a

solid line for reference. This test does not seem to be extremely

discriminating for MHD algorithms. (We consider linear wave

convergence (see §8.6), circularly polarized Alfvén waves, and

field loop advection to be more quantitative MHD tests.) The

most stringent comparison between methods is provided by the

slices shown in figure 23. Finally, figure 24 plots contours of

the density, magnetic pressure, specific kinetic energy density,

and total pressure P∗ for an isothermal version of the Orszag-

Tang vortex test. Comparison to results shown previously by

Balsara (1998, see his figure 8) appear to show significant dif-

ferences.

MHD Rotor. The test suite of Stone et al. (1992) contained

tests based on the propagation of nonlinear amplitude shear

Alfvén waves in 1D generated by rotating disks in axisymme-

try. Since analytic solutions are available for this problem, it

was possible to provide quantitative measure of the errors in

ZEUS. (We have confirmed Athena reproduces these tests accu-

rately, with second-order convergence on the version of the test

that uses continuous initial conditions.) Following the sugges-

tion of Brackbill (1986), Balsara & Spicer (1999) introduced

a 2D version of this test consisting of a rotating disk located

in the plane of the computation, with an initial magnetic field

perpendicular to the rotation axis. Strong rotational disconti-

nuities are generated in the field due to the shear at the sur-

face of the disk, and shocks and rarefactions are produced by

the radial expansion of the disk due to unbalanced centrifugal

forces. We use the initial conditions as described by T2000.

We present results only for the problem labeled “Rotor Test #

1", as it involves higher initial velocities and is therefore more

difficult. No smoothing is used at the surface of the disk. Fig-

ure 25 shows contours of the density, pressure, Mach number,

and magnetic pressure at t f = 0.15 on a grid of 400×400 cells,

computed using third-order reconstruction and the Roe fluxes.

Figure 26 plots slices of the y−component of the magnetic field

taken along x = 0, and the x−component of the magnetic field

taken along y = 0. Of note is the near-perfect symmetry main-

tained in the solutions, with no oscillations. In particular, con-

tours of the Mach number remain concentric circles in the rar-

efaction at the center all the way to the origin. Similarly, the

slices show constant field strength within the central rarefac-

tion, and sharp discontinuities.

Magnetic Rayleigh-Taylor instability. To show the effect of

magnetic fields on the nonlinear evolution of the 2D RT in-

stability, and to demonstrate the use of AMR with Athena,

figure 27 shows the results of a single mode RT instability

computed with 5 levels of refinement. A base grid of 8× 16

cells is used, giving an effective resolution on the finest grid

of 256×512. The parameters for this calculation are not iden-

tical to those used for the LW hydrodynamic RT test shown

in figure 16. In particular, for the MHD test we use a do-

main of size (Lx,Ly) = (0.1,0.2) with g = 0.1, an adiabatic index

γ = 5/3, and densities in the light and heavy fluids of ρl = 1 and

ρh = 3 respectively. The magnetic field is initially uniform and

horizontal, with initial amplitude B0 compared to the critical

value Bc = [Lg(ρh −ρl)]
1/2 = 0.14 which suppresses instability

of B0/Bc = 0.05. The figure shows the distribution of a passive
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contaminant advected with the flow at a final time t f = 3 in order

to show mixing, as well as the grid levels used in the AMR cal-

culation. For reference, the identical calculation but without the

magnetic field is shown as well. Note the suppression of sec-

ondary KH instabilities at the interface in the MHD case. An

extensive discussion of the nonlinear evolution of the magnetic

RT instability is presented in Stone & Gardiner (2007a; 2007b).

The use of an AMR grid is very efficient for this problem, since

the refinement is predominantly required near the interface.

Blast wave in a strongly magnetized medium. In order to

demonstrate the propagation of strong MHD shocks in multi-

dimensions, we show the results of an MHD blast wave prob-

lem. Many authors have performed similar versions of this test,

we adopt the initial conditions used in Londrillo & Del Zanna

(2000). The results are shown at time t f = 0.2 in figure 28 using

a domain of size (Lx,Ly) = (1,3/2) with a grid of 200× 300

cells, third-order reconstruction, and the HLLC (hydro) and

HLLD (MHD) fluxes. The top row shows contour plots from a

hydrodynamic version of this test, while the lower row shows

the MHD results with an initial magnetic field inclined at 45◦ to

the grid (B = (B0/
√

2,B0/
√

2) where B0 = 1. By using periodic

boundary conditions, the flow becomes more complex as the

outgoing blast wave re-enters the grid on the opposite side, and

interacts with the contact discontinuity that bounds the evacu-

ated bubble at the center. Figure 29 shows the result at t f = 1 for

both the hydrodynamic and MHD problem. Note the CTU in-

tegrator preserves perfect symmetry (most noticable in the fin-

gers at the contact discontinuity generated by the Richtmyer-

Meshkov instability in the unmagnetized problem). Also note

the magnetic field suppresses the R-M instability (Wheatley et

al. 2005). Finally, figure 30 plots contours of the MHD blast

problem using an isothermal equation of state and both B0 = 1

(top row) and B0 = 10 (bottom row). The plasma β = 2P/B2 = 2

for B0 = 1, and β = 0.02 for B0 = 10 in the external medium

initially. GS05 shows results for adiabatic MHD with B0 = 10.

This problem demonstrates the CTU+CT algorithm is robust

for low−β flows.

8.5. Three-Dimensional Hydrodynamics

Noh’s strong shock. As a fully 3D hydrodynamical test, we

present results from the strong shock test described by Noh

(1987). This is a very difficult test. A uniform (ρ0 = 1), cold

(P = 0) medium converges in a spherically symmetric radial in-

flow vr = −1 onto the origin. This generates a very strong (for-

mally, M = ∞) spherical shock wave which propagates away

from the origin at constant velocity Vs = 1/3. Due to the spher-

ical convergence, the preshock density increases everywhere in

time according to ρ(r,t) = ρ0(1 + t/r)2. However, the density

immediately upstream of the shock location is always 16, thus

the postshock gas is uniform with ρ = 64 for γ = 5/3. A similar

test is often run in planar (1D) and cylindrical (2D) symmetry,

however when run with a Cartesian grid the 3D test presented

here is probably the most difficult. In practice Athena cannot be

run with pressure identically zero, thus initially we set P0 = 10−6

everywhere. The problem is run until t f = 2 in a domain of size

(Lx,Ly,Lz) = (1,1,1) computed only in the positive octant with

2003 cells. The inner boundary condition in each dimension is

reflecting. At the outer boundary the density is evolved accord-

ing to the analytic solution for the preshock flow, the radial ve-

locity is held fixed at vr = −1, and the entropy is evolved identi-

cally to the density, i.e. P(RB,t) = P0(1+t/RB)2(1+γ), where RB is

the spherical radius of the boundary. Figure 31 shows contours

of the density at t = t f computed using second order reconstruc-

tion, the Roe flux, and the H-correction (see Appendix C). Note

the contours are smooth and spherical, with virtually no noise

in the postshock gas. Also shown is a scatter plot of ρ(r) ver-

sus r for every eighth grid cell in the computation. The solution

has the correct density jump and shock speed. The small scatter

behind the shock demonstrates that with the H-correction, the

shock remains sharp, smooth, and spherically symmetric. Near

the origin, the small dip in the density is a signature of wall-

heating (Noh 1987). These plots can be compared to figure 4.7

in LW, who ran the same test but in 2D cylindrical symmetry.

Only a few of the algorithms tested by LW were able to run the

test at all. The 3D results shown in figure 31 are similar to the

best result in LW (for PPM). Without the H-correction, Athena

still runs this test but the shock develops strong perturbations

along the grid directions, similar to but somewhat stronger than

those evident in the results for the VH-1 code shown in LW.

Finally, at low resolutions (less than 503), this test can cause

Athena to crash when the Roe solver is used, even with the H-

correction, unless the CFL number is reduced.

8.6. Three-Dimensional MHD

Linear wave convergence. We have argued that tests of MHD

codes must be multidimensional, yet the most quantitative tests

generally involve plane-wave (1D) solutions. Sensitive multi-

dimensional tests can be constructed by simply inclining the

plane wave to the grid at an arbitrary angle. Here, we measure

the convergence rate of Athena for each MHD wave family in

3D by initializing a plane waves solution at an oblique angle

to a grid of size (Lx,Ly,Lz) = (3,3/2,3/2), using the same ini-

tial conditions as in the 1D test described in §8.2 and a grid with

resolution of 2N×N×N cells, with N = 4,8,16,32,64 and 128.

The angle of the wavevector is chosen so that it does not lie

along the diagonal of a grid cell, that is there are no symmetries

in the fluxes in any direction. Details of the initialization of this

problem in 3D, which requires care to prevent grid noise along

the wave front, are given in GS08. Figure 32 shows the norm of

the L1 error vector for each wave family using both second- and

third-order reconstruction computed with the HLLD solver, as

a function of resolution along Lx. For comparison, the errors

for this same problem in 1D are shown as a dashed line. Again,

we see second order convergence in all wave families. The am-

plitude of the errors in the fast wave are higher than the 1D case

by about a factor of two, but for all other waves the errors are

comparable. The fact that the errors in 3D are not significantly

larger than those in 1D reflects the fidelity of the multidimen-

sional CTU+CT algorithm.

Circularly polarized Alfvén waves. We initialize a 1D plane

wave solution corresponding to the parameter values given by

T2000 on a grid of size (Lx,Ly,Lz) = (3,3/2,3/2), with the



20

wave front oblique to the grid, following the procedure given

in GS08. The technique for initializing the wave solution at

an oblique angle is similar to that used above for linear waves.

Figure 33 plots profiles of the traveling wave at different res-

olutions using third-order reconstruction, the CS limiters, and

the HLLD fluxes. Also shown are the norm of the L1 error

vector computed using both second- and third-order reconstruc-

tion. These results can be compared directly to the 2D results

shown in Figure 19. Once again, the solution in 3D compares

extremely favorably with the 2D solution, for example the L1

errors are nearly identical to the 2D errors for an adiabatic equa-

tion of state.

Advection of a field loop. On a 3D grid, we have found there

are two challenging versions of this test that can be attempted.

The first is the 3D analogue of the test described in §8.4, that is

a cylindrically symmetric field loop with Bz = 0, but with a con-

stant advection velocity along the grid diagonal so that vz 6= 0.

As discussed in §6, the numerical algorithm should maintain

Bz = 0, which can only be achieved if the code maintains the bal-

ance between the two nonzero terms in the z−component of the

induction equation, that is vz(∂Bx/∂x+∂By/∂y) = 0. In turn, for

constant vz, this requires the code to maintain the divergence-

free constraint properly. Since the 3D CTU+CT algorithm in

Athena has been designed to reduce exactly to the 2D version

for problems with symmetry in z, we obtain the identical re-

sults for the profile of the field loop in an x −y slice in this test

as shown in figure 21. Moreover, we confirm that Athena main-

tains Bz = 0 to round-off. A second sensitive test is to incline the

field loop at an oblique angle to the grid, and advect it with a

velocity along a perpendicular diagonal (see GS08 for details).

The resulting current density after advecting the loop twice

around the grid for both second- and third-order reconstruction

is shown in Figure 34 for a grid of size (Lx,Ly,Lz) = (1,1,1)

with 1283 grid points, and the HLLD fluxes. In this case, the

component of the field along the axis of the cylinder should re-

main zero. Although it is not possible to enforce this constraint

to round-off error (as was the case when the axis of the field

loop is parallel to a grid direction), nonetheless we find that

this component is zero to truncation error (see GS08).

MHD shocktube inclined to the grid. To demonstrate the

ability of the 3D algorithm to capture shocks and discontinu-

ities that propagate at an oblique angle to the mesh, we have

repeated the RJ2a test described in §8.2 on a 3D grid of size

(Lx,Ly,Lz) = (3/2,1/64,1/64), with the initial discontinuity

oblique to the grid, using a mesh of 768× 8× 8 grid points.

This gives an effective resolution along the direction of shock

propagation which is equivalent to the 1D test. Initializing the

discontinuity so as to avoid introducing waves transverse to the

interface requires care: for more detail see GS08. The results,

at a time of t f = 1 for the HLLD fluxes and second-order recon-

struction, are shown in Figure 35. Note that in 3D, each of the

shocks, contact and rotational discontinuities have been cap-

tured; there is excellent agreement between the profiles shown

in figure 35 and the equivalent 1D profiles shown in Figure 14.

Blast wave in a strongly magnetized medium. As a final 3D

test, we follow the growth of a strong, spherical blast wave in

a strongly magnetized medium. The initial conditions are iden-

tical to those given in §8.4, the only difference being that we

run the problem on a 3D grid of size (Lx,Ly,Lz) = (1,1.5,1),

with 200×300×200 grid points. Figure 36 shows slices of the

density and magnetic pressure taken at t = 0.2 computed using

the HLLD solver and third-order reconstruction. The primary

difference in the solution compared to 2D is that the size of the

bubble grows more slowly in 3D, due to the increased adiabatic

cooling in 3D diverging flow. The contours are all symmet-

ric and smooth, with no visible asymmetries introduced by the

grid.

9. SUMMARY

We have described Athena, a new code for astrophysical

MHD. The code implements algorithms based on higher-order

Godunov methods, with a finite-volume discretization to evolve

volume-averages of the mass, momentum, and total energy den-

sity, and a CT algorithm (finite-area) discretization to evolve

area-averages of the face-centered components of the magnetic

field. This combination conserves the total mass, momentum,

energy, and magnetic flux through the grid exactly. Such con-

servative algorithms are an essential ingredient of AMR meth-

ods.

The mathematical foundation of the 2D and 3D algorithms

in Athena are described more fully in GS05 and GS08. In this

paper, we have focused on the detailed implementation of the

methods into a functioning computer code. Step-by-step de-

scriptions are provided of the multidimensional integrator for

MHD in 2D and 3D (based on the CTU algorithm of Colella

1990), the 1D reconstruction algorithms (based on an exten-

sion of the PPM algorithm of CW to multidimensional MHD),

and a variety of 1D Riemann solvers used to compute upwind

fluxes. We have emphasized the importance of using dimen-

sionally unsplit integrators for MHD, the advantages of using

the staggered grid formulation of CT (which requires tech-

niques for constructing edge-averaged, corner-centered emfs

from area-averaged face-centered electric fields returned by the

Riemann solver), and the need to test MHD codes with multi-

dimensional problems in order to reveal errors associated with

the divergence-free constraint.

An extensive series of test problems in 1D, 2D, and 3D for

both hydrodynamics and MHD have been presented. These

tests, and others published on the web, should be useful to oth-

ers developing and testing codes for astrophysical MHD. The

tests show Athena is second-order accurate in space and time

for smooth solutions in all MHD wave families, even in multi-

dimensions. We have shown that an advantage of directionally

unsplit methods is that they preserve symmetries inherent in the

flow. The 2D CTU+CT method described here reduces identi-

cally to the 1D algorithm for plane-parallel grid-aligned flows.

Similarly, the 3D CTU+CT method reduces exactly to either

the 2D or 1D methods for plane-parallel, grid-aligned flows, ac-

cording to the appropriate symmetry. We have exploited such

symmetries to design a sensitive test of the appropriate stencil

for maintaining the divergence-free constraint. A planar field

loop, advected in a fully 3D velocity field, must remain planar.
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Since the evolution of the component of the field normal to the

plane of the loop is governed by a term proportional to ∇·B, the

loop will only remain planar if the divergence-free constraint is

satisfied exactly on the appropriate stencil.

In addition to the CTU+CT integrator described in this pa-

per, an unsplit integrator based on the method described by

Falle (1981) and similar to the MUSCL-Hancock scheme de-

scribed by van Leer (2006) has been implemented in Athena.

The details of this VL+CT method, including tests in 3D and

comparisons to the CTU+CT method described here, are given

in SG08.

The primary motivation for developing Athena has been the

need to adopt static and adaptive mesh refinement (SMR and

AMR) to resolve flows over a wide range of length scales in

various astrophysical applications of interest in our research

groups (such as magnetized accretion flows, and gravitational

collapse and fragmentation in dense phases of the ISM) In §8.4

we have shown the results of tests of AMR calculations of

the Rayleigh-Taylor instability with Athena. Both SMR and

AMR add considerable complexity to the algorithms, requiring

special care to conserve mass, momentum, energy, and mag-

netic flux at fine/coarse grid boundaries. The implementation

of SMR and AMR with the CTU+CT integrator in Athena will

be given in a future communication.

Other extensions to Athena include adding gravitational

source terms for both a static gravitational potential and self-

gravity (Gardiner & Stone, in preparation), the shearing box

(Gardiner & Stone 2006), anisotropic heat conduction (Par-

rish & Stone 2005; 2007), and transfer of ionizing radiation

(Krumholz et al. 2007). Many more are either underway (curvi-

linear coordinates, relativistic MHD, full transport radiation

MHD), or planned for the future.

Athena has moved beyond the developmental phase, and is

now being used for a variety of applications, including stud-

ies of the MRI in the shearing box (Gardiner & Stone 2006),

colliding winds in close binaries (Lemaster et al. 2007), de-

cay of hydrodynamical turbulence in the shearing box (Shen

et al. 2006), the magnetic Rayleigh-Taylor instability (Stone

& Gardiner 2007a; 2007b), shock interactions with magnetized

clouds (Shin et al. 2007), and the decay of supersonic turbu-

lence in magnetized molecular clouds (Lemaster & Stone, in

preparation).

The Athena code has been made publicly available, and can

be downloaded from the web, along with extensive documenta-

tion. Additional test problems beyond those presented here are

also described on the web. We are confident that Athena will

become the workhorse for our own applications; it is hoped that

the description of the algorithms provided in this paper, along

with the public version of the code provided on the web, will

be useful to others for solving many problems in astrophysical

fluid dynamics.
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TABLE 1

PERFORMANCE
1

OF ATHENA IN 3D ON A 2.2 GHZ OPTERON PROCESSOR

physics Roe solver HLLC solver HLLD solver

isothermal hydro 328 340 -

adiabatic hydro 224 242 -

isothermal MHD 108 - 124

adiabatic MHD 85.9 - 97.6
1 measured in thousands of cell updates per cpu second.

TABLE 2

LEFT- AND RIGHT-STATES FOR 1D RIEMANN PROBLEMS

Test ρL vx,L vy,L vz,L PL By,L Bz,L ρR vx,R vy,R vz,R PR By,R Bz,R

Sod 1.0 0 0 0 1.0 - - 0.125 0 0 0 0.1 - -

Shu-Osher 3.857143 2.629369 0 0 10.3333 - - 1 +0.2sin(5πx) 0 0 0 1 - -

Einfeldt-1203 1.0 -2.0 0 0 0.4 - - 1.0 2.0 0 0 0.4 - -

Brio & Wu 1.0 0 0 0 1.0 1.0 0 0.125 0 0 0 0.1 -1.0 0

Torrilhon 1.0 0 0 0 1.0 1.0 0 0.2 0 0 0 0.2 cos(3) sin(3)

RJ2a 1.08 1.2 0.01 0.5 0.95 3.6 2 1 0 0 0 1 4 2

RJ4d 1 0 0 0 1 0 0 0.3 0 0 1 0.2 1 0
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FIG. 1.— (left) Centering of volume-averaged conserved variables U and area-averaged components of magnetic field B on the grid. (right) Centering of time-

and area-averaged components of the fluxes of U, and the time- and line-averaged emfs on the grid.
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FIG. 2.— (left) An example of piecewise linear reconstruction of conserved variables within each cell to compute the left- and right-states that define a Riemann

problem at the cell interface. The slopes chosen within each cell are determined by limiters which depend on neighboring cell-center values (not shown) designed
to prevent the introduction of new extrema. (right) Schematic solution of an MHD Riemann problem in spacetime, consisting of six intermediate states bounded by

the maximum and minimum wavespeeds. The flux through the interface is the time integral of the solution along the vertical line x = xi−1/2 , in this case given by the

quantities in state q∗3 . In MHD, some characteristics can be degenerate, meaning that the number of intermediate states depends on the problem.

FIG. 3.— Flow chart for integration in 1D. The dashed box groups functions that are part of the 1D integrator (described in §4.1)
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FIG. 4.— Flow chart for integration in 2D. The dashed box groups functions that are part of the 2D integrator (described in 5.1). These steps are schematic, with

many details omitted. The flow chart for the 3D integrator is similar.
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FIG. 5.— A 2D slice in the x − y plane showing the centering of the fluxes of conserved variables in the x− and y−directions (F and G respectively), and the

z−component of the emf centered at the cell corner Ez. The CT algorithm used in Athena requires cell-centered reference states for the emf E r
z to compute the

gradients (δE/δx) and (δE/δy) which are located between the center of the cell faces and the cell corner.
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FIG. 6.— Weak scaling of the efficiency of Athena on a Cray XT-3, using grids with either 323 (blue lines), or 643 (red lines) cells per processor, and either

one (SN) or two (VN) processors per node. The quantity χ measures the ratio of the number of cells communicated to the number updated per MPI process. The
efficiency remains flat well beyond 104 processors, indicating excellent weak scaling.
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FIG. 7.— Convergence in the norm of the L1 error vector for sound waves, shear waves associated with each transverse component of velocity, and the entropy
(contact) wave after propagating a distance of one wavelength in 1D. Solutions are computed using third-order spatial reconstruction, and either the Roe fluxes (solid

line), or HLLE fluxes (dotted line). The errors for solutions computed with the HLLC fluxes are identical to solutions computed with the Roe fluxes.
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FIG. 8.— Density, pressure, velocity, and specific internal energy (scaled by (γ − 1)) for the Sod shocktube test at t = 0.25, computed with 100 grid points,

third-order spatial reconstruction, and the HLLC fluxes. The solid line is the analytic solution.
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FIG. 9.— Density at t = 0.038 in the two-interacting blast wave test, computed with 400 grid points, third-order spatial reconstruction, and the HLLC fluxes. The

solid line is a reference solution computed with 9600 grid points.
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FIG. 10.— Density at t = 0.47 in the Shu-Osher Riemann problem, computed with 200 (squares) and 800 (solid line) grid points, third-order spatial reconstruction,

and the HLLC fluxes.
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FIG. 11.— Density, pressure, velocity, and specific internal energy (scaled by (γ −1)) for the Einfeldt strong rarefaction test at t = 0.1, computed with 200 grid

points, second-order spatial reconstruction, and the HLLC fluxes.
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FIG. 12.— Convergence in the norm of the L1 error vector for fast, Alfvén, slow, and contact waves after propagating a distance of one wavelength in 1D.

Solutions are computed using third-order spatial reconstruction, and either the Roe fluxes (solid line), HLLD fluxes (dashed line), or HLLE fluxes (dotted line).
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FIG. 13.— Density, pressure, velocity components, transverse component of the magnetic field, and specific internal energy (scaled by (γ −1)) for the Brio &

Wu shocktube problem at t = 0.08, computed with 400 grid points, second-order spatial reconstruction, and the Roe fluxes. The solid line is a reference solution

computed with 104 grid points.
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FIG. 14.— Density, pressure, total energy, all three components of velocity, transverse components and rotation angle Φ = tan−1(Bz/By) of the magnetic field for

the MHD Riemann problem RJ2a at t = 0.2, computed with 512 grid points, third-order spatial reconstruction, and the Roe fluxes.



36

FIG. 15.— Density, pressure, total energy, all three components of velocity, transverse components and rotation angle Φ = tan−1(Bz/By) of the magnetic field for

the MHD Riemann problem RJ4d at t = 0.16, computed with 512 grid points, third-order spatial reconstruction, and the HLLD fluxes.
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FIG. 16.— Contours of the density at t = 0.2 for the double Mach reflection test. From top to bottom, the solutions are computed with second order spatial

reconstruction at low and high resolution, and third order spatial reconstruction at low and high resolution. Here, low resolution uses a grid of 260× 80 cells, and

high resolution uses a grid of 520× 160 cells. All solutions are computed with Roe fluxes and the H-correction.
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FIG. 17.— Contours of the density at t = 0.045 (left) and t = 2.5 (right) for the implosion test of Liska & Wendroff. In each case, 31 contours are shown using a
stepsize of 0.025, starting at a minimum value of 0.125 (at t = 0.045) and 0.35 (at t = 2.5). The solution is computed using third order spatial reconstruction and the

HLLC fluxes, on a grid of 400× 400 cells.
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FIG. 18.— Color image (left) and contours (right) of the density at t = 8.5 in a single mode hydrodynamic Rayleigh-Taylor instability in 2D. Only a single contour

is shown at ρ = 1.5 in order to trace the contact discontinuity between the heavy and light fluids. Colors in the image correspond to density values of 0.9 (purple) to

2.1 (red). The solution is computed using third order spatial reconstruction and the HLLC fluxes on a grid of 200× 400 cells.
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FIG. 19.— Profiles of the transverse component of the magnetic field (labelled B2) for both traveling (left) and standing (right) circularly polarized Alfvén

waves, at a time equal to five wave periods, computed on a grid with 2N ×N cells, where N = 64 (solid line), 32 (dotted), 16 (dashed line), 8 (dot-dash line), and 4

(dot-dot-dot-dashed line). Each solution is computed using third order spatial reconstruction and the Roe fluxes.
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FIG. 20.— Convergence of the norm of the L1 error vector for traveling circularly polarized Alfvén waves, after propagating a distance equal to one wavelength,
using an isothermal equation of state. Points marked by squares denote second order spatial reconstruction, triangles denote third order spatial reconstruction. The

solid lines are solutions computed in 1D, the dotted lines are solutions computed in 2D. The dashed line shows the norm of the L1 error vector for a 2D solution

using second order spatial reconstruction computed with an adiabatic equation of state. Also shown is a dashed line with slope -2 for comparison.
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FIG. 21.— Magnetic field lines (left) and contours of the z−component of the current density (right) at t = 0 (top row) and at t = 2 after advection of the loop twice

around the grid (bottom row). The solution is computed using second order spatial reconstruction with the Roe fluxes on a grid of 256× 128 cells.
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FIG. 22.— Contours of selected variables at t f = 1/2 in the adiabatic Orszag-Tang vortex test, computed using a grid of 192×192 cells, third-order reconstruction,

and Roe fluxes. Thirty equally spaced contours between the minimum and maximum are used for each plot. The horizontal lines in the panel showing pressure

correspond to the locations of the slices shown in figure 23.
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FIG. 23.— Horizontal slices of the pressure at t f = 1/2 in the adiabatic Orszag-Tang vortex test taken at y = 0.3125 (top) and y = 0.427 (bottom). Squares

correspond to the solution on a 192× 192 grid, while the solid line is for a 5122 grid.
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FIG. 24.— Contours of selected variables at t f = 1/2 in the isothermal Orszag-Tang vortex test, computed using a grid of 192×192 cells, third-order reconstruction,

and Roe fluxes. Thirty equally spaced contours between the minimum and maximum are used for each plot.
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FIG. 25.— Contours of selected variables at t f = 0.15 in the adiabatic rotor test, computed using a grid of 400× 400 cells, third-order reconstruction, and Roe

fluxes. Thirty equally spaced contours between the minimum and maximum are used for each plot. The horizontal and vertical lines in the panel showing magnetic

pressure correspond to the locations of the slices shown in figure 26.
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FIG. 26.— Horizontal slice of By taken at y = 0 (top), and vertical slice of Bx taken at x = 0 (bottom) at t f = 0.15 in the rotor test. The solid line is the same data as

the squares.
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FIG. 27.— (Left) Grayscale image of the concentration of a passively-advected contaminant at late time in the magnetic Rayleigh-Taylor instability. (Right) Grid

blocks used to resolve the interface using AMR. The bottom row shows the same quantities, but for a calculation in which the magnetic field strength is zero (i.e.,

hydrodynamics).
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FIG. 28.— Contours of selected variables at t f = 0.2 in the adiabatic blast wave test, computed using a grid of 200×300 cells, third-order reconstruction, and either
HLLC (hydrodynamics, top row) or HLLD (MHD with initial B0 = 1, bottom row) fluxes. Thirty equally spaced contours between the minimum and maximum are

used for each plot.
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FIG. 29.— Contours of the density at t f = 1 in the hydrodynamic (left) and MHD (right) adiabatic blast test. Fifty equally spaced contours between the minimum

and maximum are used for each plot.
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FIG. 30.— Contours of selected variables at t f = 0.2 in the isothermal blast wave test, computed using a grid of 200× 300 cells, third-order reconstruction, and

HLLD fluxes. The top row corresponds to an initial B0 = 1, while the bottom row uses an initial B0 = 10. Thirty equally spaced contours between the minimum and
maximum are used for each plot. Outgoing waves have already crossed and re-entered the domain by t = 0.2 in the strong field case, thus the contours in the ambient

medium are due to interaction of these waves rather than oscillations introduced by the algorithm.
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FIG. 31.— (Left.) Contours of the density in the spherical hydrodynamical Noh strong shock test at t = 2. Thirty-one equally spaced contours between ρ = 4 and

64 are shown. (Right.) Scatter plot of the density versus spherical radius at t = 2.
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FIG. 32.— Convergence in the norm of the L1 error vector for fast, Alfvén, slow, and contact waves after propagating a distance of one wavelength at an oblique

angle across a 3D grid of size 2N ×N ×N.. Solutions are computed using the HLLD fluxes, and either second-order (solid line) or third-order (dashed line) spatial

reconstruction. The dotted line shows the errors for second-order spatial reconstruction in 1D for reference.



53

10 100

0.001

0.01

N

FIG. 33.— (Top.) Profiles of the transverse component of the magnetic field for traveling circularly polarized Alfvén waves, at a time equal to five wave periods,

computed on a grid with 2N ×N ×N cells, where N = 64 (solid line), 32 (dotted), 16 (dashed line), and 8 (dot-dash line). Each solution is computed using third

order spatial reconstruction and the HLLD fluxes. (Bottom.) Convergence of the norm of the L1 error vector for traveling circularly polarized Alfvén waves, after

propagating a distance equal to one wavelength, for second-order (solid line) and third-order (dashed line) spatial reconstruction.
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FIG. 34.— Current density in an inclined field loop being advected along the diagonal of a 3D grid at t f = 2 (after twice around the grid). The left panel shows the

solution for second-order reconstruction, the right for third-order.

FIG. 35.— Slice through a 3D grid of selected variables for the RJ2a shocktube initialized with the interface oblique to the grid at t = 0.2. This is a fully 3D

version of the 1D test shown in figure 14.
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FIG. 36.— Contours of selected variables at t f = 0.2 in a 2D slice in the x − y plane at z = 0 (through the center of the grid) in the 3D adiabatic blast wave

test, computed using a grid of 200× 300× 200 cells, third-order reconstruction, and the HLLD fluxes. Thirty equally spaced contours between the minimum and

maximum are used for each plot.
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APPENDIX

EIGENSYSTEMS IN THE PRIMITIVE VARIABLES

This appendix gives explicit forms for the eigenvalues and eigenvectors of the matrix A resulting from linearizing the dynamical

equations as W,t = A(W)W,x, where W is a vector composed of the primitive variables in 1D. These eigensystems are needed to

convert between the primitive and the characteristic variables in the reconstruction algorithms described in §4.2.

Adiabatic Hydrodynamics

For adiabatic hydrodynamics, W = (ρ,vx,vy,vz,P), and the matrix A is

A =











vx ρ 0 0 0

0 vx 0 0 1/ρ
0 0 vx 0 0

0 0 0 vx 0

0 ρa2 0 0 vx











, (A1)

where a2 = γP/ρ (a is the adiabatic sound speed). The five eigenvalues of this matrix in ascending order are

λ = (vx −a,vx,vx,vx,vx +a). (A2)

The corresponding right-eigenvectors are the columns of the matrix

R =











1 1 0 0 1

−a/ρ 0 0 0 a/ρ
0 0 1 0 0

0 0 0 1 0

a2 0 0 0 a2











, (A3)

while the left-eigenvectors are the rows of the matrix

L =











0 −ρ/(2a) 0 0 1/(2a2)

1 0 0 0 −1/a2

0 0 1 0 0

0 0 0 1 0

0 ρ/(2a) 0 0 1/(2a2)











. (A4)

Isothermal Hydrodynamics

For isothermal hydrodynamics, W = (ρ,vx,vy,vz), and the matrix A is

A =







vx ρ 0 0

C2/ρ vx 0 0

0 0 vx 0

0 0 0 vx






, (A5)

where C is the isothermal sound speed. The four eigenvalues of this matrix in ascending order are

λ = (vx −C,vx,vx,vx +C). (A6)

The corresponding right-eigenvectors are the columns of the matrix given in equation (A3), with the second column and fifth row

dropped. The left-eigenvectors are the rows of the matrix

L =







1/2 −ρ/(2C) 0 0

0 0 1 0

0 0 0 1

1/2 ρ/(2C) 0 0






. (A7)

Adiabatic Magnetohydrodynamics

For adiabatic MHD, W = (ρ,vx,vy,vz,P,by,bz), where b = B/
√

4π, and the matrix A is

A =



















vx ρ 0 0 0 0 0

0 vx 0 0 1/ρ by/ρ bz/ρ
0 0 vx 0 0 −bx/ρ 0

0 0 0 vx 0 0 −bx/ρ
0 ρa2 0 0 vx 0 0

0 by −bx 0 0 vx 0

0 bz 0 −bx 0 0 vx



















. (A8)
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where a2 = γP/ρ. The seven eigenvalues of this matrix in ascending order are

λ = (vx −C f ,vx −CAx,vx −Cs,vx,vx +Cs,vx +CAx,vx +C f ) (A9)

where the fast- and slow-magnetosonic wave speeds are given by

C2
f ,s =

1

2

(

[

a2 +C2
A

]

±
√

[

a2 +C2
A

]2 −4a2C2
Ax

)

(A10)

(with C f [Cs] given by the +[−] sign). The Alfvén speeds are given by

C2
A = (b2

x +b2
y +b2

z )/ρ, C2
Ax = b2

x/ρ. (A11)

The corresponding right-eigenvectors are the columns of the matrix

R =



















ρα f 0 ραs 1 ραs 0 ρα f

−C f f 0 −Css 0 Css 0 C f f

Qsβy −βz −Q f βy 0 Q f βy βz −Qsβy

Qsβz βy −Q f βz 0 Q f βz −βy −Qsβz

ρa2α f 0 ρa2αs 0 ρa2αs 0 ρa2α f

Asβy −βzS
√

ρ −A f βy 0 −A f βy −βzS
√

ρ Asβy

Asβz βyS
√

ρ −A f βz 0 −A f βz βyS
√

ρ Asβz



















, (A12)

where S = sign(bx), and

C f f = C f α f , Css = Csαs, (A13)

Q f = C f α f S, Qs = CsαsS, (A14)

A f = aα f

√
ρ, As = aαs

√
ρ, (A15)

α2
f =

a2 −C2
s

C2
f −C2

s

, α2
s =

C2
f −a2

C2
f −C2

s

, (A16)

βy =
by

√

b2
y +b2

z

, βz =
bz

√

b2
y +b2

z

. (A17)

In the degenerate case where CA = CAx = a, so that C f = Cs, then equation (A16) becomes α f = 1 and αs = 0. The left-eigenvectors are

the rows of the matrix

L =



















0 −N fC f f N f Qsβy N f Qsβz N f α f /ρ N f Asβy/ρ N f Asβz/ρ
0 0 −βz/2 βy/2 0 −βzS/(2

√
ρ) βyS/(2

√
ρ)

0 −NsCss −NsQ f βy −NsQ f βz Nsαs/ρ −NsA f βy/ρ −NsA f βz/ρ
1 0 0 0 −1/a2 0 0

0 NsCss NsQ f βy NsQ f βz Nsαs/ρ −NsA f βy/ρ −NsA f βz/ρ
0 0 βz/2 −βy/2 0 −βzS/(2

√
ρ) βyS/(2

√
ρ)

0 N f C f f −N f Qsβy −N f Qsβz N f α f /ρ N f Asβy/ρ N f Asβz/ρ



















, (A18)

where

N f = Ns =
1

2a2
(A19)

are normalization factors for the eigenvectors corresponding to the fast- and slow-magnetosonic waves respectively.

Isothermal Magnetohydrodynamics

For isothermal MHD, W = (ρ,vx,vy,vz,by,bz), where b = B/
√

4π, and the matrix A is

A =















vx ρ 0 0 0 0

C2/ρ vx 0 0 by/ρ bz/ρ
0 0 vx 0 −bx/ρ 0

0 0 0 vx 0 −bx/ρ
0 by −bx 0 vx 0

0 bz 0 −bx 0 vx















. (A20)

The six eigenvalues of this matrix in ascending order are

λ = (vx −C f ,vx −CAx,vx −Cs,vx +Cs,vx +CAx,vx +C f ), (A21)
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where the fast and slow-magnetosonic wave speeds are given by equation (A10) (with a replaced by the isothermal sound speed C

here and throughout), and the Alfvén speeds are given by equation (A11). The corresponding right-eigenvectors are the columns of

the matrix given in equation (A10), with the fifth row and fourth column dropped. The left-eigenvectors are the rows of the matrix

L =















N f α f C
2/ρ −N fC f f N f Qsβy N f Qsβz N f Asβy/ρ N f Asβz/ρ

0 0 −βz/2 βy/2 −βzS/(2
√

ρ) βyS/(2
√

ρ)

NsαsC
2/ρ −NsCss −NsQ f βy −NsQ f βz −NsA f βy/ρ −NsA f βz/ρ

NsαsC
2/ρ NsCss NsQ f βy NsQ f βz −NsA f βy/ρ −NsA f βz/ρ

0 0 βz/2 −βy/2 −βzS/(2
√

ρ) βyS/(2
√

ρ)

N f α f C
2/ρ N fC f f −N f Qsβy −N f Qsβz N f Asβy/ρ N f Asβz/ρ















, (A22)

where

N f = Ns =
1

2C2
(A23)

are normalization factors for the eigenvectors corresponding to the fast- and slow-magnetosonic waves respectively.

EIGENSYSTEMS IN THE CONSERVED VARIABLES

This appendix gives explicit forms for the eigenvalues and eigenvectors of the matrix A resulting from linearizing the dynamical

equations as U,t = AU,x, where U is a vector composed of the conserved variables. These eigensystems are needed to construct the

fluxes of the conserved quantities using Roe’s method (see §4.3.2).

Adiabatic Hydrodynamics

For adiabatic hydrodynamics, U = (ρ,ρvx,ρvy,ρvz,E), and the matrix A is

A =











0 1 0 0 0

−v2
x +γ′v2/2 −(γ −3)vx −γ′vy −γ′vz γ′

−vxvy vy vx 0 0

−vxvz vz 0 vx 0

−vxH +γ′vxv2/2 −γ′v2
x +H −γ′vxvy −γ′vxvz γvx











(B1)

where the enthalpy H = (E +P)/ρ, v2 = v ·v, and γ′ = (γ −1). The five eigenvalues of this matrix in ascending order are

λ = (vx −a,vx,vx,vx,vx +a), (B2)

where a2 = (γ −1)(H −v2/2) = γP/ρ (a is the adiabatic sound speed). The corresponding right-eigenvectors are the columns of the

matrix

R =











1 0 0 1 1

vx −a 0 0 vx vx +a

vy 1 0 vy vy

vz 0 1 vz vz

H −vxa vy vz v2/2 H +vxa











, (B3)

The left-eigenvectors are the rows of the matrix

L =











Na(γ′v2/2 +vxa) −Na(γ′vx +a) −Naγ
′vy −Naγ

′vz Naγ
′

−vy 0 1 0 0

−vz 0 0 1 0

1 −Naγ
′v2 γ′vx/a2 γ′vy/a2 γ′vz/a2 −γ′/a2

Na(γ′v2/2 −vxa) −Na(γ′vx −a) −Naγ
′vy −Naγ

′vz Naγ
′











, (B4)

where Na = 1/(2a2). These are identical to those given by Roe (1981), except the second and third eigenvectors (corresponding to

the transport of shear motion) have been rescaled to avoid singularities.

Isothermal Hydrodynamics

For isothermal hydrodynamics, U = (ρ,ρvx,ρvy,ρvz), and the matrix A is

A =







0 1 0 0

−v2
x +C2 2vx 0 0

−vxvy vy vx 0

−vxvz vz 0 vx






(B5)

where C is the isothermal sound speed. The four eigenvalues of this matrix in ascending order are

λ = (vx −C,vx,vx,vx +C). (B6)
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The corresponding right-eigenvectors are the columns of the matrix given in equation (B3) with the fifth row and fourth column

dropped, and a replaced by C throughout. The left-eigenvectors are the rows of the matrix

L =







(1 +vx/C)/2 −1/(2C) 0 0

−vy 0 1 0

−vz 0 0 1

(1 −vx/C)/2 1/(2C) 0 0






. (B7)

Adiabatic Magnetohydrodynamics

For adiabatic MHD, U = (ρ,ρvx,ρvy,ρvz,E,by,bz), where b = B/
√

4π, and the matrix A is

A =



















0 1 0 0 0 0 0

−v2
x +γ′v2/2 −X ′ −(γ −3)vx −γ′vy −γ′vz γ′ −byY

′ −bzY
′

−vxvy vy vx 0 0 −bx 0

−vxvz vz 0 vx 0 0 −bx

A51 A52 A53 A54 γvx A56 A57

(bxvy −byvx)/ρ by/ρ −bx/ρ 0 0 vx 0

(bxvz −bzvx)/ρ bz/ρ 0 −bx/ρ 0 0 vx



















(B8)

where v2 = v ·v, and

A51 = −vxH +γ′vxv2/2 +bx(bxvx +byvy +bzvz)/ρ−vxX
′ (B9)

A52 = −γ′v2
x +H −b2

x/ρ (B10)

A53 = −γ′vxvy −bxby/ρ (B11)

A54 = −γ′vxvz −bxbz/ρ (B12)

A56 = −(bxvy +byvxY
′) (B13)

A57 = −(bxvz +bzvxY
′) (B14)

X =
[

(by,L −by,R)2 + (bz,L −bz,R)2
]

/(2(
√

ρL +
√

ρR)) (B15)

Y =
ρL +ρR

2ρ
. (B16)

In these equations γ′ = (γ − 1), X ′ = (γ − 2)X , Y ′ = (γ − 2)Y , and H = (E + P + b2/2)/ρ. The factors X and Y are introduced by

the averaging scheme defined by equation (56); thus the matrix A and its eigenvectors depend explicitly on our choice of the Roe

averaging scheme. The seven eigenvalues of this matrix in ascending order are

λ = (vx −C f ,vx −CAx,vx −Cs,vxvx +Cs,vx +CAx,vx +C f ) (B17)

where the fast and slow-magnetosonic wave speeds are given by

C2
f ,s =

1

2

(

[

ã2 +C̃2
A

]

±
√

[

ã2 +C̃2
A

]2 −4ã2C2
Ax

)

(B18)

(with C f [Cs] given by the +[−] sign), and

ã2 = γ′
(

H −v2/2 −b2/ρ
)

−X ′ (B19)

C̃2
A = C2

Ax +b∗2
⊥ /ρ C2

Ax = b2
x/ρ b∗2

⊥ = (γ′ −Y ′)(b2
y +b2

z ). (B20)

The corresponding right-eigenvectors are the columns of the matrix

R =



















α f 0 αs 1 αs 0 α f

Vx f −C f f 0 Vxs −Css vx Vxs +Css 0 Vx f +C f f

Vy f +Qsβ
∗
y −βz Vys −Q f β

∗
y vy Vys +Q f β

∗
y βz Vy f −Qsβ

∗
y

Vz f +Qsβ
∗
z βy Vzs −Q f β

∗
z vz Vzs +Q f β

∗
z −βy Vz f −Qsβ

∗
z

R51 R52 R53 R54 R55 R56 R57

Asβ
∗
y /ρ −βzS/

√
ρ −A f β

∗
y /ρ 0 −A f β

∗
y /ρ −βzS/

√
ρ Asβ

∗
y /ρ

Asβ
∗
z /ρ βyS/

√
ρ −A f β

∗
z /ρ 0 −A f β

∗
z /ρ βyS/

√
ρ Asβ

∗
z /ρ



















(B21)

where the C f f ,ss,Q f ,s,A f ,s,α f ,s and βy,z are given by equation (A13) to (A17) (with a replaced by ã), Vi f ,s = viα f ,s (i = x,y,z), and

R51 = α f

(

H ′ −vxC f

)

+Qs(vyβ
∗

y +vzβ
∗

z ) +Asb
∗

⊥β∗2
⊥ /ρ, (B22)

R52 = −(vyβz −vzβy) = −R56, (B23)
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R53 = αs

(

H ′ −vxCs

)

−Q f (vyβ
∗

y +vzβ
∗

z ) −A f b
∗

⊥β∗2
⊥ /ρ, (B24)

R54 = v2/2 +X ′/γ′ (B25)

R55 = αs

(

H ′ +vxCs

)

+Q f (vyβ
∗

y +vzβ
∗

z ) −A f b
∗

⊥β∗2
⊥ /ρ, (B26)

R57 = α f

(

H ′ +vxC f

)

−Qs(vyβ
∗

y +vzβ
∗

z ) +Asb
∗

⊥β∗2
⊥ /ρ. (B27)

where H ′ = H −b2/ρ. In these equations

β∗

y = by/|b∗

⊥|, β∗

z = bz/|b∗

⊥|, β∗2
⊥ = β∗2

y +β∗2
z . (B28)

The left-eigenvectors are the rows of the matrix

L =





















L11 −V̄x f −Ĉ f f −V̄y f + Q̂sQ
∗
y −V̄z f + Q̂sQ

∗
z ᾱ f ÂsQ

∗
y − ᾱ f by ÂsQ

∗
z − ᾱ f bz

L21 0 −βz/2 βy/2 0 −βzS
√

ρ/2 βyS
√

ρ/2

L31 −V̄xs −Ĉss −V̄ys − Q̂ f Q
∗
y −V̄zs − Q̂ f Q

∗
z ᾱs −Â f Q

∗
y − ᾱsby −Â f Q

∗
z − ᾱsbz

L41 2v̄x 2v̄y 2v̄z −γ′/a2 2b̄y 2b̄z

L51 −V̄xs +Ĉss −V̄ys + Q̂ f Q
∗
y −V̄zs + Q̂ f Q

∗
z ᾱs −Â f Q

∗
y − ᾱsby −Â f Q

∗
z − ᾱsbz

L61 0 βz/2 −βy/2 0 −βzS
√

ρ/2 βyS
√

ρ/2

L71 −V̄x f +Ĉ f f −V̄y f − Q̂sQ
∗
y −V̄z f − Q̂sQ

∗
z ᾱ f ÂsQ

∗
y − ᾱ f by ÂsQ

∗
z − ᾱ f bz





















(B29)

where a symbol over the quantity q denotes normalization via q̄ = γ′q/(2a2) or q̂ = q/(2a2). In addition,

Q∗

y = β∗

y /β∗2
⊥ , Q∗

z = β∗

z /β∗2
⊥ , (B30)

and

L11 = ᾱ f (v
2 −H ′) +Ĉ f f (C f +vx) − Q̂s(vyQ∗

y +vzQ
∗

z ) − Âs|b⊥|/ρ, (B31)

L21 = (vyβz −vzβy)/2 = −L61 (B32)

L31 = ᾱs(v
2 −H ′) +Ĉss(Cs +vx) + Q̂ f (vyQ∗

y +vzQ
∗

z ) + Â f |b⊥|/ρ, (B33)

L41 = 1 − v̄2 +2X̂ ′ (B34)

L51 = ᾱs(v
2 −H ′) +Ĉss(Cs −vx) − Q̂ f (vyQ∗

y +vzQ
∗

z ) + Â f |b⊥|/ρ, (B35)

L71 = ᾱ f (v
2 −H ′) +Ĉ f f (C f −vx) + Q̂s(vyQ∗

y +vzQ
∗

z ) − Âs|b⊥|/ρ, (B36)

Isothermal Magnetohydrodynamics

For isothermal MHD, U = (ρ,ρvx,ρvy,ρvz,by,bz), where b = B/
√

4π, and the matrix A is

A =















0 1 0 0 0 0

−v2
x +C2 +X 2vx 0 0 byY bzY

−vxvy vy vx 0 −bx 0

−vxvz vz 0 vx 0 −bx

(bxvy −byvx)/ρ by/ρ −bx/ρ 0 vx 0

(bxvz −bzvx)/ρ bz/ρ 0 −bx/ρ 0 vx















(B37)

where C is the isothermal sound speed, and X and Y are given by equations (B15) and (B16). The six eigenvalues of this matrix in

ascending order are

λ = (vx −C f ,vx −CAx,vx −Cs,vx +Cs,vx +CAx,vx +C f ) (B38)

where the fast- and slow-magnetosonic wave speeds are given by

C2
f ,s =

1

2

(

[

C̃2 +C̃2
A

]

±
√

[

C̃2 +C̃2
A

]2
−4C̃2C2

Ax

)

(B39)

(with C f [Cs] given by the +[−] sign), where C̃2 = C2 +X , and the Alfvén speeds are

C̃2
A = C2

Ax +b∗2
⊥ /ρ, C2

Ax = b2
x/ρ, b∗2

⊥ = Y (b2
y +b2

z ). (B40)

The corresponding right-eigenvectors are the columns of the matrix given by equation (B21) with the fifth row and fourth column

dropped, and a replaced by C̃ in the definitions given in equations (A15)-(A16). The left-eigenvectors are the rows of the matrix

L =

















L11 −Ĉ f f Q̂sQ
∗
y Q̂sQ

∗
z ÂsQ

∗
y ÂsQ

∗
z

(vyβz −vzβy)/2 0 −βz/2 βy/2 −βzS
√

ρ/2 βyS
√

ρ/2

L31 −C̄ss −Q̄ f Q
∗
y −Q̄ f Q

∗
z −Ā f Q

∗
y −Ā f Q

∗
z

L41 C̄ss Q̄ f Q
∗
y Q̄ f Q

∗
z −Ā f Q

∗
y −Ā f Q

∗
z

−(vyβz −vzβy)/2 0 βz/2 −βy/2 −βzS
√

ρ/2 βyS
√

ρ/2

L61 Ĉ f f −Q̂sQ
∗
y −Q̂sQ

∗
z ÂsQ

∗
y ÂsQ

∗
z

















(B41)
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where C f f ,ss,Q f ,s, and A f ,s are given by equations (A13)-(A15) (with a replaced by C), βy,z are given by equation (A17), Q∗
y,z are

given by equation (B30), and

L11 = Ĉ f f (C f +vx) − Q̂s(vyQ∗

y +vzQ
∗

z ) − Âs|b∗

⊥|/ρ, (B42)

L31 = C̄ss(Cs +vx) + Q̄ f (vyQ
∗

y +vzQ
∗

z ) + Ā f |b∗

⊥|/ρ, (B43)

L41 = C̄ss(Cs −vx) − Q̄ f (vyQ
∗

y +vzQ
∗

z ) + Ā f |b∗

⊥|/ρ, (B44)

L61 = Ĉ f f (C f −vx) + Q̂s(vyQ∗

y +vzQ
∗

z ) − Âs|b∗

⊥|/ρ. (B45)

In these equations, a symbol over the quantity q denotes normalization via q̄ = q/(C2[1 +α2
f ]) and q̂ = q/(C2[1 +α2

s ]).

THE H-CORRECTION: FIXING THE CARBUNCLE PROBLEM

For strong, planar shocks in multidimensions propagating along a grid direction, higher-order Godunov methods can be subject to a

numerical instability (Quirk 1994) that grows into large amplitude perturbations of the shock front at the grid scale. This “carbuncle"

instability can easily be demonstrated with a simple 2D test: a uniform high Mach number flow in the +x-direction is initialized

everywhere in the domain, with inflow boundary conditions on the right boundary, and reflecting everywhere else. If zone-to-zone

perturbations in the density with small amplitude (δρ/ρ = 10−4) are added, the reflected shock will develop the carbuncle instability

as it propagates to the left across the grid. Radiative cooling in the postshock gas can amplify the effect (Sutherland et al. 2003).

The source of the instability is the use of 1D Riemann solvers to compute fluxes in a multidimensional flow. When a planar shock

is grid aligned, there is too little dissipation added to the fluxes in directions perpendicular to the shock front. Thus, small amplitude

perturbations in the transverse direction grow, rather than being damped. The solution is to identify grid-aligned shocks and add

extra dissipation to the transverse fluxes (e.g. Sutherland et al. 2003). In Athena, we use one form of the “H-correction" technique

described in Sanders et al. (1998) to identify shocks and to add the appropriate dissipation.

The H-correction is most easily described when used in combination with the Roe fluxes. Consider the calculation of the flux at

the interface located at (i −1/2, j) in 2D. When the H-correction is used the absolute value of the eigenvalues |λα| in the Roe flux

formula (equation 57) are replaced with |λ̄α|, where for each component α

|λ̄α| = max(|λα|, η̄i−1/2, j). (C1)

Note the max is taken over each |λα| independently in a pairwise fashion with η̄i−1/2, j, rather than over all α eigenvalues at once.

Here, η̄i−1/2, j comes from a 2D average using a five-point stencil in the shape of the letter ‘H’, that is

η̄i−1/2, j = max(ηi−1, j+1/2,ηi−1, j−1/2,ηi−1/2, j,ηi, j+1/2,ηi, j−1/2) (C2)

where ηi−1/2, j = 1
2
|(ui, j +C f ,i, j) − (ui−1, j −C f ,i−1, j)|, ui, j is the component of the velocity normal to the interface, and C f ,i, j is the fast

magnetosonic speed (for MHD) in the direction normal to the interface. This correction is only added to the final multidimensional

fluxes (computed in step 6 in 2D, and step 7 in 3D). It only becomes important in shocks, and for grid-aligned shocks it results in the

dissipation in the transverse directions being comparable to that added in the direction of shock propagation. In 3D the H-correction

generalizes to a 9-point average (one ‘H’ in each orthogonal plane). We find the HLL-type fluxes are less susceptible to the carbuncle

instability, but are still affected by it in some circumstances. The H-correction can be added to HLL-type solvers by making the

appropriate modification to the wavespeeds b+ and b− defined in equations 53 and 54.

Use of the H-correction is only required for flows with strong, grid-aligned shocks (for most applications with Athena it is not

needed). The results of the Noh strong shock test described in §8.5 show the H-correction is extremely effective at eliminating the

carbuncle instability. In fact a variety of forms for the correction were proposed by Sanders et al. (see their equation 9). Tests using

planar shocks in 2D subject to the carbuncle instability showed little difference between the formulations suggested by Sanders et

al., thus we have chosen to adopt only the version described above.
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