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Abstract— In this paper, we describe a collection of algo-
rithms that are used to provide motion trajectory estimates
from atherosclerotic plaque ultrasound videos. Our approach
is based on the use of four different optical flow methods to
estimate motion vectors (Horn and Schunk, Lucas, Nagel and
Uras). To estimate the optimal motion estimation parameters, we
perform hundreds of experiments on a Linux cluster, and further
validate the results using synthetic simulations. Following motion
estimation, we compute pixel motion trajectories over the plaque
regions and vessel walls. Pixel trajectories are then used to assess
plaque deformation.

I. INTRODUCTION

Atherosclerosis is a disease of the large and medium size

arteries, and it is characterized by plaque formation due to

progressive intimal accumulation of lipid, protein, and choles-

terol esters in the blood vessel wall [1], which reduces blood

flow significantly. We expect that plaque and wall motion

analysis will provide additional information regarding plaque

instability.

We briefly summarize some related work. In [2], the au-

thors computed optical flow estimates from 45 patients and

reported a significant increase in the maximal discrepant

surface velocity for the symptomatic cases, as compared to

the asymptomatic cases. In [3], the authors used 3D intravas-

cular ultrasound to provide a computational analysis of stress

distribution.

Our study was motivated from a desire to extend traditional

motion estimation methods into the development of reliable

methods for trajectory estimation. To accomplish this, we are

interested in developing realistic plaque motion models that

are motivated from clinical experience. Using realistic motion

models, we want to investigate the limits of traditional motion

estimation methods. This paper describes an extension of our

prior work reported in [4]. In [4], we described an earlier

version of our system that relied on optical flow estimates

from Horn and Schunk’s method. In this paper, we consider

four different optical flow methods and develop parameter

optimization methods for each one.

We describe our method in Section II. Results are given in

Section III and concluding remarks are provided in IV.

II. METHODS

Our basic approach is to estimate motion vectors using

optical flow and integrate the velocity estimates into video

trajectories. This is summarized in three steps:

Step 1. Optimal Motion Estimation
Step 2. Use Runge-Kutta to integrate
Step 3. Display valid trajectories.

For motion estimation we considered a variety of optical

flow methods [5]–[8]. We note that these optical flow methods

have a number of parameters that can greatly affect the quality
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of the motion estimates. We are interested in computing

optimal estimates. For the optimization, we use synthetic video

simulations.
Using the motion estimation velocities, we use a Runge-

Kutta (4; 5) formula method [9] to provide motion trajectories

throughout the video. We note that it is not always possible

to compute valid motion trajectories throughout the video.

Due to speckle noise, many motion velocity estimates maybe

found to be invalid. Here, we note that all motion estimation

methods allow us to assess the validity of the motion estimates.

In summary, for the clinical videos, we establish the validity

of the estimated trajectories based on: (i) the density of the

estimated velocities, (ii) we require that trajectories remain

valid throughout the video, (iii) estimation consistency and

(iv) agreement with clinical expectations.

A. Optical Flow Methods
In [5], Horn and Schunk suggested a method for estimating

video motion based on the assumption that image intensity

remains constant

I (x, y, t) = I (x + δx, y + δy, t + δt) . (1)

Following a Taylor series expansion, assuming continuity

in image intensity, they obtained the ill-posed, optical flow

equation

Ixu + Iyv + It = 0, (2)

where u (x, y) , v (x, y) denote velocity estimates at pixel

(x, y). Since (2) is ill-posed, Horn and Schunk imposed a

derivative continuity constraint to solve (2) using∫∫ (
α2E2

c + E2
b

)
dx dy (3)

where:

E2
b = Ixu + Iyv + It

E2
c =

(
∂u

∂x

)2

+
(

δu

∂y

)2

+
(

∂v

∂x

)2

+
(

∂v

∂y

)2

.
(4)

To provide optimal motion estimates in (3), we search for an

optimal value for the smoothness constraint parameter (α) and

the σ-parameter of the spatiotemporal Gaussian pre-filter (see

[5]).
Lucas and Kanade [6] suggested solving (2) using a weight

function ∑
x∈Ω

[
W 2 (x) (Ixu + Iyv + It)

2
]
. (5)

For Lucas and Kanade, we search for the σ-parameter of the

Gaussian smoothing filter and a threshold on the eigenvalues

of the matrix AT W 2A, where A contains the image gradients

A = [∇I(x1), . . . , ∇I(xn)]T , in order to identify unreliable

estimates (see [6]).
In [7], Nagel introduced an oriented smoothness constraint

to solve (2). He formulated the problem as one of minimizing

∫∫
E2

b +
α2

‖∇I‖ + 2δ
[(uxIy − uyIx)2 +

(vxIy − vyIx)2 + δ
(
u2

x + u2
y + v2

x + v2
y

)
] dxdy. (6)

For Nagel’s method, we optimized for the value of α and

the value of the σ parameter for the temporal pre-smoothing

Gausian filter (see [7]).

Uras reformulated the motion estimation problem in terms

of the Hessian of I . Locally, in 8 × 8 regions, he solves

[
Ixx Iyx

Ixy Iyy

] [
u
v

]
+

[
Itx

Ity

]
=

[
0
0

]
. (7)

Uras provides for a special method for dealing with the case

when the Hessian is singular. For Uras’ method, we searched

for the optimal values for the σ parameters of the spatial and

temporal Gaussian filters (see [8]).

B. Motion Trajectory Estimation Implementation

An MPI version of the optical-flow methods for motion

estimation were implemented on the Los Lobos cluster (512

Pentium III processors) of the Albuquerque High Performance

Computing Center. Estimates for each video frame were

computed for many different values of the parameters.

III. RESULTS

A. Synthetic Video Simulation Results

We considered synthetic simulations using three different

videos. For the simulations, we begin with the first video frame

of a clinical video and trajectory coordinate transformation

equations for each pixel in the video. Then, to generate the rest

of the video frames, we assume that the trajectory coordinate

equations displace the original image intensities to the new

coordinates, and use inverse interpolation to the image lattice

to obtain the new frames. For the inverse interpolation we use

cubic splines.

For the trajectories we use the following equations:

x(t) = Ah sin(
2π

N
fht) +

Ah

2
sin(

2π

N
(2fh))

+
Ah

3
sin(

2π

N
(3fh))

(8)

y(t) = Av sin(
2π

N
fvt) +

Av

2
sin(

2π

N
(2fv)t)

+
Av

3
sin(

2π

N
(3fv)t)

(9)

Here, we note that the amplitudes are decaying at a rate that

is inversely proportional to the harmonic frequency. This is

consistent with a discontinuity in the motion and has also been

observed in the power spectra of the estimated trajectories (see

[4] for details).

The simulation parameters are given in Table I. In Table

I, horizontal frequency refers to fh in (8), vertical frequency

refers to fv in (9). Similarly, horizontal amplitude refers to

Ah in (8) while vertical amplitude refers to Av in (9). For the

lengths of the videos, we used N = 205, 180, 180 for videos

numbered 4, 5 and 17 respectively.

837



TABLE I

FREQUENCIES AND AMPLITUDES FOR THE FUNDAMENTAL COMPONENT.

Video Number 4 5 17

Horizontal Frequency (cycles per video-length) 8 7 4

Vertical Frequency (cycles per video-length) 8 7 10

Horizontal Motion Amplitude (pixels) 0.5 2.0 4.0

Vertical Motion Amplitude (pixels) 8.5 6.0 4.0

TABLE II

HORN’S METHOD MSE FOR SIMULATED VIDEO EXAMPLE

Horn MSE

Sigma

0.75 1.0 1.25
Alpha U MSE V MSE U MSE V MSE U MSE V MSE

0.50 0.146 0.355 0.172 0.381 0.201 0.493

0.75 0.121 0.341 0.144 0.370 0.170 0.479

1.00 0.105 0.334 0.126 0.366 0.149 0.471

1.25 0.094 0.332 0.113 0.365 0.135 0.468

1.50 0.086 0.333 0.104 0.366 0.124 0.466

1.75 0.080 0.336 0.097 0.368 0.116 0.466

2.00 0.076 0.339 0.092 0.371 0.109 0.467

2.25 0.072 0.344 0.087 0.374 0.104 0.469

2.50 0.070 0.348 0.084 0.378 0.100 0.471

1) Example of Optimization for Horn’s Method: We present

a parameter optimization example in Table II. This simulation

refers to video #17, where the simulated motion is specified

in Table I. The search region for the smoothness constraint in

equation (3) was concentrated around α = 0.5 − 2.5 and the

values for the spatiotemporal filter ranged for σ = 0.75−1.75.

Table II shows the MSE from which the optimal parameters

were chosen returning a density of estimates of 90%.

B. Results on Synthetic Data

We present trajectory estimation results in Fig. 1. In Fig.

1(b) we present trajectory estimation results for three points,

together with the actual motion (displayed in a solid line). In

Fig. 1(b) we can see the relative accuracy of the approach.

In any case, it appears that the phase changes in the actual

trajectory are also reflected in the estimates. It is interesting

to note that accurate estimates are obtained in frames 33
to 40, where the simulated motion is approximately linear.

Significant errors appear at maximum displacement points. At

these points, it appears that the trajectory estimates turn to

either overshoot or undershoot the peaks.

C. Results on Clinical Videos

We computed motion trajectories on three clinical videos us-

ing the four motion estimation methods outlined in subsection

II-A. We note that we did observe consistency in the trajectory

estimates coming from the four different methods. In addition,

only a small number of trajectories were labeled as being valid,

in that they relied on valid motion estimates throughout the

video. Three representative examples are shown in Figs. 2-4.
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Fig. 1. Synthetic video motion estimation example for video #17 using
Horn and Schunk’s method. Using the optimal parameters shown in Table I,
we computed trajectory estimates over three points. Here, we assumed that all
three points undergo the same displacements. (a) First frame of the simulated
video with plaque and artery wall. The three selected points consist of one
point on the left-middle portion of the plaque (’x’), one near the middle of the
plaque (’+’), and one close to the plaque-wall boundary (star). (b) Horizontal
pixel motion for ground truth (solid line), point on the left-middle portion
of the plaque (row=150, column= 160, ’x’ line), point on the middle of the
plaque (row=150, column= 1240, ’+’ line), and point close to the plaque-wall
boundary (row=160, column= 300, ’o’ line). Results over 66 frames.

For vide #4 we present trajectory estimation results in Figs.

2-3. In Fig. 2(b), we can see that the horizontal motion appears

to be oscillatory. This motion appears to be in sync with

cardiac motion. On the other hand, for the vertical motion in

Fig. 2(c), we can see significant rise for the second point, lying

on the plaque-wall boundary. The third point, lying below the

plaque-wall boundary appears to oscillate, while the first point,

lying on the plaque, also appears to be rising vertically. In Fig.

3(b) we can see that the horizontal motions for the two arterial

points appear to be in sync with each other. Furthermore, for

these arerial points, both the vertical and horizontal motions

in Figs. 3(b)-(c) appear to be oscillatory. Here, we note that

oscillatory motion is a sign of stability. On the other hand, the

significant vertical motion in the plaque points suggests that

that they exhibit a different response.

For video #17, we present trajectory estimation results in

Fig. 4. From the vertical displacement results from Fig. 4(c),

it appears that the plaque front is rising while the back of

the plaque appears to be moving lower down. Overall, in

terms of both the horizontal and vertical motion results, it

appears that the front of the plaque appears to exhibit the
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Fig. 2. Clinical video trajectory example for video #4. Motion estimation
was based on the original method by Horn and Schunk. (a) Trajectories were
estimated for three points shown on the first frame of the video (from top
to bottom): Point-1 (90, 279) ’x’, Point-2 (100, 270) ’square’, and Point-3
(105,275) ’+’. (b) Horizontal displacement motion plots: solid-line for Point-1,
’-.-’ line for Point-2 and ’- -’ line for Point-3. (c) Vertical displacement motion
plots (same line styles as for (b)). Notice significant vertical displacements
for points over the plaque and points close the plaque-wall boundary.

largest displacements.

IV. CONCLUDING REMARKS AND FUTURE WORK

We believe that significant research is still needed to

enable accurate motion trajectory estimation. A number of

factors, such as image quality and speckle noise contribute

to unreliable motion estimates. Despite all this, we do have

confidence in the estimated, valid trajectories. We also observe

that plaque regions exhibit significant displacements while

wall and arterial regions exhibit stable, oscillatory motion.

Future work will be focused on developing a large database

of symptomatic and asymptomatic videos, the implementation
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Fig. 3. Second clinical video trajectory example for video #4. Motion
estimation was based on Uras’s method. (a) Trajectories were estimated for
two points shown on the first frame of the video (from top to bottom): Point-
1 (135, 270) ’x’, Point-2 (115, 280) ’square’. (b) Horizontal displacement
motion plots: solid line for Point-1 and ’-.-’ line for Point-2. (c) vertical
displacement motion plots (same line styles as for (b)). Notice that the
horizontal motion trajectories appear to be in phase.

of a block-matching method for motion estimation [10], a

phased-based approach [11] and the development of a new

AM-FM based method for motion estimation. We are also

investigating the use of total-variation methods for image

de-noising, as well as the use of well-established methods

for image de-speckling [12]. We want to apply these de-

noising methods prior to motion trajectory estimation. It is

expected that this approach will produce more accurate motion

estimates. Furthermore, for computing the motion trajectories,

we are investigating the use of particle filters.
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Fig. 4. Third clinical video trajectory example for video #17. Motion
estimation was based on the original method by Horn and Schunk. (a)
Trajectories were estimated for three points shown on the first frame of the
video (from left to right): Point-1 (150, 160) ’x’, Point-2 (145, 240) ’v’ and
Point-3 (135, 300) ’¡’. (b) Horizontal displacement motion plots: solid line for
Point-1, ’- -’ line for Point-2 and ’-.-’ line for Point-3. (c) vertical displacement
motion plots (same line styles as for (b)).
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