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1.  INTRODUCTION

Anthropogenic impacts on coastal habitats are a

global concern. Structurally complex habitats are de -

grading across many marine environments (Airoldi

et al. 2008), which is caused by several factors, in -

cluding trawl fisheries, resource extractions, coastal

constructions and climate change (Thrush & Dayton

2002, Lotze et al. 2006, De’ath et al. 2012). Reefs are

considered habitats that provide structural complex-

ity and are therefore specifically protected in many

regions, including the European Union (The Council

of the European Communities 2013) and Australia

(Australian Government 1975). In addition, reefs are

increasingly restored and used as management tools

worldwide (Bohnsack & Sutherland 1985, Nakamura

1985, Kristensen et al. 2017).

Based on the observation that artificial reefs, and

habitats with structural complexity in general, attract

and concentrate fish (Bohnsack & Sutherland 1985,

Ambrose & Swarbrick 1989, Demartini et al. 1994),

the ‘attraction versus production’ debate was initiated

in the 1980s, addressing the question whether reefs

act merely as fish aggregators, or if such complex

habitats may also facilitate increased fish production

(Bohnsack & Sutherland 1985, Polovina 1989). It is in-

creasingly becoming clear that reefs (both artificial

and natural) contribute to overall fish production
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(Granneman & Steele 2014, Smith et al. 2016, Roa-

Ureta et al. 2019), yet the extent of the production in-

crease and its underlying mechanisms remain un-

clear. A key question is whether specific habitats

influence fish energy use and thereby the potential

for investment into somatic growth or gonad produc-

tion (Grossman et al. 1997).

Stone reefs provide high biodiversity (Lundsteen et

al. 2008), and in temperate waters, these complex

habitats often host gadoids, including Atlantic cod

Gadus morhua (Dahl et al. 2016). Mature fish gather

in areas with stone reefs before migrating to spawning

grounds and use reefs as shelter (Dahl et al. 2016). Ma-

turing G. morhua often respond favorably to stone

reef restoration, further highlighting the importance

of stone reefs fo relatively large G. morhua (Kristensen

et al. 2017). Smaller conspecifics, however, also take

advantage of structurally complex habitats such as

reefs (Gotceitas & Brown 1993, Tupper & Boutilier

1995). Juvenile G. morhua are frequently preyed upon

by larger fish and marine mammals, including

harbour porpoise Phocoena pho co ena, harp seal Pago -

 philus groenlandicus and grey seal Halichoerus gry-

pus (Savenkoff et al. 2006, Ross et al. 2016). To avoid

predation, G. morhua shelter within complex habitats,

especially those consisting of boulders or cobble (Got-

ceitas & Brown 1993, Gotceitas et al. 1995).

Fish metabolic rate is affected by various endoge-

nous and exogenous factors, including shelter avail-

ability (Millidine et al. 2006). As such, measurements

of fish metabolic rate provide a useful tool to under-

stand the importance of various habitats (Norin et al.

2018). For most animals, oxygen consumption rate

(WO2) can be used as a proxy for aerobic metabolic

rate and thus energy use (Nelson 2016). The basic

maintenance requirement is measured as the mini-

mum MO2 of a non-digesting, unstressed animal at

rest and is known as the standard metabolic rate

(SMR) (Priede 1985). Thus, other energy demands,

in cluding those related to swimming, digestion, re -

pro duction and stress, are additional to SMR (Priede

1985). The presence of shelter is known to reduce

stress, vigilance and alertness because shelters serve

as protection from predators (Millidine et al. 2006).

Thus, shelter in reefs could provide a metabolic ben-

efit, but the hypothesis remains largely untested. If

fish save energy when associated with reefs, the

saved energy may be available for somatic growth

and investment into reproduction.

Using juvenile G. morhua, we examined whether

energy use is influenced by reef availability. Specifi-

cally, we used respirometry to test the hypothesis

that energy use differs between G. morhua in simu-

lated stone reef and sand bottom habitats. The find-

ings are important for understanding the mecha-

nisms that underpin the increased production of fish

observed on reefs (Grossman et al. 1997, Baine 2001,

Brickhill et al. 2005).

2.  MATERIALS AND METHODS

Eleven juvenile Atlantic cod Gadus morhua (total

length 24.7 ± 0.9 cm; body mass 251.2 ± 20.5 g; means

± SE) were caught using gillnets in the Isefjord in

Denmark in March 2018. All fish were caught at the

same location. Fish were held at the Technical Uni-

versity of Denmark (DTU Aqua) for a minimum of

1 mo prior to experimentation. Fish were tagged with

individual PIT-tags and kept under the ambient light

regime (May) in an aerated flow-through tank (1 ×

2 m; height × diameter) supplied with artificial salt-

water (temperature: 10 ± 0.2°C; salinity: 10 ± 1 psu).

Fish were fed every other day with commercial pel-

lets (Biomar, Efico Sigma 870).

The experimental set-up consisted of 2 similar grey

experimental tanks (52 × 58 × 94 cm; height × width

× length), each containing an identical respirometry

chamber (60 × 11 cm; length × diameter) made of

transparent acrylic glass tubing (Fig. 1). The 2 ex -

perimental tanks were situated in a room with

restricted access, and the tanks were further shielded

from the surroundings using curtains to minimize

any disturbance.

Each experimental tank contained 270 l of flow-

through water from the same source as used for the

holding tank (temperature: 10 ± 0.2°C; salinity: 10 ±

1 psu). In both tanks, bottom and walls were covered

using light grey tarpaulin. Each tank was equipped

witheitherastonereefhabitatorasandbottomhabitat.

Across the study period, each fish was tested twice,

once in each habitat. The simulated habitat in each

experimental tank alternated between the stone reef

habitat and the sand bottom habitat. In both tanks, the

respirometry chamber was placed on the bottom in the

central part of the tank. The stone reef habitat was cre-

atedaroundtherespirometrychamberusingrockscol-

lected at nearby beaches. Individual rocks were

20−30 cm in diameter and covered the respirometry

chamber in 1 layer, creating a cavernous reef often

preferred by G. morhua (Tupper & Boutilier 1997,

Kristensen et al. 2017). For the sand bottom habitat, no

rocks were added to the experimental tank to mimic

an environment with limited benthic complexity.

Prior to respirometry, individual fish were fasted

for 48 h to minimize the post-absorptive state and
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metabolic effects of digestion. Fish were then trans-

ferred individually to the respirometry chambers.

Each chamber was connected to an intermittent flow

respiro metry system (Fig. 1) controlled by the Loligo

Systems software AutoResp that calculated MO2

(mg O2 kg−1 h−1). Two optical dipping probe oxygen

mini sensors (Loligo Systems) were used, one for

each respirometry chamber and located in the recir-

culating loop, in connection with a Witrox 4 oxygen

meter (Loligo Systems).

The declining oxygen partial pressure (kPa) inside

the respirometry chamber was used to calculate MO2

(mg O2 kg−1 h−1) using the equation:

(1)

where K is the rate of decline (kPa h−1) in oxygen

content over time (h) inside the respirometer, V is the

volume of the respirometer (l) corrected for the vol-

ume of fish, β is the solubility of oxygen in the water

(mg O2 l−1 kPa−1), and M is body mass of the fish (kg).

Intermittent flow respirometry was used to sample

MO2 for a 35 h period: 11 h of acclimation to the res pi -

ro metry chamber followed by 24 h of data collection

(Fig. 1) (Steffensen 1989, Chabot et al. 2016). The re-

peated respirometric loops consisted of an 8 min flush

period, allowing the total respirometer volume to be

flushed 6 times, followed by a 2 min wait period and a

6 min measuring period (i.e. 16 min per loop). Durations

of the 3 periods were determined during

preliminary testing to ensure (1) that the

coefficient of determination (R2) always

ex ceeded 0.95 similar to previous studies

(Svendsen et al. 2012, Plambech et al.

2013) and (2) that oxygen levels were

always >80% air saturation inside the

re spirometry chamber. Micro bial respi-

ration was measured before and after

each experiment and sub tracted from the

WO2 (Rodgers et al. 2016).

Juvenile G. morhua are frequently

preyed upon by marine mammals and

fish. Hence, during the 24 h data col-

lection, at 15 h, a fusiform simulated

predator was pulled once through the

water in the experimental tanks. Simi-

lar to previous studies (Killen et al.

2012), this was done to simulate a brief

presence of a predator. All experiments

were performed according to the

national guidelines for the care and use

of laboratory animals as stated by the

Danish Animal Ethics Committee.

Using a paired design, individual fish were tested

once in each simulated habitat (stone reef and sand

bottom) in the same experimental tank. The order of

the tested habitats and fish was randomized. For the

individual fish, time between testing in the 2 habitats

varied between 4 and 15 d.

For the individual fish, WO2 data were summed

across the entire 24 h period that followed the accli-

mation period (11 h). The compiled data were used to

compare total metabolic rates over 24 h (mg O2 kg−1

[24 h]−1) between the 2 habitat types (i.e. stone reef

and sand bottom). Moreover, for each fish, SMR was

calculated using the 10% method, which provides an

SMR estimate based on the average of the lowest

10% of the measurements, after removal of outliers

(i.e. the 5 lowest measurements) as described by

Chabot et al. (2016).

Shapiro tests showed that data did not deviate sig-

nificantly from normal distributions. Hence, paired t-

tests were applied to test for significant differences in

the metabolic rates between the 2 habitats. Specifi-

cally, accumulated metabolic rates over 24 h (mg O2

kg−1 [24 h]−1) and SMR (mg O2 kg−1 h−1) were com-

pared between stone reef and sand bottom habitats.

Likewise, differences in metabolic responses to pred-

ator exposure were evaluated for the 2 habitats by

comparing the accumulated metabolic rates over 2 h

after the predator exposure. Accumulated metabolic

rates over 24 h, accumulated metabolic rates over 2 h

K V

M
MO2 =

β

83

Oxygen

sensor

Flush pump

Control
unit

Outlet

Recirculation pump

Fig. 1. Experimental setup for measurements of oxygen consumption rate of

Atlantic cod Gadus morhua. The respirometry chamber was connected to an

intermittent flow respirometry system. The oxygen sensor was located in the

recirculating loop. Sampling of each fish lasted 35 h: 11 h of acclimation to the

respirometry chamber followed by 24 h of data collection. Fish were tested in

2 types of simulated habitats (sandy bottom or stone reef) in a random order.

The 2 tanks were identical and surfaces were covered with a light grey tar-

paulin. The stone reef habitat was created by covering the respirometer 

chamber with 1 layer of rocks (20−30 cm in diameter)
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following the predator exposure, and SMR data are

presented in Table 1.

The free statistical software R (R 3.5, The R Foun-

dation for Statistical Computing) was used for data

analyses. We used a significance level of α = 0.05,

and all values are reported as means ± SE unless

noted otherwise.

3.  RESULTS

Across the majority (97.8%) of the 24 h sampling

period, fish in the stone reef habitat had, on aver-

age, reduced metabolic rates (Fig. 2). This pattern

was also revealed when comparing the accumulated

WO2 values of fish (mg O2 kg−1 [24 h]−1) in stone

reef and sand bottom habitats, where the accumu-

lated MO2 was significantly lower for fish in stone

reef (p = 0.03; Fig. 3). Specifically, the mean accu-

mulated WO2 over 24 h was 2766.7 ± 352.4 and

3317.0 ± 272.8 mg O2 kg−1 [24 h]−1 for fish in the

stone reef and sand bottom habitat, respectively,

showing that fish in the stone reef habitat spent on

average 20% less energy compared to fish in the

sand bottom habitat. The SMR data followed the

same trend as the accumulated MO2, although sta-

tistical analysis revealed no significant differences

in mean SMR between fish in the 2 habitats (p = 0.61;

Fig. 4). Furthermore, when comparing the accumu-

lated metabolic rate over 2 h after predator expo-

sure, fish in the sand bottom habitat had signifi-

cantly higher metabolic response compared to fish

in reef habitat (p = 0.013).

84

Fish MO2      SMR                  MO2 after

                                                                predator exposure

          Stone   Sand     Stone   Sand        Stone     Sand 

           reef   bottom      reef    bottom        reef      bottom

1         4094     3641        135       102            376         390

2         2522     4285         68         95             237         445

3         1926     2740         50         56             166         221

4         1980     2052         57         57             214         192

5         1871     3356         98         53             159         290

6         1987     3380         56        109            291         296

7         5057     4788         89         96             383         611

8         2756     3085         85         94             272         294

9         2811     3349         68         71             286         366

10       1327     1755         37         52              87          151

11       4103     4056        111       113            398         433

Table 1. Accumulated oxygen consumption rate (MO2; mg O2

kg−1 [24 h]−1), mean standard metabolic rate (SMR; mg O2

kg−1 h−1) and the accumulated MO2 over 2 h following the

predator exposure (mg O2 kg−1 [2 h]−1) of each tested Atlantic 

cod Gadus morhua

Fig. 2. Mean metabolic rates (mg O2 kg−1 h−1) of juvenile At-

lantic cod Gadus morhua (n = 11). Data were collected in fish

in stone reef (blue line) and sand bottom (red line) habitats

over 24 h, after 11 h of acclimation to the respirometry cham-

ber (Fig. 1). The green line indicates the timing of a brief

simulated predator exposure. During 97.8% of the time,

G. morhua in the stone reef habitat exhibited reduced meta-

bolic rate compared to the sand bottom habitat. Measures of

variation associated with the plotted mean values have been 

omitted for clarity
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Fig. 3. Accumulated metabolic rate over 24 h (mg O2 kg−1

[24 h]−1) in juvenile Atlantic cod Gadus morhua (n = 11).

Data were collected in fish in stone reef and sand bottom

habitats over 24 h, after 11 h of acclimation to the respirom-

etry chamber (Fig. 1). G. morhua in the stone reef habitat

exhibited reduced average metabolic rate compared to fish

in the sand bottom habitat (p = 0.03). Solid line: median;

grey dot: mean; box: interquartile range, where bottom and

top are 25th and 75th percentiles, respectively; whiskers: 

max and min observations
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4.  DISCUSSION

This study shows that the energy use of Atlantic

cod Gadus morhua is affected by the surrounding

habitat. Specifically, the accumulated MO2 data re -

vealed that G. morhua save energy (about 20%)

when occupying a stone reef habitat compared to a

sand bottom habitat. Accordingly, fish using a sand

bottom habitat have an energetic disadvantage that

may result in decreased growth rates. The results

also suggest that predator encounters are energeti-

cally less costly in reef habitats. Although a similar

pattern was observed in SMR (i.e. fish in the sand

habitat showed a tendency towards higher SMR than

fish in the reef habitat), differences were not statisti-

cally significant between the 2 habitats. The mean

accumulated MO2 over 24 h includes SMR as well as

processes that elevate the oxygen consumption rate

above SMR, such as spontaneous activity and stress

evoked by predator exposure. The effects of habitats

on MO2 may be caused by different activity levels,

excitement, diel patterns in energy use etc. (Chabot

et al. 2016). The present SMR values for G. morhua

are within the range of previously reported values for

this species at equivalent temperatures (Soofiani &

Hawkins 1982, Claireaux et al. 2000, Plambech et al.

2013).

The mechanisms underpinning increased fish pro-

duction in reef habitats remain widely debated, in -

cluding suggestions of enhanced provision of food on

reefs, availability of shelters leading to reduced pre-

dation, reduced fishing mortality, in addition to the

provision of zones with reduced water motion and

current speed, where fish can stay and hence re duce

energy related to swimming (Emery et al. 2006,

Claisse et al. 2014, Champion et al. 2015). Here, we

show that the energy demand of G. morhua is re -

duced when the fish spend time in reef habitats, thus

providing an important new understanding of the

mechanisms underpinning the increased productiv-

ity observed on reefs. More specifically, our results

demonstrate that the fish in reef habitats on average

exhibited a 20% reduction in their daily energy

budget as compared to fish in sandy, open habitats.

The higher energy use in the less structurally com-

plex habitat may reflect that the fish need to be more

attentive to minimize the higher predation risk (Got-

ceitas & Brown 1993, Tupper & Boutilier 1995),

potentially including elevated spontaneous activity

and excitement (Chabot et al. 2016). Likewise, our

results suggest that predator encounters are energet-

ically more costly in less structurally complex habi-

tats. A lower daily energy demand on reefs may

allow the individual fish to allocate more resources to

somatic or gonadal growth. Importantly, fish in better

condition generally have higher reproductive output

(Kjesbu et al. 1991, Rätz & Lloret 2003), indicating

potential for sustaining a higher exploitation rate

(Rätz & Lloret 2003). Juvenile G. morhua furthermore

benefit in terms of higher survival in structurally

complex habitats, as these habitats provide shelter

availability against predation as compared to sandy

habitats (Gotceitas & Brown 1993, Tupper & Boutilier

1995, Lindholm et al. 1999). Notably, however, pro-

duction and attraction are ends of a spectrum on

which most reefs operate (Cresson et al. 2019). In

other words, there will be variable contributions of

fish aggregations and new production to observed

changes in biomass of fish, depending on the func-

tional position of the species at the reef and the

lifestyle of the fish, e.g. whether it is a sedentary ben-

thic or highly mobile species (Reubens et al. 2013,

Cresson et al. 2019, Roa-Ureta et al. 2019). Although

the present study has revealed that energy savings

at reefs may promote increased production of G.

morhua, it is also known that boulder reef restoration

results in higher site fidelity and prolonged residence

time in the area for this species (Kristensen et al.

2017), pointing towards the aggregation end of the

spectrum. Collectively, these findings highlight the
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Fig. 4. Mean standard metabolic rate (SMR; mg O2 kg−1 h−1)

in juvenile Atlantic cod Gadus morhua (n = 11), calculated

using the 10% method after the 5 lowest measurements were

removed as outliers (Chabot et al. 2016). Data were collected

in fish in stone reef and sand bottom habitats over 24 h, after

11 h of acclimation to the respirometry chamber (Fig. 1).

SMR data revealed no statistical differences between the 2 

habitats (p = 0.61). Box plot parameters as in Fig. 3
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importance of preserving temperate reef habitats to

support fish populations.

In many parts of the world, reefs support millions of

people who depend on natural resources as a source

of food and income (White et al. 2000, Cesar et al.

2003). However, degradation of reefs continues, and

structurally complex habitats are becoming rarer

across many marine environments (Pandolfi et al.

2003, Airoldi et al. 2008). Irrespective of the position

of a particular reef on the aggregation−production

spectrum, its degradation is likely to have profound

ecological, social and economic impacts. This is also

highlighted by the fact that reefs are some of the

most diverse marine ecosystems (Roberts et al. 2002),

and their degradation may hence cause loss of biodi-

versity (Jones et al. 2004). Consequently, protection

of reefs is important to maintain productive marine

ecosystems (Pratchett et al. 2014). The present results

show a link between habitat complexity (stone reef

habitat versus sand habitat) and energetic demands

of G. morhua, supporting that stone reefs facilitate

increased production of this species. However, fish

community composition varies among reefs, affected

by several factors including architectural complexity,

reef size, abiotic conditions and fish dispersal abili-

ties (Charbonnel et al. 2000, Champion et al. 2015,

Cresson et al. 2019). This highlights the importance

in future research of considering species-specific re -

sponses to habitat complexity to accurately describe

the functioning of reefs, both natural and artificial.
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