
ATLANTIDES: An Architecture for
Alert Verification in Network
Intrusion Detection Systems

Damiano Bolzoni – University of Twente, The Netherlands
Bruno Crispo – Vrije Universiteit, The Netherlands & University of Trento, Italy

Sandro Etalle – University of Twente, The Netherlands

ABSTRACT

We present an architecture1 designed for alert verification (i.e., to reduce false positives) in net-
work intrusion-detection systems. Our technique is based on a systematic (and automatic) anomaly-
based analysis of the system output, which provides useful context information regarding the network
services. The false positives raised by the NIDS analyzing the incoming traffic (which can be either
signature- or anomaly-based) are reduced by correlating them with the output anomalies. We designed
our architecture for TCP-based network services which have a client/server architecture (such as
HTTP). Benchmarks show a substantial reduction of false positives between 50% and 100%.

Introduction

Network intrusion-detection systems (NIDSs) are
considered an effective second line of defense against
network-based attacks directed to computer systems
[4, 11], and – due to the increasing severity and likeli-
hood of such attacks – are employed in almost all
large-scale IT infrastructures [1].

The Achille’s heel of NIDSs lies in the large
number of false positives (i.e., notifications of attacks
that turn out to be false) that occur [26]: practitioners
[24, 31] as well as researchers [3, 8, 15] observe that it
is common for a NIDS to raise thousands of alerts per
day, most of which are false alerts. Julisch [16] states
that up to 99% of total alerts may not be related to real
security issues. Notably, false positives affect both sig-
nature and anomaly-based intrusion-detection systems
[2]. A high rate of false alerts is – according to Axels-
son [3] – the limiting factor for the performance of an
intrusion-detection system. False alerts also cause an
overload for IT personnel [24], who must verify every
single alert, a task that is not only labor intensive but
also error prone [9]. Indeed, a high false positive rate
can even be exploited by attackers to overload IT per-
sonnel, thereby lowering the defenses of the IT infra-
structure.

The main reason why NIDSs raise false positives
is that – quoting Kruegel and Robertson [18] – they
are often run without any (or very limited) information
about the network resources that they protect (i.e., the
context). Chaboya, et al. [6] state that the context
knowledge (e.g., network and system configurations)

1This research is supported by the research program Sen-
tinels (http://www.sentinels.nl). The work of the second au-
thor was partially funded by the IST FP6 GridTrust project,
contract No. 033827. Part of this work was carried out dur-
ing the third author’s stay at the University of Trento, sup-
ported by the GU-IST project Serenity.

can improve significantly alert verification. On the
other hand, building and updating a database of the
configurations or running vulnerability assessment
tools (e.g., Nessus [35]) to provide context knowledge
is expensive and often not feasible when dealing with
complex systems (indeed these activities require addi-
tional labor of IT personnel, since the process of using
them cannot be completely automated). Most current
techniques to improve alert verification are tailored for
specific attacks [14, 41] (e.g., worm-like) or support
only signature-based NIDSs [33, 36] (e.g., Snort’s
team has developed a specific plug-in, flowbits, to
cope with this, but it has limited functionality).

Our thesis is that, in many relevant situations, the
context information can be obtained by a systematic
(and automatic) anomaly-based analysis of the output
traffic of the monitored network services; we believe
this is possible when the output traffic presents some
regularities.

To demonstrate our claims, we have developed
ATLANTIDES (Architecture for Alert verification in
Network Intrusion Detection Systems) an innovative
architecture for easing the management of any NIDS
(be it signature or anomaly-based) by reducing, in an
automatic way, the number of false alarms that the
NIDS raises. The main idea behind ATLANTIDES is
simple: a successful attack often causes an anomaly in
the output of the service [44], thus modifying the nor-
mal output outcome. Detecting this anomaly can help
in reducing false alerts. For instance, a successful SQL
Injection attack [43] against a web application often
causes the output of SQL table content (e.g., user/ad-
min credentials) rather than the expected web content.

ATLANTIDES, which is completely network-
based,2 works by analyzing (using n-Gram analysis

2It relies only on information gathered over the network,
without involving any host-based component.

21st Large Installation System Administration Conference (LISA ’07) 141

ATLANTIDES: An Architecture for Alert Verification . . . Bolzoni, Crispo, & Etalle

[13]) and modeling the normal output payload of the
monitored network services that is expected to be sent
in response to a client request. This normal output is
specific to the site; therefore the derived models re-
flect – in a way – the network/system context. By cor-
relating the anomalies detected on the output with the
alerts raised by the NIDS monitoring the input traffic,
we can discard a number of the latter as being false
alerts. This way we obtain a system that raises consid-
erably less false positives that the original NIDS, with-
out this correlation system.

Because it is based on output payload analysis,
our architecture is designed for TCP-based client/serv-
er network services (such as HTTP). Like all (exter-
nal) payload-based analysis, ATLANTIDES cannot
work properly with encrypted data unless the crypto-
graphic keys are provided.

In the past, simple correlations between input
and output traffic have already been used to identify
possible worm attacks [14, 41]. To the best of our
knowledge, ATLANTIDES is the first proposed solu-
tion for alert verification that:

• works in combination with both signature-based
and anomaly-based NIDSs

• operates in a completely automatic way after a
quick setup, without any further human in-
volvement (i.e., reducing the IT personnel over-
load), thus easing NIDS management

We benchmarked ATLANTIDES in combination
with the signature-based NIDS Snort [34, 37], as well
as in combination with the anomaly-based NIDS PO-
SEIDON [5]. We carried out benchmarks both on a
private data set as well as on the common DARPA
1999 data set [22] (for the sake of completeness and to
allow duplication of our results, despite criticism [23,
25]). In seven out of eight cases, our benchmarks
show a reduction of false positives between 50% and
100%.

Preliminaries

In this section, we introduce the concepts used in
the rest of the paper and explain how false positives
arise in signature and anomaly-based systems.

Signature-Based Systems

Signature-based systems (SBSs), e.g., Snort [34,
37], are based on pattern-matching techniques: the
NIDS contains a known-attack signature database and
tries to match these signatures with the analyzed data.
When a match is found, an alert is raised. A specific
signature must be developed off-line, and then loaded
into the database before the system can begin to detect
a particular intrusion. One of the disadvantages of SB-
Ss is that they can detect only known attacks: new at-
tacks will be unnoticed till the system is updated, cre-
ating a window of opportunity for attackers (and af-
fecting NIDS completeness and accuracy [10, 11]).
Although this is considered acceptable for detecting

attacks to, e.g., the OS, it makes them less suitable for
protecting web-based services, because of their ad hoc
and dynamic nature.

False Positives in Signature-Based Systems
SBSs raise an alert every time that traffic match-

es one of the signatures loaded into the system. Con-
sider for example the path traversal attack, which al-
lows to access files, directories, and commands resid-
ing outside the (given) web document root directory.
The most elementary path traversal attack uses the
‘‘../’’ character sequence to alter the resource location
requested in the URL. Variations include valid and in-
valid Unicode-encoding (‘‘..%u2216’’ or ‘‘..%c0%af’’),
URL encoded characters (‘‘%2e%2e%2f’’), and double
URL encoding (‘‘..%255c’’) of the backslash character
(excerpted from the WASC Threat Classification [43]).

To detect these attacks many SBSs (using an out-
of-the-box configuration) raise an alert each time they
identify the pattern ‘‘../’’ in the incoming traffic. Un-
fortunately, this pattern could be present in legal traf-
fic too; some Content Management Systems (CMSs)
insert relative paths in parameters to load files, which
causes SBSs to raise a high number of false alerts.
These false alerts can be avoided by deactivating the
specific rule. On the other hand, this prevents the
NIDS from detecting this sort of attacks.

Tuning Signature-Based Systems
The main reasons why alerts produced by SBSs

turn out to be either false or irrelevant include the fol-
lowing:

• Writing signatures for NIDS is a thorny task
[32], in which it is difficult to find the right bal-
ance between an overly specific signature
(which is not able to detect a simple attack vari-
ation) and an overly general one (which will
classify legitimate traffic as an attack attempt).

• The monitored environment is not susceptible
to a certain vulnerability.

• Misconfigured network devices or services pro-
ducing atypical output (usually, in this case, it
is possible to observe recurrent and periodic
phenomena).

A good deal of the false positives raised by a
SBS can be suppressed by a tuning activity: this activ-
ity, based on deactivation of unneeded signatures, re-
quires a thorough analysis of the environment by qual-
ified IT personnel. Finally, to remain effective, SBSs
require configuration updating to reflect changes in
the environment: new vulnerabilities are discovered
daily, new signatures are released regularly, and sys-
tems may be patched, thereby (possibly adding or) re-
moving vulnerabilities.

Anomaly-Based Systems
Anomaly-based systems (ABSs) use statistical

methods to monitor network traffic. Intuitively, an
ABS works by training itself to recognize acceptable
behavior and then raising an alert for any behavior

142 21st Large Installation System Administration Conference (LISA ’07)

Bolzoni, Crispo, & Etalle ATLANTIDES: An Architecture for Alert Verification . . .

outside the boundaries of its training. In the training
phase, the ABS builds a model of the normal network
traffic. Later, in the operational phase, the ABS flags
as an attack any input that significantly deviates from
the model. To determine when an input significantly
deviates from the model the ABS uses a distance func-
tion and a threshold set by user: when the distance be-
tween the input and the model exceeds the threshold,
an alarm is raised.

The ABSs’ main advantage is that they can de-
tect zero-day attacks: novel attacks can be detected as
soon as they take place. Clearly, because of their sta-
tistical nature, ABSs are bound to raise a number of
false positives, and the value of the threshold actually
determines a compromise between the number of false
positives and the number of false negatives the IT se-
curity personnel is willing to accept.
False Positives in Anomaly-Based Systems

The high false positive rate is generally cited as
one of the main disadvantages of anomaly-based sys-
tems. The value of the threshold has a direct influence
on both false negative and false positive rates [40]: a
low threshold (too close to the model) yields a high
number of alerts, and therefore a low false negative
rate, but a high false positive rate. On the other hand, a
high threshold yields a low number of alerts in general
(therefore a high number of false negatives, but a low
number of false positives). The most commonly used
tuning procedure for ABSs is finding an optimal
threshold value, i.e., the best compromise between a
low number of false negatives and a low (or accept-
able) number of false positives. This is typically car-
ried out manually by trained IT personnel: different
improving steps may be necessary to obtain a good
balance between detection and false positive rates.

Architecture

ATLANTIDES’s architecture (see Figure 1) con-
sists of one external and two internal components. The
external component is the NIDS monitoring the in-
coming traffic. We do not make any assumption about
it except that it is capable of raising an alert: AT-
LANTIDES can work together with any kind of NIDS
(signature or anomaly-based).

The first internal component is the output anom-
aly detector (OAD), which is actually an anomaly-
based NIDS monitoring the outgoing traffic: the OAD
refers to a statistical model describing the normal out-
put of the system, and flags any behaviour that signifi-
cantly deviates from the norm as the result of a possi-
ble attack.

The second internal component is the correlation
engine (CE), which tracks (using stateful-inspection
[7]) and correlates alerts related to incoming traffic
and raised by the input NIDS with the output produced
by the OAD.

ATLANTIDES works as follows (see Figure 1).
The input NIDS monitors the incoming traffic while,

simultaneously, the OAD (after a training phase)
analyses the output of network services. When the in-
put NIDS raises an alert, this is forwarded to the CE,
together with the information regarding the communi-
cation endpoints (i.e., source and destination IP ad-
dresses, source and destination TCP ports as well as
sequence numbers and communication status) of the
packet that raised the alert. The CE uses a hash-table
to store this information, using less than 20 bytes per
each entry: thus, the CE does not requires much mem-
ory to store the information, and ATLANTIDES can
handle even a rate of 1000 alerts per second with a to-
tal memory space of 1 MB (in case the connections
are kept in memory, e.g., for a maximum time of 60
seconds before being dropped). At this time, the alert
is not considered an incident yet (it is a pre-alert) and
is not forwarded immediately to IT specialists.

Figure 1: ATLANTIDES’s architecture.

Next, the CE marks communication relative to
the given endpoints as suspicious and waits for the
output of the OAD: if the OAD detects an anomaly in
the outgoing traffic related to the tracked communica-
tion, then the system considers the alert as an incident
(i.e., a positive) and the alert is forwarded to the IT
specialists for further handling and countermeasure re-
actions, otherwise it is considered a false positive and
discarded. The IT personnel can manually set (or ad-
just) the time value t that the CE waits before drop-
ping an entry from its hash-table, because no output
has been produced: during our experiments we fixed
this value to 60 seconds. This time could be critical if
an attack results in a large data transfer (but in this
case the OAD should detect the anomaly in the trans-
ferred data) or in the case where attacker is able to de-
lay server response (although this seems quite difficult
to realize and the literature does not provide any ex-
ample of such an attack).

Although a delay is introduced to allow the OAD
to process the data sent back to the client, this does not

21st Large Installation System Administration Conference (LISA ’07) 143

ATLANTIDES: An Architecture for Alert Verification . . . Bolzoni, Crispo, & Etalle

affect the detection itself: in fact, the delay, in the
worst case of no output sent at all, is equal to the time
value t. In Appendix A we provide the pseudo-code of
our architecture.

It should be clear from the architecture that AT-
LANTIDES will never raise more false positives that
its input NIDS. In fact, the output of the OAD gener-
ates false positives or false negatives. The former situ-
ation cannot take place because the output of the OAD
is evaluated only when an alert has already been raised
by the input NIDS: the OAD could mistake the alert-
related outgoing traffic as anomalous and then forward
the alert as a true positive, but this would have hap-
pened in any case, if considering the output of the in-
put NIDS only. Thus, the worst case is that a false pos-
itive is not suppressed, but any new false alert cannot
be generated.

On the other hand, we have to discuss the possi-
bility that ATLANTIDES will introduce additional
false negatives (w.r.t. the input NIDS). This happens
every time the OAD classifies an alert corresponding
to a true attack as a false alert. False negatives are a
common problem for alert verification systems (and
for ABSs in general). Because of our solution bases its
verification on an anomaly-based engine, the threshold
used to discern outgoing traffic can be adjusted manu-
ally by IT specialists to avoid false negatives (previ-
ous proposed solutions cannot be tuned in the same
way, e.g., [18]). an effective threshold automatically.

Missing Output Response
What we just described is the most common be-

havior; nevertheless we have to take into account that
there exist attacks which, e.g., aim to disrupt com-
pletely the service or that, exploiting a buffer over-
flow, radically modify the normal execution. In this
case, if the OAD does not detect any output related to
the pre-alert raised by the NIDS, during the time win-
dow t, then the pre-alert is considered an incident and
is forwarded to an IT security specialist. Although this
could be considered rough, because the missing re-
sponse could occur for different reasons than a suc-
cessful attack (e.g., an internal error), this strategy
does not introduce any additional false negatives/posi-
tives, since with a single NIDS (monitoring the incom-
ing traffic) the alert would be forwarded anyway. Fur-
thermore, Chaboya, et al. [6] experimentally verified
that most of the buffer overflow attacks against an
HTTP server do not produce any output from the at-
tacking requests. Although it is theoretically possible
that the attacker crafts a particular payload to send a
normal response on the current connection after the
exploitation, there exist several difficult technical
problems which limit the success of this kind of at-
tack. The attacker must inject an attack payload con-
taining the routines to generate the normal output too
(or to jump to the original code where this is done):
since exploitable buffers are normally small in size, it
could be difficult to include the necessary payload.

Since nowadays attacks against connection-less
protocols are less common (see the Common Vulnera-
bilities and Exposures [39] (CVE) database for de-
tailed statistics), we have designed ATLANTIDES
with the explicit goal of reducing false positives when
monitoring network services based on the TCP proto-
col (e.g., HTTP, SMTP and FTP) where a response is
typically sent by the server to the client.

Although we do not aim to handle all kinds of
possible attacks (e.g., worms or DDoS attacks perpe-
trated generating a high quantity of legal connections),
we believe our solution can improve the accuracy of a
NIDS without any additional component installed di-
rectly on the monitored hosts (an additional compo-
nent could affect under certain circumstances host per-
formance, i.e., a high amount of connections).
The OAD

The OAD is basically an anomaly payload-based
NIDS, monitoring the output of a network service
rather than the input of it. In our embodiment we
choose to use the NIDS POSEIDON as the OAD, be-
cause we are familiar with it and it gives better results
than its leading competitor [5]. POSEIDON is a 2-tier
payload-based ABS that combines a neural network
with n-gram analysis to detect anomalies. POSEIDON
performs a packet-based analysis: every packet is clas-
sified by the neural network; then, using the classifica-
tion information given by the neural network, the real
detection phase takes place based on statistical func-
tions considering the byte-frequency distributions (n-
gram analysis).

The fact that the OAD is anomaly-based (rather
than signature-based) has various advantages. The
OAD can adapt to the specific network environ-
ment/service, and it does not require the definition of
new signatures to detect anomalous output, working in
an unsupervised way (after initial setup). Creating and
maintaining a set of signatures for outgoing traffic is a
thorny and labor-intensive task, as these signatures
heavily depend on local applications, and must be up-
dated each time that modifications of the application
change its output content. On the other hand, the OAD
can simply include these modification in its model,
without starting training over. The disadvantage of be-
ing anomaly-based is that our OAD needs an exten-
sive (though unsupervised) training phase: a signifi-
cant amount of (normal) traffic data is needed to build
an accurate model of the service we monitor.
Setting the Threshold

As we mentioned in Section Anomaly-Based Sys-
tems, in ABSs completeness and accuracy are intrinsical-
ly related and heavily influenced by the threshold value.
Here, we call completeness the ratio TP/(TP + FN) and
accuracy the ratio TP/(TP + FP), where TP is the
number of true positives, FN is the number of false
negatives and FP is the number of false positives
raised during the benchmarks. Our experiments show

that setting the threshold at 3
t_max

4
, usually yields

144 21st Large Installation System Administration Conference (LISA ’07)

Bolzoni, Crispo, & Etalle ATLANTIDES: An Architecture for Alert Verification . . .

reasonably good results, where t_max is the maximum
distance between the analyzed data and the model ob-
served during the training phase. Thus, we can auto-
matically set this parameter and IT personnel can later
adjust it as necessary.

POSEIDON+
ATLANTIDESProtocol POSEIDON

DR 100% 100%
FP 1683 (2,83%) 774 (1,30%)

HTTP

Ta b l e 1: Comparison between POSEIDON stand-
alone and POSEIDON in combination with AT-
LANTIDES using data set A; DR stands for de-
tection rate (attack instance percentage), while FP
is the false positive rate (packets and correspond-
ing percentage); ATLANTIDES reduces false posi-
tives by more than 50% without affecting the detec-
tion rate (i.e., without introducing false negatives).

Figure 2: Detection rates for POSEIDON in combina-
tion with ATLANTIDES using data set A (HTTP
protocol): the x-axis and y-axis present false posi-
tive rate (packets) and detection rate (attacks in-
stances) respectively. It is possible to observe that
ATLANTIDES presents a lower false positive rate
than POSEIDON, considering the same detection
rate. It is possible to notice how different AT-
LANTIDES’ threshold settings affect detection
and false positive rates.

Experiments and Results

To validate our architecture, we benchmark AT-
LANTIDES in combination with the signature-based
NIDS Snort [34, 37] as well as ATLANTIDES in
combination with the anomaly-based NIDS POSEI-
DON [5]. To carry out the experiments, we employ
two different data sets. First, we benchmark the sys-
tem using a private data set. Secondly, we use the
DARPA 1999 data set [22]: despite criticism [23, 25]
this is a standard data for benchmarking NIDSs (see,
e.g., [33, 42]) and it has the advantage that it allows
one to compare experiments. No other data set,

containing sufficient data to perform verifiable bench-
marks, is publicly available.

We consider an attack to be successfully detected
when at least one packet carrying the attack payload is
correctly flagged as malicious; all the other non-de-
tected packets carrying the attack payload are not con-
sidered to be false negatives. On the other hand, each
packet incorrectly flagged as malicious is considered
to be a false positive. Thus, the detection rate is at-
tacked-based, while the false positive rate is packet-
based.

Tests With a Private Data Set

To carry out our validation, and to see how the
system behaves when trained with a data set that was
not made attack-free,3 we consider a private data set
we collected at the University of Twente: this is data
set A. Data were collected on a public network for five
consecutive working days (24 hours per day), logging
only TCP traffic directed to (and originating from) a
heavy-loaded web server (about 10 Gigabytes of total
traffic per day). This web server hosts the department
official web sites as well as student and research staff
personal web pages: thus, the traffic contains different
types of data such as static and dynamically generated
HTML pages and, especially in the outgoing traffic,
common format documents (e.g., PDF) as well as raw
binary data (e.g., software executables). We did not in-
ject any artificial attack.

We focus on HTTP traffic because nowadays In-
ternet attacks are mainly directed to web servers and
web-based applications [17]: Kruegel, et al. [19] state
that web-based attacks account for 20%-30% from
1999 to 2004 in CVE entries [39]; Symantec Corpora-
tion [38] reports that, in the first-half of year 2006,
69% of total discovered vulnerabilities were related to
web services and, during the same period, more than
60% of easily exploitable vulnerabilities (whenever
the exploitation code is not needed or well-known) af-
fected web applications. Symantec states that typical
examples of easily exploitable vulnerabilities are SQL
Injection and Cross-Site Scripting (XSS) attacks.

To train the anomaly-detection engines of both
POSEIDON and the OAD on data set A, we used a
snapshot of the data collected during working hours
(approximately three hours, 1.8 Gigabytes of data,
randomly chosen). The chosen training data set had
not been pre-processed and made attack-free: thus it is
possible that the model includes some malicious activ-
ity (that could negatively affect accuracy). For the
same reason, we randomly chose another snapshot
(approximately 1.8 Gigabytes of data) to benchmark
POSEIDON stand-alone against POSEIDON in com-
bination with ATLANTIDES.

3This is useful to see how the system performs in the sub-
optimal situation in which the IT security specialist does not
have the time to clean up the training data set, a situation
that is likely to occur often in practice.

21st Large Installation System Administration Conference (LISA ’07) 145

ATLANTIDES: An Architecture for Alert Verification . . . Bolzoni, Crispo, & Etalle

Figure 3: Detection rates for POSEIDON in combina-
tion with ATLANTIDES using DARPA 1999 data
set (SMTP protocol): the x-axis and y-axis present
false positive rate (packets) and detection rate (at-
tacks instances) respectively. Is it possible to ob-
serve that ATLANTIDES presents a lower false
positive rate than POSEIDON, considering the
same detection rate. It is possible to notice how
different ATLANTIDES’ threshold settings affect
detection and false positive rates.

Snort+ POSEIDON+
ATLANTIDES ATLANTIDESProtocol Snort POSEIDON

DR 59.9% 59.9% 100% 100%
FP 599 (0.069%) 5 (0.00057%) 15 (0.0018%) 0 (0.0%)

HTTP

DR 31.75% 31.75% 100% 100%
FP 875 (3.17%) 317 (1.14%) 3303 (11.31%) 373 (1.35%)

FTP

DR 26.83% 26.83% 95.12% 95.12%
FP 391 (0.041%) 6 (0.00063%) 63776 (6.72%) 56885 (5.99%)

Telnet

DR 13.3% – 100% 100%
FP 0 (0.0%) – 6476 (3.69%) 2797 (1.59%)

SMTP

Table 2: Comparison between Snort stand-alone, Snort in combination with ATLANTIDES, POSEIDON stand-
alone and POSEIDON in combination with ATLANTIDES using the DARPA 1999 data set: DR stands for de-
tection rate (attack instance percentage), while FP is the false positive rate (packets and corresponding percent-
age); ATLANTIDES reduces false positives by more than 50% most of the times, being close to zero in 3 tests,
without affecting the detection rate (i.e., without introducing false negatives).

ABSs can, obviously, achieve a 100% detection
rate using a very low threshold value, but this negative-
ly affects the false positive rate too (as we mentioned in
Section Anomaly-Based Systems): we set the threshold
of POSEIDON experimetally to achieve the best detec-
tion rate at the lowest false positive rate possible.

The alerts have been classified by the authors:
we found evidences of XSS and SQL Injection attacks
[43] (and this is not surprising, accordingly to Syman-
tec’s report), plus some probes checking for well-
known paths (33 attack detections in total). Table 1
summarizes the results we obtained. We cannot com-
pare ATLANTIDES in combination with Snort on data
set A for the reason that Snort does not find any true
attack to the system (Snort raised only false alerts):

this is not surprising, since Snort has only few signa-
tures devoted to SQL Injections and XSS attacks. By
setting a high threshold value in ATLANTIDES we
could remove all the false positives, but this would
give no indication of the completeness and accuracy
of ATLANTIDES. Figure 2 shows detailed results of
ATLANTIDES on data set A. Here, left is better than
right and above is better than below. A point left-top
indicates a configuration in which (almost) every at-
tack has been correctly forwarded, with very few false
positives left. On the other hand, a point on the low-
right side indicates a configuration in which some real
attacks have been incorrectly suppressed and a good
deal of licit traffic was marked anomalous.

Tests With the DARPA 1999 Data Set
The testing environment of the DARPA 1999 da-

ta set contains several internal hosts that are attacked
by both external and internal attackers: in our tests, we
consider only inbound and outbound TCP packets that
belong to attack connections against hosts inside the
network 172.16.0.0/16. We focus on FTP, Telnet,
SMTP and HTTP protocols. This is due to the fact that
only these protocols, among the ones contained in this
data set, provide us with a sufficient number of sam-
ples to train the OAD and, at the same time, allow us
to compare our architecture with POSEIDON stand-
alone, that has been benchmarked following the same
procedures.

We train the OAD of ATLANTIDES with the da-
ta of weeks 1 and 3 (attack-free): for each different
protocol we use a different OAD instance. Afterwards,
we test ATLANTIDES together with both POSEIDON
and Snort using week 4 and week 5 traffic. In order to
distinguish between true and false positives, we refer
to the attack instance table provided by the DARPA
data set authors. Table 2 reports a comparison of the
detection and false positive rates of Snort stand-alone
(first column), Snort in combination with ATLAN-
TIDES (second column), POSEIDON stand-alone (third
column) and POSEIDON in combination with AT-
LANTIDES (fourth column).

146 21st Large Installation System Administration Conference (LISA ’07)

Bolzoni, Crispo, & Etalle ATLANTIDES: An Architecture for Alert Verification . . .

In both cases, ATLANTIDES achieves a substan-
tial improvement on the stand-alone system, neither af-
fecting the detection rate nor introducing false nega-
tives; ATLANTIDES reduces the false positive amount
by at least 50% on every protocol benchmarked, except
for the Telnet protocol together with POSEIDON. In
our opinion, this discrepancy is due to the fact that Tel-
net has a great output variability, since an user could
issue hundreds of different commands with different
output; on the other hand, protocols like HTTP, FTP
and SMTP present well-defined protocol schemas to
exchange information between client and server. AT-
LANTIDES is not applied to SMTP traffic in combi-
nation with Snort because in this case Snort raises no
false positives.

Related Work

The problem of alert verification has been ad-
dressed using two different kinds of approaches: we
have techniques for identifying true positives, and
techniques for identifying false positives. The main
difference between our work and the papers described
below is that we take into account the outgoing traffic
of the system.

Identifying True Positives
Kruegel and Robertson [18] introduces a plug-in

for Snort to verify alerts: the plug-in integrates the
Nessus vulnerability scanner into the Snort’s core.
When an alert is fired, this is not immediately for-
warded but is firstly passed to the verification engine.
Since every Snort’s signature comes with a unique
identifier (assigned by CVE [39]), this index is used to
check the presence of a corresponding Nessus attack
script. If found, the script is executed against the target
machine/network: the output is extracted and used to
flag the alert as either true or false; an output cache is
used to avoid further verification for the same alert/
target. Although this approach is effective, there are
several drawbacks: one has to maintain the Nessus’s
attack script database updated, and this approach
works only for signature-based NIDSs, while AT-
LANTIDES can work with both types and in a com-
plete automatic way (i.e., no manual updates needed).

Ning, et al. developed a model [30] and an intru-
sion-alert correlator [27] to help human analysts dur-
ing the alert verification phase. This work is based on
the observation that most attacks consist of several re-
lated stages, with the early stages preparing for the lat-
er ones. Hyper-alert correlation graphs are used to rep-
resent correlated alerts in an intuitive way. However,
this correlation technique is ineffective when attackers
use a different (yet not spoofed) IP source address at
each attack step. Ning and Cui [27] demonstrate the ef-
fectiveness of this approach when applied on a small
data set (due to the exponential complexity of hyper-
alert graphs): in [28, 29] the same authors present other
utilities they developed to facilitate the analysis of large
sets of correlated alerts, and report some benchmarks

employing network traffic used during the DEFCON 8
Capture the Flag (CTF) event [12]. ATLANTIDES
does not present the same limitations on data set size.

Lee and Stolfo [20] develop a hybrid network and
host-based framework based on data mining tech-
niques, such as sequential patterns mining and episodes
rules, to address the problem of improving attack detec-
tion while maintaining a low false positive rate. The
system detects attacks combining different models and
comparing them with actual traffic features. Bench-
marks have been conducted using the DARPA 1998
data set [21]: detection score for different attack ty-
pologies has a minimum value of 65% with a false
positive rate always below 0.05%. Since the authors
use a different data set, we cannot compare directly
the two approaches: however, we can notice that our
approach does not use information collected from the
operating system hosting the monitored network ser-
vice(s), thus ATLANTIDES can work on-line without
affecting the host performance.

Identifying False Positives
Pietraszek [33] tackles the problem of reducing

false positives by introducing an alert classifier system
(ALAC, Adaptive Learner for Alert Classification)
based on machine learning techniques. During the
training phase, the system classifies alerts into true
and false positives, by attaching a label from a fixed
set of user-defined labels to the current alert. Then, the
system computes an extra parameter (called classifica-
tion confidence) and presents this classification to a
human analyst. The analyst’s feedback is used to gen-
erate training examples, used by the learning algo-
rithm to build and update its classifiers. After the
training phase, the classifiers are used to classify new
alerts. To ensure the stability of the system over time,
a sub-sampling technique is applied: regularly, the
system randomly selects n alerts to be forwarded to
the analyst instead of processing them autonomously.
This approach relies on the analyst’s ability to classify
alerts properly and on his availability to operate in re-
al-time (otherwise the system will not be updated in
time); we believe that these (demanding) requirements
can be considered acceptable for a signature-based
NIDS (where the analyst can easily inspect both the
signature and network packet(s) that triggered the
alert), but it could be difficult to perform the same
analysis with an anomaly-based NIDS. Benchmarks
conducted over the 1999 DARPA data set, using Snort
to generate alerts, show an overall false positive re-
duction of over 30% (details on single attack protocols
are not given).

The the main differences between ALAC and
ATLANTIDES include: (a) ALAC does not consider
the outgoing traffic, and (b) ALAC relies heavily on
the expertise and the presence of an analyst (in AT-
LANTIDES, all the IT specialist has to do is to set the
thresholds).

21st Large Installation System Administration Conference (LISA ’07) 147

ATLANTIDES: An Architecture for Alert Verification . . . Bolzoni, Crispo, & Etalle

Julisch [15] presents a semi-automatic approach,
based on techniques which discover frequently occur-
ring episodes in a given sequence, for identifying false
positives based on the idea of root cause: an alert root
cause is defined as ‘‘the reason for which it occurs.’’
The author observes that in most environments, it is
possible to identify a small number of highly predomi-
nant (and persistent) root causes: thereby removing
such root causes drastically reduces the future alert
rate. Benchmarks conducted on a log trace from a
commercial signature-based NIDS deployed in a real
network show a reduction of 87% of false positives.
No further details are given about the testing condi-
tion, network topology or traffic typology. We cannot
compare directly this approach with ATLANTIDES
because the data used by the author is private, never-
theless we can notice that this approach is applicable
only to signature-based NIDes, while ATLANTIDES
is effective with anomaly-based systems too.

Analyzing output traffic The idea of analyzing
(and correlating) the output of a (possible) compro-
mised system as been used before in the context of
worm detection.

Gu, et al. [14] scan the output traffic for specific
port numbers. When an anomaly has been detected in
the incoming traffic directed to a certain destination
service port, their system start monitoring the output
traffic to check whether the host tries to contact other
systems using the same destination service port: if this
is the case then the system is probably infected by a
worm. Wang, et al. [41] proceed in a similar way,
comparing outgoing to incoming traffic, looking for
similarities: when an anomaly has been detected in the
incoming traffic, the anomalous traffic is cached and
compared to subsequent outgoing traffic (to detect
polymorphic worms). A successful match indicates
that the host has been infected and that the worm is
trying to replicate itself, infecting other hosts. Any
other kind of attack will not be handled by the system.
In contrast, our solution presents a general architecture
to carry out a complete anomaly detection on the out-
put to reduce false positives of any NIDS placed on
the input channel. Indeed we have shown that our ar-
chitecture works well in combination with both a sig-
nature and an anomaly-based input NIDS.

Conclusion

In this paper we present ATLANTIDES, an ar-
chitecture for automatic alert verification exploiting in
a structural way the detection of anomalies in the out-
put traffic of a system. ATLANTIDES can be used for
reducing false positives both in signature and anom-
aly-based NIDSs. The core of ATLANTIDES consists
of an output anomaly detector (OAD), which com-
pares output traffic with a model it has created during
the training phase. To reduce false positives on the in-
put NIDS (be it signature or anomaly-based) monitor-
ing the incoming traffic, ATLANTIDES checks if the
communication raising an alert in the input NIDS

actually produces an anomaly in the outgoing traffic
too. In this case (and in another exceptional situation),
the alert is forwarded to the IT specialist, otherwise it
is discarded. The fact that the OAD is anomaly-based
(rather than signature-based) allows it to adapt to the
specific network environment/service, and to work in
an unsupervised way (at least, after the setup). Anom-
aly-based systems typically use a distance function
and a threshold to discern anomalous from licit traffic.
We introduce a simple heuristic to set ATLANTIDES
threshold in an automatic, though effective, way, to
further ease the management for IT security specialists
(which can in case adjust the threshold value).

Benchmarks on a private data set and on the
DARPA 1999 data set show that ATLANTIDES deter-
mines a reduction of false positives between 50% and
100% in most of the cases, without introducing any
extra false negative, easing signifincantly the manage-
ment of NIDSs.

One possible extension to our architecture is
adding additional information to make the detection of
anomalies in the output more precise: this information
(e.g., the usual amount of bytes sent back from the
server and the communication duration) could be in-
cluded in the model and evaluated as well. Our archi-
tecture has been designed to work with TCP-based
network services: although it could be easily adapted
to work with UDP-based services, there exist some is-
sues related to this protocol. In fact UDP is a connec-
tion-less protocol and this add some difficulties to dis-
tinguish real connections from the ones using spoofed
IP addresses. We will investigate this in future.

Author Information

Damiano Bolzoni is currently a Ph.D. student at
the University of Twente, Netherlands. His research
interests are focused on intrusion detection systems
and information risk management. He received a MSc
in Computer Science from the University of Venice,
Italy, with a thesis about anomaly-based network in-
trusion detection systems. He can be reached at dami-
ano.bolzoni@utwente.nl .

Bruno Crispo is a faculty member at the Univer-
sity of Trento and at the Vrije Universiteit Amsterdam.
His research interests are security protocols, authenti-
cation, authorization and accountability in large dis-
tributed systems, RFID and sensors security. He has a
Ph.D. in Computer Science from the University of
Cambridge, UK. Contact him at crispo@dit.unitn.it .

Sandro Etalle received a Ph.D. from the Univer-
sity of Amsterdam, and has worked for the universities
of Genova, Amsterdam, Maastricht, Trento. At the
moment he is associate professor in the Distributed
and Embedded Systems Group at the University of
Twente, the Netherlands. His research covers trust
management, intrusion detection systems and informa-
tion risk management. He can be reached at san-
dro.etalle@utwente.nl .

148 21st Large Installation System Administration Conference (LISA ’07)

Bolzoni, Crispo, & Etalle ATLANTIDES: An Architecture for Alert Verification . . .

Bibliography

[1] Allen, J., A. Christie, W. Fithen, J. McHugh, J.
Pickel, and E. Stoner, ‘‘State of the Practice of In-
trusion Detection Technologies,’’ Technical Re-
port CMU/SEI-99TR-028, Carnegie-Mellon Uni-
versity – Software Engineering Institute, Jan, 2000.

[2] Axelsson, S., ‘‘Intrusion Detection Systems: A
Survey and Taxonomy,’’ Technical Report 99-15,
Chalmers University, Mar, 2000.

[3] Axelsson, S., ‘‘The Base-Rate Fallacy and the
Difficulty of Intrusion Detection,’’ ACM Transac-
tions on Information and System Security (TIS-
SEC), Vol. 3, Num. 3, pp. 186-205, 2000.

[4] Bace, R., Intrusion detection, Macmillan Publish-
ing Co., Inc., 2000.

[5] Bolzoni, D., E. Zambon, S. Etalle, and P. Hartel,
‘‘POSEIDON: a 2-tier Anomaly-based Network
Intrusion Detection System,’’ Proceedings of the
4th IEEE International Workshop on Information
Assurance (IWIA), pp. 144-156, IEEE Computer
Society Press, 2006.

[6] Chaboya, D. J., R. A. Raines, R. O. Baldwin, and
B. E. Mullins, ‘‘Network Intrusion Detection:
Automated and Manual Methods Prone to Attack
and Evasion,’’ IEEE Security and Privacy, Vol. 4,
Num. 6, pp. 36-43, 2006.

[7] Check Point Software Technologies, Stateful In-
spection Technology, 2005, http://www.checkpoint.
com/products/down-loads/Stateful_Inspection.pdf .

[8] Clifton, C. and G. Gengo, ‘‘Developing Custom
Intrusion Detection Filters Using Data Mining,’’
Proceedings of the 21st Century Military Com-
munications Conference (MILCOM), Vol 1, pp.
440-443, IEEE Computer Society Press, 2000.

[9] Dain, O., and R. Cunningham, ‘‘Fusing Heteroge-
neous Alert Streams into Scenarios,’’ Proceed-
ings of the Workshop on Data Mining for Security
Applications, 8th ACM Conference on Computer
Security (CCS), pp. 1-13, ACM Press, 2002.

[10] Debar, H., M. Dacier, and A. Wespi, ‘‘Towards a
Ta x o n o m y of Intrusion-Detection Systems,’’ Com-
puter Networks, Vol. 31, Num. 8, pp. 805-822,
1999.

[11] Debar, H., M. Dacier, and A. Wespi, ‘‘A Revised
Taxonomy of Intrusion-Detection Systems,’’ An-
nales des Télécommunications, Vol. 55, Num.
7-8, pp. 361-378, 2000.

[12] DEFCON8, Defcon Capture the Flag (CTF) Con-
test, 2000, http://www.defcon.org/html/defcon8/
defcon-8-post.html .

[13] Forrest, S. and S. A. Hofmeyr, ‘‘A Sense of Self
for Unix Processes,’’ Proceedings of the 17th
IEEE Symposium on Security and Privacy (S&P),
pp. 120-128, IEEE Computer Society Press, 2002.

[14] Gu, G., M. Sharif, X. Qin, D. Dagon, W. Lee, and
G. Riley, ‘‘Worm Detection, Early Warning and
Response Based on Local Victim Information,’’

Proceedings of the 20th Annual Computer Security
Applications Conference (ACSAC), pp. 136-145,
IEEE Computer Society, 2004.

[15] Julisch, K., ‘‘Mining Alarm Clusters to Improve
Alarm Handling Eff i c i e n c y,’’ Proceedings of the
17th Annual Computer Security Applications Con-
ference (ACSAC), pp. 12-21, ACM Press, 2001.

[16] Julisch, K., ‘‘Clustering Intrusion Detection Alarms
to Support Root Cause Analysis,’’ ACM Transac-
tions on Information and System Security (TISSEC),
Vo l . 6, Num. 4, pp. 443-471, 2003.

[17] Klein. D. V., ‘‘Defending Against the Wily Surfer-
We b - b a s e d Attacks and Defenses,’’ Proceedings
of the Workshop on Intrusion Detection and Net-
work Monitoring, pp. 81-92, USENIX Associa-
tion, 1999.

[18] Kruegel, C. and W. Robertson, ‘‘Alert Verifica-
tion: Determining the Success of Intrusion At-
tempts,’’ Proceedings of the 1st Workshop on the
Detection of Intrusions and Malware and Vulner-
ability Assessment (DIMVA), 2004.

[19] Kruegel, C., G. Vigna, and W. Robertson, ‘‘A
Multi-model Approach to the Detection of Web-
based Attacks,’’ Computer Networks, Vol. 48,
Num. 5, pp. 717-738, 2005.

[20] Lee, W. and S. J. Stolfo, ‘‘A Framework for Con-
structing Features and Models for Intrusion De-
tection Systems,’’ ACM Transactions on Informa-
tion and System Security, Vol. 3, Num. 4, pp.
227-261, 2000.

[21] R. Lippmann, D. Fried, I. Graf, J. Haines, K.
Kendall, D. McClung, D. Weber, S. Webster, D.
Wyschogrod, R. Cunningham, and M. Zissman,
‘‘Evaluating Intrusion Detection Systems: The
1998 DARPA Off-line Intrusion Detection Evalua-
tion,’’ Proceedings of the 1st DARPA Information
Survivability Conference and Exposition (DISCEX),
Vo l . 2, pp. 12-26. IEEE Computer Society Press,
2000.

[22] Lippmann, R., J. W. Haines, D. J. Fried, J. Korba,
and K. Das, ‘‘The 1999 DARPA Off - l i n e Intrusion
Detection Evaluation,’’ Computer Networks: The
International Journal of Computer and Telecommu-
nications Networking, Vol. 34, Num. 4, pp. 579-
595, 2000.

[23] Mahoney, M. V. and P. K. Chan, ‘‘An Analysis of
the 1999 DARPA/Lincoln Laboratory Evaluation
Data for Network Anomaly Detection,’’ In Pro-
ceedings of the 6th Symposium on Recent Ad-
vances in Intrusion Detection (RAID), Vol. 2820
of LNCS, pp. 220-237, Springer-Verlag, 2003.

[24] Manganaris, S., M. Christensen, D. Zerkle, and
K. Hermiz, ‘‘A Data Mining Analysis of RTID
Alarms,’’ Computer Networks: The International
Journal of Computer and Telecommunications
Networking, Vol. 34, Num. 4, pp. 571-577, 2000.

[25] McHugh, J., ‘‘Testing Intrusion Detection Sys-
tems: a Critique of the 1998 and 1999 DARPA

21st Large Installation System Administration Conference (LISA ’07) 149

ATLANTIDES: An Architecture for Alert Verification . . . Bolzoni, Crispo, & Etalle

Intrusion Detection System Evaluations as Per-
formed by Lincoln Laboratory,’’ ACM Transac-
tions on Information and System Security (TIS-
SEC), Vol. 3, Num. 4, pp. 262-294, 2000.

[26] Morin, B., L. Mé, H. Debar, and M. Ducassé,
‘‘ M 2 D 2 : A Formal Data Model for IDS Alert Cor-
relation,’’ Proceedings of the 5th Symposium on Re-
cent Advances in Intrusion Detection (RAID), Vol.
2516 of LNCS, pp. 115-127, Springer-Verlag, 2002.

[27] Ning, P. and Y. Cui, ‘‘An Intrusion Alert Correla-
tor Based on Prerequisites of Intrusions,’’ Techni-
cal Report TR-2002-01, North Carolina State
University, 2002.

[28] Ning, P., Y. Cui, and D. Reeves, ‘‘Analyzing In-
tensive Intrusion Alerts via Correlation,’’ Pro-
ceedings of the 5th Symposium on Recent Ad-
vances in Intrusion Detection (RAID), Vol. 2516
of LNCS, pp. 74-94, Springer-Verlag, 2002.

[29] Ning, P. Y., Cui, D. Reeves, and D. Xu, ‘‘Tech-
niques and Tools for Analyzing Intrusion Alerts,’’
ACM Transactions on Information and System
Security (TISSEC), Voo. 7, Num. 2, pp. 274-318,
2004.

[30] Ning, P., D. Reeves, and Y. Cui, ‘‘Correlating
Alerts Using Prerequisites of Intrusions,’’ Techni-
cal Report TR-2001-13, North Carolina State
University, 2001.

[31] Ning, P., and D. Xu, ‘‘Learning Attack Strategies
From Intrusion Alerts,’’ Proceedings of the 10th
ACM conference on Computer and Communica-
tions Security (CCS), pp. 200-209, ACM Press,
2003.

[32] Paxson, V., ‘‘Bro: a System for Detecting Net-
work Intruders in Real-time,’’ Computer Net-
works, Vol. 31, Num. 23-24, pp. 2435-2463,
1999.

[33] Pietraszek, T., ‘‘Using Adaptive Alert Classifica-
tion to Reduce False Positives in Intrusion Detec-
tion,’’ Proceedings of the 7th Symposium on Re-
cent Advances in Intrusion Detection (RAID),
Vol. 3224 of LNCS, pp. 102-124, Springer-Verlag,
2004.

[34] Roesch, M., ‘‘Snort – Lightweight Intrusion De-
tection for Networks,’’ Proceedings of the 13th
USENIX Conference on System Administration
(LISA), pp. 229-238, USENIX Association, 1999.

[35] Tenable Network Security, Nessus Vulnerabilty
Scanner, 2002, http://www.nessus.org/ .

[36] Sommer, R., and V. Paxson, ‘‘Enhancing Byte-level
Network Intrusion Detection Signatures With Con-
text,’’ Proceedings of the 10th ACM Conference on
Computer and Communications Security (CCS), pp.
262-271, ACM Press, 2003.

[37] Sourcefire, Snort Network Intrusion Detection
System Web Site, 1999, http://www.snort.org .

[38] Symantec Corporation, Internet Security Threat
Report, 2006, http://www.symantec.com/enterprise/
threat-report/index.jsp .

[39] The MITRE Corporation, Common Vulnerabili-
ties and Exposures Database, 2004, http://cve.
mitre.org .

[40] Van Trees, H. L., Detection, Estimation and Mod-
ulation Theory, Part I: Detection, Estimation, and
Linear Modulation Theory,, John Wiley and Sons,
Inc., 1968.

[41] Wang, K., G. Cretu, and S. J. Stolfo, ‘‘Anomalous
Payload-based Worm Detection and Signature
Generation,’’ Proceedings of the 8th International
Symposium on Recent Advances in Intrusion De-
tection (RAID), Vol. 3858 of LNCS, pp. 227-246,
Springer-Verlag, 2005.

[42] Wang, K. and S. J. Stolfo, ‘‘Anomalous Payload-
based Network Intrusion Detection,’’ Proceed-
ings of the 7th Symposium on Recent Advances in
Intrusion Detection (RAID), Vol. 3224 of LNCS,
pp. 203-222, Springer-Verlag, 2004.

[43] Web Application Security Consortium, Web Secu-
rity Threat Classification, 2005, http://www.we-
bappsec.org/projects/threat/ .

[44] Zhou, J., A. J. Carlson, and N. Bishop, ‘‘Verify
Results of Network Intrusion Alerts Using Light-
weight Protocol Analysis,’’ Proceedings of the 21st
Annual Computer Security Applications Conference
(ACSAC), pp. 117-126, IEEE Computer Society,
2005.

150 21st Large Installation System Administration Conference (LISA ’07)

Bolzoni, Crispo, & Etalle ATLANTIDES: An Architecture for Alert Verification . . .

ATLANTIDES Pseudo-code

In this section we give a semi-formal description of how ATLANTIDES works.

DATA TYPE

l = length of the longest packet payload
PAYLOAD = array [1..l] of [0..255] /* packet payload */
HOMENET = set of IP addresses /* hosts inside the monitored network */

HOST = RECORD [
address: IP address ö š
port: TCP port ö š

]

PACKET = RECORD [
source: HOST
destination: HOST
payload: PAYLOAD

]

alert = RECORD [
alert:

−∞ if input NIDS is SBS
value ö Real if input NIDS is ABS

processed: BOOLEAN /* tracks a processed alert by the OAD */
true_alert: BOOLEAN /* alert is marked as an incident */

]

DATA STRUCTURE
τ ö š /* number of packets used for OAD training */
oad ö NIDS /* ABS analyzing outgoing network traffic */
out_threshold ö Real /* OAD threshold */
t ö š /* time value to wait for output */
pre-alerts = set of alerts /* alerts received from the NIDS monitoring incoming traffic */

INIT PHASE /* IT specialists set out_threshold and t values */

TRAINING PHASE

INPUT:
p: PACKET /* outgoing network packet */

for t := 1 to τ /* first, train the OAD with τ samples */
oad.train(p.source.address, p.source.port, p.payload) /* POSEIDON builds a profile for each monitored service */

end for

TESTING PHASE

INPUT:
p: PACKET /* outgoing network packet */

OUTPUT:
true_alerts: set of alerts

for each a ö pre-alerts do /* checks if the packet belongs to a communication
marked as anomalous by the input NIDS */

if (match_alert(a, p) = TRUE) then
anomaly_score := oad.test(p.source.address, p.source.port, p.payload)

/* tests if the output is anomalous */
if (anomaly_score > out_threshold) then

a.true_alert := TRUE
true_alerts.add(a)

end if
a.processed := TRUE

end if
end for

21st Large Installation System Administration Conference (LISA ’07) 151

ATLANTIDES: An Architecture for Alert Verification . . . Bolzoni, Crispo, & Etalle

for each a ö pre − alerts do /* missing-output-response handling */
if (a.processed = FALSE) and (current_time > t) then

a.true_alert := TRUE
a.processed := TRUE
true_alerts.add(a)

end if
end for

152 21st Large Installation System Administration Conference (LISA ’07)

