Atlas and Catalog of Dark Clouds Based on Digitized Sky Survey I

Kazuhito DOBASHI, Hayato UEHARA, Ryo KANDORI, Tohko SAKURAI, and Masahiro KAIDEN

Department of Astronomy and Earth Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501

dobashi@u-gakugei.ac.jp

Tomofumi UMEMOTO

National Astronomical Observatory, Mikata, Tokyo 181-8588

and

Fumio Sato

Department of Astronomy and Earth Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501

(Received 2003 December 1; accepted 2004 August 2)

Abstract

We present a quantitative atlas and catalog of dark clouds derived by using the optical database "Digitized Sky Survey I". Applying a traditional star-count technique to 1043 plates contained in the database, we produced an A_V map covering the entire region in the galactic latitude range $|b| \le 40^\circ$. The map was drawn at two different angular resolutions of 6' and 18', and is shown in detail in a series of figures in this paper. Based on the A_V map, we identified 2448 dark clouds and 2841 clumps located inside them. Some physical parameters, such as the position, extent, and optical extinction, were measured for each of the clouds and clumps. We also searched for counterparts among already known dark clouds in the literature. The catalog of dark clouds presented in this paper lists the cloud parameters as well as the counterparts.

Key words: ISM: cloud — ISM: dust — ISM: extinction

1. Introduction

Dark clouds play an important role in the Galaxy as sites of star formation, and their precise distribution on the sky has been of great interest. In the past few decades, general catalogs of dark clouds have been published by several authors, for instance, Khavtassi (1955), Lynds (1962), and Feitzinger and Stüwe (1984). These pioneer researchers surveyed for dark clouds over a great portion of the sky, and recorded the positions and extents of opaque regions. Although these catalogs were published mostly more than ~ 20 years ago, they are still very useful for various studies of dark clouds. These catalogs, however, have remained rather qualitative, and have suffered from a lack of some basic parameters, including the visual extinction (A_V) of individual dark clouds. Furthermore, some clouds must have escaped detection in these catalogs, because searches of dark clouds were carried out by eye inspections. These demerits of the catalogs apparently arose from difficulty in analysing a large amount of data (e.g., optical photographic plates) covering a vast region at the age when the catalogs were organized, although a fundamental method, such as a star-count technique, to measure the optical extinction had already been established.

The Digitized Sky Survey I (Lasker 1994, hereafter, DSS) is a useful database to complete such surveys for dark clouds more quantitatively. The recent development of computers has made it possible to analyse the huge dataset contained in DSS within a reasonable amount of time and cost. In 1998, we started a systematic survey for dark clouds by applying a traditional star-count technique to DSS, and in 2002, we completed the measurement of A_V all over the galactic plane within the latitude range $|b| \leq 40^\circ$ (Dobashi et al. 2002).

Some large extinction maps have been independently produced by Cambrésy (1999) based on virtually the same methods and database (the USNO-PMM catalog: Monet 1996, 1998), demonstrating that digitized optical images, such as DSS, are powerful to reveal a large-scale distribution of extinction. As shown in the following sections, we further attempted to identify and quantify individual dark clouds in the obtained A_V map in order to compile a new catalog of dark clouds that is more complete, extensive, and quantitative compared with other catalogs published by the pioneer researchers.

Recently, near-infrared data, including that from Two Micron All Sky Survey, is often used to probe into the densest regions in dark clouds where A_V reaches to as high as ~ 20mag or more (e.g., Cambrésy et al. 2002). It is noteworthy that, because the optical images are more sensitive to extinction than the infrared, the A_V map derived from DSS has the advantage of tracing better relatively low-extinction regions ($A_V \leq 5$ mag) in and around dark clouds.

The purpose of this paper is to present a new atlas and catalog of dark clouds based on DSS. In section 2, we describe the DSS database itself and the methods that we employed to derive the A_V map. Sources of uncertainties in the map are also stated in this section. In section 3, we display the resulting A_V map in a series of figures. We also introduce our procedure to identify dark clouds, and present a list of detected clouds as well as their counterparts searched for among already known dark clouds. In section 4, we compare our extinction map with the "dust map" provided by Schlegel et al. (1998), which were derived from far-infrared dust emission. A summary of this paper is given in section 5.

Table 1. Digitized Sky Survey I.*

Survey	Survey code	Epoch (year)	Emulsion /Filter	Band	Depth (mag)	Declination zone	Number [†] of plates	Pixel size
POSS-IE	XE	1950–58	103aE	R	20	[-30°, +90°]	935	1" & 1."7
SERC-J	S	1975–87	IIIaJ+GG395	В	23	$[-90^{\circ}, -20^{\circ}]$	606	17
SERC-J	S	1979–88	IIIaJ+GG395	В	23	$[-15^{\circ}, -00^{\circ}]$	288	17
SERC-QV	XV	1986–88	IIaD+GG495	V	14	South	94	1" & 1."7
SERC-V & PAL-V1/5	XX	1979–85	IIIaJ+GG495	V		galactic plane Selected objects	5	1."7

* Data are taken from the web site of the Digitized Sky Survey I at (http://www-gsss.stsci.edu/PlateMaterial/plateMaterial.htm).

[†] Among these, 1541 plates were recorded in 102 CD-ROMs for world-wide distribution.

2. Data and Methods

2.1. The Digitized Sky Survey I

DSS comprises mainly 3 types of plates obtained with different filters, which are named S, XV, and XE plates, obtained at the *B*, *V*, and *R* bands, respectively. XE plates covering the northern hemisphere originate from E plates of the Palomar Observatory Sky Survey (POSS E plates), which are 103a-E exposures obtained through a red plexiglass filter. The other types of plates are taken from the SERC Southern Sky Survey and the SERC J Equatorial extension: S plates are deep IIIa-J exposures with a GC 395 filter covering most regions in the southern hemisphere, and XV plates are relatively short *V* band exposures taken mostly at low galactic latitudes. In addition to these, there are some plates, named XX, that cover the Large Magellanic Cloud and M 31, which we did not use to derive the extinction map given in this paper.

These plates were digitized at the Space Telescope Science Institute (STScI) with the scanning microdensitometers providing a pixel size of 25μ m that corresponds to a 1."7 resolution on the sky. The coverage of each plate was greater than $6^{\circ} \times 6^{\circ}$ (~ 12400 × 12400 pixels). In total, 1541 plates were recorded in DSS, covering the entire sky, which are contained in 102 CD-ROMs for world-wide distribution. In table 1, we summarize some parameters of DSS quoted from the web site of STScI. More details on DSS are given by Lasker et al. (1990) and Lasker (1994) as well as in a booklet attached to the CD-ROMs.

2.2. Detection of Stars

In order to convert the raw DSS image into an extinction map, we developed software to process the DSS data, mainly using the Interactive Data Language (IDL). In the following, we explain the procedure that we adopted to derive the extinction map.

We first extracted a large image ($\sim 6.^{\circ}5 \times 6.^{\circ}5$) from DSS, fully covering a particular plate in FITS format using the software "GetImage" provided in the CD-ROMs. We then measured the sky background level at each pixel of the image by calculating the median value in the surrounding 51 × 51 pixels ($\sim 1.4 \times 1.4$), and produced a background image with the same size as the original image. Subtracting the background image from the original, we obtained an image free from low-frequency (i.e., extended) components, for instance, due to nebula emission. After determining the noise level of the background-subtracted image, we searched for stars on the image by defining them as a set of continuous pixels with a density $\geq 5\sigma$, and recorded their pixel coordinates and the density integrated over the pixels. An explanatory illustration is given in figure 1. Finally, we computed the equatorial and galactic coordinates of the stars based on the pixel coordinates and the plate constants provided in the header files in DSS.

There are a number of false stars in our detection. They mostly arise from the defects in the original glass plates, including the tracks of artificial satellites. In addition, nonstellar objects, such as galaxies, are also detected as stars in our sample. In order to avoid such false stars as much as possible, we excluded such objects from our sample if their aspect ratios (i.e., the ratio of longer length to shorter length of the set of the selected pixels) were greater than 4/3. This criterion excluded $\sim 0.2\%$ of all of the detected stars. Although we could not entirely rule out small and round galaxies by this method, it is noteworthy that the galaxies regarded as stars did not affect the final extinction value, because their effect canceled when deriving the extinction by fitting the background stellar density (see subsection 2.4). We should also note that our density measurement of bright stars is erroneous. This is because DSS images start to saturate around bright stars with magnitudes of $\lesssim 10$ and $\lesssim 13\,\text{mag}$ in the case of XV plates and the other types of plates, respectively. Because stars brighter than these magnitudes occupy a very small fraction in all of the detected stars (\sim a few percent or less), the error due to this problem is negligible in the final extinction map. However, it is impossible to detect faint stars around very bright stars saturating heavily the DSS images over a large area. We excluded such areas from our analyses, and did not use them in our survey for dark clouds, described in section 3.

We applied the above procedure to 1043 plates located within the galactic latitude range $|b| \le 40^{\circ}$, and identified $\sim 6.94 \times 10^8$ stars in total.

2.3. Photometric Calibration

We performed a magnitude calibration of the detected stars for each DSS plate by comparing the integrated densities with the magnitudes of known stars listed in other catalogs. We used the Tycho-2 catalog (Høg et al. 2000) and the Guide Star Photometric Catalog I (GSPC; Lasker et al. 1990) to calibrate stars from VX plates. For stars from the other plates (XE and

Fig. 1. Explanatory illustration for the identification of stars on DSS plates. We display S879 as an example. (a) The entire image of S879. The size of the image is $6^{\circ}5 \times 6^{\circ}5$. The plate ID number and a scale for the density are given in the two white parts of the upper-right and lower-left corners. These parts were excluded when we derived an extinction map. (b) Small region with 600 × 600 pixels (~ 17' × 17') near the center of S879. (c) Profile of density taken along the line 1–2 in panel (b). The thin solid line indicates the raw data, and the thick solid line indicates the sky background determined as the median value of surrounding 51 × 51 pixels (~ 1!4 × 1!4). The noise level denoted in the figure is the rms noise of the sky-subtracted data.

S plates), we adopted the USNO-Precision Measuring Machine A2.0 catalog (hereafter, referred to as the PMM catalog; Monet 1998), kindly provided by the author. Stars listed in the USNO-PMM catalog are basically from the same glass plates as DSS, and are already calibrated with an accuracy of ~ 0.5 mag in *B* and *R* bands. The catalog, however, provides only sources detected in both of the bands, and therefore faint stars detected only in one of them are not available.

For our sample of stars within ~ 1 square degree around the center position of each DSS plate, we searched for counterparts in the above catalogs to determine the calibration curve, i.e., the relation between the cataloged magnitude, m_{λ} , and the integrated density, D_{λ} , on DSS. We obtained calibration curves for every XE and S plates by fitting the relation with a fourth-order polynomial of the logarithmic integrated density as,

$$m_{\lambda} = \sum_{i=0}^{4} c_i (\log_{10} D_{\lambda})^i,$$
(1)

where c_i for i = 0–4 are coefficients, and λ is the wavelength of the plates (*B* or *R*). The density range used for the fitting, $d_1 \leq \log_{10} D_{\lambda} \leq d_2$, was slightly different from plate to plate, which is summarized in table 2 (p.S22) for individual plates. Typical values of d_1 and d_2 are ~ 3.7 and ~ 5.5, respectively.

To decide the calibration curve outside the range $[d_1, d_2]$, we assumed a linear relation between $\log_{10} D_{\lambda}$ and m_{λ} , and adopted a tangent line of equation (1) at $\log_{10} D_{\lambda} = d_1$ and d_2 , which is expressed as

$$m_{\lambda} = \left(\sum_{i=1}^{4} i c_i d_n^{i-1}\right) \left(\log_{10} D_{\lambda} - d_n\right) + \sum_{i=0}^{4} c_i d_n^i,$$
(2)

where *n* is 1 and 2 for the ranges $d_1 > \log_{10} D_{\lambda}$ and $d_2 < \log_{10} D_{\lambda}$, respectively. The actual diagrams of m_{λ} and D_{λ} are mostly well approximated by calibration curves determined in this manner with a typical correlation coefficient of ~ 0.98.

The calibration of XV plates ($\lambda = V$) suffers from a lack of well-calibrated faint stars in the Tycho-2 and GSPC catalogs. In fact, stars from these catalogs have a density mostly in the range $\log_{10} D_V > 5$ on DSS. We therefore assumed constant values for 4 of the coefficients in equation (1) (i.e., c_i for i = 1-4), and fitted the relation, while leaving only c_0 as a free parameter. The coefficients for i = 1-4 were determined by fitting an average density–magnitude relation of XV plates over the range $4.2 < \log_{10} D_V < 6.6$, which were provided by STScI.¹

In figure 2, we display an example of the resulting calibration curves for the cases of XE300, S696, and XV396. We also show the best-fitting coefficients and the adopted fitting ranges in table 2 (p.S22) for all of the DSS plates used in this work. An explanation for each column of the table is given below:

Column (1): Plate names,

Columns (2)–(6): Coefficients c_i in equation (1),

Column (7): The range $[d_1, d_2]$ used for the fitting,

Column (8): Resulted correlation coefficients,

Column (9): Noise level (1σ) of the sky background,

Column (10): Limitting magnitude of the plates defined at the

⁽http://www-gsss.stsci.edu/DSS/photometry/serc_v.html).

Fig. 2. Sample of the density–magnitude relation. Panels (a), (b), and (c) are for the XE300, S696, and XV396 plates, respectively. The magnitudes are taken from the PMM catalog for XE300 and S696, and from Tycho-2 catalog for XV396. The calibration curves determined using equations (1) and (2) are denoted by the gray lines. For the calibration curve of XV396, which suffers from a limited fitting range, we fitted only the coefficient for a constant (c_0 in the equations), and adopted average values for the other coefficients measured using all of the XV plates (see text). The density ranges used for the fitting, denoted as [d_1 , d_2] in subsection 2.3, are indicated by the gray bars.

5σ noise level,

Column (11): Scaling factor applied to the stellar density maps produced from individual DSS plates (see subsection 2.4).

2.4. Measurement of the Actual and the Background Stellar Densities

Based on the thus-determined calibration curves, we derived stellar density maps for all of the 1043 DSS plates by counting stars having a magnitude below a certain threshold value and falling in a 2' square mesh set along the galactic coordinates. The threshold magnitude that we adopted was 16 mag for the XV plates, and 19 mag for the XE and S plates. For most of the plates, these threshold magnitudes are well below the limiting magnitudes defined at the 5σ noise level (table 2, p.S22), although there are 8 XE plates whose 5σ noise levels are slightly lower than 19 mag by a few times 0.1 mag. Since our magnitude calibration for the XE plates are no better than that of the PMM catalog ($\Delta m_R \sim 0.5$ mag), we produced stellar density maps using all of the stars detected on the plates, and regarded their threshold magnitudes as being 19 mag.

Resulting stellar density maps are slightly inconsistent with each other, which is mainly due to the plate-to-plate systematic error in magnitude determination originally included in the PMM catalog which we adopted for our calibration of XE and S plates, and also due to the ambiguity in determining the calibration curves of XV plates. We show an example of the inconsistency in figure 3a. In order to fix this problem, we scaled about half of the stellar density maps by $\sim 10\%$ to compose a smooth and large stellar density map for each type of the plates (see figure 3b), setting some standard plates at high galactic latitudes ($|b| \ge 15^{\circ}$) where the neighboring stellar density maps are well consistent with each other. We list the scaling factors applied to each DSS plate in the final column of table 2.

The PMM catalog used for our calibration is a powerful database, providing the coordinates and two magnitudes (i.e., m_R and m_B) for most of the stars appearing on the DSS images. Because the plate information (i.e., name of the plates from which each cataloged star originates) is unfortunately not available in the catalog at the moment, it is not easy to compose a homogeneous stellar density map on a very large scale only from the catalog, owing to the plate-to-plate systematic error in magnitude calibration. The lack of plate information also makes it difficult to create a smooth stellar density map at the boundary of adjacent plates where the same stars are recorded twice or more with a slight error in coordinates $(\leq 2.75;$ Cambrésy 1999). All of these problems encouraged us to take advantage of both the DSS data and the PMM catalog to produce the galactic-scale maps of stellar density and then of extinction.

Using the composed stellar density maps, we attempted to measure the background stellar density level N_0 as a function of galactic coordinates. We first set a strip along galactic latitude b at a certain longitude l with a width of $\Delta l = 2^{\circ}$, and then averaged the stellar density within Δl to obtain the actual stellar density N as a function of b. We determined the background stellar density level N_0 by fitting N(b) in cloudfree regions showing no apparent extinction, with the following exponential functions:

Fig. 3. Sample of the stellar density maps produced from DSS plates. (a) Composed stellar density map for S plates around the Serpens region. The threshold magnitude is set to 19 mag. The ambiguity in the magnitude calibration results in a slight inconsistency among neighboring stellar density maps; for example, see the boundary of two adjacent plates pointed by the arrow. (b) Inconsistency corrected by scaling some stellar density maps, typically by $\sim 10\%$. The scaling factors that we used are summarized in table 2 (p.S22).

$$N_0(b) = k_{11} \exp[k_{12}(b - k_{13})] + k_{14} \quad \text{for} \quad b < b_0, \tag{3}$$

$$N_0(b) = k_{21} \exp[k_{22}(b - k_{23})] + k_{24} \quad \text{for} \quad b \ge b_0, \tag{4}$$

where k_{ij} are coefficients with $k_{12} > 0$ and $k_{22} < 0$, and b_0 is the latitude giving the intersection of the two equations. We applied the above fitting to every strip set along *b* with a step of 1° in *l*, and determined the coefficients k_{ij} for each of the 3 stellar density maps with different filters. We show an example of the fitted background together with the actual stellar density in figure 4. We also summarize the coefficients k_{ij} obtained at every 1° in *l* in tables 3 (p.S42), 4 (p.S55), and 5 (p.S65) for the stellar density maps produced from the XE, S, and XV plates, respectively. The following is an explanation for the columns of these tables:

Column (1): Galactic longitude,

Columns (2)–(9): Coefficients k_{ij} in equations (3) and (4),

Column (10): Resulted correlation coefficients,

Column (11): Number of ranges in galactic latitude used for the fitting,

Column (12): Fitting ranges in galactic latitude.

At longitudes close to the edge of the stellar density maps, we could not determine the coefficients k_{ij} precisely due to the limited fitting range in *b*. In such cases, we adopted coefficients determined at neighboring longitudes, as given for the range

 $l \le 211^\circ$ in table 4 (p.S55). In addition, coefficients in the range $243^\circ \le l \le 338^\circ$ for the XV plates (table 5, p.S65) are very difficult to determine, owing to a lack of cloud-free regions. The coefficients in this range were chosen rather arbitrarily by referring to the stellar density map of the S plates surrounding the area covered by the XV plates.

We interpolated the background data obtained at every 1° in l to produce background stellar density maps, $N_0(l, b)$, having the same size as the actual stellar density maps. We display the actual and the background stellar density maps in the upper and middle panels of figure 5, respectively.

In order to reduce the noise in the final extinction maps, we performed Gaussian smoothing to both the actual and the background stellar density maps. Because the noise level in the extinction map depends on the logarithmic number of stars counted in a mesh, Gaussian smoothing is useful to avoid quantization errors, especially in the most opaque regions in the galactic plane, where only one or a few stars are found in the 2' square mesh. For the width of the two-dimensional Gaussian function used for smoothing, we selected 6' and 18' (FWHM). The former was to find well-defined dark clouds along the galactic plane at a high angular resolution, and the latter was to search for diffuse and extended dark clouds, especially at high latitudes (see section 3).

Fig. 4. Explanatory illustration for determining the background stellar density. The actual stellar densities (solid lines) are displayed together with the background levels (broken lines) fitted using equations (3) and (4). Cases for S, XE, and XV plates are displayed in panels (a), (b), and (c), respectively. The galactic longitudes at which the displayed data are taken are indicated in parentheses.

2.5. Conversion to A_V Map

Based on the smoothed stellar density maps for each band, we derived an extinction map using

$$A_{\lambda}(l,b) = [\log N_0(l,b) - \log N(l,b)]/a_{\lambda},$$
(5)

where *N* and *N*₀ are the actual and the background stellar densities, respectively, λ is the band of the map (i.e., *B*, *V*, or *R*), and a_{λ} is the slope of the m_{λ} -log *N* diagram (i.e., the Wolf diagram: Wolf 1923).

We attempted to measure a_{λ} as a function of the galactic coordinates in the magnitude range $m_{\lambda} \ge 15$, and found a tendency that a_{λ} slightly decreases toward higher latitudes. However, the actual a_{λ} shows a large dispersion, especially near the galactic plane, varying over the range $0.25 \le a_{\lambda} \le 0.35$. We therefore decided to adopt a constant value of $a_{\lambda} = 0.3$ in equation (5) for simplicity. The resulting extinction maps (A_B , A_V , and A_R) are displayed in the lower panels of figure 5.

In order to compose a large A_V map from the 3 extinction maps, we converted A_R and A_B into A_V using

$$A_V = C_{VR} A_R = C_{VB} A_B, (6)$$

where the conversion factors, C_{VR} and C_{VB} , were taken to be 1.21 and 0.76 (Dickman 1978), respectively, which were derived from a reddening curve measured by Bless and Savage (1972). The conversion factors C_{VR} and C_{VB} change depending on the assumption of the reddening curve. For example, if we assume an empirical relation suggested by Cardelli et al. (1989) for the ratio of the total-to-selective extinction $R_V \sim 3$, the factor C_{VR} becomes larger than our assumption by about 10% (~ 1.34), while C_{VB} remains almost constant.

Although the relation in equation (6) should be reasonably accurate for many dark clouds, it may not be universal. This is because R_V may change from cloud to cloud, and a very high R_V value of ~ 6 is actually observed in some dense clouds (e.g., Kandori et al. 2003). In fact, in some regions where two or all of the three maps from different filters overlap, we have found that A_V values derived using equation (6) are sometimes inconsistent with each other, especially in dense regions. For example, in most of the regions around the equator (i.e., $\delta \sim 0^{\circ}$), where the extinction maps from XE and S plates overlap by $\sim 6^{\circ}$, the ratio $C_{VR}A_R/(C_{VR}A_R)$ remains around unity (~ 1 ± 0.2) in the range $A_V \leq 5$, while a higher ratio is sometimes found in more opaque regions. The largest inconsistency is found in the Orion B ($l \sim 206.^{\circ}5$, $b \sim -16^{\circ}2$) and the Serpens regions $(l \sim 29^{\circ}0, b \sim 3^{\circ}5)$, where $C_{VR}A_R/(C_{VB}A_B) \sim 2$. Although the large inconsistency found in the dense regions may be partially due to the counting uncertainty arising from the small number of stars used to estimate A_{λ} , it could also have been caused by the variation of the optical properties of dust grains, and therefore of R_V , which would influence the conversion factors $C_{V\lambda}$, especially C_{VB} . In addition, it is noteworthy that A_V derived from A_B tends to underestimate the true extinction more than that derived from A_R (see subsubsection 2.6.5), which can also be a source for the high $C_{VR}A_R/(C_{VB}A_B)$ ratio.

Such inconsistencies make it difficult to smoothly combine the three maps into one large continuous map necessary for

Fig. 5. Distributions of the actual stellar density, the fitted background stellar density, and the resulting extinction, displayed in the upper, middle, and lower panels, respectively, for each type of DSS plates.

our systematic survey of dark clouds. In order to address this problem, in the regions where two or all of the three maps overlap, we adopted a weighted average A_V value,

$$A_{V}(l,b) = \frac{\sum_{\lambda} w_{\lambda} C_{V\lambda} A_{\lambda}(l,b)}{\sum_{\lambda} w_{\lambda}},$$
(7)

where the $C_{V\lambda}$'s are the conversion factors in equation (6) for $\lambda = R$ and B, and $C_{V\lambda} = 1$ for $\lambda = V$. The weight, w_{λ} , is the minimum angle from a certain position (l, b) to the edge of the A_{λ} map. This method has no particular physical significance, but is very useful to compose a large map smoothly for our survey purpose.

For the other regions where only one type of the DSS plates is available, we adopted A_V values converted using equation (6). An explanatory illustration of the composition is shown in figure 6.

We composed a large-scale A_V map in this manner for the two stellar density maps smoothed at the different angular resolutions mentioned in subsection 2.4 (i.e., 6' and 18'). Hereafter, we refer to these extinction maps as high- and low-resolution A_V maps, respectively. We show the high-resolution A_V map in figure 7.

2.6. Uncertainties of the A_V Map

There are some sources that can generate errors in the A_V maps derived in this paper. In the following, we will describe major sources of uncertainty other than what we already mentioned in the previous subsections.

2.6.1. Vignetting of the original DSS plates

We should note that there is a slight plate-to-plate systematic error in A_V arising from vignetting close to the edge of the DSS plates. This is because we could not correct the vignetting due to the lack of precise information of the flat field for individual plates. The error owing to this problem is rather high in the regions covered by XE plates (i.e., northern hemisphere) where we overestimate A_V by a few times 0.1 mag, while the error is negligibly small in the other regions covered by S and XV plates.

2.6.2. Counting uncertainty

There is a noise source arising from the counting uncertainty in the number of stars to derive the extinction, i.e., N in equation (5). In the A_V map drawn at 6' resolution, the noise level estimated as

$$\delta A_{\lambda} = \left| \frac{dA_{\lambda}}{dN} \right| \delta N = \frac{1}{a_{\lambda} \ln 10} \frac{\delta N}{N},\tag{8}$$

where δN is taken to be \sqrt{N} , is mostly less than a few times 0.1 mag in the A_V range ≤ 5 mag. The noise is larger at higher latitudes, or in more opaque regions, where fewer stars are found. It is noteworthy that the regions covered by the XV plates tend to be relatively noisier than those covered by the S and XE plates, because of the difference in the adopted threshold magnitudes to calculate *N*. In this paper, we present a list of dark clouds identified in our extinction map. The error due to the counting uncertainty was calculated at every local extinction peak of the clouds, and is shown in the list together with other cloud parameters (see section 3).

2.6.3. Offsets in the A_V map

It should be noted that the A_V map derived in this paper does not represent the total extinction along the line of sight, but traces mainly nearby extinction. The A_V map should have an offset when compared with extinction maps produced using other methods, for instance, extinction maps derived from the color excess of background stars with known spectral types, or from far-infrared dust emission. The offset mainly arises from our assumption to determine the background stellar density, i.e., the zero point of extinction. We determined the background at reference fields with no apparent extinction using equations (3) and (4). However, the true extinction may not actually be zero there, which results in an offset of the

Fig. 6. Explanatory illustration for composing the extinction maps. Extinction maps of A_V derived from XE, S, and XV plates are shown in panels (a), (b), and (c), respectively. For regions covered by two or all of the three maps, we calculated an A_V value averaged with a weight defined by the minimum angle from the edge of the maps (e.g., the angles labeled w_R and w_B), as expressed in equation (7). The composed A_V map is shown in panel (d). In all of the panels, the lowest contours are 0.5 mag, and the contour intervals are 0.5 mag and 1.0 mag in the ranges $A_V \leq 3.0$ mag and $A_V > 3.0$ mag, respectively.

Fig. 7. Composed A_V map covering the entire region at $|b| \le 40^\circ$. The resolution of the map is 6'. The contour is drawn at $A_V = 0.5$ mag.

 A_V map. In order to infer how large an offset can be seen, we compared our A_V map with the extinction data derived by Arce and Goodman (1999b), who measured the distribution of extinction along a cut across the Taurus filaments using some independent methods, including the star-count technique. Among their data, extinction values measured using the IRAS 60 and 100 μ m images and the color excess of background stars are well consistent with each other, both of which are expected to trace better the total extinction along the line of sight. On the other hand, their estimate of extinction based on the star-count technique has an offset of 0.5–1.7 mag, depending on the galactic latitudes compared with the other two estimates (see their table 3). Because our A_V map is in good agreement with their star-count data without being corrected for these offsets, the same amount of offsets should be expected in our map for the Taurus region. In section 4, we compare our A_V map with the dust map derived by Schlegel et al. (1998). An offset as seen in Taurus is also found in other well-known regions at relatively high galactic latitudes (e.g., Orion, Ophiuchus, and Chamaeleon), and a much larger offset is observed in regions closer to the galactic plane (i.e., $b \sim 0^{\circ}$). 2.6.4. Contamination by young stellar objects

Contamination by Young Stellar Objects (YSOs), such as T Tauri-type stars, can also generate an error in the A_V map. In order to estimate the effect of YSOs, we examined the Taurus region where the population of YSOs has been well studied. We removed already known YSOs in Taurus (Kenyon, Hartmann 1995; and references therein) from our sample of stars to compose an A_V map free from contamination. The resulting A_V map is consistent with that derived in this paper (e.g., figure 18-5-6 in p.S310) in the range $A_V \lesssim 2$ mag. However, in the higher extinction range, the A_V values derived without YSOs are greater, typically by ~ 0.1 –0.5 mag at the positions contaminated by YSOs. The largest difference is found in some pixels around L1459 where a number of T Tauri-type stars have been identified; $A_V \sim 4$ mag is obtained in our map, while $A_V \sim 6 \text{ mag}$ is inferred without YSOs (~ 30%) underestimation). A similar error can probably be found in other star-forming regions, which should be corrected in the future when the population of YSOs is better known.

2.6.5. Other errors intrinsic to the star-count technique

There are two major errors intrinsic to the star-count technique itself. One is that the technique is known to underestimate the true mean value of extinction within a mesh (i.e., the resolution of the A_V map) when there is a substructure smaller than the size of the mesh. For instance, if we divide a cloud surface into m equal meshes and apply equation (5) to each of them, the mean extinction of the meshes is expressed as $a_{\lambda}^{-1}[\log N_0 - m^{-1} \sum \log N_i]$, where N_i and N_0 are the number of stars found in the *i*th mesh and the number of background stars taken to be uniform for all of the meshes, respectively. On the other hand, the application of equation (5) to the entire cloud surface at once yields an estimate of extinction of $a_{\lambda}^{-1}[\log N_0 - \log(m^{-1}\sum_i N_i)]$. The former value is larger than the latter, unless N_i is constant all over the meshes. This effect, leading to an underestimation of A_V , should be more serious in the low-resolution A_V map with 18' resolution.

The other intrinsic error comes from the limitation of the

dynamical range of extinction that can be measured by the star-count technique. Equation (5) assumes a linear $m_{\lambda} - \log N$ relation in the reference field without extinction. As explained in many textbooks, if a dark cloud with extinction A_{λ} is located in the observed direction, the $m_{\lambda} - \log N$ relation shifts toward higher m_{λ} by A_{λ} at a certain magnitude, m_1 , corresponding to the cloud distance. If $m_1 + A_{\lambda}$ exceeds the threshold magnitude, m_0 , at which we measure the stellar density (16 and 19 mag for XV plates and the other types of plates, respectively, as described in subsection 2.4), equation (5) should underestimate the true extinction. Thus, the maximum value of A_{λ} that can be measured by equation (5) without this underestimation is $m_0 - m_1$. In the case of the Orion cloud complex at \sim 450pc, which appears in S plates of DSS, we actually investigated the m_{λ} -log N relation to find $m_1 \sim 13$ mag in m_B . In this cloud complex, the maximum extinction, $m_0 - m_1$, is therefore $A_B \sim 6 \text{ mag}$, corresponding to $A_V \sim 5 \text{ mag}$ when converted using equation (6). Note that the magnitude, m_1 , is decided based on the cloud distance. The underestimation due to this effect should therefore be larger for more distant and more opaque dark clouds. In addition, the true extinction can also be underestimated by the foreground stars. The limitation of the dynamical range and the contamination by the foreground stars are introduced in more detail by Cambrésy et al. (2002) using the fraction of background stars as a parameter to assess the degree of the underestimation (see their figure 1).

It is also noteworthy that A_V converted from A_B can be more underestimated by the above problem of the dynamical range than that derived from A_R because of the difference of the conversion factors in equation (6). Since the factor $A_V/A_\lambda = C_{V\lambda}$ is generally larger for longer λ , star counts in the near-infrared wavelengths (e.g., Cambrésy et al. 2002) allow us to probe into much denser regions ($A_V \sim 20$ mag or more) than in the optical. On the contrary, the optical images, such as DSS, are more sensitive to extinction than the infrared, and so the A_V map derived in this paper has the advantage of tracing much better low-extinction regions in and around the dark clouds.

3. Atlas and Catalog of Dark Clouds

3.1. High-Resolution A_V Map

The extinction map derived in this paper reveals the large scale dust distribution in the entire region at $|b| \le 40^\circ$. To show the distribution of A_V on a finer scale, we selected 9 regions in the high-resolution map, i.e., from "Region 1" to "Region 9", indicated in figure 8b (p.S199); we display extinction maps of these regions in from figures 9 (p.S200) to 17 (p.S216). In these figures, we also show the positions of other astronomical objects for a comparison. Except for the smallest region (Region 9) displayed in figure 17, the figures consist of 4 panels, labeled (a)–(d). Each panel shows the following:

(a) Distribution of A_V .

(b) Bright stars composing constellations superposed on the A_V map.

(c) Locations of H II regions cataloged by Sharpless (1959) and supernova remnants (SNRs) listed by Green (1998).

(d) Finding chart for subregions. We further divided each region into subregions, as shown in panel (d) of figures 9–16.

More detailed distributions of A_V in the subregions are displayed in a series of maps in figure 18 (p.S219).

In figure 17 for Region 9, panels (a)–(c) are the same as in the other figures, but in panels (d), (e), and (f), we display an A_V map of high frequency components, a finding chart for identified dark clouds, and the locations of already known dark clouds, respectively (see the following paragraphs of this section).

As can be seen in figure 7 and in the other figures, it is noteworthy that there is faint extinction extended all over the region at $|b| \leq 10^{\circ}$, tracing diffuse dust along the galactic plane. In our extinction map, individual dark clouds at low galactic latitudes are highly contaminated by such faint extinction lying on the same line of sight, although they often appear to be well defined in molecular emission lines (e.g., rotational transitions of CO). In order to identify individual dark clouds among the contamination, we removed the extended components in the high-resolution A_V map by applying a high-pass filter. For each of the pixels in the extinction map, we first calculated a median value of the surrounding pixels within an area of $W^{\circ} \times W^{\circ}$, and then generated a map without low-frequency (i.e., extended) components by subtracting the median values from the original data. The resulting map should be free from contamination due to background extinction extending more than $\sim W^{\circ} \times W^{\circ}$, tracing individual dark clouds better than the original extinction map. We tried some different values of W, and compared the resulting A_V maps with the ¹³CO (J = 1-0) intensity map in the Cygnus region (Dobashi et al. 1994; see Yonekura et al. 1997 for correction of intensity scale) to find an appropriate size for W that makes the A_V map appear most similar to the ¹³CO map. This is because the ¹³CO map should be a good tracer of isolated dark clouds with a mean hydrogen density of $\sim 10^{2-3}$ cm⁻³, since the emission line is observed only in regions with a density greater than the critical value to excite the molecule. After some trials, we finally decided to adopt $W = 6^{\circ}$. In this paper, we refer to the extinction map generated in this manner as a "filtered" extinction map. We display the original and filtered extinction maps together with the ¹³CO intensity map in figure 19. In this figure, the filtered A_V map traces the ¹³CO emission much better than the original. However, there are still some regions where significant extinction is observed, while the ¹³CO emission is absent. Such regions are common, especially in low extinction regions $(A_V \leq 2 \text{ mag})$ surrounding denser parts of dark clouds. This is most likely due to the low number density of hydrogen, which is not high enough to excite the molecules, or due to photodissociation of ¹³CO at the cloud edges. We should also note that, in the region displayed in figure 19, some clouds must have escaped detection in ¹³CO because of the limited velocity range $|V_{LSR}| \le 25 \,\mathrm{km \, s^{-1}}$ covered by the observations (Dobashi et al. 1994).

Within the region where the noise level of the map is < 0.5 mag at the 6' resolution, we searched for individual dark clouds based on the filtered A_V map. We first searched for a group of continuous pixels having $A_V \ge 0.5$ mag in the filtered map, and regarded the group as a dark cloud if it satisfied one of the following criteria:

Fig. 19. (a) Original high-resolution A_V map in the Cygnus region. The lowest contour is 0.5 mag, and the contour intervals are 0.5 mag and 1.0 mag in the ranges $A_V \le 3.0$ mag and $A_V > 3.0$ mag, respectively. The resolution of the map is 6'. The North American Nebula is masked in the figure, because the corresponding DSS plate is saturated. (b) High-pass filtered A_V map (see subsection 3.1). Contours are the same as in panel (a). (c) The ¹³CO (J = 1-0) intensity map quoted from Dobashi et al. (1994). Contours are drawn at 1.8, 3.8, 6.6, 10.1, 14.4, 19.4, 25.2, and 31.8 K km s⁻¹ (see Yonekura et al. 1997 for correction of intensity scale).

Table 6. Areas surveyed for dark clouds in the high-resolution A_V map.

No.	Galactic	Galactic
	longitude	latitude
1	345°-12°	$-35^{\circ}-+38^{\circ}$
2	$12^{\circ}-60^{\circ}$	$-35^{\circ}-+30^{\circ}$
3	$60^{\circ} - 120^{\circ}$	$-25^{\circ}-+25^{\circ}$
4	$120^{\circ} - 150^{\circ}$	$-20^{\circ}-+20^{\circ}$
5	$150^{\circ}-220^{\circ}$	$-25^{\circ}-+20^{\circ}$
6	220°-270°	$-25^{\circ}-+25^{\circ}$
7	$270^{\circ}-345^{\circ}$	$-35^{\circ}-+35^{\circ}$

(1) If the maximum extinction in the pixel group is $A_V \ge 1$ mag in the filtered map, it is regarded as a dark cloud.

(2) In the case that the maximum extinction in the pixel group is in the range $0.5 \le A_V < 1$ mag, we regard the group as a dark cloud if the cloud surface defined by the contour at $A_V = 0.5$ mag is greater than 2×10^{-2} deg².

The second criterion is to avoid noise and to ensure definite detection. The area surveyed for dark clouds under the above criteria is shown in figure 8a (p.S199) as well as in table 6. There are some dark clouds that satisfy the above criteria, but extend beyond the survey limit ($b = \pm 40^{\circ}$). Because some cloud parameters, such as the total cloud extents, cannot be measured systematically for such clouds, we excluded them from our list of dark clouds shown in the following (table 7, p.S68). These clouds will be summarized in a subsequent publication.

Based on the filtered extinction map, we further attempted to identify "clumps" in selected dark clouds that appear as local peaks in the clouds. Selection of the clumps was made using the following criteria:

(1) Individual clumps are located within the extent of the

identified clouds defined by the contour at $A_V = 0.5$ mag, and have a peak extinction greater than 1 mag.

(2) Clumps are separated from the other ones at the 75% level of the local peaks.

The above method used to identify individual dark clouds and clumps as a small-scale structure in the filtered A_V map is rather tentative, and may not work perfectly all over the surveyed region. It is, however, useful to carry out a systematic search for dark clouds in the complex region, especially near the galactic plane.

In total, we found 2216 dark clouds and 2830 clumps in the filtered A_V map. For each of the clouds and clumps, we measured such parameters as the position, A_V , and the surface area. These parameters are summarized in table 7 (p.S68). The following are the explanations for the columns of the table:

Column (1): Running numbers of the dark clouds. Identified dark clouds are sorted according to the galactic coordinates.

Column (2): Names of the clumps found in the clouds. They are named 'P1', 'P2', 'P3', and so on, which are sorted according to the peak extinction in Column (9). The number of clumps identified in each cloud is given in parentheses in the row for the cloud name.

Columns (3)–(4): Galactic coordinates of the clouds and clumps, which are the positions of the peak extinction in Column (9).

Columns (5)–(6): Extents of the clouds and clumps along the galactic coordinates. The extents are defined in the filtered map at the 0.5 mag contour level for the clouds, and at the 75% level of the peak extinction for the clumps.

Column (7): Surface areas of the clouds and clumps defined at the 0.5 mag contour level and at the 75% level of the peak extinction in the filtered A_V map, respectively.

Column (8)–(9): Peak extinction of A_V of the clouds and clumps. The values in Columns (8) and (9), denoted as A_{V1} and A_{V2} , are the extinctions measured in the original and filtered A_V maps, respectively.

Column (10): Uncertainty in A_V at the position of the peak extinction, estimated using equation (8). The dagger marks, "†", indicate a large uncertainty due to a very small number of stars found in the 6' resolution (i.e., ≤ 2 stars).

Columns (11)–(12): Extinction of A_V integrated over the surface area of the clouds and clumps listed in Column (7). Given a distance to the clouds and clumps, their total masses can be estimated from these values by assuming an appropriate relation between A_V and N(H) (e.g., Savage, Mathis 1979).

Column (13): Number of associated dark clouds found in a list compiled by Dutra and Bica (2002, see table 8 in p.S167).

Some of the selected dark clouds appear to be very large, and are most likely to be a mixture of distinct smaller clouds. For instance, see the large cloud at $323^{\circ} \leq l \leq 337^{\circ}$ and $-1^{\circ} \leq b \leq 6^{\circ}$ in "Region 1-2" in figure 18-1-2 (p.S220). This problem is apparently caused by our simple criteria, which are not sufficient to separate the complex clouds perfectly. We therefore divided such large clouds into smaller ones at the constricted (i.e., the narrowest) part of the cloud extent defined by the 0.5 mag contour in the filtered A_V map, and listed each of them in table 7. In the case of the cloud in Region 1-2, we separated it into two smaller clouds, Nos. 2006 and 2022 at $(l, b) \sim (327^{\circ}9, -0^{\circ}1)$. Including these, clouds Nos. 469, 491, 497, 754, 774, 818, 838, 2006, 2022, 2164, and 2190 in table 7 are the resultant of such division. Cloud No. 321 is also very large, but cataloged as it is, because it is difficult to divide.

Some extensive catalogs of dark clouds have already been published up to date, for example, by Barnard (1919, 1927), Khavtassi (1955), Lynds (1962), and Feitzinger and Stüwe (1984). Dutra and Bica (2002) recently summarized these catalogs in a cross-identified list containing 5004 dust clouds. Among their compiled data, we searched for counterparts of dark clouds found in our survey, which are summarized in table 8 (p.S167). The table comprises the following 3 columns:

Columns (1)–(2): Names of the clouds and clumps listed in the first and second columns of table 7, respectively.

Column (3): Counterparts found in the catalog summarized by Dutra and Bica (2002). We regard clouds in the catalog as being counterparts if their cataloged coordinates fall within the areas of the clouds and clumps listed in Column 7 of table 7. Among the counterparts, those found within the clumps are listed in the corresponding row for the clumps, and the others found within the clouds, but outside the internal clumps, are listed in the row for the clouds. The names of the counterparts are taken from the nomenclature of Dutra and Bica (see their tables 1 and 2). In their catalog, some clouds quoted from other catalogs are regarded as one cloud through cross-identification. We enumerate such unified clouds after numbers in parentheses in this column. For example, cloud No. 53 is associated with 2 distinct clouds in their catalog, and one of them is the unification of 2 clouds taken from different catalogs (i.e., LDN 125 and FeSt 1-466).

Note that coordinates of dark clouds summarized by Dutra and Bica are sometimes different from those given in the original catalogs that they referred to, because of the crossidentification. For example, coordinates of FeSt 1-443 given by the original authors (Feitzinger, Stüwe 1984) fall within the extent of our cloud No. 2, while, in the catalog of Dutra and Bica, it is assigned the same coordinates as LDN 1790 located outside the cloud. In the original catalogs of Lynds (1962) and Feitzinger and Stüwe (1984), we searched for clouds whose original coordinates fall within the extent of our clouds, but those modified by Dutra and Bica do not. We summarize such clouds in square brackets at the end of row for the corresponding clouds, after colons (e.g., see cloud No. 2 in the first row of this table and in figure 18-1-12d in p.S235).

We should note that, in our search for association among the clouds summarized by Dutra and Bica, we disregarded the cloud extents in their catalog and used only the coordinates, because the extents summarized in their catalog were rather arbitrary. Owing to this choice, clouds in their catalog located just outside our cloud extents are not listed in this column, though some of them may actually be associated. LDN 864 in the vicinity of our cloud No. 453 is such a case (see figure 18-3-2d in p.S264).

For 5046 clouds and clumps identified in the filtered extinction map, we found 1062 of them to have one or more counterparts among the dark clouds compiled by Dutra and Bica (2002).

In panels (d) of a series of figures in figure 18 (pp.S219– S366), we show locations of dark clouds summarized by Dutra and Bica (2002) by plus signs. For a comparison, we also show positions of dark clouds taken from the original catalogs of Lynds (1962) and Feitzinger and Stüwe (1984) by filled squares with labels, which were compiled based on virtually the same database as that we used. We should note that dark clouds and globules identified by Feitzinger and Stüwe (1984) are simply labeled "FSD" and "FSG" in panels (d) of figure 18 due to the limited space in the panels, while they are named "FeSt 1" and "FeSt 2" in table 8, respectively, following the nomenclature of Dutra and Bica (2002). For instance, FeSt 1-453 and FeSt 2-311, associated with cloud No. 12 in table 8, are labeled "FSD 453" and "FSG 311" in figure 18-1-1d (p.S219), respectively. We should also note that there are some clouds in the catalog of Lynds (1962) which have exactly the same parameters including coordinates. For example, LDN 1591, LDN 1592, and LDN 1593 associated with our cloud No. 1364 in table 8 are assigned the same cloud parameters. For such clouds, we put a label only on the cloud with the youngest Lynds number, and do not label the others, in figure 18 (e.g., LDN 1591 in this case. See figure 18-5-12d in p.S318).

3.2. Low-Resolution A_V Map

In figure 20a (p.S367), we display a low-resolution A_V map drawn at 18' resolution. In addition to the survey for dark clouds in the high-resolution A_V map, we searched for dark clouds also in the low-resolution map in the entire region at $|b| \le 40^\circ$. This is because fainter and more extended clouds can be identified that escaped detection in the survey based on the higher resolution map, due to relatively higher noise arising from the \sqrt{N} counting uncertainty and the high-pass filter that we applied. At a resolution of 18', the noise due to the \sqrt{N} uncertainty is negligibly small all over the region covered ($|b| \le 40^\circ$), and the plate-to-plate systematic error owing to the vignetting starts to dominate the total noise (see subsection 2.6). The systematic noise is rather high in the northern No. 1]

hemisphere (≤ 0.3 mag), while it is much lower in the southern hemisphere.

To make a systematic survey in the low-resolution A_V map, we first searched for pixels with $A_V \ge 0.3$ mag, and then regarded a group of continuous pixels as one dark cloud if the pixel group satisfied both of the following criteria:

(1) Surface area summed over the pixels is greater than 0.2 deg^2 .

(2) Pixel groups which do not include dark clouds already identified in the high-resolution A_V map.

In addition, we attempt to identify clumps within the selected clouds, and also searched for counterparts among the published catalogs of dark clouds in the same manner as described in the previous subsection. Note that the survey in the low-resolution A_V map was made without applying a high-pass filter in order to find diffuse and extended clouds.

Some of the dark clouds found in this survey extend outside of the surveyed area at $|b| \le 40^{\circ}$. Unlike in the case of the survey with 6' angular resolution, we decided to include them in our list of dark clouds (table 9), because further investigations of such diffuse and extended dark clouds at high latitudes might be difficult due to a low-background stellar density.

In total, we selected 232 clouds and 11 clumps in the lowresolution A_V map, and found that 28 of them have one or more counterparts among the already known dark clouds. These results are summarized in tables 9 (p.S193) and 10 (p.S198). Table 9, a catalog of dark clouds, has a similar column format as that of table 7. Table 10, a catalog of counterparts, has exactly the same column format as table 8. The following is an explanation for the columns of table 9:

Column (1): Running numbers of the dark clouds. Identified dark clouds are sorted according to the galactic coordinates. Clouds extending outside the surveyed area at $|b| \le 40^{\circ}$ are indicated by dagger marks, "†". The values in Columns 5–7 and 9 were calculated only within the surveyed area, and therefore are the minimum estimates to the actual values for such clouds.

Column (2): Names of the clumps found in the clouds. They are named 'P1', 'P2', 'P3', and so on, which are sorted according to the peak extinction in Column 8. Number of clumps identified in each cloud is given in the parentheses in the row for the cloud name.

Columns (3)–(4): Galactic coordinates of the clouds and clumps, which are the positions of the extinction peak in Column 8.

Columns (5)–(6): Extents of the clouds and clumps along the galactic coordinates. The extents are defined at the contour level of $A_V = 0.3$ mag for the clouds, and at the 75% level of the peak extinction for the clumps.

Column (7): Surface areas of the clouds and clumps defined at the 0.3 mag contour level and at the 75% level of the peak extinction, respectively.

Column (8): Peak extinction of A_V of the clouds and clumps.

Column (9): Extinction of A_V integrated over the surface area of the clouds and clumps listed in Column (7).

Column (10): Number of associated dark clouds already identified in other catalogs (see table 10).

Note that table 9 lists the peak and integrated A_V values measured in the original low-resolution A_V map, but does not list the values measured in the filtered map. Also note that the sizes and surface areas of the clouds are measured at the contour level of $A_V = 0.3$ mag (not 0.5 mag) in the lowresolution A_V map.

To display the low-resolution map on a finer scale, we divide the surveyed area into 18 subregions from "A" to "R", as indicated in figure 20b (p.S367). We show the distribution of A_V , identified clouds in this survey, and counterparts found among the published catalogs compiled by Dutra and Bica (2002) in figures from 21 (p.S368) to 38 (p.S385) for each of the subregions.

Finally, we should note that there might be some fakes among the dark clouds identified in the low-resolution A_V map. This is because the plate-to-plate systematic error owing to the vignetting is rather high in the northern sky ($\delta > 0^\circ$), and it is sometimes not easy to distinguish the error from real faint extinction. For example, cloud No.102 in figure 36 (p.S383) as well as the unnumbered faint extinction extending over the range $40^\circ \leq l \leq 60^\circ$ and $-20^\circ \leq b \leq -8^\circ$ in figure 32 (p.S379) could be such an error. Although we removed apparent noises from our list of dark clouds, we decided to present faint extinction as a cloud in table 9 if the error is not obvious.

3.3. Distribution of the Identified Dark Clouds

We display histograms of the dark clouds identified in our survey based on the high- and low-resolution A_V maps as a function of the galactic latitudes, longitudes, and peak A_V values in figures 39, 40, and 41, respectively. In these figures, as well as in the following statistics, we use only "clouds", and exclude "clumps", which should be more dependent on the selection criteria.

In the figures, it is clear that more clouds tend to be detected near the galactic plane ($b \sim 0^{\circ}$), especially around the direction of the galactic center ($l \sim 0^{\circ}$). A number of clouds are also found in the longitude range $90^{\circ} \leq l \leq 220^{\circ}$, which mainly originate from the Cepheus Flare and from other nearby clouds, e.g., in the Orion and Taurus regions.

Clouds already identified in other catalogs (i.e., shaded parts in the histograms in figures 39–41) occupy ~ 25.3% in all of the clouds. The fraction of already known clouds is relatively higher in lower galactic latitudes (~ 29% at $|b| < 10^{\circ}$), and is lower in higher latitudes (~ 14% at $|b| \ge 10^{\circ}$). Average values of the peak extinctions are $A_V \sim 2.6$ mag and $A_V \sim 1.5$ mag for the already known clouds and the others, respectively. These imply that our extinction maps derived from DSS are useful to identify clouds located even at high latitudes as well as less opaque clouds that could not be easily identified without analysing the digitized database.

To summarize our survey for dark clouds, we produced A_V maps at 2 different resolutions of 6' and 18', covering the entire area at $|b| \le 40^\circ$, and searched for dark clouds and clumps based on the maps. In total, we identified 2448 dark clouds and 2841 clumps, and measured their properties, such as the positions, peak and integrated A_V values, and surface areas. Their counterparts were also searched for among already known dark clouds. The results of our survey are summarized as a catalog and an atlas of dark clouds in this section.

4. Comparison with a Map Derived from Far-Infared Dust Emission

In this section, we compare our extinction map with the "dust map" composed by Schlegel et al. (1998). They derived a map of color excess E(B - V) based on the far-infrared data provided by COBE/DIRBE and IRAS/ISSA. The dust map covers the entire sky with an angular resolution of 6′, and is now widely used for various purposes. In figure 42, we display the distribution of A_V derived from their color excess map assuming a relation $A_V = R_V E(B - V)$, where R_V is taken to be 3.1. In this section, we refer to this A_V value as A_V (DSS).

The global distribution of $A_V(SFD)$ is similar to that of $A_V(DSS)$ (see figures 7 and 42). However, there are some remarkable differences between them. The largest difference is seen along the galactic plane (i.e., at $b \sim 0^{\circ}$), where A_V (SFD) is higher than $A_V(DSS)$ by a large factor. This is apparently caused by a significant difference in the optical depths between the far-infrared emission and the optical extinction. Extinction directly observed at the optical wavelengths is expected to trace nearby dust within a few kpc because of a high optical depth, while the far-infrared emissions, which are optically much thinner, should represent an integral of most of the dust emissions along the line of sight. In fact, Dame et al. (2001) have pointed out the similarity between the optical extinction in the Milky Way (di Cicco 1999) and the CO intensity map with a near kinematic distance of less than 2.5 kpc (see their figure 6). In addition, the assumption of a single dust temperature adopted by Schlegel et al. (1998) is apparently inappropriate in regions at low galactic latitudes where a number of distinct clouds are lying on the same line of sight. Furthermore, the resolution of their temperature map to estimate the dust column density is rather low ($\sim 1^{\circ}$). This can also be a source generating the great difference between $A_V(SFD)$ and A_V (DSS) along the galactic plane.

Another striking difference is that $A_V(SFD)$ is a few-times higher than $A_V(DSS)$ over most areas shown in figure 42, not only along the galactic plane, but also at much higher latitudes. We show some profiles of $A_V(SFD)$ and $A_V(DSS)$ in figure 43 as a function of the galactic latitudes. These profiles are taken at the longitudes of four well-known dark cloud complexes in the Taurus, Chamaeleon, Ophiuchus, and Orion regions. As can be seen in the figure, $A_V(SFD)$ is apparently higher than $A_V(DSS)$ by a factor of ~ 3 on the average, even outside the galactic plane.

We display the distributions of $A_V(DSS)$, $A_V(SFD)$, and the ratio $A_V(DSS)/A_V(SFD)$ of the four regions on a finer scale in figures from 44 to 47. In these figures, the outlines of dark clouds are similar in both extinction maps, but they indicate very different values of A_V . To show the difference between the two extinction maps, we show a diagram of $A_V(SFD)$ vs. $A_V(DSS)$ in figure 48.

It is noteworthy that there is a certain tendency in the distribution of the ratio $A_V(DSS)/A_V(SFD)$. The ratio is generally lower at the boundary of dark clouds, and higher in the denser cloud interior. This tendency is especially clear in the Taurus (figure 44c) and the Chamaeleon (figure 45c) cloud complexes, which are known as low-mass star-forming regions.

Fig. 39. Histogram of the identified clouds as a function of the galactic latitude. The size of the bin is $\Delta b = 5^{\circ}$. The number of already known clouds compiled by Dutra and Bica (2002) is denoted by the shading.

Fig. 40. Histogram of the identified clouds as a function of the galactic longitude. The size of the bin is $\Delta l = 20^{\circ}$. The number of already known clouds compiled by Dutra and Bica (2002) is denoted by the shading.

In addition, there are some regions with a high ratio even in the outskirts of dark clouds, e.g., around M 42 in Orion (figure 46c) as well as around ρ Oph in Ophiuchus (figure 47c), implying that the ratio may generally be high in hot regions heated by nearby bright stars. Although the actual resolution of the A_V (SFD) maps derived from E(B-V) data originally having a resolution of 6' may be slightly lower than that of the A_V (DSS) maps, the trends seen in the ratio maps are most likely to be real, because regions with higher ratios are much larger than the resolution of the maps.

Although there must be a systematic difference between $A_V(\text{DSS})$ and $A_V(\text{SFD})$ due to the different assumptions on R_V to derive the two extinctions, the difference caused by this

Fig. 42. Distribution of extinction produced from the E(B-V) map provided by Schlegel et al. (1998), assuming a constant R_V of 3.1. Four well-known dark cloud complexes in the Taurus, Chamaeleon, Orion, and Ophiuchus regions are denoted by boxes.

Fig. 41. Histogram of the identified clouds as a function of the maximum extinction. For clouds detected in the high-resolution A_V map, we used A_{V1} in table 7 for the plot. The size of the bin is $\Delta A_V = 0.5$ mag. The number of already known clouds compiled by Dutra and Bica (2002) is denoted by the shading.

problem should be as small as ~ 10% (see subsection 2.5), and therefore the large inconsistency mentioned above is likely to originate from another reason. The low resolution (~ 1°) of the temperature map adopted by Schlegel et al. (1998) might be one of the sources for the large inconsistency. This is because, as stated by Schlegel et al. (1998), a small change in the dust temperature can modify their estimate of the dust column density by a large factor. In reality, the dust temperature is known to vary on a scale much smaller than the resolution in dense dark clouds (e.g., Stepnik et al. 2003). However, as can be seen in figures 43–47, the large difference between A_V (DSS) and A_V (SFD) is extensively observed even in regions with low extinction, indicating that the inconsistency cannot be attributed only to the poor resolution of the temperature map.

In addition to the possible problem of the temperature map, we suggest two other sources that can generate the difference between $A_V(DSS)$ and $A_V(SFD)$. One is the offset in $A_V(DSS)$ arising from the determination of the background stellar density (see subsubsection 2.6.3). The other is an overestimate of $A_V(SFD)$ due to a change of the dust properties, especially an enhancement of dust emissivity at farinfrared wavelengths. For example, fluffy aggregates that can form through grain–grain coagulation (e.g., Stepnik et al. 2003) are known to have a far-infrared emissivity a few times higher than that of normal dust grains, while their absorptivity at optical wavelengths is insensitive to the fluffiness (e.g., Stognienko et al. 1995; Bazell, Dwek 1990; Stepnik et al. 2003).

As mentioned in subsubsection 2.6.3, the former source, an offset in $A_V(DSS)$, has actually been identified in Taurus through a comparison with the extinction data derived by Arce and Goodman (1999b), who used some other methods to trace in a better way the total extinction along the line of sight. Because our A_V map derived from DSS is not corrected for such offsets, the low $A_V(DSS)/A_V(SFD)$ ratios seen in the low extinction regions with $A_V(DSS) \sim 0$ mag in figures 44c– 47c can be partially caused by the possible offsets. However, the difference between $A_V(DSS)$ and $A_V(SFD)$ cannot be explained only by the simple offsets. To assess the offsets, we applied a least-squares fit to the plots in figure 48 as $A_V(\text{DSS}) = a_0 + a_1 A_V(\text{SFD})$ in the range $0 \le A_V(\text{SFD}) \le$ 4 mag. The coefficients a_0 and a_1 should give an estimate of the offset itself and the offset-corrected $A_V(DSS)/A_V(SFD)$ ratio, respectively. As a result, we obtained $(a_0, a_1) = (-0.40, 0.37)$, (-0.30, 0.51), (-0.14, 0.46), and (-0.52, 0.68) as the bestfitting coefficients for the Taurus, Chamaeleon, Orion, and Ophiuchus regions, respectively. The resulting correlation coefficients are 0.67, 0.90, 0.66, and 0.85 for these regions in

Fig. 43. Profiles of extinction shown as a function of the galactic latitude. The values of A_V derived from DSS in this paper are denoted by the thick solid lines, and those derived from the far-infrared dust emission (Schlegel et al. 1998) are indicated by the thin solid lines. One third level of the latter extinction is shown by the broken lines for a comparison. The profiles shown in panels (a), (b), (c), and (d) are taken across the Taurus, Chamaeleon, Orion, and Ophiuchus regions, respectively. The gray hatches in the panels denote the latitude ranges displayed in figures 44–47.

this order. The obtained values of a_1 indicate that A_V (SFD) is still higher than A_V (DSS) by a factor of 1.5–2.7, even when corrected for the offsets. Arce and Goodman (1999a) also pointed out that A_V (SFD) is generally higher than their estimates of the total extinction measured along a cut in Taurus (Arce, Goodman 1999b), though they found a smaller factor (1.3–1.5).

The latter possibility, i.e., a significant enhancement of the far-infrared emissivity, probably due to the fluffy aggregates, has already been pointed out by some authors (e.g., Bernard et al. 1999; Cambrésy et al. 2001; Stepnik et al. 2003). Especially, in a molecular cloud in the Polaris flare, Cambrésy

et al. (2001) found the same inconsistency between A_V (SFD) and the optical extinction derived based on a method similar to ours. They divided the dust emission from the cloud into warm and cold components in terms of the flux ratio defined at 60 and 100 μ m (i.e., the IRAS bands), and compared the cold component with the optical extinction. As a result, they indicated that the dust emissivity responsible for the cold component, which is likely to originate from the fluffy aggregates, is enhanced by a factor of a few compared to that for the warm component. The molecular cloud in which they found this phenomenon is rather diffuse, having an average extinction of A_V (DSS) \lesssim 1 mag. More recently, Stepnik et al. (2003) evidenced through

Fig. 44. (a) Distribution of extinction in the Taurus region derived from DSS, which is referred to as A_V (DSS) in section 4. The resolution of the map is 6'. The lowest contours are drawn at $A_V = 0.5$ mag, and the contour intervals are 0.5 mag and 1.0 mag for the ranges $A_V \le 3$ and $A_V > 3$ mag, respectively. (b) Distribution of extinction derived from the E(B - V) map provided by Schlegel et al. (1998), assuming a constant R_V of 3.1. The extinction is referred to as A_V (SFD) in section 4. The resolution of the original E(B - V) is 6', but it may be slightly lowered when converted into galactic Cartesian coordinates. The lowest contours are drawn at $A_V = 1$ mag, and the contour intervals are 1.0 mag and 2.0 mag in the ranges $A_V \le 6$ mag and $A_V > 6$ mag, respectively. (c) Distribution of the ratio of the two extinctions shown in panels (a) and (b). The ratio was measured in the area with A_V (DSS) > 0.3 mag. The light, dense, and the densest gray hatches denote the regions where the ratio is in the ranges $0.2 < A_V$ (DSS)/ A_V (SFD) ≤ 0.4 , $0.4 < A_V$ (DSS)/ A_V (SFD) ≤ 0.8 , and $0.8 < A_V$ (DSS)/ A_V (SFD), respectively.

Fig. 45. Same as figure 44, but for the Chamaeleon region.

Fig. 46. Same as figure 44, but for the Orion region.

Galactic Longitude (Degree)

Fig. 47. Same as figure 44, but for the Ophiuchus region.

Fig. 48. Diagram of $A_V(SFD)$ vs. $A_V(DSS)$ for the four regions shown in figures 44–47. The gray solid lines represent the best fit in the range $0 \le A_V(SFD) \le 4$ mag. The lines are expressed as $A_V(DSS) = a_0 + a_1 A_V(SFD)$ with coefficients $(a_0, a_1) = (-0.40, 0.37), (-0.30, 0.51), (-0.14, 0.46),$ and (-0.52, 0.68) for the Taurus, Chamaeleon, Orion, and Ophiuchus regions, respectively. The relation $A_V(SFD) = A_V(DSS)$ is also shown by broken lines for a comparison.

submillimeter observations that small dust particles widely observed in the diffuse interstellar medium are absent in a dense filamentary cloud in Taurus, and the remaining larger dust in the cloud, probably fluffy aggregates, is most likely to have an emissivity of ~ 3.4-times higher than normal dust grains. They confirmed this phenomenon in a relatively denser region of the cloud having $A_V > 2.1$ mag. They also estimate that such aggregates can form through grain–grain coagulation within a cloud lifetime. Similar results, i.e., a deficit of small dust particle in molecular clouds, were also obtained by Ristorcelli et al. (1998) and Bernard et al. (1999) in other regions. Although we cannot entirely rule out the effect of the lowresolution temperature map to derive A_V (SFD) as well as of the error in determining the baseline of the background stellar density to derive A_V (DSS), the enhancement of dust emissivity at the far-infrared wavelengths suggested by these authors can naturally account for the inconsistency found in this paper. Because the fact that A_V (SFD) is a few-times higher than A_V (DSS) is valid over the many regions displayed in figure 42, we suggest that such enhancement of dust emissivity, probably due to the formation of fluffy aggregates, is common not only in dense dark clouds, but also in the diffuse interstellar medium, even at $A_V \lesssim 1$ mag, as in Polaris.

 Table 2.
 Parameters of DSS plates.

Plate		Fit	ting coeffici	ents		Fitting range	Correlation	1σ	5σ	Scaling
name	c_0	c_1	<i>c</i> ₂	<i>c</i> ₃	c_4	$[d_1, d_2]$	coefficient	(count)	(mag)	factor
s001	-7.0	19.73	-4.517	0.3647	-0.0126	[3.51, 5.52]	0.993	239.684	20.78	1.00
s002	72.7	-52.86	19.987	-3.2624	0.1863	[3.51, 5.60]	0.992	255.742	21.01	1.00
s003	119.3	-96.504	35.112	-5.5654	0.3164	[3.48, 5.52]	0.994	301.939	20.89	1.00
s004	-9.8	21.56	-5.043	0.4479	-0.0182	[3.62, 5.61]	0.992	329.720	20.64	1.00
s005	16.1	0.09	1.547	-0.4410	0.0260	[3.44, 5.59]	0.994	253.564	20.64	1.00
s006	71.0	-52.89	20.403	-3.3871	0.1973	[3.61, 5.39]	0.989	363.775	20.43	1.00
s007	-0.8	15.60	-3.873	0.3940	-0.0212	[3.52, 5.46]	0.989	400.600	20.25	1.00
s008	104.4	-81.79	29.864	-4.7576	0.2712	[3.56, 5.48]	0.989	266.510	21.05	1.00
s009	30.9	-13.13	5.907	-1.0669	0.0593	[3.42, 5.71]	0.994	285.660	20.68	1.00
s010	28.7	-10.82	5.021	-0.9190	0.0502	[3.40, 5.72]	0.993	273.084	20.75	1.00
s011	41.0	-23.07	9.598	-1.6756	0.0966	[3.44, 5.67]	0.992	291.933	20.77	1.00
s012	45.5	-26.50	10.426	-1.7370	0.0959	[3.44, 5.74]	0.992	229.600	20.77	1.00
s013	87.3	-68.45	25.983	-4.2666	0.2483	[3.39, 5.60]	0.992	268.903	20.65	1.00
s014	80.7	-61.67	23.510	-3.8708	0.2248	[3.56, 5.56]	0.991	283.006	20.94	1.00
s015	26.6	-9.90	5.083	-0.9908	0.0579	[3.49, 5.54]	0.993	272.394	20.71	1.00
s016	69.6	-48.44	17.838	-2.8331	0.1563	[3.59, 5.53]	0.990	436.316	20.72	1.00
s017	89.2	-71.66	27.704	-4.6329	0.2753	[3.59, 5.60]	0.993	323.432	20.68	1.00
s018	36.5	-18.29	7.702	-1.3496	0.0764	[3.50, 5.67]	0.991	375.948	20.58	1.00
s019	8.1	8.71	-1.799	0.1123	-0.0066	[3.43, 5.62]	0.990	334.439	20.60	1.00
s020	5.8	8.85	-1.234	-0.0575	0.0071	[3.44, 5.38]	0.991	351.642	20.43	0.95
s021	23.7	-7.11	4.022	-0.8033	0.0456	[3.55, 5.53]	0.990	342.181	20.70	0.99
s022	24.9	-8.88	4.909	-0.9939	0.0598	[3.49, 5.41]	0.992	330.854	20.51	1.00
s023	102.0	-83.73	31.836	-5.2579	0.3107	[3.56, 5.44]	0.986	360.124	20.36	0.94
s024	3.8	10.97	-1.953	0.0230	0.0050	[3.39, 5.44]	0.991	299.523	20.31	1.00
s025	29.1	-11.87	5.608	-1.0427	0.0593	[3.46, 5.64]	0.990	318.251	20.68	1.00
s026	38.3	-20.09	8.365	-1.4550	0.0823	[3.45, 5.58]	0.993	255.036	20.72	1.00
s027	89.4	-69.31	25.984	-4.2265	0.2440	[3.50, 5.64]	0.991	271.200	20.85	1.00
s028	5.2	11.18	-2.530	0.2146	-0.0127	[3.50, 5.62]	0.992	267.343	20.89	1.09
s030	-11.3	23.49	-5.796	0.5577	-0.0230	[3.62, 5.59]	0.993	277.160	20.79	1.02
s031	17.3	2.23	-0.378	0.0368	-0.0111	[3.56, 5.72]	0.994	286.278	20.76	0.97
s032	26.0	-10.88	5.903	-1.1955	0.0742	[3.48, 5.55]	0.990	261.173	20.43	1.00
s033	16.4	-1.61	2.346	-0.5755	0.0344	[3.71, 5.40]	0.964	516.720	20.16	1.00
s034	36.9	-19.60	8.477	-1.5165	0.0883	[3.45, 5.53]	0.990	318.577	20.61	0.91
s035	2.6	12.50	-2.662	0.1954	-0.0099	[3.58, 5.48]	0.992	255.062	20.98	1.00
s036	60.3	-43.03	17.237	-2.9482	0.1747	[3.59, 5.53]	0.992	271.753	21.02	1.00
s037	47.0	-28.25	11.129	-1.8671	0.1055	[3.65, 5.50]	0.990	361.127	20.52	1.00
s038	48.7	-29.57	11.523	-1.9216	0.1084	[3.46, 5.56]	0.987	381.574	20.38	1.10
s039	17.0	-0.03	1.263	-0.3422	0.0175	[3.51, 5.64]	0.988	414.539	20.51	1.00
s040	32.6	-15.44	6.953	-1.2733	0.0745	[3.50, 5.67]	0.990	383.403	20.54	1.11
s041	10.8	6.45	-1.231	0.0721	-0.0073	[3.55, 5.45]	0.984	436.059	20.40	1.00
s042	-6.9	20.59	-5.271	0.5534	-0.0271	[3.49, 5.65]	0.988	324.985	20.45	1.00
s043	24.1	-7.30	4.086	-0.8210	0.0475	[3.54, 5.52]	0.992	336.834	20.72	1.05
s044	9.9	4.86	0.305	-0.3099	0.0219	[3.46, 5.40]	0.988	336.054	20.74	1.00
s045	27.7	-9.59	4.512	-0.8301	0.0448	[3.43, 5.59]	0.989	298.846	20.73	1.01
s046	11.8	4.91	-0.256	-0.1524	0.0093	[3.42, 5.66]	0.994	234.937	20.98	1.00
s047	14.1	3.20	0.029	-0.1442	0.0058	[3.41, 5.58]	0.993	239.983	20.62	1.00
s048	51.8	-33.62	13.398	-2.2769	0.1321	[3.45, 5.60]	0.992	281.752	20.72	0.99
s049	5.0	9.73	-1.519	-0.0078	0.0035	[3.59, 5.53]	0.994	281.875	20.91	1.10
s054	34.5	-18.19	8.361	-1.5604	0.0945	[3.45, 5.45]	0.996	298.281	20.71	1.04
s055	-34.1	45.47	-13.755	1.8325	-0.0995	[3.61, 5.64]	0.992	277.952	20.59	1.00
s057	183.4	-144.02	47.499	-6.8925	0.3635	[3.98, 5.60]	0.958	567.104	20.23	1.00
s058	31.4	-14.55	6.750	-1.2606	0.0745	[3.65, 5.65]	0.990	332.698	20.68	1.00

Table 2. (Continued.)

Plate		Fit	ting coeffici	ents		Fitting range	Correlation	1σ	5σ	Scaling
name	<i>c</i> ₀	c_1	<i>c</i> ₂	<i>c</i> ₃	<i>c</i> ₄	$[d_1, d_2]$	coefficient	(count)	(mag)	factor
s059	53.3	-36.57	15.004	-2.6156	0.1569	[3.43, 5.49]	0.991	301.974	20.66	1.00
s060	37.9	-21.26	9.299	-1.6733	0.0985	[3.40, 5.58]	0.990	286.658	20.69	1.01
s061	43.5	-25.56	10.347	-1.7720	0.1012	[3.49, 5.51]	0.987	425.436	20.12	0.89
s062	59.6	-40.96	15.841	-2.6344	0.1516	[3.58, 5.47]	0.986	320.529	20.43	1.00
s063	-24.2	35.27	-9.983	1.2220	-0.0622	[3.66, 5.39]	0.980	369.624	20.26	1.00
s068	-28.2	39.70	-11.820	1.5513	-0.0840	[3.61, 5.54]	0.985	459.038	20.02	1.00
s069	0.7	15.14	-3.829	0.3890	-0.0205	[3.51, 5.44]	0.987	347.049	20.61	1.00
s070	-181.6	175.12	-56.011	7.8913	-0.4216	[3.75, 5.64]	0.988	447.899	20.58	1.00
s071	35.9	-19.31	8.665	-1.5936	0.0956	[3.46, 5.63]	0.992	319.262	20.65	1.10
s072	12.0	5.06	-0.615	-0.0391	-0.0005	[3.51, 5.67]	0.991	389.743	20.59	1.00
s073	36.9	-19.70	8.539	-1.5257	0.0887	[3.38, 5.50]	0.994	266.324	20.71	1.00
s074	35.3	-18.31	8.205	-1.5037	0.0892	[3.44, 5.73]	0.993	246.506	20.96	1.00
s075	61.4	-44.29	17.792	-3.0570	0.1825	[3.41, 5.50]	0.993	234.810	20.89	1.08
s084	168.1	-141.99	50.653	-7.8878	0.4452	[3.80, 5.31]	0.990	344,931	20.60	1.15
s086	50.2	-25.16	7 879	-1.0382	0.0405	[3 77 5 50]	0.959	483 322	20.39	1 16
s087	-50.3	59.01	-17.844	2.3643	-0.1245	[3 64 5 66]	0 994	233 514	20.74	1.00
s088	0.8	13 55	-2.813	0 1754	-0.0058	[3 56 5 63]	0.991	328 481	20.68	1.00
\$089	48.8	-31.32	12.836	-2 2575	0.1361	[3.67, 5.63]	0.993	265 337	20.00	1.00
\$090	-1.9	17.25	-4.496	0.4830	-0.0255	[3.07, 5.01]	0.992	338 023	20.03	1.00
\$099	164.8	-125.00	40 401	-57431	0.0255	$[4\ 11\ 5\ 58]$	0.970	705 503	20.31	1.00
s100	-127.0	129.00	-41.979	6 0503	-0.3340	[4.11, 5.50] [3.78, 5.46]	0.981	495 853	20.10	1.00
s100	-16.6	29.38	-8 352	1 0214	-0.0532	[3.58, 5.59]	0.985	348 859	20.12	1.00
s101	33.3	_8 29	2 1 5 3	-0.2214	_0.00052	[3.85, 5.63]	0.988	552 954	21.02	1.00
s102	_42.6	54.25	-17.008	2 3500	-0.1307	[3.60, 5.00]	0.980	401 608	20.72	1.10
s103	1 0	12 41	_2 389	0.1057	_0.0016	[3.00, 5.51]	0.900	284 826	20.72	1.00
s104	_4.7	18 31	-4.360	0.1057	-0.0181	[3.33, 5.37]	0.990	314 607	20.05	1.00
s105	22.0	-3.41	2 168		0.0101	[3.49, 5.72]	0.903	207 273	20.02	1.00
s100	40 3	-31.41	12 620	-0.4407 -2.1500	0.0208	[3.40, 5.55]	0.993	321 008	20.68	1.00
s107	-35.7	/0.01	-16.227	2 3/36	-0.1256	[3.72, 5.52]	0.992	213 358	20.08	1.03
s110 s110	-33.7	671	-10.227	0.8212	-0.1330	[3.37, 3.44]	0.995	213.336	20.33	1.01
s119 s120	23.0	-0.71	0.114	-0.8212	0.0465	[3.32, 3.47]	0.994	280 161	20.37	1.00
s120 s121	11.1	4.90	-0.114	-0.1940	0.0129	[3.37, 3.39]	0.993	275 057	21.05	1.00
s121 s122	58 /	-91.09	32.794	-3.1190 2 1114	0.2007	[3.03, 3.39]	0.994	275.057	20.80	1.00
s122 a122	25.2	-30.70	13.411	-2.1114	0.1150	[3.39, 3.62]	0.992	299.400	21.00	1.00
s125 a124	23.5	-0.71	4.729	-0.9559	0.0371	[5.05, 5.72]	0.993	210.190	20.80	1.00
s124 a125	10.4	-5.05	22.976	-0.7492	0.0482	[3.34, 3.03]	0.990	304.034 495 271	20.78	1.00
s125 a126	-100.9	105.82	-52.870	4.0008	-0.2495	[3.83, 3.00]	0.984	463.271	20.29	1.00
\$120	31.1 00 0	-9.84	3.372	-0.5524	0.0255	[3.88, 3.32]	0.982	331.049	20.42	1.00
\$152	88.8	-00.34	20.000	-2.9522	0.1559	[3.97, 5.30]	0.980	484.493	20.20	0.80
\$133	0.7	14.79	-3.849	0.4404	-0.02/3	[3.52, 5.53]	0.982	507.407	20.18	1.02
\$134	2.5	13.81	-3.812	0.4633	-0.0283	[3.67, 5.73]	0.975	528.613	19.92	1.00
\$138	-25.0	37.92	-11.53/	1.5567	-0.0864	[3.82, 5.47]	0.972	448.728	20.51	1.00
s139	4/.1	-28.63	11.287	-1.9050	0.1089	[3.50, 5.60]	0.984	431.158	19.99	1.01
s140	34.2	-16.78	7.431	-1.3379	0.0770	[3.55, 5.61]	0.986	347.278	20.90	1.00
s141	22.7	-5.59	3.406	-0.7096	0.0405	[3.48, 5.72]	0.992	252.269	20.88	1.08
\$142	10.8	4.08	0.506	-0.3368	0.0234	[3.52, 5.62]	0.993	321.058	20.64	1.00
s143	19.3	-3.65	3.226	-0.7669	0.0490	[3.47, 5.61]	0.990	269.171	20.81	1.00
s144	30.8	-14.04	6.736	-1.2880	0.0778	[3.36, 5.69]	0.990	294.911	20.81	1.00
\$158	81.3	-60.89	22.895	-3.7339	0.2150	[3.61, 5.56]	0.995	302.221	21.21	1.00
s159	57.7	-39.38	15.692	-2.6723	0.1566	[3.48, 5.42]	0.994	230.289	21.39	1.02
s160	-4.5	17.91	-4.002	0.2954	-0.0086	[3.52, 5.39]	0.991	224.449	20.87	1.00
s161	42.7	-22.35	8.706	-1.4595	0.0808	[3.68, 5.70]	0.994	310.418	21.12	1.00
s162	-90.1	92.02	-28.093	3.7812	-0.1976	[3.77, 5.66]	0.994	391.703	20.67	1.00
s163	-133.0	133.87	-43.174	6.1576	-0.3360	[3.79, 5.57]	0.993	403.500	20.68	1.00

 Table 2.
 (Continued.)

Plate		Fit	ting coeffici	ents		Fitting range	Correlation	1σ	5σ	Scaling
name	<i>c</i> ₀	c_1	<i>c</i> ₂	<i>c</i> ₃	<i>C</i> ₄	$[d_1, d_2]$	coefficient	(count)	(mag)	factor
s164	-72.4	79.58	-24.984	3.4572	-0.1863	[3.71, 5.55]	0.991	344.649	20.70	1.10
s165	87.8	-65.19	23.587	-3.7322	0.2100	[3.80, 5.50]	0.985	419.841	20.39	0.90
s166	-210.0	193.00	-60.113	8.2863	-0.4341	[3.94, 5.51]	0.977	553.773	19.96	1.00
s171	33.4	-13.13	5.013	-0.8112	0.0398	[3.81, 5.54]	0.979	470.643	20.29	0.87
s172	254.2	-203.07	65.908	-9.4269	0.4934	[3.88, 5.66]	0.982	469.338	20.72	1.00
s175	152.9	-120.71	41.190	-6.1959	0.3385	[3.81, 5.34]	0.973	372.684	20.54	1.05
s176	245.6	-195.38	63.399	-9.0746	0.4758	[3.87, 5.56]	0.971	482.421	20.76	1.00
s177	156.2	-129.68	46.086	-7.1753	0.4046	[3.63, 5.67]	0.994	472.255	20.13	1.00
s182	97.0	-66.43	21.887	-3.1920	0.1653	[3.83, 5.53]	0.988	472.938	20.85	1.00
s183	-58.6	69.51	-22.350	3.1805	-0.1770	[3.61, 5.60]	0.988	545.340	20.76	1.00
s184	82.4	-62.44	23.514	-3.8281	0.2198	[3.50, 5.65]	0.993	290.299	21.01	1.05
s185	1.0	14.94	-3.773	0.3856	-0.0210	[3.49, 5.74]	0.990	357.631	20.67	1.12
s186	-2.3	17.61	-4.622	0.5082	-0.0278	[3.39, 5.70]	0.990	236.250	20.59	1.03
s187	40.1	-23.59	10.363	-1.8838	0.1135	[3.49, 5.37]	0.994	278.962	21.03	1.01
s202	-15.3	28.36	-7.869	0.9492	-0.0504	[3.52, 5.55]	0.995	277.451	20.86	0.91
s203	187.7	-155.15	53.804	-8.1864	0.4528	[3.77, 5.49]	0.993	305.805	21.18	1.00
s204	1.5	12.04	-1.906	-0.0232	0.0088	[3.65, 5.50]	0.993	239.784	21.10	1.00
s205	150.2	-122.71	43.393	-6.7133	0.3752	[3.62, 5.53]	0.993	305.722	21.11	1.00
s206	79.8	-60.87	23.234	-3.8292	0.2225	[3.56, 5.53]	0.993	225.502	20.99	1.00
s207	24.6	-7.05	3.815	-0.7642	0.0438	[3.62, 5.70]	0.995	223.374	21.05	1.06
s208	-139.6	136.58	-42.970	5.9642	-0.3164	[3.76, 5.56]	0.991	296.910	20.78	1.05
s209	105.3	-80.55	28.809	-4.5365	0.2568	[3.75, 5.61]	0.986	415.681	20.60	1.07
s210	42.1	-22.21	8.607	-1.4129	0.0758	[3.62, 5.44]	0.993	272.684	20.94	1.00
s212	59.5	-38.91	14.738	-2.4218	0.1377	[3.67, 5.50]	0.992	355.427	21.02	1.00
s213	77.4	-55.20	20.074	-3.2008	0.1807	[3.75, 5.68]	0.980	401.380	20.34	0.96
s214	96.2	-65.63	21.579	-3.1412	0.1626	[3.80, 5.63]	0.985	464.333	20.79	0.93
s215	29.6	-12.71	6.058	-1.1491	0.0682	[3.77, 5.51]	0.988	406.312	20.61	1.00
s217	88.9	-64.10	22.777	-3.5472	0.1960	[3.73, 5.48]	0.992	315.420	21.36	1.09
s218	156.2	-115.78	37.159	-5.2662	0.2698	[3.97, 5.59]	0.992	506.271	20.98	1.00
s219	108.2	-82.54	29.135	-4.5038	0.2493	[3.72, 5.67]	0.989	442.823	20.79	0.97
s220	-32.5	44.18	-13.335	1.7620	-0.0943	[3.64, 5.59]	0.986	314.951	20.53	1.02
s221	-20.2	36.50	-11.910	1.7159	-0.1002	[3.89, 5.67]	0.985	379.041	20.76	1.04
s227	-10.0	29.42	-10.453	1.6428	-0.1036	[3.58, 5.61]	0.971	496.801	19.90	1.00
s230	45.3	-26.93	10.937	-1.8881	0.1100	[3.49, 5.55]	0.990	351.515	20.77	1.00
s231	93.5	-72.49	26.777	-4.2989	0.2454	[3.52, 5.48]	0.987	345.752	20.53	1.12
s232	1.7	14.00	-3.279	0.2831	-0.0132	[3.42, 5.64]	0.993	271.269	20.90	1.00
s233	26.0	-9.44	5.153	-1.0548	0.0652	[3.48, 5.46]	0.994	235.438	21.04	1.00
s234	20.2	-3.33	2.797	-0.6474	0.0390	[3.42, 5.62]	0.992	242.147	21.13	1.07
s235	24.9	-8.17	4.501	-0.9018	0.0526	[3.41, 5.60]	0.996	249.990	20.89	1.06
s251	31.7	-14.14	6.527	-1.2177	0.0715	[3.37, 5.56]	0.996	208.829	21.09	0.97
s252	34.5	-16.90	7.352	-1.3110	0.0745	[3.58, 5.39]	0.991	253.304	20.77	1.00
s253	19.1	-2.18	2.140	-0.5055	0.0286	[3.54, 5.63]	0.993	228.262	20.75	1.00
s254	-29.3	40.20	-11.611	1.4570	-0.0754	[3.65, 5.48]	0.992	274.259	20.75	0.87
s255	183.5	-147.47	49.968	-7.4517	0.4044	[3.72, 5.57]	0.994	332.865	21.11	1.00
s256	0.9	15.68	-4.254	0.4948	-0.0291	[3.64, 5.53]	0.995	318.590	20.92	1.00
s257	120.9	-93.79	32.923	-5.0743	0.2814	[3.68, 5.54]	0.993	319.835	21.11	1.05
s258	212.6	-168.39	55.299	-8.0145	0.4242	[3.95, 5.53]	0.993	394.534	20.94	1.00
s259	213.3	-171.56	57.072	-8.3556	0.4463	[3.89, 5.78]	0.993	395.077	20.93	0.96
s260	6.5	5.54	0.824	-0.5027	0.0389	[3.63, 5.42]	0.989	328.570	20.57	1.00
s261	155.6	-122.12	41.429	-6.1883	0.3351	[3.80, 5.71]	0.989	377.365	21.01	1.00
s262	136.2	-105.69	36.441	-5.5448	0.3058	[3.80, 5.54]	0.989	349.159	21.35	1.01
s263	-1.7	17.84	-4.856	0.5632	-0.0313	[3.82, 5.50]	0.991	420.791	21.06	1.00
s264	-100.4	103.64	-32.584	4.5118	-0.2405	[3.74, 5.66]	0.991	316.897	20.95	1.00

 Table 2.
 (Continued.)

Plate		Fit	ting coeffici	ents		Fitting range	Correlation	1σ	5σ	Scaling
name	c_0	c_1	<i>c</i> ₂	<i>C</i> ₃	<i>C</i> ₄	$[d_1, d_2]$	coefficient	(count)	(mag)	factor
s265	58.9	-31.95	10.260	-1.4544	0.0682	[3.82, 5.78]	0.989	388.775	21.08	1.00
s266	33.2	-12.73	5.182	-0.9101	0.0497	[3.76, 5.60]	0.992	363.151	21.01	0.96
s267	173.7	-142.89	49.954	-7.6939	0.4317	[3.67, 5.59]	0.990	257.661	21.07	1.00
s268	14.3	2.39	0.736	-0.3268	0.0212	[3.69, 5.53]	0.991	464.208	21.07	1.00
s269	18.9	-0.63	1.392	-0.3753	0.0210	[3.58, 5.60]	0.995	282.488	21.22	1.00
s270	173.1	-137.56	46.420	-6.9007	0.3731	[3.68, 5.66]	0.992	293.975	21.05	1.00
s271	150.6	-124.75	44.943	-7.1042	0.4060	[3.69, 5.41]	0.989	304.123	21.35	1.07
s272	11.0	4.49	0.229	-0.2907	0.0217	[3.62, 5.71]	0.987	316.173	20.72	1.00
s273	174.9	-142.02	48.798	-7.3757	0.4058	[3.77, 5.57]	0.991	369.422	20.64	1.15
s274	111.4	-80.70	26.858	-3.9300	0.2056	[3.86, 5.55]	0.980	448.458	20.60	1.00
s276	18.1	1.84	-0.230	-0.0186	-0.0047	[3.68, 5.72]	0.991	349.729	20.65	1.00
s277	36.0	-18.52	7.855	-1.3837	0.0790	[3.55, 5.61]	0.986	492.603	20.05	0.98
s281	36.3	-13.29	4.561	-0.6876	0.0303	[3.66, 5.60]	0.991	360.582	21.14	1.00
s282	-15.8	30.29	-8.974	1.1681	-0.0647	[3.48, 5.44]	0.988	365.285	20.79	1.00
s283	59.8	-39.36	14.886	-2.4354	0.1375	[3.48, 5.68]	0.991	384.576	20.84	1.00
s284	33.2	-16.31	7.448	-1.3774	0.0815	[3.40, 5.64]	0.993	244.825	20.83	1.00
s285	20.8	-5.28	3.864	-0.8617	0.0536	[3.43, 5.58]	0.993	276.191	20.94	1.05
s286	-16.0	31.30	-9.600	1.3198	-0.0773	[3.47, 5.72]	0.993	260.335	21.09	1.08
s304	83.2	-58.85	20.824	-3.2092	0.1738	[3.67, 5.54]	0.993	276.827	21.26	1.00
s305	62.5	-42.49	16.195	-2.6572	0.1506	[3.51, 5.47]	0.996	196.830	21.36	1.00
s306	40.1	-21.52	8.980	-1.5715	0.0903	[3.72, 5.59]	0.995	260.659	21.51	1.00
s307	85.9	-63.96	23.588	-3.7860	0.2151	[3.62, 5.76]	0.995	270.302	21.37	1.03
s308	-33.0	41.40	-11.240	1.2814	-0.0588	[3.75, 5.47]	0.992	295.456	20.84	0.90
s309	127.0	-99.11	34.684	-5.3264	0.2948	[3.75, 5.68]	0.993	285.127	21.35	1.00
s310	183.8	-149.67	51.354	-7.7452	0.4251	[3.74, 5.43]	0.991	290.207	21.27	0.97
s311	16.2	1.62	0.462	-0.2090	0.0103	[3.81, 5.49]	0.987	444.741	20.51	0.80
\$312	96.1	-71.46	25.408	-3.9552	0.2192	[3.76, 5.49]	0.989	360.192	20.96	1.00
\$313	226.5	-186.55	63.198	-9.4305	0.5145	[3.83, 5.69]	0.994	357.564	21.04	1.00
\$314	155.5	-123.47	42.426	-6.4346	0.3548	[3.78, 5.58]	0.993	345.041	20.91	1.00
\$315	-4.0	17.84	-4.023	0.3161	-0.0112	[3.65, 5.57]	0.994	304.561	21.42	1.14
\$316	139.9	-112.11	39.404	-6.0647	0.3368	[3.75, 5.65]	0.993	290.007	21.24	1.08
\$317	104.0	-79.07	28.194	-4.3996	0.2451	[3.67, 5.68]	0.996	270.919	21.34	1.00
\$318	7.2	7.13	-0.335	-0.2590	0.0225	[3.49, 5.68]	0.992	250.225	20.68	1.00
\$319	-7.8	20.59	-4.666	0.3334	-0.0063	[3.48, 5.56]	0.992	212.525	20.85	0.96
\$320	23.3	-4.15	2.418	-0.5200	0.0294	[3 69 5 78]	0.990	330.086	21.04	0.94
\$321	91.6	-67.63	24.308	-3.8327	0.2154	[3.69, 5.66]	0.989	300.959	21.19	0.97
\$322	-2.0	17.44	-4.448	0.4568	-0.0231	[3.38, 5.50]	0.994	265.485	20.86	1.00
\$323	34.5	-14.75	5.900	-0.9850	0.0508	[3.52, 5.63]	0.993	435.327	20.72	1.00
\$324	30.6	-1479	7 237	-14067	0.0871	[3 38 5 59]	0.991	219 886	20.55	1.09
\$325	58.2	-40.08	15 895	-2.7126	0.0071	[3.40, 5.55]	0.993	278 600	20.33	1.00
\$326	-20.2	34 79	-10724	1 4576	-0.0822	[3.47, 5.63]	0.994	263 105	20.77	1.00
\$320	_20.2	36.12	-10.724	1 4089	-0.0765	[3, 53, 5, 66]	0.990	356 725	20.07	1.02
\$327	98.9	-78.22	29.040	-4.6897	0.0703	[3.53, 5.00]	0.990	341 795	20.03	1.12
\$320	6.5	5 58	0 584	-0.4313	0.0335	[3.67, 5.52]	0.950	A70 844	10.57	0.92
\$330	24.7	-10.17	5 927	_1 2302	0.0555	[3.02, 5.52]	0.909	310 528	20.71	1.15
\$338	32.3	-15.45	7 135	-1.3367	0.0792	[3.30, 5.05]	0.901	328 950	20.71	0.86
\$330	41 3		8 368	_1 3775	0.0000	[3.73, 5.54]	0.003	348 000	20.51	0.00
\$340	30.0	_13.50	6 1/6	_1 1155	0.0754	[3.36, 5.04]	0.090	348 275	20.03	1.00
s340 s3/11	50.9 15 0	_25 70	10.00/	_1.1155	0.0023	[3.70, 5.54]	0.909	363 211	20.70	1.00
sJ+1 s361	43.2	-25.10 -26.02	10.094	-1.0041	0.0950	[3.79, 5.01]	0.992	280 102	20.09	1.00
\$367	44.5	-20.02	10.033 _ 5 / 57	-1.0400	_0.1070	[3.57, 5.71]	0.994	200.192	21.00	0.05
s302 s262	-11.4 11 /	22.97 1 50	-0.407	0.4037	-0.0101	[3.33, 3.02]	0.992	242.338	20.33	1.00
8303 0364	11.4 20.7	4.39	-0.003	-0.2100	0.013/	[3.40, 3.70]	0.994	212.931	20.82	1.00
5004	29.1	-11.02	5.450	-1.019/	0.0000	[5.01, 5.55]	0.992	J14.074	20.90	1.00

Table 2.(Continued.)

Plate		Fit	ting coeffici	ents		Fitting range	Correlation	1σ	5σ	Scaling
name	<i>c</i> ₀	c_1	<i>c</i> ₂	<i>c</i> ₃	С4	$[d_1, d_2]$	coefficient	(count)	(mag)	factor
s365	43.6	-27.69	11.981	-2.1675	0.1321	[3.49, 5.39]	0.991	272.970	20.65	1.00
s366	4.8	10.60	-1.929	0.0562	0.0005	[3.70, 5.51]	0.992	324.683	21.23	0.94
s367	13.0	1.98	1.231	-0.4448	0.0295	[3.54, 5.57]	0.992	384.774	20.59	0.90
s368	29.7	-10.73	4.878	-0.9057	0.0514	[3.71, 5.60]	0.991	323.830	21.21	1.00
s369	90.1	-69.14	25.522	-4.0906	0.2327	[3.64, 5.60]	0.992	390.048	20.51	0.92
s371	15.1	3.29	-0.188	-0.1115	0.0056	[3.77, 5.42]	0.992	387.192	20.74	1.00
s372	37.7	-22.21	10.131	-1.8988	0.1180	[3.49, 5.54]	0.992	248.064	20.66	1.07
s373	53.3	-30.68	10.955	-1.7023	0.0890	[3.76, 5.71]	0.993	361.492	20.87	1.00
s374	0.8	14.40	-3.280	0.2611	-0.0110	[3.58, 5.54]	0.991	279.865	20.98	1.00
s375	-13.5	25.36	-6.313	0.6271	-0.0270	[3.64, 5.70]	0.993	285.746	21.11	1.11
s376	17.5	-2.07	2.762	-0.7178	0.0480	[3.54, 5.62]	0.994	246.258	20.89	1.00
s377	119.2	-94.56	33.952	-5.3305	0.3006	[3.63, 5.62]	0.994	241.461	21.27	1.00
s378	-12.7	25.78	-6.696	0.6810	-0.0281	[3.37, 5.71]	0.993	195.813	20.76	1.00
s379	13.2	1.60	1.577	-0.5453	0.0383	[3.47, 5.63]	0.994	208.417	20.86	1.00
s380	3.2	12.18	-2.577	0.1541	-0.0044	[3.48, 5.70]	0.992	225.806	20.63	1.00
s381	32.0	-15.13	7.065	-1.3278	0.0793	[3.35, 5.63]	0.995	211.263	20.85	1.07
s382	71.8	-53.42	20.990	-3.5840	0.2156	[3.38, 5.40]	0.990	306.027	20.95	0.97
s383	105.8	-89.12	34.219	-5.6460	0.3308	[3.61, 5.50]	0.994	253.190	20.87	1.00
s384	126.9	-102.07	36.525	-5.7055	0.3206	[3.62, 5.50]	0.990	376.827	20.78	1.10
s385	6.5	8.50	-1.035	-0.1234	0.0136	[3.36, 5.58]	0.992	227.177	20.55	1.08
s386	56.6	-36.64	14.045	-2.3175	0.1312	[3.46, 5.70]	0.994	235.923	21.10	1.17
s387	64.3	-44.43	16.960	-2.8096	0.1624	[3.55, 5.71]	0.991	236.291	21.01	1.00
s388	11.3	3.99	0.544	-0.3583	0.0267	[3.38, 5.62]	0.984	285.697	20.80	1.00
s389	20.1	-5.36	3.979	-0.9033	0.0584	[3.53, 5.64]	0.978	3/1.002	20.34	1.00
s390	-9.2	22.71	-6.070	0.6948	-0.0364	[3.56, 5.62]	0.978	434.124	20.35	1.00
s397	-24.2	37.99	-11.50/	1.5214	-0.0822	[3.45, 5.54]	0.988	300.928	20.86	1.00
s398	5.5 12.0	9.62	-1.5/5	0.0011	0.0036	[3.45, 5.56]	0.989	301.541	20.69	0.99
\$399	13.0	3.30	0.505	-0.3240	0.0220	[3.40, 5.57]	0.992	290.468	21.04	1.00
\$400 \$401	41.5	-24.10	10.392	-1.8/02	0.1131	[3.48, 3.01]	0.991	305./10	21.01	1.00
s401	00.1	-40.00	6 052	-2.8203	0.1393	[3.44, 3.04]	0.990	255.997	20.88	1.00
s402	-0.1	25.50 18.64	-0.933	0.9239	-0.0559	[3.03, 3.47]	0.990	257.002	20.91	1.05
8421 s422	09.2 23.8	-46.04	3 564	-2.9440	0.1033	[3.30, 3.30]	0.992	204.239	21.11	1.00
5422 s423	23.8	-0.42	-1.307	-0.1/082	0.0380	[3.54, 5.79]	0.991	219.525	20.78	1.00
s423 s424	2.0	8 52	0.450	-0.1430 -0.5407	0.0172	[3.59, 5.55]	0.994	189 557	21.00	1.00
s425	-0.8	14 54	-2 890	0.1390	-0.0008	[3.00, 5.04]	0.993	263 923	20.77	1.00
s426	_4 2	18.22	-4387	0.1006	-0.0183	[3 59 5 56]	0.992	327 082	20.77	1.00
s427	50.2	-32.78	13 337	-2.3161	0.1377	[3,53,5,60]	0.989	414 734	20.70	0.91
s428	288.0	-233.94	76 449	-110205	0.5834	[3.92, 5.60]	0.990	443 283	20.79	0.87
s429	4.1	10.13	-1.557	-0.0254	0.0064	[3.85, 5.57]	0.990	430.127	20.80	1.00
s431	-7.7	19.50	-4.037	0.2096	0.0019	[3.55, 5.49]	0.989	269.295	20.74	1.00
s432	-10.0	25.24	-7.314	0.9217	-0.0509	[3.76, 5.72]	0.993	292.001	21.25	1.00
s433	124.3	-97.41	34.364	-5.3258	0.2976	[3.63, 5.54]	0.994	260.627	21.20	1.00
s434	-12.3	27.03	-7.922	1.0192	-0.0572	[3.51, 5.58]	0.992	295.277	20.60	1.00
s435	35.5	-12.94	4.529	-0.6950	0.0316	[3.51, 5.63]	0.996	242.013	21.14	1.07
s436	0.9	13.57	-2.679	0.1078	0.0018	[3.50, 5.51]	0.992	239.647	20.84	1.07
s437	10.6	5.83	-0.502	-0.1269	0.0088	[3.68, 5.52]	0.993	288.958	21.25	1.00
s438	-40.6	49.89	-14.568	1.8452	-0.0936	[3.69, 5.14]	0.992	348.562	20.92	1.00
s439	45.0	-26.62	10.771	-1.8393	0.1048	[3.61, 5.59]	0.995	267.399	21.00	1.00
s440	9.7	4.68	0.495	-0.3583	0.0259	[3.64, 5.52]	0.990	337.124	20.99	1.00
s441	-75.6	82.98	-26.042	3.5643	-0.1880	[3.57, 5.68]	0.993	217.259	20.84	1.00
s442	31.9	-16.03	7.738	-1.4856	0.0911	[3.48, 5.54]	0.993	247.552	20.86	1.00
s443	20.3	-3.77	2.937	-0.6690	0.0403	[3.45, 5.50]	0.992	275.425	20.69	1.00

 Table 2.
 (Continued.)

Plate		Fitt	ting coeffici	ents		Fitting range	Correlation	1σ	5σ	Scaling
name	<i>c</i> ₀	c_1	<i>c</i> ₂	<i>C</i> ₃	С4	$[d_1, d_2]$	coefficient	(count)	(mag)	factor
s444	39.6	-22.57	9.700	-1.7294	0.1016	[3.53, 5.42]	0.990	317.978	20.75	1.00
s445	22.2	-5.22	3.403	-0.7390	0.0446	[3.50, 5.66]	0.992	294.612	20.89	1.03
s446	18.2	-2.71	3.068	-0.7796	0.0522	[3.40, 5.72]	0.992	241.689	21.01	1.10
s447	14.6	1.82	0.868	-0.3288	0.0197	[3.39, 5.70]	0.995	286.100	20.67	0.95
s448	-8.2	23.97	-7.120	0.9349	-0.0544	[3.45, 5.55]	0.991	243.962	20.72	0.96
s449	22.7	-6.87	4.285	-0.9269	0.0585	[3.35, 5.78]	0.994	241.367	20.49	0.95
s450	24.2	-7.09	4.066	-0.8500	0.0518	[3.56, 5.61]	0.991	282.250	20.93	1.00
s451	5.6	9.31	-1.447	-0.0196	0.0051	[3.52, 5.58]	0.986	366.389	20.58	1.00
s459	11.2	4.86	-0.240	-0.1494	0.0094	[3.62, 5.58]	0.985	476.177	20.39	1.00
s460	-27.3	40.83	-12.690	1.7458	-0.0980	[3.52, 5.42]	0.990	447.456	20.43	0.94
s461	-0.8	16.29	-4.124	0.4284	-0.0230	[3.47, 5.50]	0.992	302.056	20.83	1.04
s462	25.3	-8.37	4.597	-0.9256	0.0548	[3.43, 5.64]	0.994	265.992	21.11	1.00
s463	26.3	-10.21	5.556	-1.1297	0.0698	[3.39, 5.52]	0.992	250.626	20.91	1.00
s464	43.3	-26.69	11.509	-2.0779	0.1259	[3.53, 5.55]	0.994	255.562	21.08	0.94
s484	-11.6	26.32	-7.708	0.9994	-0.0573	[3.33, 5.68]	0.995	262.912	20.50	1.03
s485	98.9	-80.46	30.618	-5.0499	0.2969	[3.49, 5.52]	0.991	232.865	20.72	1.07
s486	-8.8	23.76	-6.794	0.8537	-0.0486	[3.50, 5.61]	0.994	231.450	20.79	1.00
s487	-5.3	20.70	-5.784	0.7060	-0.0404	[3.44, 5.48]	0.993	254.219	20.72	1.00
s488	79.8	-59.88	22.620	-3.7236	0.2171	[3.45, 5.44]	0.994	231.407	20.78	1.00
s489	54.0	-35.09	13.736	-2.3037	0.1323	[3.57, 5.52]	0.994	319.860	20.82	1.04
s490	65.8	-42.20	14.945	-2.3195	0.1251	[3.63, 5.54]	0.992	375.872	20.83	0.89
s491	284.4	-234.01	77.545	-11.3336	0.6082	[3.84, 5.59]	0.992	414.473	20.81	1.00
\$492	70.8	-44.88	15 214	-2.2707	0.1176	[3.01, 5.09]	0.988	387 328	20.01	0.93
\$493	92.5	-68.45	24 547	-3.8619	0.2165	[3 79 5 63]	0.992	348 670	21.03	1.00
\$494	53.7	-32.01	11 925	-1.9450	0.1088	[3.75, 5.05]	0.988	323 700	21.05	1.00
\$495	-3.3	9 57	0.883	-0.6882	0.0578	[3 88 5 54]	0.989	366 562	20.74	1.00
\$496	111.4	-86.45	30.969	-4.8648	0 2744	[3.00, 5.51]	0.990	328 750	21.28	0.99
s497	20.3	-4.85	3 671	-0.8307	0.0522	[3, 53, 5, 53]	0.991	320.750	20.78	1.00
s498	-67.5	75 42	-23610	3 2396	-0.1730	[3.33, 5.35]	0.990	269 088	20.70	1.00
s400	-8.6	21 70	-5.415	0.5370	-0.0249	[3.75, 5.55]	0.995	207.000	20.04	1.00
s 1)) s500	30.0	-23.43	10.469	-1.9228	0.0249 0.1170	[3.60, 5.57]	0.993	227.417	20.83	1.07
s500	_7.8	-23.43	-5.405	0 5824	_0.0280	[3.01, 5.49]	0.992	240.777	20.85	1.07
s501 s502	-22.0	21.40	-10.368	1 3/85	-0.0289	[3.50, 5.01]	0.994	260.233	20.71	1.00
s502 s503	-22.0	67.70	-10.308	2 8210	-0.0739	[3.03, 5.57]	0.994	209.740	20.99	1.00
s505 s504	-36.8	10.05	-20.804 8 701	1 5008	-0.1499	[3.00, 5.43]	0.990	200.756	20.77	1.00
s504 s505	50.0 162.1	-19.95	0.791 50.406	-1.5908	0.0930	[3.44, 5.55]	0.993	254 412	20.71	1.00
s505 s506	5.2	-136.39	3 082	-0.0423	0.4044	[3.52, 5.41]	0.990	234.412	20.85	1.00
s500 s507	-3.2	10.17	-5.962	0.2052	-0.0080	[3.34, 3.09]	0.993	230.310	20.65	1.00
s507 s508	11.0	-17.41	0.014	-1.4909	0.0903	[3.34, 5.55]	0.993	205 209	21.01	1.00
\$508	21.1	5.41 14.22	0.807	-0.4433	0.0341	[3.34, 3.33]	0.992	203.308	20.84	1.00
\$509	51.1 10.7	-14.52	0.800	-1.2000	0.0737	[3.44, 3.31]	0.992	249.010	21.01	1.00
s510 -511	19.7	-3.18	2.738	-0.0398	0.0385	[3.43, 5.77]	0.990	281.232	20.97	1.08
s511 -512	45.4	-2/./8	11.337 5 454	-2.0100	0.1182	[3.33, 5.70]	0.991	293.008	21.00	1.00
\$512	27.2	-10.89	5.454	-1.04/3	0.0608	[3.44, 5.64]	0.992	310.558	20.33	0.98
\$513	128.7	-106.35	38.950	-0.2210	0.3582	[3.54, 5.47]	0.986	362.868	20.84	1.00
\$514	-2.0	17.43	-4.531	0.4///	-0.0245	[3.38, 5.58]	0.991	201.020	20.60	0.96
SS15	-26.1	40.28	-12.706	1./8/0	-0.1029	[3.46, 5.62]	0.989	388.175	20.53	1.00
SS16	9.2	6.85	-0.880	-0.0757	0.0068	[3.39, 5.62]	0.986	229.972	20.53	1.00
SD17	7.9	6.40	-0.270	-0.2138	0.0162	[3.36, 5.39]	0.976	362.768	20.38	0./1
\$525	53.9	-37.84	15.720	-2.7784	0.1694	[3.38, 5.38]	0.990	265.495	20.61	1.09
s526	23.7	-7.72	4.581	-0.9682	0.0605	[3.40, 5.65]	0.991	425.118	20.46	1.00
s527	-4.4	18.98	-4.845	0.5128	-0.0267	[3.42, 5.65]	0.992	337.245	20.76	1.00
s528	35.3	-18.95	8.717	-1.6370	0.1005	[3.44, 5.67]	0.994	262.166	20.94	1.00
s529	33.7	-17.65	8.218	-1.5332	0.0920	[3.52, 5.43]	0.988	316.215	20.86	1.00

 Table 2.
 (Continued.)

Plate		Fitt	ting coeffici	ents		Fitting range	Correlation	1σ	5σ	Scaling
name	<i>c</i> ₀	c_1	<i>c</i> ₂	<i>c</i> ₃	<i>C</i> ₄	$[d_1, d_2]$	coefficient	(count)	(mag)	factor
s551	12.0	5.42	-0.742	-0.0344	0.0006	[3.41, 5.74]	0.994	242.133	20.80	1.00
s552	8.8	6.16	-0.349	-0.1835	0.0134	[3.50, 5.64]	0.992	261.357	20.51	1.00
s553	3.4	6.32	1.320	-0.7051	0.0582	[3.58, 5.58]	0.992	251.541	20.52	1.00
s554	6.6	6.77	0.025	-0.3258	0.0260	[3.63, 5.67]	0.994	281.293	20.88	1.09
s555	54.0	-37.27	15.071	-2.5787	0.1511	[3.58, 5.56]	0.995	268.626	20.58	1.00
s556	4.4	11.28	-2.318	0.1346	-0.0051	[3.51, 5.54]	0.996	241.667	20.87	1.00
s557	57.4	-34.06	11.991	-1.8432	0.0963	[3.67, 5.54]	0.993	358.103	20.87	1.00
s558	-28.6	42.89	-13.605	1.9103	-0.1085	[3.65, 5.55]	0.990	330.571	20.78	1.00
s559	300.8	-245.04	80.090	-11.5510	0.6121	[3.93, 5.49]	0.990	442.895	20.96	1.18
s560	62.1	-42.69	16.512	-2.7606	0.1604	[3.55, 5.68]	0.993	239.580	21.17	1.00
s561	64.6	-40.30	13.958	-2.1272	0.1119	[3.68, 5.58]	0.992	348.330	20.61	1.00
s562	-120.8	121.99	-38.837	5.4524	-0.2933	[3.72, 5.61]	0.993	361.580	20.59	0.97
s563	-3.7	10.14	0.823	-0.7353	0.0651	[3.83, 5.45]	0.992	367.199	20.63	1.00
s564	-7.3	22.18	-6.084	0.7220	-0.0395	[3.67, 5.69]	0.994	295.200	21.24	1.00
s565	71.1	-52.56	20.357	-3.4095	0.2004	[3.59, 5.64]	0.994	251.367	20.87	1.00
s566	90.1	-69.47	25.961	-4.2193	0.2436	[3.60, 5.58]	0.991	264.822	21.01	1.00
s567	14.7	-0.30	2.349	-0.6726	0.0458	[3.47, 5.52]	0.992	267.729	20.66	1.00
s568	21.9	-5.96	3.866	-0.8252	0.0496	[3.55, 5.83]	0.993	273.166	20.74	1.00
s569	10.2	4.64	0.320	-0.3104	0.0220	[3.65, 5.57]	0.994	267.760	20.86	1.00
s570	21.2	-3.96	2.721	-0.5870	0.0330	[3.60, 5.65]	0.993	252.518	20.90	1.00
s571	26.6	-10.11	5.258	-1.0345	0.0615	[3.50, 5.80]	0.991	284.129	20.75	1.00
S572 =572	57.0	-39.30	15.083	-2.0052	0.1557	[3.45, 5.35]	0.994	221.212	20.84	1.06
SS / S 574	20.2	0.30	0.481	-0.4443	0.0330	[3.70, 5.33]	0.994	352.935	20.80	1.05
8374 8576	39.2 12.2	-22.09	9.847	-1.7022	0.1055	[3.37, 3.70]	0.995	200.704	20.78	1.15
s570 s577	12.3	_22.00	0.772	-0.3098 -1.7413	0.0252	[3.44, 5.49]	0.992	239.113	20.08	1.07
\$578	40.0 23.6	-6.83	3.009	-1.7413 -0.7006	0.1021	[3.39, 5.33]	0.995	2/1.4/0	20.02	1.00
s570 s570	23.0 74.3	-0.85	21 508	-0.7990 -3.5023	0.0439	[3.49, 5.05]	0.990	207 5/3	20.87	1.00
\$580	11.5	3 64	0.646	-0.3605	0.0250	[3.46, 5.63]	0.991	270.070	20.07	1.00
\$581	32.5	-14.69	6 5 3 0	-11744	0.0250	[3 51 5 56]	0.992	338 877	20.75	0.98
\$582	0.9	16.19	-4.727	0.6240	-0.0400	[3.46, 5.57]	0.993	332.884	20.64	0.98
s583	120.4	-100.47	37.606	-6.1380	0.3608	[3.51, 5.31]	0.987	342.673	20.62	1.02
s584	50.2	-33.22	13.659	-2.3805	0.1417	[3.46, 5.44]	0.986	328.017	20.62	1.07
s585	17.8	-2.03	2.438	-0.5984	0.0365	[3.45, 5.59]	0.986	328.398	20.53	1.00
s586	99.6	-76.84	27.888	-4.4195	0.2505	[3.58, 5.38]	0.984	433.972	20.54	1.00
s594	-3.6	17.88	-4.390	0.4153	-0.0188	[3.44, 5.53]	0.989	359.356	20.37	1.00
s595	60.3	-41.87	16.340	-2.7356	0.1585	[3.44, 5.58]	0.992	326.172	20.62	1.00
s596	-7.1	20.96	-5.315	0.5368	-0.0249	[3.43, 5.54]	0.991	271.285	20.67	0.97
s597	26.6	-9.64	4.965	-0.9731	0.0573	[3.37, 5.67]	0.993	257.728	20.79	1.00
s598	124.0	-101.89	37.308	-5.9488	0.3412	[3.45, 5.41]	0.993	304.403	20.82	1.00
s599	69.8	-50.24	19.098	-3.1314	0.1791	[3.49, 5.39]	0.994	274.989	20.89	0.97
s620	190.5	-169.86	61.972	-9.7808	0.5580	[3.97, 5.64]	0.988	293.914	19.99	1.00
s621	43.1	-42.91	21.641	-4.1745	0.2699	[3.90, 5.53]	0.987	297.764	20.16	1.00
s622	-54.4	32.79	0.225	-1.5599	0.1536	[3.96, 5.54]	0.990	256.451	20.41	1.00
s623	217.7	-193.12	68.925	-10.6338	0.5932	[4.11, 5.60]	0.990	322.177	19.94	1.00
s624	164.3	-141.74	51.192	-8.0105	0.4523	[3.78, 5.50]	0.991	358.816	19.90	1.02
s625	-12.8	12.71	1.088	-0.8468	0.0711	[3.90, 5.61]	0.988	273.845	19.99	1.00
s626	61.6	-55.45	23.834	-4.1402	0.2472	[4.13, 5.47]	0.989	330.873	20.09	1.20
s627	-297.0	237.00	-64.199	7.4579	-0.3186	[4.05, 5.66]	0.987	408.213	20.00	1.08
s628	32.5	-31.15	16.979	-3.3901	0.2214	[3.84, 5.41]	0.988	363.374	19.75	1.00
s629	367.6	-318.30	108.115	-16.0895	0.8782	[3.93, 5.62]	0.986	399.865	19.88	1.00
so30	1/.3	-09.13	29.266	-5.1133	0.3123	[3.94, 3.31]	0.98/	357.090	19.93	1.00
S031	-10.1	5.97	0.396	-2.1353	0.10/0	[3.99, 3.46]	0.989	338.013	20.10	1.00

 Table 2.
 (Continued.)

Plate		Fit	ting coeffici	ients		Fitting range	Correlation	1σ	5σ	Scaling
name	<i>c</i> ₀	c_1	<i>c</i> ₂	<i>C</i> ₃	<i>C</i> 4	$[d_1, d_2]$	coefficient	(count)	(mag)	factor
s632	-120.2	88.93	-17.642	0.9401	0.0238	[3.99, 5.45]	0.989	286.124	20.27	1.00
s633	149.3	-132.05	48.825	-7.7353	0.4390	[4.11, 5.59]	0.990	374.596	20.24	1.00
s634	-278.9	222.50	-59.850	6.8764	-0.2893	[4.08, 5.67]	0.989	274.580	20.44	1.00
s635	-199.8	158.95	-40.757	4.3387	-0.1633	[4.00, 5.49]	0.989	339.015	20.25	1.00
s636	-177.2	130.12	-29.046	2.3952	-0.0487	[4.12, 5.35]	0.993	270.503	20.24	1.00
s637	-100.3	81.92	-18.947	1.6681	-0.0442	[4.02, 5.36]	0.991	301.066	20.50	1.00
s638	56.1	-76.76	38.969	-7.4250	0.4773	[4.18, 5.50]	0.989	383.130	20.23	1.00
s639	202.7	-181.30	65.178	-10.0594	0.5586	[4.20, 5.46]	0.990	224.003	20.22	1.00
s640	159.2	-150.13	57.965	-9.5349	0.5608	[3.99, 5.37]	0.985	311.025	19.80	1.01
s641	154.6	-138.22	51.686	-8.3067	0.4788	[3.83, 5.66]	0.989	236.291	19.88	1.17
s650	273.6	-236.82	81.732	-12.2978	0.6739	[3.68, 5.66]	0.988	307.283	19.95	1.06
s651	154.2	-136.60	50.674	-8.0872	0.4632	[3.85, 5.63]	0.985	311.090	19.85	1.00
s652	51.2	-56.54	27.807	-5.2444	0.3338	[4.09, 5.61]	0.987	265.904	20.56	1.00
s653	-27.8	15.98	3.659	-1.7994	0.1553	[3.93, 5.45]	0.988	272.946	20.13	1.00
s654	146.4	-133.05	50.808	-8.3255	0.4891	[3.88, 5.41]	0.986	355.931	19.88	1.00
s655	120.1	-107.85	41.725	-6.8806	0.4039	[3.96, 5.51]	0.984	338.645	19.96	1.00
s656	195.3	-165.88	57.679	-8.6981	0.4746	[3.98, 5.49]	0.982	290.720	19.78	1.00
s657	254.1	-222.76	77.972	-11.8618	0.6563	[4.03, 5.29]	0.983	336.603	19.78	1.22
s658	-0.9	-13.43	14.785	-3.5607	0.2547	[4.02, 5.31]	0.984	288.339	20.12	1.21
s659	-120.1	97.09	-23.231	2.1688	-0.0637	[3.97, 5.43]	0.970	375.333	19.60	1.00
s666	150.8	-140.69	54.407	-9.0015	0.5344	[3.97, 5.32]	0.980	302.729	19.70	1.00
s667	-8.7	11.64	1.021	-0.8399	0.0736	[3.74, 5.50]	0.984	344.907	19.85	1.00
s668	-8.2	10.19	1.148	-0.7192	0.0568	[3.98, 5.70]	0.989	352.293	19.89	1.00
s669	-12.0	13.35	0.863	-0.8744	0.0789	[3.77, 5.48]	0.984	207.884	20.01	1.00
s670	-13.0	5.64	6.169	-2.0217	0.1591	[3.85, 5.33]	0.989	302.094	20.02	1.00
s671	-88.2	74.12	-16.986	1.4156	-0.0296	[3.85, 5.38]	0.988	291.403	19.99	1.00
s691	-6.0	-3.88	9.776	-2.5261	0.1813	[3.97, 5.63]	0.993	286.995	19.94	1.01
s692	7.5	-16.87	14.497	-3.2903	0.2275	[3.97, 5.52]	0.989	282.986	20.01	1.00
s693	-309.1	261.97	-76.192	9.6121	-0.4510	[3.91, 5.54]	0.992	233.718	20.28	0.91
s694	-249.9	203.56	-55.258	6.3648	-0.2656	[3.96, 5.57]	0.990	261.540	20.14	0.92
s695	74.9	-68.91	28.463	-4.8051	0.2816	[4.11, 5.64]	0.990	402.610	19.42	0.91
s696	-8.2	11.47	0.820	-0.7396	0.0627	[3.79, 5.40]	0.989	260.749	20.11	1.00
s697	-70.8	48.00	-5.180	-0.7159	0.1053	[3.99, 5.52]	0.984	245.483	20.15	1.00
s698	35.9	-46.91	25.786	-5.0995	0.3324	[4.07, 5.37]	0.986	307.689	20.18	1.15
s699	86.1	-81.51	34.107	-5.8958	0.3553	[4.01, 5.50]	0.989	412.207	19.90	1.00
s700	67.4	-60.25	25.896	-4.5867	0.2813	[3.87, 5.35]	0.982	428.654	19.73	1.06
s701	193.3	-156.76	52.389	-7.6550	0.4075	[3.85, 5.64]	0.988	489.346	19.37	1.14
s702	-8.0	2.58	6.633	-2.0167	0.1561	[3.90, 5.53]	0.988	278.875	19.93	1.00
s703	204.7	-176.71	62.156	-9.4855	0.5244	[4.06, 5.63]	0.986	359.487	20.06	1.16
s704	133.3	-133.74	54.554	-9.2973	0.5603	[4.08, 5.43]	0.991	412.540	20.14	1.07
s705	159.7	-143.07	52.681	-8.2826	0.4662	[4.18, 5.59]	0.990	312.462	20.13	1.00
s706	-60.9	34.39	0.266	-1.5576	0.1496	[4.09, 5.60]	0.988	377.530	20.00	1.00
s707	-19.2	8.59	5.749	-1.9947	0.1575	[3.95, 5.57]	0.993	284.222	20.26	1.00
s708	152.9	-140.53	52.976	-8.4800	0.4839	[4.15, 5.55]	0.992	345.176	20.06	1.00
s709	159.6	-143.30	53.688	-8.6586	0.5016	[3.87, 5.43]	0.990	406.316	20.03	1.00
s710	92.8	-91.05	39.039	-6.9444	0.4324	[3.87, 5.43]	0.992	251.640	20.10	1.00
s711	316.6	-294.75	107.579	-17.0550	0.9849	[3.90, 5.33]	0.990	307.305	19.61	1.06
s724	52.4	-60.92	29.996	-5.6317	0.3564	[4.21, 5.49]	0.987	281.373	20.88	0.93
s725	-15.8	2.91	8.082	-2.3586	0.1770	[4.06, 5.50]	0.986	322.982	20.09	1.00
s726	14.9	-25.02	18.554	-4.2000	0.2989	[3.85, 5.34]	0.986	301.577	20.03	1.00
s727	78.8	-89.66	42.070	-7.8695	0.5073	[3.96, 5.32]	0.986	270.563	20.13	1.00
s728	137.1	-131.30	52.432	-8.8846	0.5363	[3.93, 5.33]	0.984	314.626	20.01	1.00
s729	399.7	-354.97	122.725	-18.5447	1.0270	[4.04, 5.38]	0.983	291.081	19.89	1.17

Table 2.(Continued.)

Plate	Fit	ting coeffici	ients		Fitting range	Correlation	1σ	5σ	Scaling
name	<i>c</i> ₀ <i>c</i> ₁	<i>c</i> ₂	<i>C</i> ₃	<i>C</i> ₄	$[d_1, d_2]$	coefficient	(count)	(mag)	factor
s730	193.3 -172.02	62.625	-9.8882	0.5652	[3.89, 5.25]	0.986	424.258	19.52	0.88
s731	159.0 -139.03	50.762	-7.9918	0.4524	[3.92, 5.26]	0.985	327.203	19.79	1.00
s733	410.0 -352.30	117.707	-17.1953	0.9210	[4.07, 5.33]	0.966	376.437	19.61	1.00
s734	191.9 -165.11	58.127	-8.8651	0.4900	[4.05, 5.49]	0.984	392.671	19.73	1.00
s738	102.5 -88.87	34.480	-5.7065	0.3355	[3.83, 5.42]	0.984	320.654	19.80	1.00
s739	-18.3 13.92	1.193	-0.8437	0.0655	[4.05, 5.45]	0.985	400.782	19.63	1.00
s740	-242.0 190.40	-48.724	5.0900	-0.1799	[3.96, 5.26]	0.986	241.439	20.34	1.00
s741	59.8 -57.85	26.728	-4.9537	0.3146	[3.84, 5.54]	0.985	245.889	20.02	1.00
s742	107.4 -100.76	40.717	-6.9101	0.4147	[4.02, 5.41]	0.985	269.667	20.28	1.00
s743	2.8 - 11.10	11.991	-2.8409	0.2000	[4.06, 5.41]	0.990	288.456	20.20	1.00
s744	149.3 -127.92	46.270	-7.2232	0.4054	[3.77, 5.51]	0.992	261.169	19.62	0.88
s762	216.6 -189.03	66.633	-10.1773	0.5628	[4.16, 5.43]	0.990	208.253	20.35	1.03
s763	120.2 - 95.10	33.001	-4.9395	0.2642	[3.75, 5.70]	0.989	217.193	19.63	1.00
s764	248.0 -219.73	78.198	-12.1155	0.6829	[3.81, 5.54]	0.990	256.878	20.04	1.00
s765	-61.7 38.46	-1.176	-1.4511	0.1535	[3.98, 5.48]	0.993	265.996	20.79	1.00
s766	-88.5 68.01	-13.167	0.6409	0.0221	[3.94, 5.33]	0.988	301.583	19.97	0.86
s767	263.1 -221.69	74.483	-10.8910	0.5801	[4.18, 5.56]	0.989	351.793	19.86	1.00
s768	-58.4 29.25	2.828	-2.0444	0.1815	[4.10, 5.37]	0.988	296.617	19.99	1.00
s/69	223.0 - 199.44	/1.566	-11.0818	0.6200	[4.12, 5.61]	0.987	254.630	20.33	1.00
s / /0	141.2 - 115.62 124.0 104.57	40.550	-0.1010	0.33/3	[3.86, 5.58]	0.986	329.415	19.89	1.00
\$771	-124.9 104.57	-26.235	2.03/5	-0.0893	[3.88, 5.54]	0.984	341.927	20.14	0.90
S772	10.9 - 8.37	8.413	-1.9994	0.1400	[3.84, 3.33]	0.989	487.702	19.54	1.00
8773 0774	-7.0 10.30	17.020	-0.7020	0.0380	[3.91, 3.03]	0.988	227 440	19.55	0.95
s774 s775	14.2 - 23.29 178.1 - 152.08	54 172	-3.8031 -8.2030	0.2017	[4.08, 5.09]	0.992	383 1/4	20.24	1.11 1.20
s776	-13.7 -13.05	1 112	-0.2939 -0.8641	0.4380	[4.11, 5.57] [3.02, 5.57]	0.990	351 366	20.04	1.20
s770 s777	89.8 -82.28	34 262	_5 9883	0.3672	[3.77, 5.46]	0.991	207 702	20.11	1.10
\$778	262.4 - 221.30	74 457	-10,9100	0.5872	[3.77, 5.40] [4 10 5 52]	0.990	364 902	19 64	1.00
\$779	185.2 - 165.72	61 017	-97183	0.5587	[3, 77, 5, 39]	0.992	285 237	19.04	1.00
s780	119.4 - 106.15	40.778	-6.6715	0.3885	[3.95, 5.58]	0.990	320.032	20.16	1.00
s781	129.5 - 121.07	47.558	-7.9099	0.4677	[4.00, 5.52]	0.992	296.728	20.16	1.00
s782	-5.9 10.37	0.877	-0.7067	0.0593	[3.70, 5.35]	0.984	311.782	19.91	1.07
s797	178.5 -155.93	56.302	-8.8097	0.4991	[3.69, 5.53]	0.988	312.503	19.58	1.03
s798	288.5 -271.17	101.022	-16.3853	0.9689	[3.77, 5.18]	0.986	293.290	20.04	1.00
s799	274.8 -240.95	84.144	-12.8208	0.7137	[3.90, 5.58]	0.987	350.634	19.75	1.00
s800	-19.5 10.01	4.967	-1.8485	0.1483	[3.92, 5.47]	0.984	298.192	20.15	1.00
s801	234.5 -209.89	75.752	-11.8985	0.6798	[3.58, 5.21]	0.985	397.276	19.75	1.00
s802	199.1 -173.78	61.987	-9.5847	0.5360	[3.94, 5.23]	0.983	449.983	19.93	0.89
s803	243.4 -202.95	68.183	-9.9922	0.5333	[3.92, 5.56]	0.980	408.988	19.92	0.94
s804	205.0 -179.01	63.704	-9.8358	0.5502	[3.82, 5.51]	0.974	387.093	19.75	0.91
s805	364.2 -324.85	113.070	-17.1535	0.9506	[4.04, 5.39]	0.963	280.123	19.82	1.00
s806	362.8 -324.83	113.617	-17.3278	0.9655	[4.03, 5.37]	0.953	333.479	19.96	1.00
s809	110.3 -97.97	37.962	-6.2537	0.3662	[3.94, 5.51]	0.973	380.636	19.67	1.00
s810	217.2 - 174.10	56.971	-8.1574	0.4258	[3.94, 5.46]	0.986	493.375	19.80	1.17
s811	90.0 -82.33	34.262	-6.0036	0.3703	[3.72, 5.33]	0.982	268.866	19.92	1.01
s812	166.3 -138.00	47.955	-7.2360	0.3947	[3.89, 5.43]	0.990	346.769	19.91	1.00
s813	174.1 -143.56	49.491	-7.4356	0.4054	[3.81, 5.53]	0.986	291.550	20.08	1.00
s814	68.8 -58.23	24.286	-4.2281	0.2572	[3.87, 5.43]	0.988	321.949	20.18	1.00
s815	11/.3 - 98.74	36.471	-5.7634	0.3237	[3.92, 5.43]	0.989	277.648	20.33	1.07
s816	61.1 - 47.05	18.933	-5.1730	0.1832	[3.85, 5.60]	0.990	278.246	20.20	1.00
s834	1/7.8 - 100.15	39.338	-9.4048	0.3430	[3.83, 3.31]	0.992	274.020	19.98	1.02
8033 6926	114.2 - 100.14	42.312	-1.1204	0.4248	[3.90, 3.40]	0.989	214.939	20.21	1.00
5030	-20.0 10.50	1.332	-2.5505	0.2033	[J.74, J.44]	0.330	∠J∠.00J	20.30	1.00

 Table 2.
 (Continued.)

Plate		Fit	ting coeffic	ients		Fitting range	Correlation	1σ	5σ	Scaling
name	c_0	c_1	c_2	<i>c</i> ₃	c_4	$[d_1, d_2]$	coefficient	(count)	(mag)	factor
s837	77.4	-76.09	33.060	-5.8354	0.3564	[4.01, 5.44]	0.989	242.541	20.23	1.00
s838	240.0	-206.97	71.693	-10.7898	0.5897	[3.95, 5.72]	0.990	432.087	19.84	0.94
s839	180.2	-157.28	56.869	-8.9289	0.5077	[3.79, 5.58]	0.988	318.778	19.89	0.93
s840	-8.3	9.90	1.267	-0.7228	0.0552	[4.02, 5.54]	0.989	257.103	19.97	1.00
s841	-169.6	133.28	-32.602	3.1719	-0.0996	[4.00, 5.29]	0.984	272.657	20.09	1.00
s842	-4.4	-1.41	8.090	-2.2130	0.1633	[3.91, 5.55]	0.986	312.461	20.05	1.00
s843	-84.8	59.06	-8.306	-0.3353	0.0879	[3.99, 5.53]	0.989	355.128	20.28	1.00
s844	-68.8	49.78	-7.047	-0.2415	0.0682	[3.98, 5.52]	0.988	351.160	20.09	1.00
s845	-27.4	18.18	2.224	-1.5021	0.1351	[3.85, 5.45]	0.988	460.349	19.81	1.00
s846	255.6	-207.15	67.483	-9.6222	0.5020	[4.05, 5.65]	0.988	298.537	19.98	1.15
s847	64.0	-47.06	18.265	-3.0185	0.1741	[3.72, 5.61]	0.993	367.299	19.88	1.00
s848	82.6	-65.93	25.334	-4.1614	0.2406	[3.60, 5.62]	0.993	321.838	20.04	1.00
s849	62.5	-52.04	22.329	-3.9802	0.2455	[3.65, 5.44]	0.992	309.822	20.21	1.00
s850	-63.8	48.54	-7.372	-0.1259	0.0596	[3.89, 5.45]	0.991	308.375	20.04	1.00
s851	129.6	-113.27	42.780	-6.9549	0.4046	[3.70, 5.34]	0.989	321.153	19.89	1.00
s852	29.0	-29.42	17.789	-3.8093	0.2641	[3.68, 5.31]	0.991	298.481	20.52	1.00
s853	170.6	-147.72	53.039	-8.2214	0.4589	[3.99, 5.53]	0.991	287.502	20.08	1.13
s870	200.2	-178.27	64.805	-10.2088	0.5820	[3.92, 5.67]	0.989	310.656	20.10	1.04
s871	48.2	-39.15	17.770	-3.2544	0.2025	[3.79, 5.46]	0.986	301.090	20.09	1.00
s872	-5.7	10.43	0.834	-0.7046	0.0593	[3.70, 5.34]	0.986	333.910	19.93	1.00
s873	204.1	-180.11	64.745	-10.0986	0.5712	[3.96, 5.40]	0.984	306.640	19.94	1.02
s874	-14.1	12.27	1.218	-0.7982	0.0627	[4.05, 5.45]	0.983	233.383	19.88	0.82
\$875	-2.5	9 38	0.835	-0.6885	0.0591	[3 59 5 59]	0.985	266 645	20.02	0.76
s876	103.3	-80.01	28 027	-42174	0.2252	[3 93 5 55]	0.985	443 686	19.72	0.82
\$877	_7.4	9.89	1 050	-0.6679	0.0514	[3.97, 5.63]	0.979	426 048	19.72	0.02
\$878	226.3	-201.75	72 618	-113401	0.6412	[3,73,5,20]	0.970	348 660	19.73	1 17
\$879	144.2	-134.88	52 047	-8 4981	0.4926	[4 02 5 41]	0.970	312 502	20.03	1.00
\$881	-105.9	89.02	-22.047	2 3194	-0.0887	[4.02, 5.41]	0.973	568 713	19.82	1.00
\$887	20.1	-20.71	13 490	-2.5174 -2.8480	0.1898	[3, 02, 5, 64]	0.983	354 655	19.80	1.17
\$883	-7.0	10.62	0.856	-0.7004	0.1090	[3.92, 5.04]	0.900	437 521	19.60	0.91
\$884	-8.1	11.32	0.867	-0.7502	0.0507	[3.84, 5.40]	0.998	329 678	20.12	1.00
\$885	_37	-2.84	8 944	_2 3995	0.1773	[3.04, 5.02]	0.987	307 179	20.12	1.00
\$886	31.5	-41 56	24 021	-4.9075	0.3288	[3.95, 5.49]	0.988	317 208	20.04	0.92
\$887	66.2	-52.02	20.644	-3 4402	0.5200	[3.93, 5.99]	0.988	201 608	10 78	1.00
\$888	136.4	_115.73	42 285	-6 6807	0.1777	[3.03, 5.40]	0.900	238 107	20.08	1.00
s000 s880	130.4	-113.73 -118.67	42.200	-6.0007	0.3795	[3.77, 5.52]	0.991	252 403	10 78	1.00
xe001	258.0	-226.50	79.436	$-12\ 1502$	0.5040	[3.88, 5.46]	0.992	255 346	10.70	1.12
xe002	42.2	-30.02	12 867	_2 1986	0.0705	[3.80, 5.40]	0.902	171 836	19.22	1.00
xe002	153.6	120.02	12.007	-2.1900	0.1229	[3.02, 5.40]	0.992	227 201	10.22	1.00
xe003	103.0	-129.97	40.393 57 503	-7.1007	0.4010	[3.76, 5.55]	0.991	282 440	19.22	1.00
xe004	195.4	-104.09	50 707	-8.7303	0.4610	[3.92, 5.55]	0.994	202.449	19.04	1.00
xe005	104.J	-141.55	1 200	-7.0020	0.4411	[3.01, 3.32]	0.994	266 655	19.30	1.00
xe000	-0.4	9.07	1.300	-0.7310	0.0373	[3.92, 3.09]	0.992	200.000	19.39	1.00
xe007	102.0	-104.07	21.400	-3.3933	0.2877	[3.99, 3.00]	0.993	322.222	19.92	1.00
xe008	108.0	-07.19	20.514	-4.8/11	0.2075	[5.77, 5.44]	0.990	194.411	19.55	1.00
xe009	102.4	-02.01	29.314	-4.3303	0.240/	[3.71, 3.32]	0.997	165.129	19.20	1.00
xe010	20.0	-4./1	2.020	-0.4233	0.0111	[3.78, 3.32]	0.995	137.993	19.08	1.00
xeU11	101.0	-155.96	4/.3/9	- /.2030	0.4012	[3.75, 5.33]	0.993	322.339	19.29	1.00
xe012	191.0	-103.8/	57.807	-8.8801	0.4954	[3.00, 3.40]	0.995	3/4.482	19.08	1.00
xeU13	150.5	-130.33	45.984	-/.0480	0.3893	[3.83, 5.50]	0.989	3/8.019	19.34	1.00
xe014	163.7	-137.03	47.921	- /.2699	0.3965	[3.86, 5.59]	0.992	187.449	19.42	1.00
xeU15	115.5	-90.48	31.390	-4.7055	0.2501	[3.75, 5.69]	0.993	248.975	19.44	1.00
xe016	183.8	-156.14	54.707	-8.3418	0.4604	[3.73, 5.72]	0.994	1/2.89/	19.30	1.00
xeu1/	246.9	-213.93	15.923	-11.005/	0.033/	13.11, 3.39	0.991	512.145	19.27	1.00

 Table 2.
 (Continued.)

Plate		Fit	ting coeffici	ients		Fitting range	Correlation	1σ	5σ	Scaling
name	<i>c</i> ₀	c_1	<i>c</i> ₂	<i>C</i> ₃	<i>C</i> 4	$[d_1, d_2]$	coefficient	(count)	(mag)	factor
xe018	199.4	-171.59	60.665	-9.3663	0.5254	[3.87, 5.66]	0.992	264.308	19.71	1.00
xe019	186.4	-154.57	52.873	-7.8622	0.4217	[3.83, 5.60]	0.993	243.078	19.61	1.00
xe020	38.5	-21.51	8.527	-1.3897	0.0725	[3.66, 5.41]	0.996	307.367	19.28	0.85
xe021	57.0	-40.76	15.849	-2.5831	0.1426	[3.76, 5.31]	0.996	296.000	19.47	1.00
xe022	123.6	-105.38	39.022	-6.2295	0.3550	[3.76, 5.51]	0.996	211.774	19.36	1.00
xe023	100.5	-80.97	29.496	-4.6054	0.2533	[3.65, 5.49]	0.995	276.054	19.15	1.00
xe024	140.0	-118.97	43.123	-6.7589	0.3795	[3.65, 5.40]	0.996	320.695	19.16	1.00
xe025	48.1	-31.02	11.803	-1.8388	0.0921	[3.62, 5.39]	0.994	141.713	19.39	1.00
xe026	105.2	-85.63	31.426	-4.9708	0.2788	[3.67, 5.51]	0.997	263.838	19.45	1.00
xe027	286.4	-249.33	85.971	-12.9098	0.7057	[3.91, 5.50]	0.995	390.984	19.31	1.00
xe028	74.6	-55.99	20.639	-3.2388	0.1763	[3.59, 5.56]	0.994	296.470	19.16	1.14
xe029	179.0	-146.31	49.527	-7.2999	0.3887	[3.81, 5.72]	0.989	307.230	19.16	1.00
xe030	353.5	-306.43	104.371	-15.5965	0.8554	[3.82, 5.63]	0.992	308.112	19.40	1.00
xe031	119.2	-97.00	34.525	-5.3025	0.2897	[3.87, 5.77]	0.981	372.064	19.04	1.01
xe032	302.3	-260.92	89.349	-13.4144	0.7377	[3.91, 5.61]	0.987	383.925	19.30	1.00
xe033	162.3	-137.84	49.236	-7.6591	0.4305	[3.89, 5.48]	0.996	308.487	19.69	1.00
xe034	3.0	10.85	-2.439	0.2567	-0.0203	[3.88, 5.60]	0.994	127.000	20.05	1.00
xe035	33.1	-30.28	16.106	-3.2021	0.2101	[3.95, 5.45]	0.992	149.588	19.84	1.00
xe036	292.1	-249.57	84.785	-12.6148	0.6859	[4.03, 5.47]	0.995	261.950	19.78	1.00
xe037	179.2	-158.30	57.534	-9.0614	0.5158	[3.89, 5.05]	0.994	161.887	19.27	0.96
xe042	107.3	-87.36	31.798	-4.9752	0.2756	[3.65, 5.35]	0.996	276.373	19.32	1.00
xe043	224.6	-198.22	70.634	-10.9501	0.6164	[3.66, 5.57]	0.995	298.846	19.23	1.00
xe044	85.4	-66.27	24.304	-3.8175	0.2095	[3.62, 5.57]	0.993	249.591	19.21	1.00
xe045	76.6	-58.15	21.511	-3.3900	0.1853	[3.67, 5.51]	0.996	327.207	19.25	1.00
xe046	120.2	-96.44	34.035	-5.1934	0.2818	[3.81, 5.36]	0.996	220.326	19.73	1.00
xe047	99.6	-82.40	30.905	-4.9737	0.2830	[3.76, 5.37]	0.996	305.708	19.37	1.00
xe048	90.5	-72.90	27.168	-4.3306	0.2427	[3.65, 5.44]	0.995	216.829	19.15	1.07
xe049	136.4	-116.81	42.760	-6.7580	0.3822	[3.76, 5.48]	0.995	180.899	19.39	1.14
xe050	6.5	-2.15	4.832	-1.1888	0.0767	[3.89, 5.53]	0.991	151.177	19.34	1.00
xe051	-1.6	7.64	0.839	-0.5130	0.0360	[3.97, 5.55]	0.985	344.308	19.56	1.00
xe052	-73.1	61.88	-14.199	1.2741	-0.0400	[4.19, 5.48]	0.990	357.652	20.00	1.00
xe053	215.6	-178.82	60.381	-8.9073	0.4773	[3.86, 5.58]	0.981	385.863	19.25	1.00
xe054	603.3	-519.19	171.753	-24.9910	1.3418	[4.06, 5.60]	0.987	210.600	19.83	1.28
xe055	146.6	-117.69	40.132	-5.9323	0.3138	[3.85, 5.67]	0.994	273.206	19.33	1.00
xe056	47.2	-31.01	12.271	-2.0108	0.1094	[3.87, 5.67]	0.996	362.344	19.61	1.00
xe05/	108.3	-146.39	53.175	-8.4066	0.4805	[3.80, 5.45]	0.994	263.866	19.48	0.90
xe058	189.9	-162.22	57.079	-8.7412	0.4845	[3.89, 5.62]	0.995	325.764	19.55	1.00
xe059	03.2	-49.01	19.794	-3.2888	0.18/0	[3.88, 5.49]	0.996	211.//4	19.72	1.00
Xe060	11.5	-0.91	2.698	-0.0594	0.0382	[3.83, 5.46]	0.995	10/.500	19.37	1.00
xe061	130.1	-115.49	43.747	-/.1100	0.4134	[4.01, 5.28]	0.994	130.299	20.02	1.11
xe009	130.8	-10/.10	37.700 71.042	-5.7400	0.5111	[3.84, 3.03]	0.995	212.000	19.28	1.00
xe070	251.9	-205.28	/1.945	-11.0947	0.0220	[3.73, 3.43]	0.990	216.290	19.38	1.00
xe071 xe072	100.2	-151.97	47.220	- 7.3040	0.4033	[3.04, 3.46]	0.992	230.994	19.00	1.08
xe072	27.1	- 19.39	28.303	-4.4089	0.2393	[3.07, 3.30]	0.993	242.510	19.40	1.01
xe073	27.1 74.0	-10.73 -58.52	10.238	-2.03/1 -3.5025	0.1287	[3.77, 3.30]	0.992	3/6 919	19.70	0.00
xe074	14.9 82 1	-50.52	22.238	-3.3923 -3.4255	0.2011	[3.07, 3.49]	0.995	270 082	19.03	1.00
xe075	00.4 125.0	-02.44 -106.14	22.339	-6.0804	0.1027	[3.01, 3.40]	0.995	219.002	19.40	1.00
xe070	125.9	-11/ 33	<u>40 877</u>	-6.0004 -6.20/7	0.3400	[3.05, 5.55]	0.990	222.009	19.24	1.00
xe078	08 7	_77 0/	+0.027 27 507	_1 2068	0.2400	[3.60, 5.24]	0.992	217 801	10.12	0.08
xe070	255.7	_224 38	27.307 70 118	-12 2006	0.2204	[3.01, 5.55]	0.995	281 787	19.13	0.90
xe080	_1 8	7 71	1 1 2 1	-0.6522	0.0518	[3 87 5 65]	0.963	420 857	19.21	0.24
xe081	63.1	-42.93	15.535	-2.3960	0.1251	[3.89. 5.44]	0.975	316.532	19.72	0.99
						. /		—		

 Table 2.
 (Continued.)

Plate	Fitting coefficients					Fitting range	Correlation	1σ	5σ	Scaling
name	c_0	c_1	<i>c</i> ₂	<i>C</i> ₃	<i>C</i> ₄	$[d_1, d_2]$	coefficient	(count)	(mag)	factor
xe082	272.3	-235.35	81.330	-12.3125	0.6815	[4.04, 5.55]	0.982	210.764	19.93	0.93
xe083	49.5	-33.46	13.184	-2.1520	0.1169	[3.82, 5.42]	0.989	388.246	19.43	1.11
xe084	16.9	-10.25	7.231	-1.5204	0.0950	[3.97, 5.48]	0.992	162.202	19.68	1.00
xe085	362.7	-310.22	104.248	-15.3780	0.8330	[4.00, 5.66]	0.994	198.298	19.96	1.00
xe086	150.6	-133.48	49.677	-7.9855	0.4618	[3.96, 5.49]	0.995	187.765	19.69	0.94
xe087	100.8	-76.81	26.887	-4.0934	0.2215	[3.90, 5.61]	0.995	206.999	19.82	1.00
xe088	318.3	-271.59	91.600	-13.5414	0.7332	[3.87, 5.63]	0.994	256.752	19.53	0.87
xe089	77.4	-61.55	23.506	-3.8082	0.2150	[3.79, 5.54]	0.993	152.048	19.44	1.00
xe090	368.1	-325.02	112.529	-17.0956	0.9539	[3.83, 5.39]	0.994	225.043	19.48	1.00
xe101	118.0	-97.57	35.410	-5.5325	0.3071	[3.63, 5.53]	0.996	249.409	19.32	1.00
xe102	93.5	-74.05	27.034	-4.2260	0.2318	[3.68, 5.58]	0.995	267.612	19.33	1.00
xe103	95.1	-76.50	28.162	-4.4360	0.2456	[3.76, 5.52]	0.996	222.718	19.32	1.00
xe104	100.1	-80.69	29.626	-4.6714	0.2597	[3.66, 5.58]	0.996	209.737	19.58	1.08
xe105	108.4	-88.24	32.019	-4.9941	0.2760	[3.65, 5.59]	0.994	209.383	19.27	1.05
xe106	128.0	-107.74	39.232	-6.1654	0.3458	[3.69, 5.54]	0.994	253.107	19.33	1.00
xe107	57.2	-41.42	16.173	-2.6456	0.1466	[3.61, 5.41]	0.991	361.649	19.08	0.87
xe108	43.0	-30.81	13.319	-2.3130	0.1324	[3.82, 5.23]	0.990	324.745	19.45	1.08
xe109	194.8	-168.28	59,789	-9.2663	0.5213	[3.75, 5.29]	0.994	299.137	19.44	1.00
xe110	94.5	-73.44	26.207	-4.0084	0.2154	[3.63, 5.54]	0.990	326.549	19.06	0.98
xe111	115.8	-94.30	33.841	-5.2410	0.2890	[3.65, 5.51]	0.993	251.608	19.20	1.07
xe112	53.5	-34.60	12.842	-2.0177	0.1063	[3.88, 5.64]	0.979	472.963	19.47	1.00
xe113	217.3	-184.53	63.747	-9.6181	0.5278	[3.78, 5.53]	0.989	315.302	19.39	1.00
xe114	219.2	-185.36	63.703	-9.5696	0.5235	[3.79, 5.59]	0.992	242.498	19.34	0.87
xe115	159.3	-131.80	45.511	-6.8053	0.3651	[3.80, 5.67]	0.975	255.225	18.70	0.82
xe116	-8.6	10.72	0.855	-0.6642	0.0519	[4.06, 5.63]	0.994	276.958	19.82	1.05
xe117	34.7	-20.10	8.565	-1.4426	0.0764	[3.85, 5.54]	0.992	423.899	19.19	0.86
xe118	242.9	-21140	74 077	-11 3569	0.6355	[3 72, 5 55]	0.990	246 166	19 17	1.00
xe119	133.9	-112.46	40.757	-6.4063	0.3615	[3.74, 5.38]	0.995	265.296	19.49	1.07
xe120	393.7	-351.43	122.590	-18.7686	1.0560	[3.86, 5.37]	0.994	271.155	19.52	0.90
xe121	205.1	-173.76	60.040	-9.0388	0.4937	[3.95, 5.54]	0.992	200.705	19.41	1.00
xe122	160.6	-141.04	51.737	-8.2149	0.4701	[3.83, 5.45]	0.994	147.069	19.55	0.89
xe123	124.2	-109.87	41.635	-6.7635	0.3932	[4.07, 5.23]	0.988	129.280	19.92	1.00
xe124	28.6	-27.29	15.264	-3.0541	0.1978	[4.01, 5.50]	0.994	185.110	20.12	1.00
xe125	107.4	-92.59	35 319	-57603	0 3339	[3 88 5 60]	0.983	164 930	19.68	1.00
xe137	34.8	-18.13	7 328	-1.1775	0.0568	[3 85 5 39]	0.987	174 645	19.92	0.88
xe138	82.8	-64.82	24 085	-3.8151	0.0200	[3 67 5 59]	0.996	152 514	19 41	0.82
xe139	99.3	-81.77	30 495	-4.8619	0.2734	[3 78 5 57]	0.996	167 326	19.63	1.00
xe140	20.9	-4.97	2 705	-0.4715	0.0175	[3,61,5,50]	0.996	136 930	19 51	1.00
xe141	103.2	-83 50	30 345	-47276	0.2598	[3.61, 5.50]	0.996	286 841	19.06	1.00
xe142	98.2	-79.15	29 074	-45850	0.2551	[3.01, 5.40]	0.997	275 900	19.00	1.00
xe143	39.8	-27.45	12 047	-21222	0.1230	[3.72, 5.00]	0.994	330 271	19.04	1.00
xe144	86.6	-70.11	26 593	_4 3083	0.1250	[3.75, 5.55]	0.995	220.467	19.00	0.80
xe145	43.0	_28.01	11 640	-1.9126	0.2449	[3.01, 5.47]	0.994	465 720	19.10	0.80
xe146	270.5	-236.01	82 710	-126285	0.1029	[3.70, 5.57]	0.994	274 405	10.74	1.00
xo140	1/2.5	120.68	43 203	6 7114	0.7050	[3.71, 3.41]	0.988	<i>4</i> 37 10 <i>4</i>	19.11	1.00
xe1/8	21/ 0	-120.00 -187.41	45.205	-0.7114 -10.2780	0.5787	[3.70, 5.51]	0.992	307 118	19.04	0.06
xe1/0	214.9 25 0	-107.41	6 6/6	-10.2760	0.0707	[3.02, 3.40]	0.994	202 820	10.207	0.90
xo150	120.0	-17.34	25 624	-1.0201	0.0472	[3.02, 3.49]	0.994	273.029	19.20	1.02
xe151	120.9	- 79.21	16 002	-5.5225	0.3049	[3.74, 3.37]	0.202	204.032 A11 770	19.27	1.05
xo152	70.2 60.2	-40.49	10.902	-2.31/8	0.1279	[3.04, 3.30]	0.993	+11.//ð	19.00	1.12
XC152	-09.2	09.70 242 27	-20.402	2./010	07105	[3.77, 3.33]	0.994	430.709	19.12	1.00
xe155	211.2 60 6	-242.27	04.422	-12.8/80	0.1402	[3.73, 3.42]	0.992	209.032	19.44	1.07
xe155	11 2	-49.39	11.991	-2.7903 -0.7040	0.1483	[3.02, 3.44]	0.994	160 000	19.10	1.99
ACIJJ	11.4	-0.71	2.704	-0.7049	0.0427	12.07, 2.22	0.271	+00.022	17.30	1.00

 Table 2.
 (Continued.)

Plate		Fit	ting coeffici	ients		Fitting range	Correlation	1σ	5σ	Scaling
name	c_0	c_1	<i>c</i> ₂	<i>c</i> ₃	<i>c</i> ₄	$[d_1, d_2]$	coefficient	(count)	(mag)	factor
xe156	178.4	-152.65	54.313	-8.4343	0.4752	[3.83, 5.36]	0.991	347.287	19.45	1.03
xe157	220.1	-186.48	64.037	-9.5933	0.5215	[3.90, 5.48]	0.991	255.986	19.21	0.83
xe158	303.7	-261.24	89.082	-13.3103	0.7282	[3.97, 5.52]	0.989	209.043	19.61	0.93
xe159	248.5	-213.01	73.338	-11.0341	0.6056	[3.86, 5.39]	0.990	237.244	19.41	1.16
xe160	-12.2	12.48	0.936	-0.7909	0.0656	[3.99, 5.52]	0.983	302.451	19.80	1.06
xe161	124.0	-109.23	41.472	-6.7480	0.3917	[3.93, 5.58]	0.994	222.645	19.80	1.00
xe162	101.7	-89.69	35.195	-5.8810	0.3480	[3.88, 5.52]	0.995	133.201	19.81	1.00
xe163	131.4	-105.08	36.513	-5.5023	0.2963	[3.98, 5.64]	0.996	255.124	20.11	1.00
xe164	86.3	-71.50	27.500	-4.4987	0.2586	[3.93, 5.39]	0.995	129.624	19.81	1.00
xe179	-6.2	9.78	0.919	-0.6565	0.0512	[3.93, 5.44]	0.994	186.600	19.71	1.00
xe180	-271.5	244.69	-76.491	10.6037	-0.5588	[3.91, 5.70]	0.993	170.917	19.78	1.00
xe181	172.8	-148.76	53.144	-8.2281	0.4588	[4.09, 5.67]	0.989	262.568	20.19	1.00
xe182	170.5	-149.31	54.425	-8.6255	0.4943	[3.89, 5.48]	0.991	237.774	19.58	1.00
xe183	107.5	-85.80	30.712	-4.7469	0.2603	[3.89, 5.58]	0.979	274.669	19.48	1.00
xe184	303.5	-264.64	91.374	-13.8071	0.7636	[3.69, 5.44]	0.990	447.068	19.21	1.10
xe185	172.6	-138.47	46.302	-6.7581	0.3573	[3.76, 5.58]	0.990	285.124	19.27	1.00
xe186	214.0	-185.63	65.372	-10.0353	0.5604	[3.85, 5.47]	0.976	248.605	19.14	1.00
xe187	94.1	-77.39	29.080	-4.6785	0.2658	[3.73, 5.53]	0.987	398.757	18.95	1.00
xe188	167.6	-147.61	54.249	-8.6851	0.5038	[3.41, 5.22]	0.992	322.783	18.98	0.83
xe189	118.4	-100.71	37.450	-5.9958	0.3423	[3.65, 5.43]	0.994	333.673	19.16	1.00
xe190	99.4	-78.32	28.124	-4.3595	0.2394	[3.61, 5.53]	0.995	263.222	19.09	0.91
xe191	117.0	-96.71	35.204	-5.5313	0.3095	[3.70, 5.40]	0.995	330.362	19.23	0.92
xe192	207.1	-179.72	63.573	-9.7923	0.5470	[3.73, 5.40]	0.996	266.444	19.36	1.00
xe193	-464.4	399.19	-122.135	16.4759	-0.8354	[4.06, 5.53]	0.985	203.050	20.24	1.08
xe194	92.6	-94.78	41.117	-7.3488	0.4601	[4.05, 5.33]	0.993	173.817	19.98	1.03
xe195	144.4	-117.13	40.580	-6.1040	0.3291	[3.85, 5.40]	0.994	279.496	19.61	1.00
xe196	181.1	-162.81	60.213	-9.6715	0.5632	[3.90, 5.48]	0.986	175.236	19.40	1.00
xe197	316.7	-279.28	97.376	-14.8769	0.8327	[3.88, 5.42]	0.992	316.168	19.47	1.00
xe198	135.9	-113.15	40.403	-6.2668	0.3494	[3.81, 5.49]	0.993	239.598	19.01	0.91
xe199	50.6	-35.74	14.463	-2.4388	0.1389	[3.84, 5.66]	0.992	379.924	19.37	1.08
xe200	203.4	-171.19	58.938	-8.8594	0.4838	[3.69, 5.39]	0.994	245.980	19.35	1.00
xe201	243.1	-209.77	72.872	-11.0623	0.6122	[3.89, 5.57]	0.994	247.923	19.48	1.00
xe202	200.3	-173.65	61.779	-9.6099	0.5438	[3.75, 5.61]	0.989	322.378	19.23	1.00
xe203	341.6	-306.45	107.756	-16.5586	0.9323	[4.11, 5.26]	0.974	214.116	19.77	1.00
xe204	219.6	-192.17	68.416	-10.6417	0.6027	[3.77, 5.37]	0.991	204.470	19.67	0.96
xe205	222.7	-191.83	66.944	-10.1859	0.5638	[4.00, 5.43]	0.990	166.644	19.82	1.07
xe206	42.5	-43.38	21.605	-4.1203	0.2646	[4.17, 5.49]	0.991	155.366	20.30	1.15
xe207	211.2	-182.98	64.632	-9.9622	0.5582	[3.91, 5.60]	0.994	300.474	19.55	1.00
xe208	77.3	-61.26	23.421	-3.8016	0.2149	[3.88, 5.34]	0.993	162.873	19.81	1.00
xe209	109.7	-96.16	36.828	-5.9993	0.3462	[4.00, 5.57]	0.994	145.104	20.02	1.00
xe225	-171.5	171.01	-57.036	8.4579	-0.4784	[3.86, 5.39]	0.992	206.570	20.15	0.84
xe226	115.2	-103.56	40.488	-6.7650	0.4026	[3.90, 5.42]	0.990	163.830	19.86	1.00
xe227	57.9	-44.35	18.150	-3.0998	0.1812	[3.70, 5.58]	0.994	179.186	19.68	1.00
xe228	51.7	-40.28	17.176	-2.9940	0.1763	[3.83, 5.60]	0.992	303.064	19.65	1.19
xe229	40.0	-26.87	11.470	-1.9619	0.1091	[3.78, 5.56]	0.992	260.985	19.05	1.00
xe230	42.0	-42.46	21.397	-4.1203	0.2655	[4.01, 5.44]	0.980	276.750	19.75	1.00
xe231	174.6	-143.68	49.264	-7.3678	0.3985	[4.06, 5.73]	0.942	435.414	19.49	1.06
xe232	270.1	-231.95	79.429	-11.9002	0.6517	[3.86, 5.46]	0.958	284.699	19.01	1.00
xe233	325.1	-290.69	101.899	-15.5732	0.8695	[4.13, 5.44]	0.989	222.446	19.49	1.00
xe234	122.3	-95.46	32.761	-4.8967	0.2620	[3.85. 5.57]	0.991	696.655	18.85	0.87
xe235	17.3	-1.48	1.526	-0.3110	0.0100	[3.60, 5.46]	0.992	224.432	19.32	0.93
xe236	148.8	-126.87	45.792	-7.1643	0.4029	[3.76. 5.47]	0.993	216.150	19.35	1.00
xe237	106.9	-89.86	33.593	-5.3738	0.3040	[3.92, 5.54]	0.996	178.634	19.90	1.05

 Table 2.
 (Continued.)

Plate	Fitting coefficients					Fitting range	Correlation	1σ	5σ	Scaling
name	<i>c</i> ₀	c_1	<i>C</i> ₂	<i>C</i> ₃	<i>C</i> 4	$[d_1, d_2]$	coefficient	(count)	(mag)	factor
xe238	101.1	-84.29	31.889	-5.2261	0.3068	[3.54, 5.44]	0.986	194.244	18.98	1.00
xe239	114.6	-98.12	36.901	-5.9636	0.3429	[3.66, 5.26]	0.995	243.624	19.16	1.00
xe240	101.3	-80.63	29.068	-4.4960	0.2450	[3.70, 5.61]	0.996	199.826	19.51	1.00
xe241	-35.1	48.64	-16.357	2.5131	-0.1557	[3.62, 5.36]	0.996	171.258	19.44	0.96
xe242	386.0	-347.60	122.270	-18.8468	1.0666	[3.68, 5.43]	0.993	237.747	19.47	1.00
xe243	113.1	-90.66	32.294	-4.9684	0.2714	[3.68, 5.46]	0.997	210.311	19.48	1.00
xe244	240.0	-206.50	71.798	-10.9331	0.6075	[3.83, 5.60]	0.996	356.958	19.43	0.96
xe245	291.2	-252.82	87.283	-13.1852	0.7277	[3.94, 5.44]	0.993	209.893	19.88	1.11
xe246	89.4	-70.94	26.235	-4.1533	0.2311	[3.87, 5.52]	0.995	346.077	19.41	1.09
xe247	76.1	-58.54	21.903	-3.4828	0.1924	[3.82, 5.54]	0.995	320.390	19.40	1.10
xe248	115.3	-94.53	34.191	-5.3368	0.2966	[3.75, 5.52]	0.994	204.658	19.39	1.00
xe249	316.2	-277.58	96.343	-14.6552	0.8170	[3.88, 5.48]	0.994	267.840	19.43	0.88
xe250	111.2	-87.13	30.364	-4.5719	0.2443	[3.75, 5.56]	0.990	201.859	19.23	0.90
xe251	56.3	-40.65	15.869	-2.5883	0.1434	[3.92, 5.66]	0.992	392.155	19.40	0.94
xe252	180.2	-152.08	53.066	-8.0571	0.4425	[3.87, 5.47]	0.988	285.252	19.26	1.00
xe253	176.5	-152.36	54.513	-8.4847	0.4780	[3.87, 5.46]	0.992	359.657	19.29	0.91
xe254	103.8	-79.18	27.169	-4.0096	0.2082	[3.92, 5.68]	0.992	190.918	19.33	1.00
xe255	150.8	-130.22	47.651	-7.5832	0.4357	[3.67, 5.45]	0.993	217.684	19.33	1.00
xe256	193.3	-164.55	57.741	-8.8404	0.4912	[3.80, 5.58]	0.995	293.301	19.64	1.00
xe257	155.4	-130.17	46.200	-7.1443	0.3992	[3.76, 5.76]	0.996	230.164	19.73	1.00
xe258	155.5	-135.54	49.616	-7.8678	0.4501	[3.93, 5.37]	0.992	157.355	19.78	1.00
xe259	75.7	-58.51	22.097	-3.5560	0.1992	[3.70, 5.59]	0.996	239.562	19.33	1.09
xe276	19.6	-5.46	3.495	-0.6924	0.0358	[3.66, 5.64]	0.995	155.779	19.43	1.00
xe277	23.4	-10.08	5.210	-0.9385	0.0479	[3.82, 5.67]	0.992	151.035	19.47	1.03
xe278	91.7	-72.23	26.428	-4.1567	0.2304	[3.79, 5.55]	0.989	212.850	19.47	0.99
xe279	429.6	-371.13	124.385	-18.2432	0.9809	[4.09, 5.55]	0.988	216.488	19.55	1.00
xe280	222.6	-188.59	64.951	-9.7793	0.5359	[3.82, 5.45]	0.976	426.165	19.41	1.00
xe281	-6.5	10.25	0.769	-0.6526	0.0528	[3.90, 5.54]	0.942	331.406	19.40	1.14
xe282	285.3	-246.00	84.365	-12.6738	0.6970	[3.98, 5.58]	0.959	395.264	19.19	1.35
xe283	-8.5	10.46	0.816	-0.6427	0.0514	[4.19, 5.60]	0.726	624.861	19.21	1.09
xe284	275.4	-242.05	84.676	-12.9465	0.7236	[4.05, 5.46]	0.914	449.866	19.31	1.00
xe285	35.0	-20.84	9.092	-1.5956	0.0908	[3.75, 5.54]	0.987	384.289	18.93	0.81
xe286	98.3	-77.88	28.166	-4.3841	0.2415	[3.73, 5.69]	0.995	310.811	19.22	1.00
xe287	78.6	-61.14	23.001	-3.6876	0.2060	[3.65, 5.47]	0.996	230.839	19.41	1.00
xe288	52.1	-35.97	14.244	-2.3659	0.1326	[3.55, 5.46]	0.994	195.825	19.45	0.91
xe289	31.6	-14.78	5.954	-0.9264	0.0404	[3.60, 5.60]	0.995	179.969	19.40	1.00
xe290	211.7	-185.37	65.769	-10.1334	0.5656	[3.74, 5.56]	0.994	195.122	19.11	1.00
xe291	245.8	-221.52	79.858	-12.5262	0.7147	[3.87, 5.42]	0.992	238.252	19.26	1.00
xe292	97.3	-76.84	27.752	-4.2967	0.2340	[3.75, 5.50]	0.994	244.310	19.53	1.00
xe293	62.1	-42.70	15.507	-2.3726	0.1220	[3.67, 5.37]	0.995	240.008	19.49	1.00
xe294	154.6	-129.77	45.911	-7.0436	0.3883	[3.72, 5.53]	0.996	239.072	19.34	1.00
xe295	109.9	-89.63	32.577	-5.1014	0.2836	[3.67, 5.40]	0.996	359.521	19.26	1.00
xe296	99.4	-80.75	29.724	-4.6840	0.2598	[3.60, 5.47]	0.995	199.786	19.21	1.00
xe297	-16.5	14.70	0.355	-0.6843	0.0571	[4.07, 5.48]	0.995	264.547	19.65	1.00
xe298	18.5	-5.44	4.040	-0.9168	0.0586	[3.62, 5.47]	0.993	221.613	18.97	1.00
xe299	251.3	-218.20	75.787	-11.4833	0.6340	[3.85, 5.61]	0.976	227.538	18.96	0.75
xe300	182.9	-154.09	53.672	-8.1363	0.4458	[3.89, 5.59]	0.994	250.984	19.56	1.00
xe301	129.5	-111.48	41.303	-6.6146	0.3806	[3.91, 5.60]	0.995	174.812	19.47	1.02
xe302	-11.7	11.34	0.964	-0.6794	0.0509	[4.18, 5.55]	0.990	269.882	19.88	0.89
xe303	146.4	-121.92	43.183	-6.6352	0.3660	[3.85, 5.48]	0.994	283.371	19.52	1.00
xe304	258.4	-220.81	75.711	-11.3633	0.6228	[4.00, 5.47]	0.992	349.808	19.54	0.84
xe305	155.2	-128.80	44.994	-6.8389	0.3749	[3.95, 5.52]	0.989	235.957	19.18	0.67
xe306	307.5	-275.84	97.695	-15.1182	0.8555	[3.99, 5.39]	0.988	310.823	19.48	0.88

Table 2.(Continued.)

Plate		Fit	ting coeffic	ients		Fitting range	Correlation	1σ	5σ	Scaling
name	<i>c</i> ₀	c_1	<i>c</i> ₂	<i>c</i> ₃	<i>c</i> ₄	$[d_1, d_2]$	coefficient	(count)	(mag)	factor
xe307	371.1	-319.21	107.791	-15.9894	0.8717	[4.08, 5.54]	0.992	209.899	20.08	0.97
xe308	278.4	-237.28	80.813	-12.0551	0.6574	[4.02, 5.57]	0.994	301.528	20.01	1.08
xe309	0.3	14.13	-3.857	0.5042	-0.0360	[3.67, 5.40]	0.995	169.168	19.31	0.81
xe310	235.0	-201.17	69.599	-10.5232	0.5795	[3.92, 5.40]	0.993	346.953	19.48	1.00
xe311	94.8	-75.18	27.408	-4.2903	0.2364	[3.76, 5.40]	0.995	282.059	19.32	1.00
xe312	169.5	-143.02	50.366	-7.7146	0.4265	[3.78, 5.52]	0.993	236.890	19.51	1.00
xe330	-7.1	15.70	-2.847	0.1582	-0.0064	[3.97, 5.38]	0.988	160.173	19.80	1.00
xe331	22.4	-4.78	2.493	-0.4676	0.0214	[3.70, 5.33]	0.991	266.174	19.84	1.00
xe332	160.5	-133.54	46.754	-7.1122	0.3895	[3.82, 5.56]	0.987	274.682	19.66	1.00
xe333	51.9	-39.21	16.244	-2.7672	0.1593	[3.76, 5.58]	0.987	305.097	19.21	1.00
xe334	-627.9	556.30	-178.517	25.4382	-1.3671	[4.09, 5.57]	0.989	216.573	20.56	1.00
xe335	210.7	-177.05	60.658	-9.0619	0.4910	[4.11, 5.72]	0.977	285.166	19.84	1.00
xe336	-152.1	132.80	-37.658	4.6749	-0.2220	[4.01, 5.56]	0.985	283.430	19.77	1.00
xe337	2.9	6.33	0.594	-0.4369	0.0334	[4.02, 5.67]	0.791	661.148	19.01	1.00
xe338	0.3	6.77	0.799	-0.4972	0.0371	[3.93, 5.64]	0.954	614.631	18.38	1.15
xe339	37.9	-23.77	10.155	-1.7504	0.0980	[3.95, 5.52]	0.989	550.568	19.09	0.78
xe340	-2.1	8.35	0.896	-0.6180	0.0495	[3.76, 5.42]	0.929	418.895	19.32	0.97
xe341	262.0	-231.73	81.879	-12.6374	0.7119	[3.90, 5.47]	0.976	225.120	19.39	1.00
xe342	76.1	-55.86	20.087	-3.0770	0.1623	[3.64, 5.58]	0.995	313.204	19.29	1.00
xe343	140.6	-118.92	42.888	-6.6940	0.3744	[3.68, 5.35]	0.992	433.152	19.07	1.00
xe344	96.8	-78.28	28.841	-4.5437	0.2519	[3.65, 5.49]	0.995	163.280	19.36	1.00
xe345	7.6	6.34	-0.741	-0.0189	-0.0036	[3.65, 5.56]	0.994	150.002	19.72	1.07
xe346	138.5	-116.41	41.748	-6.4675	0.3590	[3.73, 5.47]	0.995	246.195	19.28	1.00
xe347	102.0	-81.41	29.289	-4.5248	0.2467	[3.73, 5.44]	0.993	208.226	19.15	1.00
xe348	187.2	-160.21	56.258	-8.5561	0.4690	[3.86, 5.68]	0.995	334.446	19.32	1.00
xe349	78.4	-61.97	23.538	-3.8002	0.2139	[3.75, 5.42]	0.996	224.726	19.33	1.00
xe350	103.6	-80.04	27.984	-4.2184	0.2241	[3.73, 5.59]	0.995	344.020	19.24	1.00
xe351	97.5	-77.06	27.903	-4.3471	0.2387	[3.64, 5.55]	0.995	284.658	19.30	1.00
xe352	110.2	-94.64	36.048	-5.9121	0.3458	[3.73, 5.64]	0.995	233.656	19.34	1.00
xe353	282.3	-243.14	83.278	-12.4747	0.6827	[3.85, 5.54]	0.994	231.874	19.31	1.00
xe354	122.3	-102.75	37.461	-5.8736	0.3280	[3.87, 5.66]	0.995	322.254	19.24	1.00
xe355	51.1	-38.22	15.875	-2.7106	0.1562	[3.79, 5.67]	0.996	308.334	19.31	1.00
xe356	167.9	-142.20	50.281	-7.7274	0.4280	[3.82, 5.58]	0.994	288.584	19.39	0.93
xe357	309.5	-266.32	90.908	-13.6064	0.7462	[4.02, 5.62]	0.993	393.832	19.75	1.08
xe358	-37.8	48.57	-15.598	2.2896	-0.1372	[3.75, 5.47]	0.992	147.527	19.29	1.00
xe359	233.2	-193.64	64.825	-9.4714	0.5029	[3.98, 5.54]	0.994	209.856	19.30	0.80
xe360	428.4	-368.87	124.054	-18.3562	1.0001	[4.13, 5.50]	0.991	279.596	20.46	1.16
xe361	205.0	-174.82	60.881	-9.2494	0.5099	[3.93, 5.46]	0.991	281.550	19.33	0.98
xe362	218.5	-181.71	61.662	-9.1820	0.4989	[3.91, 5.65]	0.992	471.008	19.17	1.00
xe363	246.6	-211.09	72.676	-10.9261	0.5984	[3.85, 5.63]	0.992	276.828	19.65	1.00
xe364	216.2	-181.54	61.824	-9.1872	0.4955	[3.89, 5.65]	0.993	236.116	18.99	0.83
xe365	160.8	-134.08	46.848	-7.0987	0.3868	[3.83, 5.63]	0.996	219.665	19.47	1.01
xe366	283.9	-245.37	84.224	-12.6283	0.6906	[3.74, 5.55]	0.995	337.335	19.22	1.00
xe367	136.2	-113.44	40.443	-6.2356	0.3442	[3.72, 5.39]	0.995	234.007	19.09	1.00
xe368	135.9	-111.30	39.154	-5.9618	0.3242	[3.81, 5.77]	0.995	242.616	19.42	1.00
xe369	-3.0	7.21	1.510	-0.6734	0.0471	[3.95, 5.50]	0.995	441.049	19.50	1.15
xe386	107.0	-86.41	31.145	-4.8287	0.2647	[3.69, 5.58]	0.995	265.712	19.07	1.00
xe387	165.2	-141.17	50.452	-7.8309	0.4383	[3.86, 5.52]	0.993	245.568	19.57	1.00
xe388	43.0	-30.21	12.947	-2.2487	0.1299	[3.97, 5.55]	0.994	391.301	19.51	1.00
xe389	-1.2	7.61	0.978	-0.5756	0.0426	[3.89, 5.57]	0.984	265.884	19.75	1.04
xe390	163.2	-137.33	48.459	-7.4347	0.4111	[3.79, 5.60]	0.991	240.741	19.48	0.91
xe391	184.7	-159.56	57.120	-8.9249	0.5062	[3.93, 5.59]	0.953	285.641	19.82	1.04
xe392	206.8	-165.57	54.510	-7.8711	0.4131	[4.04, 5.56]	0.977	436.518	19.76	1.00
Table 2. (Continued.)

Plate		Fit	ting coeffici	ients		Fitting range	Correlation	1σ	5σ	Scaling
name	c_0	c_1	<i>c</i> ₂	<i>c</i> ₃	<i>C</i> ₄	$[d_1, d_2]$	coefficient	(count)	(mag)	factor
xe393	-1090.0	928.35	-290.324	40.2590	-2.0968	[4.23, 5.55]	0.979	504.727	19.27	0.86
xe394	-4.3	9.39	0.724	-0.5965	0.0469	[4.02, 5.53]	0.841	297.023	19.95	1.27
xe395	-7.4	10.18	0.791	-0.6317	0.0502	[4.06, 5.57]	0.925	563.623	19.09	1.01
xe396	158.2	-130.13	45.189	-6.8383	0.3734	[3.83, 5.56]	0.977	344.104	19.47	1.00
xe397	-2.7	8.16	0.915	-0.5833	0.0435	[3.87, 5.50]	0.991	358.507	19.13	0.95
xe398	162.6	-136.72	48.142	-7.3610	0.4051	[3.88, 5.57]	0.991	386.922	19.28	0.89
xe399	65.6	-49.92	19.411	-3.1747	0.1785	[3.72, 5.48]	0.996	411.997	19.45	1.00
xe400	38.1	-25.11	10.939	-1.8922	0.1054	[3.64, 5.48]	0.993	148.816	19.18	1.00
xe401	84.7	-66.96	25.034	-3.9970	0.2233	[3.66, 5.55]	0.997	213.465	19.43	1.00
xe402	70.0	-49.66	17.543	-2.6007	0.1294	[3.72, 5.24]	0.994	213.349	19.26	1.00
xe403	97.1	-79.08	29.462	-4.7148	0.2665	[3.58, 5.68]	0.996	252.532	19.28	1.00
xe404	-2.3	8.72	0.725	-0.5815	0.0462	[3.78, 5.29]	0.993	176.851	19.65	1.14
xe407	281.0	-242.87	83.305	-12.4633	0.6794	[4.19, 5.59]	0.995	333.537	19.76	1.11
xe408	87.0	-70.38	26.462	-4.2314	0.2362	[3.80, 5.55]	0.995	263.042	19.18	1.08
xe409	75.8	-57.78	21.593	-3.4409	0.1899	[3.49, 5.41]	0.995	225.592	19.25	0.93
xe410	155.5	-139.39	52.126	-8.4102	0.4881	[3.96, 5.35]	0.994	144.331	19.76	1.00
xe411	38.5	-25.73	11.329	-1.9883	0.1135	[3.85, 5.45]	0.994	350.660	19.47	1.00
xe412	183.1	-155.11	54.105	-8.1895	0.4471	[3.98, 5.55]	0.995	219.013	19.49	0.90
xe413	117.7	-109.69	43.300	-7.2204	0.4262	[4.07, 5.56]	0.993	166.202	19.96	1.08
xe414	-39.8	48.33	-14.417	1.9139	-0.1037	[3.86, 5.51]	0.992	451.562	19.62	0.99
xe415	44.2	-26.61	10.068	-1.5755	0.0799	[3.83, 5.53]	0.992	154.742	19.45	1.09
xe416	6.0	3.69	1.350	-0.5064	0.0334	[3.81, 5.50]	0.991	123.765	19.35	1.00
xe417	68.7	-52.33	19.980	-3.2277	0.1803	[3.84, 5.52]	0.992	260.580	19.40	0.98
xe418	407.0	-363.53	126.286	-19.2104	1.0730	[4.03, 5.50]	0.976	310.035	19.26	1.05
xe419	92.1	-72.32	26.351	-4.1544	0.2322	[3.85, 5.47]	0.992	240.440	19.13	0.98
xe420	235.4	-199.49	68.076	-10.1425	0.5503	[3.79, 5.59]	0.992	244.094	19.07	1.00
xe421	302.4	-264.41	91.626	-13.9039	0.7720	[3.88, 5.50]	0.992	373.616	19.21	1.00
xe422	121.1	-97.61	34.529	-5.3029	0.2918	[3.71, 5.37]	0.992	197.039	19.29	0.75
xe423	43.2	-30.20	12.937	-2.2632	0.1321	[3.76, 5.79]	0.996	286.393	19.16	1.06
xe424	62.5	-49.13	19.846	-3.3559	0.1956	[3.84, 5.62]	0.993	265.683	19.59	0.96
xe425	124.5	-101.70	36.217	-5.5709	0.3055	[3.78, 5.52]	0.995	234.038	19.50	1.00
xe426	84.7	-67.03	24.930	-3.9395	0.2173	[3.91, 5.57]	0.994	386.627	19.55	1.00
xe427	-420.1	382.85	-124.128	17.8426	-0.9687	[3.91, 5.49]	0.989	254.675	20.23	1.01
xe445	72.7	-57.83	22.601	-3.7446	0.2156	[3.76, 5.63]	0.993	227.603	19.37	0.82
xe446	98.0	-92.12	37.680	-6.4555	0.3894	[4.01, 5.32]	0.992	152.201	19.92	1.08
xe447	68.1	-53.35	20.875	-3.4477	0.1971	[3.91, 5.57]	0.992	324.596	19.42	1.00
xe448	92.8	-77.42	29.482	-4.7817	0.2732	[3.88, 5.59]	0.992	281.131	19.38	1.09
xe449	-2.9	8.18	1.061	-0.6274	0.0476	[3.85, 5.55]	0.961	137.801	19.66	1.35
xe450	175.3	-149.32	52.994	-8.2127	0.4619	[3.81, 5.45]	0.988	240.974	19.52	1.00
xe451	86.5	-64.24	22.660	-3.4618	0.1860	[3.88, 5.56]	0.901	328.363	19.13	1.00
xe452	58.8	-42.66	16.504	-2.6879	0.1493	[3.99, 5.60]	0.974	392.961	19.38	1.09
xe453	4.4	5.01	0.711	-0.3569	0.0215	[4.27, 5.67]	0.966	663.741	19.44	1.07
xe454	1.1	6.30	0.848	-0.4519	0.0295	[4.19, 5.72]	0.974	507.406	19.54	1.29
xe455	259.4	-226.31	79.092	-12.0903	0.6750	[3.86, 5.47]	0.962	336.369	19.31	1.00
xe456	187.3	-159.95	56.282	-8.6107	0.4761	[3.94, 5.44]	0.983	179.277	19.84	1.00
xe457	132.6	-107.65	37.728	-5.7219	0.3097	[3.65, 5.62]	0.994	219.757	19.44	1.00
xe458	96.9	-78.52	29.057	-4.6054	0.2569	[3.82, 5.58]	0.985	293.526	19.51	1.00
xe459	-261.8	225.07	-67.150	8.9290	-0.4559	[4.12, 5.61]	0.992	265.287	19.80	1.00
xe460	61.6	-48.14	19.323	-3.2224	0.1834	[3.75, 5.49]	0.995	150.469	19.58	1.00
xe461	101.2	-81.79	29.934	-4.7139	0.2626	[3.61, 5.45]	0.996	265.075	19.09	0.89
xe462	132.1	-112.01	40.600	-6.3277	0.3510	[3.68, 5.44]	0.995	199.190	18.98	1.00
xe463	-4.8	9.87	0.819	-0.6803	0.0568	[3.73, 5.56]	0.994	218.439	19.54	1.15
xe4/0	-1.1	9.86	1.180	-0.7318	0.0570	[3.87, 5.31]	0.974	160.795	19.70	1.28

Table 2.(Continued.)

Plate		Fit	ting coeffic	ients		Fitting range	Correlation	1σ	5σ	Scaling
name	C0	C1	<i>C</i> 2	C3	Сл	$[d_1, d_2]$	coefficient	(count)	(mag)	factor
xe/71	220.0	_106.23	67.840	_10 2176	0 5588	[4 01 5 57]	0.005	303 001	10.40	1.00
xe472	229.0	-190.23 -20.17	10 131	-10.2170 -1.8974	0.1133	[4.01, 5.57]	0.995	433 109	19.40	1.00
xe473	1167	-100.39	37 832	-6.1413	0.1155	[4.02, 5.52]	0.993	243 759	19.05	1.00
xe474	23.9	-17.14	9 807	-1.9426	0.1199	[4.08, 5.64]	0.993	145 736	20.42	0.95
xe475	162.7	-13444	46 503	-6.9847	0.3773	[4.00, 5.04] [3.84 5.52]	0.995	251 283	19.36	1 17
xe476	170.1	-151.36	55 776	-8.9132	0.5149	[3.94, 5.32]	0.994	155 493	19.50	1.17
xe477	302.5	-262.88	90.628	-136926	0.7575	[3.97, 5.50]	0.992	363.009	19.30	1 32
xe478	-5.0	11.60	-0.960	-0.1566	0.0100	[3.89, 5.29]	0.992	304 777	19.14	1.00
xe479	169.4	-142.36	49 833	-75964	0.4191	[3.0], 5.2]	0.990	231 703	19.20	1.00
xe480	243.2	-204.81	69.672	-10.3819	0.5641	[4.12, 5.49]	0.988	309.976	19.99	1.00
xe481	107.2	-88.17	32.399	-5.1303	0.2886	[3.86, 5.35]	0.994	322.956	19.27	0.84
xe482	72.9	-57.88	22.672	-3.7848	0.2207	[3.80, 5.67]	0.996	245.158	19.47	0.91
xe483	333.2	-282.86	94.809	-13.9443	0.7519	[3.93, 5.69]	0.994	191.151	19.95	1.03
xe484	312.7	-273.01	94 075	-14 1613	0 7787	[3,90,5,62]	0.995	239 600	19.45	1 15
xe485	130.1	-109.71	39,910	-6.2717	0.3524	[3.90, 5.44]	0.991	303.259	19.51	1.00
xe486	422.0	-366.54	124.068	-18.4528	1.0098	[4.03, 5.41]	0.992	197.131	19.72	1.00
xe487	-31.8	42.95	-13.814	2.0619	-0.1270	[3.77, 5.51]	0.993	185.582	18.99	1.00
xe504	-446.9	411.79	-135.354	19.6883	-1.0778	[3.83, 5.41]	0.991	239.397	19.63	1.02
xe505	-38.2	41.19	-10.361	1.1113	-0.0506	[3.89, 5.58]	0.994	177.361	19.85	1.00
xe506	-31.0	36.17	-9.090	0.9673	-0.0444	[3.80, 5.59]	0.995	410.341	19.34	1.00
xe507	83.5	-67.12	25.440	-4.1060	0.2317	[3.75, 5.68]	0.992	292.214	19.20	1.00
xe508	177.4	-147.75	51.072	-7.6831	0.4173	[3.75, 5.63]	0.994	256.221	19.38	1.16
xe509	117.2	-95.27	34.221	-5.3239	0.2964	[3.88, 5.52]	0.985	385.375	19.50	0.94
xe510	-1.9	8.13	0.766	-0.5496	0.0428	[4.02, 5.67]	0.927	451.455	19.48	1.11
xe511	161.1	-128.62	43.335	-6.3953	0.3414	[4.10, 5.58]	0.979	609.236	18.97	1.00
xe512	-11.2	11.75	0.903	-0.7487	0.0616	[3.92, 5.58]	0.984	323.695	18.73	1.00
xe513	-1838.5	1606.87	-518.821	74,1648	-3.9684	[4.14, 5.47]	0.970	421,490	19.88	1.35
xe514	-2.8	8.43	0.739	-0.5400	0.0404	[3.92, 5.67]	0.952	484.416	19.11	1.00
xe515	77.8	-61.96	23.776	-3.8862	0.2223	[3.82, 5.49]	0.989	369.679	19.27	0.95
xe516	-4.5	8.89	0.889	-0.5921	0.0435	[3.90, 5.47]	0.990	200.721	19.41	0.85
xe517	138.8	-118.02	42.774	-6.6972	0.3754	[3.86, 5.55]	0.990	307.105	19.24	1.00
xe518	75.8	-59.25	22.465	-3.6012	0.1999	[3.90, 5.44]	0.986	151.212	20.01	1.00
xe519	193.8	-166.54	58.678	-8.9900	0.4983	[3.90, 5.57]	0.994	293.840	19.40	1.00
xe520	-4.5	9.41	1.022	-0.7290	0.0613	[3.78, 5.48]	0.992	259.687	19.37	1.00
xe521	103.5	-86.06	31.879	-5.0299	0.2790	[3.89, 5.75]	0.980	146.392	19.65	0.99
xe532	122.8	-100.48	35.575	-5.4200	0.2937	[4.01, 5.26]	0.994	201.946	19.30	0.83
xe533	-22.0	29.16	-7.462	0.8634	-0.0469	[3.99, 5.58]	0.995	172.592	19.65	1.04
xe534	127.3	-104.68	37.336	-5.7510	0.3157	[3.79, 5.54]	0.995	247.082	19.48	1.00
xe535	-5.3	9.13	1.220	-0.7367	0.0587	[3.85, 5.34]	0.993	290.051	19.39	0.97
xe536	158.1	-137.48	50.213	-7.9523	0.4543	[3.85, 5.36]	0.991	350.638	19.58	1.21
xe537	160.9	-133.79	46.740	-7.0975	0.3882	[3.83, 5.43]	0.992	311.573	19.41	1.23
xe538	35.4	-20.09	8.363	-1.3985	0.0740	[3.82, 5.36]	0.992	169.862	19.36	1.00
xe539	250.1	-218.31	76.402	-11.6704	0.6495	[4.02, 5.47]	0.992	366.836	19.44	1.06
xe540	265.6	-228.91	78.870	-11.8885	0.6548	[3.80, 5.44]	0.988	241.391	19.43	1.00
xe541	267.1	-232.35	80.919	-12.3350	0.6873	[3.87, 5.41]	0.990	255.487	19.75	1.00
xe542	-55.0	67.97	-23.284	3.5677	-0.2125	[3.63, 5.46]	0.988	189.418	19.14	0.93
xe543	439.9	-390.47	134.466	-20.3143	1.1293	[3.71, 5.29]	0.989	258.694	19.16	0.96
xe544	39.0	-36.66	18.341	-3.4831	0.2196	[3.95, 5.52]	0.993	306.588	19.62	1.07
xe545	197.8	-169.85	59.650	-9.1093	0.5033	[3.95, 5.55]	0.994	304.051	19.41	1.00
xe546	176.9	-149.63	52.562	-8.0325	0.4436	[3.83, 5.44]	0.991	269.458	19.55	1.00
xe547	128.2	-106.58	38.317	-5.9382	0.3281	[3.84, 5.42]	0.991	329.591	19.50	1.00
xe548	-34.8	22.91	0.102	-0.9777	0.0893	[4.13, 5.38]	0.994	407.331	19.55	1.06
xe564	22.9	-13.44	7.859	-1.5872	0.0982	[3.76, 5.60]	0.994	129.637	19.47	1.00

 Table 2.
 (Continued.)

Plate		Fit	ting coeffic	ients		Fitting range	Correlation	1σ	5σ	Scaling
name	c_0	c_1	c_2	<i>C</i> ₃	c_4	$[d_1, d_2]$	coefficient	(count)	(mag)	factor
xe565	279.9	-248.11	87.482	-13.4639	0.7556	[3.89, 5.49]	0.986	266.056	19.67	1.00
xe566	229.8	-201.17	71.281	-11.0333	0.6226	[3.73, 5.48]	0.991	201.566	19.54	1.00
xe567	348.8	-297.75	99.707	-14.5854	0.7791	[4.08, 5.61]	0.986	251.100	19.88	0.98
xe568	54.4	-39.24	15.641	-2.6056	0.1471	[3.76, 5.42]	0.988	342.069	19.29	1.08
xe569	275.0	-237.04	81.394	-12.2198	0.6703	[3.91, 5.64]	0.986	269.181	19.27	1.09
xe570	78.3	-55.48	19.313	-2.8958	0.1504	[4.02, 5.46]	0.979	534.190	19.48	1.03
xe571	477.6	-412.37	138.528	-20.5103	1.1200	[4.16, 5.52]	0.992	217.963	20.75	1.45
xe572	196.4	-141.08	41.665	-5.3656	0.2458	[4.20, 5.67]	0.917	680.056	19.27	1.35
xe573	-14.4	13.67	0.501	-0.7192	0.0622	[4.21, 5.63]	0.986	547.847	19.31	1.00
xe574	276.4	-241.72	84.315	-12.8718	0.7188	[3.86, 5.42]	0.953	250.832	19.48	0.86
xe575	-5.9	9.73	0.860	-0.6413	0.0502	[3.93, 5.79]	0.975	354.250	19.40	0.88
xe576	139.4	-115.59	41.159	-6.3544	0.3515	[3.81, 5.52]	0.996	221.008	19.82	1.00
xe577	68.2	-59.29	24.706	-4.2549	0.2526	[3.91, 5.39]	0.995	184.383	19.60	1.00
xe578	111.7	-91.20	33.035	-5.1537	0.2853	[3.79, 5.43]	0.988	344.781	19.30	1.00
xe579	-7.8	10.62	1.060	-0.7575	0.0617	[3.80, 5.41]	0.964	138.078	19.74	1.16
xe580	101.8	-80.62	28.993	-4.4867	0.2453	[3.90, 5.45]	0.993	258.552	19.72	1.18
xe593	205.6	-176.48	61.796	-9.4186	0.5202	[3.94, 5.59]	0.995	277.991	19.54	1.00
xe594	-149.5	131.71	-37.738	4.7569	-0.2309	[4.04, 5.45]	0.993	200.692	20.09	1.00
xe595	62.1	-43.29	15.676	-2.3801	0.1214	[3.81, 5.53]	0.992	157.159	19.29	1.00
xe596	171.3	-148.40	53.553	-8.4030	0.4770	[3.84, 5.45]	0.994	317.579	19.48	0.99
xe597	225.2	-195.90	69.023	-10.6055	0.5925	[3.83, 5.64]	0.995	205.244	19.65	1.10
xe598	251.3	-219.35	76.745	-11.7204	0.6521	[3.85, 5.40]	0.991	264.615	19.32	1.05
xe599	201.4	-169.64	58.329	-8.7466	0.4760	[3.83, 5.73]	0.992	251.633	18.94	0.95
xe600	110.9	-83.33	27.878	-4.0324	0.2064	[3.79, 5.67]	0.988	215.795	19.18	1.17
xe601	145.7	-119.67	41.917	-6.3841	0.3497	[3.77, 5.43]	0.990	386.202	19.30	1.17
xe602	276.9	-238.83	81.961	-12.3077	0.6756	[3.68, 5.52]	0.991	212.343	19.15	0.90
xe603	170.5	-146.15	52,140	-8.0970	0.4552	[3 68 5 36]	0.991	215 141	19.16	0.94
xe604	57.6	-43.22	17 147	-2.8318	0.1593	[3 79 5 48]	0.988	410 164	19.12	1.00
xe605	127.6	-10646	38 492	-6.0088	0 3347	[3 81 5 64]	0.993	315 915	19.12	1.00
xe606	209.9	-180.22	62 936	-9 5589	0.5255	[3 78 5 53]	0.995	240 127	19.36	1.00
xe607	203.7	-17674	62.609	-9.6485	0.5285	[3.85, 5.67]	0.993	200 343	19.50	1.00
xe608	58.6	-44 60	17 795	-2 9528	0.1670	[3.86, 5.67]	0.995	315 837	19.36	1.00
xe624	111.3	-92.09	33 847	-5.3615	0.3021	[3.86, 5.77]	0.994	276 114	19.50	0.99
xe625	217.4	-185.20	63 986	-9.6244	0.5021	[3.05, 5.79]	0.993	340 335	19.37	0.99
xe626	217.4	_179.81	63 785	_0 8503	0.5230	[3.93, 5.07]	0.990	250 270	19.47	0.87
xe627	127.7	-106.66	38 544	-6.0161	0.3356	[3.76, 5.60]	0.992	215 641	10.00	0.07
xe628	127.7	-104.12	37 515	-5 8494	0.3350	[3.70, 5.00]	0.992	215.041	19.33	1.05
xe620	90.2	-70.72	25 921	_4 0929	0.2204	[3.80, 5.41]	0.985	409 870	10.01	1.05
xe630	-50.2	18.08	-0.124	0.4510	0.2202	[3.00, 5.45]	0.985	203 844	20.28	1.01
xe631	-39.2	40.00	-9.124	21 2081	1.0063	[4.10, 5.57]	0.985	203.044	20.28	1.21
xe632	316.7	-490.00 -267.11	80 277	-21.3081 -13.1315	0 7006	[4.41, 5.50]	0.942	602 865	18 75	1.00
xe632	01.4	-207.11	24 257	-13.1313	0.1090	[4.01, 5.50]	0.970	555 175	10.75	1.00
xe055	91.4	-09.09	24.557	-5.0992	0.1973	[4.01, 5.54]	0.969	455 240	19.27	0.72
xe034	20.0	-13.01	1.980	-1.0104	0.0993	[3.94, 3.94]	0.903	433.249	10.50	0.72
xe055 xo626	10.7	2.49 5.06	-1.017	1.0724	-0.0505	[3.07, 5.33]	0.992	216.221	19.52	1.04
xe030	1/.4	-3.90	4.//3	-1.0724	0.0080	[3.12, 3.44]	0.994	101 207	19.33	1.04
x0620	130.9	102.69	40.338	-0.3230	0.3338	[3.01, 3.30]	0.993	171.37/	19.52	1.00
XCD38	124.0	-102.00	37.037	-3.1821	0.3227	[3.00, 3.02]	0.994	200.014	19.4/	1.00
Xe039	122.7	-34.03	20.879	-3.4144	0.1933	[3.90, 3.49]	0.994	390.014	19.39	1.00
xe1001	122.7	-103.28	51.912	-0.035/	0.3423	[3.84, 5.37]	0.991	244.032	19.55	1.00
XVU36	-8/.2	0/./0	-15.541	1.3/43	-0.0423	[5.20, 6.03]	0.985	303.630	10.18	1.00
XVU04	-80.4	0/./0	-15.541	1.5/45	-0.0423	[5.29, 0.39]	0.905	237.333	1/.12	1.19
XVU03	-80.9	0/./0	-15.541	1.5/43	-0.0423	[5.18, 5.99]	0.905	210.239	16.05	0.07
XVU00	-80.3	07.70	-13.341	1.3/43	-0.0423	[3.29, 0.01]	0.900	222.028	10.90	0.80

Table 2.(Continued.)

Plate		Fitt	ing coeffici	ents		Fitting range	Correlation	1σ	5σ	Scaling
name	c_0	c_1	<i>c</i> ₂	<i>c</i> ₃	<i>C</i> ₄	$[d_1, d_2]$	coefficient	(count)	(mag)	factor
xv067	-86.6	67.70	-15.341	1.3743	-0.0423	[5.37, 5.98]	0.971	186.463	16.99	0.83
xv085	-86.9	67.70	-15.341	1.3743	-0.0423	[5.22, 6.04]	0.984	199.787	16.63	1.88
xv091	-87.1	67.70	-15.341	1.3743	-0.0423	[5.08, 6.30]	0.972	185.429	16.49	0.79
xv092	-87.2	67.70	-15.341	1.3743	-0.0423	[5.19, 6.30]	0.969	284.398	16.20	0.50
xv093	-86.3	67.70	-15.341	1.3743	-0.0423	[5.25, 6.05]	0.952	222.341	17.18	0.69
xv094	-86.7	67.70	-15.341	1.3743	-0.0423	[5.15, 5.97]	0.957	243.397	16.73	0.79
xv095	-86.5	67.70	-15.341	1.3743	-0.0423	[5.28, 6.04]	0.954	245.116	17.01	1.17
xv096	-86.5	67.70	-15.341	1.3743	-0.0423	[5.36, 6.03]	0.945	235.509	17.03	1.20
xv097	-86.5	67.70	-15.341	1.3743	-0.0423	[5.34, 6.09]	0.960	260.784	16.95	0.98
xv098	-86.5	67.70	-15.341	1.3743	-0.0423	[5.28, 6.04]	0.966	199.497	17.06	0.94
xv127	-87.0	67.70	-15.341	1.3743	-0.0423	[5.16, 6.02]	0.960	312.417	16.32	0.66
xv128	-87.0	67.70	-15.341	1.3743	-0.0423	[5.29, 6.04]	0.965	349.227	16.31	0.68
xv129	-87.2	67.70	-15.341	1.3743	-0.0423	[5.17, 6.62]	0.966	363.503	16.14	0.58
xv130	-86.9	67.70	-15.341	1.3743	-0.0423	[5.22, 6.10]	0.968	238.513	16.62	0.70
xv131	-85.6	67.70	-15.341	1.3743	-0.0423	[5.46, 6.27]	0.963	293.821	17.82	1.55
xv135	-86.7	67.70	-15.341	1.3743	-0.0423	[5.27, 5.87]	0.945	170.711	16.91	0.93
xv136	-87.1	67.70	-15.341	1.3743	-0.0423	[5.20, 6.53]	0.967	231.248	16.35	0.76
xv137	-86.7	67.70	-15.341	1.3743	-0.0423	[5.32, 5.90]	0.958	227.005	16.80	0.84
xv167	-87.0	67.70	-15.341	1.3743	-0.0423	[5.22, 6.02]	0.969	257.965	16.48	0.67
xv168	-87.2	67.70	-15.341	1.3743	-0.0423	[5.13, 5.94]	0.961	285.383	16.23	0.56
xv169	-86.1	67.70	-15.341	1.3743	-0.0423	[5.35, 6.24]	0.960	217.769	17.37	0.82
xv170	-87.2	67.70	-15.341	1.3/43	-0.0423	[5.07, 5.94]	0.974	216.787	16.31	0.80
XV1/3	-8/.0	67.70	-15.341	1.3/43	-0.0423	[5.16, 5.85]	0.972	188.539	16.56	0.51
XV1/4	-80.4	67.70	-15.341	1.3/43	-0.0423	[5.46, 5.94]	0.947	234.439	17.12	1.10
XV178	-80.4	07.70 67.70	-15.341	1.3/43	-0.0423	[5.34, 5.98]	0.941	272.202	16.26	1.38
XV1/9	-87.0	07.70	-15.541	1.3/43	-0.0423	[5.25, 5.84]	0.941	3/3.293	16.20	0.71
XV180	-87.2	07.70 67.70	-15.341	1.3/43	-0.0423	[5.20, 5.89]	0.968	300.724	16.09	0.60
XV101 xv211	-87.0	67.70	-13.341 15 341	1.3743	-0.0423	[5.24, 5.87]	0.909	130.795	16.04	0.02
xv216	-86.6	67.70	-15.341 -15.341	1.3743	-0.0423	[5.08, 0.02]	0.970	180 500	16.08	0.08
xv210	-80.0	67.70	-15.341	1 3743	-0.0423	[5.25, 5.92]	0.978	186 805	16.50	1.05
xv222	-86.6	67.70	-15341	1 3743	-0.0423	[5.11, 5.04] [5.29, 6.01]	0.973	236 693	16.91	1.05
xv223	-86.6	67.70	-15341	1 3743	-0.0423	[5 26 5 88]	0.975	218 108	16.91	1.10
xv225	-87.4	67.70	-15341	1 3743	-0.0423	[5.20, 5.00] [5.14, 5.72]	0.970	225 895	16.12	0.61
xv226	-86.0	67.70	-15.341	1.3743	-0.0423	[5.45, 6.15]	0.964	199.704	17.54	1.52
xv228	-87.1	67.70	-15.341	1.3743	-0.0423	[5.18, 6.14]	0.960	192.163	16.46	0.56
xv229	-87.1	67.70	-15.341	1.3743	-0.0423	[5.13, 6.09]	0.978	170.509	16.53	0.56
xv275	-86.2	67.70	-15.341	1.3743	-0.0423	[5.38, 5.94]	0.960	230.570	17.26	0.68
xv278	-87.2	67.70	-15.341	1.3743	-0.0423	[5.27, 6.32]	0.971	158.838	16.48	0.51
xv279	-86.9	67.70	-15.341	1.3743	-0.0423	[5.29, 6.12]	0.970	309.278	16.46	0.75
xv280	-86.2	67.70	-15.341	1.3743	-0.0423	[5.37, 6.48]	0.972	184.388	17.36	0.74
xv329	-87.0	67.70	-15.341	1.3743	-0.0423	[5.23, 5.79]	0.964	212.256	16.49	0.95
xv331	-86.5	67.70	-15.341	1.3743	-0.0423	[5.26, 5.86]	0.954	205.506	17.03	0.64
xv332	-87.6	67.70	-15.341	1.3743	-0.0423	[5.28, 5.88]	0.959	193.770	15.99	0.60
xv333	-86.5	67.70	-15.341	1.3743	-0.0423	[5.32, 5.86]	0.937	171.912	17.16	0.86
xv334	-87.1	67.70	-15.341	1.3743	-0.0423	[5.27, 5.87]	0.941	225.873	16.37	0.53
xv335	-86.0	67.70	-15.341	1.3743	-0.0423	[5.39, 5.93]	0.935	231.519	17.53	1.02
xv336	-86.4	67.70	-15.341	1.3743	-0.0423	[5.37, 5.86]	0.956	185.371	17.15	0.56
xv370	-86.4	67.70	-15.341	1.3743	-0.0423	[5.29, 6.25]	0.982	214.434	17.11	1.00
xv391	-87.4	67.70	-15.341	1.3743	-0.0423	[5.16, 5.78]	0.937	211.702	16.09	0.57
xv392	-87.2	67.70	-15.341	1.3743	-0.0423	[5.15, 5.78]	0.956	212.732	16.31	0.72
xv393	-87.0	67.70	-15.341	1.3743	-0.0423	[5.26, 5.88]	0.939	287.755	16.37	0.72
xv394	-87.1	67.70	-15.341	1.3743	-0.0423	[5.28, 5.82]	0.956	300.941	16.27	0.64

 Table 2.
 (Continued.)

Plate		Fitt	ing coeffic	ients	Fitting range	Correlation	1σ	5σ	Scaling
name	c_0	c_1	<i>c</i> ₂	<i>c</i> ₃ <i>c</i> ₄	$[d_1, d_2]$	coefficient	(count)	(mag)	factor
xv395	-86.2	67.70	-15.341	1.3743 -0.04	23 [5.50, 6.04]	0.947	349.633	17.08	1.15
xv396	-85.9	67.70	-15.341	1.3743 -0.04	23 [5.45, 6.09]	0.941	167.342	17.71	1.19
xv430	-86.1	67.70	-15.341	1.3743 -0.04	23 [5.43, 6.15]	0.967	231.040	17.35	1.00
xv452	-87.0	67.70	-15.341	1.3743 -0.04	23 [5.16, 5.72]	0.940	193.893	16.52	0.98
xv453	-86.9	67.70	-15.341	1.3743 -0.04	23 [5.32, 5.87]	0.932	233.966	16.59	1.19
xv454	-87.0	67.70	-15.341	1.3743 -0.04	23 [5.18, 5.86]	0.952	240.791	16.45	0.65
xv455	-86.7	67.70	-15.341	1.3743 -0.04	23 [5.34, 5.94]	0.951	173.941	16.93	1.00
xv456	-86.4	67.70	-15.341	1.3743 -0.04	23 [5.37, 5.95]	0.945	529.176	16.69	1.51
xv457	-86.4	67.70	-15.341	1.3743 -0.04	23 [5.42, 5.94]	0.917	414.702	16.83	1.13
xv458	-86.5	67.70	-15.341	1.3743 -0.04	23 [5.33, 5.92]	0.935	317.137	16.87	1.47
xv518	-87.2	67.70	-15.341	1.3743 -0.04	23 [5.30, 5.88]	0.925	222.670	16.27	0.84
xv519	-86.6	67.70	-15.341	1.3743 -0.04	23 [5.36, 5.90]	0.935	179.784	17.02	1.33
xv520	-86.6	67.70	-15.341	1.3743 -0.04	23 [5.32, 5.83]	0.935	207.086	16.94	1.25
xv521	-87.0	67.70	-15.341	1.3743 -0.04	23 [5.31, 5.83]	0.950	187.741	16.63	0.75
xv522	-85.8	67.70	-15.341	1.3743 -0.04	23 [5.44, 6.01]	0.944	469.171	17.39	2.18
xv523	-87.3	67.70	-15.341	1.3743 -0.04	23 [5.20, 5.72]	0.971	204.903	16.29	0.86
xv524	-87.0	67.70	-15.341	1.3743 -0.04	23 [5.25, 5.74]	0.926	196.943	16.60	0.70
xv587	-86.8	67.70	-15.341	1.3743 -0.04	23 [5.30, 5.92]	0.963	191.568	16.81	0.88
xv588	-86.6	67.70	-15.341	1.3743 -0.04	23 [5.37, 6.00]	0.964	217.013	16.94	1.52
xv589	-86.2	67.70	-15.341	1.3743 -0.04	23 [5.34, 5.93]	0.910	255.767	17.27	0.91
xv590	-86.5	67.70	-15.341	1.3743 -0.04	23 [5.36, 6.02]	0.944	185.954	17.12	0.95
xv591	-87.0	67.70	-15.341	1.3743 -0.04	23 [5.33, 6.57]	0.974	234.071	16.47	0.77
xv592	-85.8	67.70	-15.341	1.3743 -0.04	23 [5.51, 6.12]	0.899	285.180	17.65	1.52
xv593	-85.5	67.70	-15.341	1.3743 -0.04	23 [5.54, 6.13]	0.956	211.332	18.01	1.93
xv660	-86.5	67.70	-15.341	1.3743 -0.04	23 [5.40, 5.89]	0.934	166.167	17.13	1.58
xv661	-86.8	67.70	-15.341	1.3743 -0.04	23 [5.22, 5.79]	0.933	196.937	16.79	1.01
xv662	-86.2	67.70	-15.341	1.3743 -0.04	23 [5.39, 6.03]	0.923	232.996	17.33	1.02
xv663	-86.0	67.70	-15.341	1.3743 -0.04	23 [5.33, 5.87]	0.874	274.143	17.42	1.27
xv664	-86.8	67.70	-15.341	1.3743 -0.04	23 [5.32, 5.91]	0.943	294.390	16.64	1.05
xv665	-85.9	67.70	-15.341	1.3743 -0.04	23 [5.43, 5.96]	0.935	228.110	17.57	1.33
xv732	-86.7	67.70	-15.341	1.3743 -0.04	23 [5.33, 5.69]	0.976	260.563	16.74	1.09
xv735	-86.1	67.70	-15.341	1.3743 -0.04	23 [5.30, 5.93]	0.938	299.773	17.25	1.01
xv736	-86.2	67.70	-15.341	1.3743 -0.04	23 [5.40, 6.51]	0.963	263.683	17.22	0.93
xv737	-86.9	67.70	-15.341	1.3743 -0.04	23 [5.30, 5.90]	0.945	187.718	16.67	0.81
xv807	-86.4	67.70	-15.341	1.3743 -0.04	23 [5.25, 5.91]	0.939	223.905	17.07	0.75
xv808	-86.4	67.70	-15.341	1.3743 -0.04	23 [5.30, 5.83]	0.946	259.775	17.02	1.62
xv880	-86.8	67.70	-15.341	1.3743 -0.04	23 [5.29, 5.87]	0.935	234.465	16.72	1.32

 Table 3.
 Background stellar density for XE plates.

Galactic				Fitting c	coefficients				Correlation	Number	Fitting ranges
longitude	k_{11}	<i>k</i> ₁₂	<i>k</i> ₁₃	k_{14}	<i>k</i> ₂₁	<i>k</i> ₂₂	k ₂₃	<i>k</i> ₂₄	coefficient	of fitting	in galactic
(deg)	$(\times 10^2 \mathrm{deg}^{-2})$	(\deg^{-1})	(deg)	$(\times 10 \text{ deg}^{-2}$	$)(\times 10^2\mathrm{deg}^{-2})$	(\deg^{-1})	(deg)	$(\times 10 \text{ deg}^{-2})$)	ranges	latitude (deg)
14	•••	•••			162	-0.033	-15.46	264	0.556	1	[25.5, 35.0]
15					253	-0.035	-7.57	-45	0.828	1	[24.1, 35.0]
16					357	-0.030	-11.13	-385	0.909	1	[24.5, 35.0]
17	•••				303	-0.065	4.19	75	0.942	1	[24.4, 35.0]
18		•••	•••	•••	329	-0.022	-8.01	-770	0.949	1	[20.7, 35.0]
20					990	-0.130	-0.74	471	0.979	1	[16.1, 35.0]
21					890	-0.106	-2.15	365	0.987	1	[14.5, 35.0]
22					1009	-0.115	-1.54	390	0.987	1	[13.7, 35.0]
23					1185	-0.127	-0.71	411	0.988	1	[14.3, 35.0]
24	•••				1414	-0.139	0.60	392	0.993	2	[14.3, 16.4] [20.8, 35.0]
25					1361	-0.133	0.29	355	0.995	2	[13.4, 16.2] [20.4, 35.0]
26					1379	-0.143	0.23	399	0.996	2	[12.0, 19.3] [25.5, 35.0]
27					1478	-0.148	0.67	402	0.998	2	[11.1, 12.5]
28					1485	-0.142	0.59	391	0.998	2	[11.3, 13.2] [18.5, 35.0]
29					1539	-0.143	0.98	412	0.999	3	[11.0, 13.2] [18.1, 20.1]
30					1421	-0.134	0.78	410	0.998	2	[22.6, 35.0] [11.3, 13.6] [23.4, 35.0]
31					1328	-0.114	-0.13	286	0.998	2	[10.8, 12.4] [23.5, 35.0]
32					1550	-0.149	0.99	501	0.997	2	[11.0, 15.5] [24.4, 35.0]
33	1359	0.205	-1.10	449	1512	-0.131	-0.17	393	0.997	2	[11.1, 12.7]
34	1412	0.192	-0.93	449	1377	-0.119	-1.14	330	0.999	2	[9.4, 11.9]
35	1446	0.181	-0.83	449	1425	-0.123	-0.95	353	0.999	2	[22.0, 35.0] [8.6, 10.2] [22.9, 35.0]
36	1535	0.159	-0.60	163	1507	-0.128	-0.74	371	0.998	2	[8.4, 10.1] [20.2, 33.0]
37	1474	0.174	-0.83	163	1515	-0.132	-0.61	403	0.998	2	[8.1, 10.1] [19.2, 35.0]
38	1405	0.169	-1.14	163	1454	-0.127	-0.84	377	0.998	2	[8.7, 9.8] [20.4, 35.0]
39	1528	0.169	-0.98	163	1596	-0.131	-1.65	445	0.996	3	[-18.1, -13.8] [-6.8, -6.4] [8.4, 35.0]
40	1482	0.202	-1.62	780	1502	-0.132	-0.75	399	0.998	4	[-19.6, -12.4] [-6.8, -6.6] [7.8, 11.4]
41	1399	0.156	-1.35	446	1395	-0.122	-1.19	368	0.999	4	[27.3, 35.0] [-21.2, -15.8] [-7.2, -6.1]
42	1639	0.157	-0.20	489	1387	-0.125	-1.25	406	0.998	5	[8.3, 10.1] [27.2, 35.0] [-22.8, -14.7] [-7.5, -6.7] [6.6, 8.2]

Table 3. (Continued.)

Galactic				Fitting	g coefficients				Correlation	Number	Fitting ranges
longitude (deg)	$\frac{k_{11}}{(\times 10^2 \mathrm{deg}^{-2})}$	$\frac{k_{12}}{(\deg^{-1})}$	<i>k</i> ₁₃ (deg)	k_{14} (×10 deg	k_{21} (×10 ² deg ⁻	k_{22} (deg ⁻¹)	<i>k</i> ₂₃ (deg)	k_{24} (×10 deg ⁻²)	coefficient	of fitting ranges	in galactic latitude (deg)
43	1522	0.148	-0.88	299	1727	-0.169	-0.58	579	0.997	4	$[15.0, 18.1] \\ [27.6, 35.0] \\ [-24.5, -15.4] \\ [-7.1, -6.6] \\ [10.8, 15.4] $
44	1236	0.161	-2.69	402	1488	-0.162	-0.81	584	0.998	5	[10.8, 15.4] [26.1, 35.0] [-25.6, -15.8] [-7.4, -6.7] [6.1, 6.5]
45	1234	0.184	-2.62	611	1235	-0.117	-2.56	405	0.998	6	[12.1, 14.9] [24.1, 35.0] [-28.0, -27.5] [-27.3, -13.4] [-7.5, -5.9] [5.9, 6.7] [5.9, 6.7] [5.9, 6.7]
46	1243	0.188	-2.30	641	1280	-0.135	-2.24	528	0.997	4	$[17.0, 18.1] \\ [18.1, 35.0] \\ [-29.4, -13.7] \\ [-7.2, -6.4] \\ [7.0, 7.8] $
47	1315	0.193	-1.88	678	1223	-0.128	-1.77	467	0.996	4	[13.5, 35.0] [-29.7, -14.4] [-7.0, -6.6] [7.3, 7.8]
48	1224	0.178	-1.75	618	1249	-0.132	-1.50	480	0.997	4	[17.7, 35.0] [-32.6, -16.0] [-4.5, -4.3] [7.0, 7.8]
49	1183	0.162	-1.88	540	1169	-0.141	-1.44	558	0.995	3	[17.1, 35.0] [-33.2, -18.5] [-5.4, -5.1]
50	1172	0.156	-1.46	505	1131	-0.135	-1.59	517	0.997	4	[-35.0, -19.4] [-5.8, -5.1] [5.3, 5.5]
51	1296	0.157	-0.60	485	1296	-0.144	-0.60	485	0.999	4	[9.1, 35.0] [-35.0, -18.4] [-7.7, -5.1] [15.4, 18.3]
52	1384	0.157	-0.18	485	1272	-0.144	-0.43	465	0.999	4	[23.8, 35.0] [-35.0, -16.5] [-6.5, -5.3] [11.5, 19.2]
53	1406	0.154	0.22	464	1445	-0.154	-0.46	509	0.999	4	[22.1, 35.0] [-35.0, -16.0] [-6.7, -4.7] [12, 1, 18, 5]
54	1525	0.161	-0.13	455	1522	-0.163	-0.29	537	0.997	4	[12.1, 10.5] [23.4, 35.0] [-35.0, -15.8] [-10.2, -7.8] [11.7, 26.9]
55	909	0.165	-3.71	429	1307	-0.134	-2.13	450	0.998	3	[27.6, 35.0] [-35.0, -20.1] [-8.8, -7.1]

 Table 3.
 (Continued.)

Galactic				Fitting	coefficients				Correlation	Number	Fitting ranges
longitude	<i>k</i> ₁₁	<i>k</i> ₁₂	<i>k</i> ₁₃	k ₁₄	<i>k</i> ₂₁	<i>k</i> ₂₂	<i>k</i> ₂₃	<i>k</i> ₂₄	coefficient	of fitting	in galactic
(deg)	$(\times 10^2 \text{deg}^{-2}$) (deg^{-1})	(deg)	$(\times 10 \text{ deg}^-)$	$^{2})(\times 10^{2} \text{ deg}^{-1})$	²) (deg^{-1})	(deg)	$(\times 10 \text{ deg}^{-2})$	²)	ranges	latitude (deg)
56	1238	0.190	-3.49	463	992	-0.102	-3.73	282	0.998	4	[-35.0, -15.8]
											[-9.4, -8.4]
											[8.0, 16.2]
	1015	0.106	2.20	150	1046	0.100	2.47	210	0.000	4	[22.1, 35.0]
57	1315	0.186	-3.30	453	1046	-0.108	-3.47	310	0.998	4	$\begin{bmatrix} -35.0, -21.8 \end{bmatrix}$
											[8.0, 14.5]
											[23.5, 35.0]
58	1307	0.159	-1.92	378	1065	-0.126	-1.80	393	0.998	4	[-35.0, -21.2]
											[-10.1, -7.8]
											[7.4, 14.4]
59	1279	0.136	-0.49	273	1236	-0.144	-1.54	458	0.998	4	[-35.0, -21.5]
0,		01100	0112	2,0	1200	01111	110 1	100	0.770		[-10.7, -7.1]
											[7.8, 11.7]
											[18.0, 35.0]
60	1368	0.155	-0.90	372	1368	-0.153	-0.90	372	0.986	2	[-35.0, -10.0]
61	1411	0 193	_1.96	491	1982	-0.182	_1 13	504	0 994	2	[8.4, 35.0]
01	1411	0.175	1.90	771	1702	0.102	1.15	504	0.774	2	[8.7, 35.0]
62	1811	0.197	-0.63	532	1861	-0.184	-0.48	483	0.991	2	[-35.0, -12.1]
											[8.7, 35.0]
63	1124	0.150	0.40	469	2239	-0.173	-2.28	457	0.997	3	[-35.0, -8.8]
											[4.0, 6.1]
64	1082	0.118	2.65	336	1033	-0.178	2.65	467	0.998	4	[-35.0, -20.2]
01	1002	01110	2100	220	1000	01170	2100		0.770		[-11.5, -9.1]
											[3.7, 6.2]
			1.00	101	1000		• • • •				[10.6, 35.0]
65	1138	0.134	1.89	401	1002	-0.173	2.89	447	0.998	4	[-35.0, -23.5]
											[-13.3, -10.4] [37, 7, 0]
											[14.0, 35.0]
66	1107	0.117	2.75	281	1082	-0.171	2.55	435	0.999	4	[-35.0, -18.4]
											[-11.7, -10.7]
											[4.0, 5.7]
67	1451	0 176	0.38	406	1047	-0.182	2 38	524	0 995	3	[13.1, 35.0] [-35.0, -27.2]
07	1451	0.170	0.50	400	1047	0.102	2.50	524	0.775	5	[-12.5, -9.0]
											[4.7, 35.0]
68	1239	0.149	1.46	348	1413	-0.170	0.24	471	0.998	4	[-35.0, -28.5]
											[-17.9, -16.0]
											[-11.1, -8.8]
69	1175	0.145	1.40	330	1274	-0.177	1.64	459	0.998	4	[-35.0, -25.9]
											[-13.1, -11.1]
											[6.0, 8.4]
-	1102	0.100	• 10	200	1250	0 10 1	1.05	160	0.000	2	[14.5, 35.0]
70	1193	0.132	2.10	299	1258	-0.184	1.85	468	0.998	3	[-35.0, -14.3]
											[3.0, 8.8] [13.5, 35.0]
71	948	0.137	-0.31	305	1536	-0.195	0.65	525	0.996	2	[-35.0, -14.0]
											[5.0, 35.0]
72	1151	0.126	2.40	275	1169	-0.183	1.39	497	0.995	2	[-35.0, -14.1]
											[5.0, 35.0]

Table 3. (Continued.)

Galactic				Fitting c	coefficients				Correlation	Number	Fitting ranges
longitude	k_{11} (×10 ² deg ⁻²)	k_{12} (deg ⁻¹)	k_{13}	k_{14}	k_{21} (×10 ² deg ⁻²	k_{22} (deg ⁻¹)	k_{23}	k_{24} × 10 deg ⁻²)	coefficient	of fitting	in galactic
(ueg)	(×10 deg)	(ueg)	(ueg)	(×10ueg)(×10 deg) (ueg)	(ueg) (.	× Toueg)		Taliges	latitude (deg)
73	1089	0.137	1.07	333	1079	-0.160	1.00	402	0.997	4	[-35.0, -21.1]
											[-10.7, -9.6]
											[5.1, 8.1]
74	1002	0.100	1.50	29.4	1045	0 1 47	0.02	226	0.000	4	[12.1, 35.0]
/4	1002	0.122	1.58	284	1045	-0.147	0.83	326	0.998	4	[-35.0, -24.4]
											[-10.8, -9.4]
											[1/3, 35, 0]
75	1152	0 169	0.03	429	940	-0.147	1 10	336	0 998	4	[-35.0, -23.5]
15	1152	0.10)	0.05	727	240	0.147	1.10	550	0.770	-	$\begin{bmatrix} -13.1 & -9.6 \end{bmatrix}$
											[4962]
											[8.6, 35.0]
76	820	0.125	1.17	319	845	-0.138	1.14	297	0.997	4	[-35.0, -18.1]
70	020	01120	1117	017	0.0	01100		_>.	0.,,,,		[-13.6, -9.8]
											[4.4, 6.5]
											[13.3, 35.0]
77	742	0.114	1.46	274	763	-0.141	2.05	265	0.998	4	[-35.0, -13.0]
											[-8.4, -7.0]
											[9.0, 14.9]
											[24.4, 35.0]
78	805	0.123	1.60	319	708	-0.122	1.25	199	0.997	2	[-35.0, -7.1]
											[9.4, 35.0]
79	841	0.139	0.66	364	828	-0.131	0.82	229	0.995	2	[-35.0, -7.7]
											[13.4, 35.0]
80	874	0.148	0.30	385	801	-0.131	0.33	246	0.996	2	[-35.0, -7.1]
											[9.4, 35.0]
81	856	0.130	1.62	324	1031	-0.140	-0.78	267	0.996	2	[-35.0, -7.3]
	-	0.400			60.0				0.007		[9.6, 35.0]
82	713	0.108	2.11	216	690	-0.141	1.87	261	0.996	3	[-35.0, -14.8]
											[-9.8, -7.4]
02	706	0.120	0.55	274	607	0.120	1 70	250	0.005	2	$\begin{bmatrix} 10.0, 55.0 \end{bmatrix}$
65	/90	0.128	0.55	274	087	-0.139	1.79	230	0.995	Z	[-55.0, -11.4]
8/1	810	0.133	0.31	290	833	_0.140	0.70	244	0.005	2	[10.3, 55.0]
04	010	0.155	0.51	270	055	0.140	0.70	277	0.775	2	[9.8, 35, 0]
85	742	0.122	1 50	266	837	-0.140	0.57	252	0 996	3	[-35.0, -22.8]
05	712	0.122	1.50	200	057	0.110	0.57	232	0.770	5	[-13.9, -11.5]
											[9.3.35.0]
86	649	0.115	2.47	271	681	-0.131	0.92	255	0.996	3	[-35.0, -24.2]
											[-13.9, -11.4]
											[10.6, 35.0]
87	735	0.163	0.15	364	585	-0.131	1.61	281	0.997	3	[-35.0, -27.8]
											[-12.9, -8.7]
											[10.0, 35.0]
88	786	0.195	-0.83	386	680	-0.128	-0.36	293	0.995	3	[-35.0, -26.1]
											[-11.2, -9.1]
											[10.0, 35.0]
89	625	0.117	-0.22	221	790	-0.140	-0.62	323	0.991	3	[-35.0, -15.2]
											[9.6, 18.5]
											[24.1, 35.0]
90	731	0.133	-0.05	275	615	-0.116	-0.21	229	0.994	3	[-35.0, -14.3]
											[9.4, 11.5]
											[20.5, 35.0]
91	631	0.136	-0.54	300	613	-0.113	-1.41	219	0.992	3	[-35.0, -13.7]
											[10.3, 11.9]

 Table 3.
 (Continued.)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Galactic				Fitting	coefficients				Correlation	Number	Fitting ranges
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	longitude	<i>k</i> ₁₁	<i>k</i> ₁₂	<i>k</i> ₁₃	k_{14}	<i>k</i> ₂₁	<i>k</i> ₂₂	<i>k</i> ₂₃	k_{24}	coefficient	of fitting	in galactic
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(deg)	$(\times 10^2 \text{ deg}^{-2})$) (\deg^{-1})	(deg)	$(\times 10 \text{ deg}^-)$	$^{2})(\times 10^{2} \text{ deg}^{-2})$	$^{2}) (deg^{-1})$	(deg)	$(\times 10 deg^{-2}$)	ranges	latitude (deg)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[26.1, 35.0]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	92	527	0.125	-0.37	277	665	-0.127	0.08	234	0.997	3	[-35.0, -13.5]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												[-3.1, -2.3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02	(25	0.1(0	0.44	275	(50	0.142	1 42	070	0.007	2	[14.4, 35.0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	93	635	0.162	0.44	375	658	-0.143	1.43	273	0.996	3	[-35.0, -22.5]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[-9.3, -5.3] [14 5 35 0]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	94	542	0.122	0.47	257	625	-0.114	-1.94	232	0.996	4	[-35.0, -24.5]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[-16.1, -10.8]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[14.3, 17.1]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-		0.07							_	[24.8, 35.0]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	95	541	0.118	0.96	242	441	-0.093	-1.33	166	0.997	5	[-35.0, -23.2]
$\begin{bmatrix} 1-3.0, -1.0, 1\\ 14.1, 15.6\\ 124, 35.0\\ 1-35, -5.9\\ 144, 12, 0.9\\ 144, 12, 0.9\\ 144, 29, 35.0\\ 1-35, -5.9\\ 144, 20.9\\ 144, 20.9\\ 144, 20.9\\ 144, 20.9\\ 144, 20.9\\ 144, 20.9\\ 144, 20.9\\ 144, 20.9\\ 144, 20.9\\ 144, 20.9\\ 144, 20.9\\ 144, 20.9\\ 144, 20.9\\ 144, 20.9\\ 144, 20.9\\ 144, 20.9\\ 144, 20.9\\ 144, 20.9\\ 114, 20.9\\ $												[-10.4, -13.1]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[14.1, 15.6]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[24.9, 35.0]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	96	452	0.126	-1.66	258	428	-0.101	-1.00	207	0.996	4	[-35.0, -19.8]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[-7.2, -5.9]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[14.1, 20.9]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97	541	0.130	-0.57	258	541	-0.117	-0.57	258	0.989	4	[24.9, 35.0] [-35.0, -26.4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		541	0.150	0.57	250	541	0.117	0.57	250	0.909	т	[-7.5, -5.7]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[6.1, 7.1]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												[19.4, 35.0]
$\begin{bmatrix} -7.5, -6.1 \\ 20.5, 35.0 \\ 20.5, 35.0 \\ 20.5, 35.0 \\ 20.5, 35.0 \\ 20.8, 35.0 \\ 20.8, 35.0 \\ 20.8, 35.0 \\ 20.8, 35.0 \\ 20.8, 35.0 \\ 20.8, 35.0 \\ 20.8, 35.0 \\ 20.8, 35.0 \\ 20.8, 35.0 \\ 21.5, 35.0 \\ 2$	98	547	0.131	-0.65	251	588	-0.111	0.20	158	0.998	3	[-35.0, -27.6]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[-7.5, -6.1]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99	583	0.126	0.28	251	583	-0.126	0.28	251	0 997	3	[20.3, 55.0] [-35.0, -24.4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,,,	505	0.120	0.20	201	505	0.120	0.20	231	0.777	5	[-8.1, -6.4]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												[20.8, 35.0]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100	567	0.156	-0.64	313	494	-0.104	-1.23	193	0.995	3	[-35.0, -7.3]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												[6.4, 7.0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101	162	0 127	1.05	230	513	0.111	1 17	228	0.007	4	[21.5, 35.0]
$\begin{bmatrix} 1 & 0.140 & -1.21 & 267 & 477 & -0.111 & -0.80 & 237 & 0.997 & 4 & [-35.0, -21.5] \\ [-11.2, -7.7] & [6.3, 6.8] \\ [22.1, 35.0] \\ [21.3, 35.0] \\ [22.1, 35.0] \\ [22.1, 35.0] \\ [22.1, 35.0] \\ [22.1, 35.0] \\ [22.1, 35.0] \\ [-10.9, -8.3] \\ [5.7, 6.4] \\ [22.1, 35.0] \\ [22.1, 35.0] \\ [-10.9, -8.3] \\ [5.7, 6.4] \\ [22.1, 35.0] \\ [22.1, 35.0] \\ [-10.5, -8.7] \\ [8.1, 8.8] \\ [19.8, 35.0] \\ [105 & 529 & 0.140 & -0.67 & 276 & 489 & -0.102 & -1.03 & 161 & 0.998 & 4 & [-35.0, -25.8] \\ [-10.7, -9.0] \\ [8.1, 9.1] \\ [23.1, 35.0] \\ [23.1, 35.$	101	402	0.127	-1.05	239	515	-0.111	-1.17	220	0.991	-	[-35.0, -21.2] [-8.2, -6.7]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												[6.6, 7.2]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												[21.5, 35.0]
$\begin{bmatrix} -11.2, -7.7 \\ [6.3, 6.8] \\ [22.1, 35.0] \\ [22.1, 35.0] \\ [-10.9, -8.3] \\ [5.7, 6.4] \\ [22.1, 35.0] \\ [22.1, 35.0] \\ [-10.9, -8.3] \\ [5.7, 6.4] \\ [22.1, 35.0] \\ [-10.5, -8.7] \\ [8.1, 8.8] \\ [19.8, 35.0] \\ [105 529 0.140 -0.67 276 489 -0.102 -1.03 161 0.998 4 \\ [-35.0, -25.8] \\ [-10.5, -8.7] \\ [8.1, 8.8] \\ [19.8, 35.0] \\ [-10.7, -9.0] \\ [8.1, 9.1] \\ [23.1, 35.0]$	102	517	0.140	-1.21	267	477	-0.111	-0.80	237	0.997	4	[-35.0, -21.5]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												[-11.2, -7.7]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[0.3, 0.8]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	103	517	0 143	-1 54	272	508	-0.110	-1.30	226	0 998	4	[-35.0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105	517	0.115	1.5 1	272	500	0.110	1.50	220	0.770	•	[-10.9, -8.3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[5.7, 6.4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[22.1, 35.0]
$\begin{bmatrix} -10.5, -8.7 \end{bmatrix}$ $\begin{bmatrix} [-10.5, -8.7] \\ [8.1, 8.8] \\ [19.8, 35.0] \\ [19.8, 35.0] \\ [-10.7, -9.0] \\ [8.1, 9.1] \\ [23.1, 35.0] \end{bmatrix}$ $\begin{bmatrix} 106 & 516 & 0.155 & 1.63 & 302 \\ [106 & -516 & 0.155 & 1.63 & $	104	486	0.131	-1.11	251	549	-0.126	-1.00	271	0.996	4	[-35.0, -25.8]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[-10.5, -8.7]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[0.1, 0.0]
$\begin{bmatrix} -10.7, -9.0 \end{bmatrix} \begin{bmatrix} -10.7, -9.0 \end{bmatrix} \\ \begin{bmatrix} 8.1, 9.1 \end{bmatrix} \\ \begin{bmatrix} 23.1, 35.0 \end{bmatrix} \\ \begin{bmatrix} 23.1, 35.0 \end{bmatrix} \\ \begin{bmatrix} 23.2, 25.0 \end{bmatrix} \\ \begin{bmatrix} 23.2, 24.4 \end{bmatrix} \\ \begin{bmatrix} 23.2$	105	529	0.140	-0.67	276	489	-0.102	-1.03	161	0.998	4	[-35.0, -25.5]
[8.1, 9.1] [23.1, 35.0] 106 516 0.155 1.63 302 404 0.107 1.12 1.83 0.007 4 [.25.0.24.4]			-						-			[-10.7, -9.0]
[23.1, 35.0]												[8.1, 9.1]
106 16 15 163 307 404 0.107 102 0.007 4 1.250 0.441	107		0 1 5 5	1.62	202	10.1	0.105	1.10	100	0.007		[23.1, 35.0]
100	106	516	0.155	-1.63	302	494	-0.10/	-1.12	183	0.997	4	[-35.0, -24.4] [-10.7, -9.6]

Table 3. (Continued.)

Galactic				Fitting	coefficients				Correlation	Number	Fitting ranges
longitude	k_{11}	k_{12}	<i>k</i> ₁₃	<i>k</i> ₁₄	k_{21}	k_{22}	<i>k</i> ₂₃	k_{24}	coefficient	of fitting	in galactic
(deg)	$(\times 10^{2} \text{ deg}^{-2})$	(deg^{-1})	(deg)	$(\times 10 \text{ deg}^{-1})$	$(\times 10^2 \text{ deg}^{-2})$	(deg^{-1})	(deg) ($\times 10 \text{ deg}^{-2}$)	ranges	latitude (deg)
107	547	0.166	-2.11	305	542	-0.124	-1.14	247	0.992	4	[8.1, 9.1] [23.8, 35.0] [-35.0, -21.9] [-10.8, -10.3] [10.4, 10.9]
108	599	0.167	-1.98	296	619	-0.134	-1.22	272	0.993	4	[21.5, 35.0] [-35.0, -21.7] [-10.7, -10.3] [10.0, 10.9]
109	585	0.155	-0.98	293	707	-0.155	-0.84	315	0.993	4	[10.6, 10.9] [21.4, 35.0] [-35.0, -23.2] [-10.8, -9.7] [10.6, 12.2]
110	621	0.153	0.06	304	545	-0.147	0.06	307	0.994	4	[10.6, 12.2] [19.8, 35.0] [-35.0, -23.1] [-10.9, -9.3] [10.4, 11.8]
111	568	0.153	-0.22	309	580	-0.149	-0.38	303	0.995	4	[20.4, 35.0] [-35.0, -22.9] [-11.7, -9.3] [10.3, 10.9]
112	504	0.129	0.48	263	534	-0.150	0.80	289	0.998	4	[20.8, 35.0] [-35.0, -21.8] [-11.1, -6.8] [14.5, 15.2]
113	464	0.099	1.87	159	532	-0.153	0.89	290	0.997	4	[24.4, 35.0] [-35.0, -23.8] [-13.2, -7.7] [9.7, 10.5]
114	636	0.128	1.15	233	601	-0.151	0.88	284	0.993	3	$\begin{bmatrix} 22.6, 35.0 \\ [-35.0, -13.3] \\ [9.4, 10.5] \\ \begin{bmatrix} 20.4, 25.0 \\ 10.5 \end{bmatrix}$
115	572	0.119	1.32	206	655	-0.168	1.31	303	0.996	4	[20.4, 35.0] [-35.0, -24.2] [-16.2, -11.0] [9.6, 10.5]
116	622	0.121	1.63	202	545	-0.157	1.18	292	0.996	4	[21.9, 35.0] [-35.0, -23.5] [-16.4, -11.0] [10.4, 12.7]
117	497	0.125	-0.65	206	628	-0.142	-1.27	254	0.994	3	[23.6, 35.0] [-35.0, -10.7] [9.7, 14.9]
118	593	0.146	-0.93	252	574	-0.156	0.47	260	0.995	3	[19.7, 35.0] [-35.0, -11.5] [8.1, 9.7]
119	536	0.113	1.96	195	736	-0.161	0.04	249	0.993	3	[21.9, 35.0] [-35.0, -9.6] [9.0, 9.9] [10.0, 25.0]
120	604	0.121	1.63	210	623	-0.138	0.00	190	0.992	4	[-35.0, -13.4] [-9.5, -9.3] [9.0, 10.1]
121	629	0.135	0.00	236	579	-0.124	-0.52	144	0.992	3	[16.5, 35.0] [-35.0, -15.0]

 Table 3.
 (Continued.)

Galactic				Fitting	coefficients				Correlation	Number	Fitting ranges
longitude	<i>k</i> ₁₁	<i>k</i> ₁₂	<i>k</i> ₁₃	k_{14}	<i>k</i> ₂₁	<i>k</i> ₂₂	<i>k</i> ₂₃	<i>k</i> ₂₄	coefficient	of fitting	in galactic
(deg)	$(\times 10^2 deg^{-2}$) (deg^{-1})	(deg)	$(\times 10 \text{ deg}^-)$	$^{2})(\times 10^{2} \text{ deg}^{-}$	$^{2}) (deg^{-1})$	(deg)	$(\times 10 \text{ deg}^{-2})$	²)	ranges	latitude (deg)
											[8.7, 10.2]
											[16.0, 35.0]
122	507	0.115	0.32	180	532	-0.109	-1.23	99	0.990	3	[-35.0, -14.5]
											[8.1, 8.8]
102	440	0 107	0.20	142	176	0 111	0.21	107	0.001	4	[16.0, 35.0]
125	440	0.107	0.50	145	470	-0.111	-0.21	107	0.991	4	[-33.0, -14.1]
											[16.8, 18.5]
											[25.5, 35.0]
124	594	0.135	0.23	212	533	-0.119	-0.17	119	0.992	4	[-35.0, -26.2]
											[-16.8, -13.4]
											[10.8, 11.5]
125	167	0.116	0.62	104	500	0.114	0.01	114	0.001	2	[20.4, 35.0]
123	407	0.110	0.02	194	509	-0.114	-0.91	114	0.991	3	[-33.0, -13.3] [9.4, 11.4]
											[20.5, 35.0]
126	452	0.118	-0.02	213	444	-0.119	0.20	155	0.988	3	[-35.0, -12.8]
											[9.7, 10.7]
											[19.4, 35.0]
127	479	0.126	-0.56	233	461	-0.127	0.15	202	0.989	3	[-35.0, -13.4]
											[10.7, 12.4]
128	478	0 1 1 9	-0.18	210	456	-0.119	-0.91	209	0 991	4	[-35.0, -26.1]
120	170	0.117	0.10	210	150	0.117	0.71	20)	0.771	•	[-16.4, -13.8]
											[10.7, 11.4]
											[17.2, 35.0]
129	446	0.119	-0.73	210	446	-0.119	-0.73	210	0.991	4	[-35.0, -26.2]
											[-16.1, -13.1]
											[12.4, 12.9] [18.5, 35.0]
130	528	0.114	2.58	227	558	-0.123	-1.88	230	0.992	5	[-35.0, -25.9]
											[-20.8, -13.4]
											[-8.7, -7.7]
											[12.5, 12.9]
121	406	0 1 1 1	1.00	227	100	0 110	1.00	227	0.077	4	[18.7, 35.0]
131	420	0.111	1.00	227	420	-0.118	1.00	227	0.977	4	[-35.0, -26.5]
											[-20.3, -12.0] [10.6, 11.2]
											[18.5, 35.0]
132	442	0.115	0.66	215	490	-0.147	2.21	276	0.989	3	[-35.0, -27.5]
											[-20.6, -11.5]
122	407	0 100	2.25	200	474	0 1 4 1	1 42	292	0.000	2	[15.5, 35.0]
133	496	0.109	2.25	200	4/4	-0.141	1.43	282	0.990	3	[-35.0, -25.9]
											[-19.3, -10.4] [14.4, 35.0]
134	477	0.112	1.44	196	444	-0.136	1.33	287	0.993	4	[-35.0, -26.5]
											[-20.6, -10.0]
											[14.7, 22.8]
105		0.111		107		0.1.12			0.000	2	[27.9, 35.0]
135	465	0.114	1.11	197	501	-0.143	1.79	268	0.990	3	[-35.0, -11.8]
											[14.1, 14.0] [21 1 35 0]
136	478	0.108	2.31	183	503	-0.143	1.80	266	0.990	3	[-35.0, -10.0]
											[14.1, 15.2]
											[18.9, 35.0]

Table 3. (Continued.)

Galactic				Fitting	g coefficients				Correlation	Number	Fitting ranges
longitude	k_{11}	<i>k</i> ₁₂	<i>k</i> ₁₃	k_{14}	k_{21}	k ₂₂	<i>k</i> ₂₃	<i>k</i> ₂₄	coefficient	of fitting	in galactic
(deg)	$(\times 10^2 \mathrm{deg}^{-2})$	(deg^{-1})	(deg)	(×10deg	$(\times 10^2 \text{deg}^{-2})$	(\deg^{-1})	(deg) (>	$\times 10 \mathrm{deg}^{-2})$		ranges	latitude (deg)
137	449	0.101	2.85	167	452	-0.139	1.93	257	0.992	2	[-35.0, -8.8]
138	428	0.100	2.48	166	340	-0.101	0.73	171	0.992	3	[-35.0, -9.4]
											[14.8, 19.5]
											[25.2, 35.0]
139	305	0.089	0.07	115	305	-0.086	0.07	115	0.998	4	[-35.0, -28.9]
											[-11.2, -0.1] [15.1, 19.3]
											[26.9, 35.0]
140	308	0.093	-0.05	140	358	-0.113	1.85	182	0.997	5	[-35.0, -32.2]
											[-25.2, -16.1]
											[-9.7, -0.4] [15.8, 19.6]
											[27.5, 35.0]
141	354	0.082	2.10	64	361	-0.111	1.66	161	0.995	3	[-35.0, -6.6]
											[16.0, 18.6]
142	355	0.105	-1.01	146	332	-0.096	0.20	120	0.991	3	[27.1, 35.0] [-35.0, -13.4]
	555	01100	1101	110	002	01070	0.20		01//1	U	[15.5, 18.2]
											[27.9, 35.0]
143	328	0.085	0.12	70	360	-0.099	-0.87	131	0.996	5	[-35.0, -22.4]
											[-10.8, -9.3] [5 3 5 8]
											[15.8, 22.3]
											[26.6, 35.0]
144	333	0.079	0.09	24	331	-0.098	0.23	131	0.997	6	[-35.0, -27.2]
											[-1/.1, -15.4]
											[5.0, 5.5]
											[15.7, 19.9]
145	257	0.000	0.24	121	220	0.102	0.01	155	0.007	([19.9,35.0]
145	357	0.096	-0.34	131	329	-0.102	0.01	155	0.997	6	[-35.0, -27.6] [-17.5, -14.5]
											[-10.4, -9.1]
											[5.0, 5.8]
											[16.5, 22.9]
146	354	0.103	-0.65	171	338	-0 104	-0.88	184	0 995	4	[22.9,35.0] [-35.0,-18.1]
110	551	0.105	0.05	171	550	0.101	0.00	101	0.775		[-10.5, -9.4]
											[5.0, 5.8]
1 47	220	0.000	0.22	110	220	0.000	1.50	140	0.007	4	[18.1, 35.0]
147	320	0.090	-0.33	118	320	-0.092	-1.59	140	0.996	4	[-35.0, -19.5] [-9.9, -8.4]
											[3.1, 4.0]
											[17.8, 35.0]
148	280	0.070	-0.11	5	290	-0.084	-1.40	103	0.995	5	[-35.0, -29.1]
											[-21.1, -17.1] [-64 - 59]
											[3.3, 4.0]
											[16.0, 35.0]
149	273	0.067	-0.25	-26	290	-0.099	0.22	162	0.994	4	[-35.0, -30.2]
											[-22.0, -17.5] [-6.0, -5.0]
											[16.1, 35.0]
150	322	0.076	1.42	41	249	-0.087	-0.65	145	0.995	5	[-35.0, -30.1]

 Table 3.
 (Continued.)

Galactic				Fitting	coefficients				Correlation	Number	Fitting ranges
longitude	k_{11}	k_{12}	<i>k</i> ₁₃	k_{14}	k_{21}	k_{22}	k ₂₃	k_{24}	coefficient	of fitting	in galactic
(deg)	(×10 ⁻ deg ⁻)	(deg ⁻)	(deg)	(×10deg	-)(×10 ⁻ deg -)	(deg ⁻)	(deg) (×10deg -)	ranges	
151	282	0.093	-1.73	113	256	-0.092	-1.50	174	0.992	4	[-21.8, -16.1] [-6.4, -5.6] [5.4, 6.5] [16.2, 35.0] [-35.0, -31.5] [-21.5, -10.8] [6.1, 7.1]
152	293	0.105	-2.76	129	298	-0.113	-1.11	219	0.994	4	[16.1, 35.0] [-35.0, -30.1] [-23.5, -10.4] [6.6, 7.4]
153	342	0.112	-1.90	152	335	-0.115	-1.78	214	0.994	3	[15.7, 35.0] [-35.0, -10.4] [6.7, 7.5] [15.2, 35.0]
154	308	0.101	-2.15	123	314	-0.099	-2.13	166	0.996	4	[-35.0, -22.5] [-13.5, -10.7] [7.0, 8.1]
155	274	0.074	-0.71	7	314	-0.094	-1.94	139	0.995	5	[17.2, 35.0] [-35.0, -30.6] [-24.8, -23.4] [-12.8, -10.7] [8.4, 9.1]
156	252	0.050	1.37	-199	283	-0.101	-0.30	166	0.993	4	$ \begin{bmatrix} 17.4, 35.0 \end{bmatrix} \\ \begin{bmatrix} -35.0, -30.5 \end{bmatrix} \\ \begin{bmatrix} -24.5, -22.8 \end{bmatrix} \\ \begin{bmatrix} -13.2, -12.8 \end{bmatrix} $
157	257	0.069	2.32	-2	250	-0.105	1.54	173	0.994	3	[8.8, 35.0] [-31.9, -23.5] [-7.1, -6.7] [8.6, 35.0]
158	255	0.051	2.02	-236	240	-0.107	1.59	186	0.995	5	[-32.0, -24.4] [-14.4, -13.5] [-6.8, -6.4] [7.6, 12.1]
159	293	0.054	2.86	-242	266	-0.109	0.39	192	0.992	6	[22.4, 35.0] [-35.0, -23.4] [-14.5, -13.5] [-4.5, -4.0] [2.3, 2.4] [6.6, 7.4]
160	279	0.067	1.42	-70	270	-0.123	1.34	220	0.992	5	$\begin{array}{l} [7.4,35.0] \\ [-35.0,-23.4] \\ [-14.4,-13.7] \\ [-5.1,-4.6] \\ [9.1,9.8] \end{array}$
161	274	0.060	2.34	-106	266	-0.115	1.11	196	0.992	5	[17.4, 35.0] [-35.0, -27.2] [-22.9, -21.5] [-4.3, -3.7] [6.0, 6.4]
162	272	0.072	1.89	8	259	-0.118	1.42	190	0.997	5	[19.1, 35.0] [-35.0, -26.9] [-22.0, -21.4] [-4.4, -3.3]

Table 3. (Continued.)

Galactic				Fitting	coefficients				Correlation	Number	Fitting ranges
longitude	<i>k</i> ₁₁	k_{12}	<i>k</i> ₁₃	k_{14}	k ₂₁	k ₂₂	<i>k</i> ₂₃	k_{24}	coefficient	of fitting	in galactic
(deg)	$(\times 10^2 \mathrm{deg}^{-2})$	(\deg^{-1})	(deg)	$(\times 10 \text{ deg}^-)$	$(\times 10^2 \text{deg}^{-2})$	(\deg^{-1})	(deg) ($\times 10 \text{deg}^{-2}$)	ranges	latitude (deg)
163	269	0.071	1.64	-10	255	-0.097	1.21	119	0.995	6	[5.4, 7.0] $[21.7, 35.0]$ $[-35.0, -28.1]$ $[-21.9, -20.5]$ $[-2.7, -2.3]$
164	253	0.097	-0.28	121	316	-0.118	1.49	181	0.993	4	$ \begin{bmatrix} 4.3, 4.3 \\ 10.3, 11.5 \end{bmatrix} \\ \begin{bmatrix} 11.5, 35.0 \\ -35.0, -21.1 \end{bmatrix} \\ \begin{bmatrix} -11.2, -11.0 \\ 10.3, 11.9 \end{bmatrix} \\ \begin{bmatrix} 10.3, 11.9 \\ 10.25, 25 \end{bmatrix} $
165	305	0.097	1.96	130	297	-0.103	1.43	143	0.990	3	[-35.0, -20.2] [-11.4, -11.0]
166	293	0.105	1.77	172	293	-0.106	1.77	172	0.990	3	[11.5, 35.0] [-35.0, -21.1] [-11.1, -10.4] [10.6, 25.0]
167	293	0.109	1.78	180	299	-0.106	1.95	153	0.989	3	[-35.0, -22.9] [-10.8, -10.7]
168	273	0.088	2.70	118	302	-0.102	2.07	125	0.986	3	[-35.0, -22.4] [-11.2, -10.6]
169	289	0.094	2.46	134	250	-0.082	1.86	40	0.987	3	$\begin{bmatrix} 13.8, 35.0 \\ [-35.0, -22.9] \\ [-11.7, -11.1] \end{bmatrix}$
170	255	0.090	1.13	134	263	-0.100	1.47	140	0.996	2	[13.5, 35.0] [10.3, 16.9] [24.6, 35.0]
171	238	0.072	2.69	49	273	-0.105	1.83	157	0.991	3	[-35.0, -20.2] [10.3, 11.9]
172	240	0.067	3.60	14	243	-0.101	3.01	142	0.993	3	$\begin{bmatrix} 24.4, 35.0 \\ [-35.0, -23.2] \\ [10.6, 12.1] \\ \begin{bmatrix} 25.4, 25.0 \\ 25.0 \end{bmatrix}$
173	242	0.074	3.26	53	265	-0.127	2.81	220	0.990	3	[25.4, 35.0] [-35.0, -22.8] [-8.0, -7.6]
174	276	0.100	2.62	151	225	-0.109	2.82	186	0.991	3	[10.4, 35.0] [-35.0, -24.2] [-8.5, -8.1]
175	249	0.104	2.01	168	231	-0.086	0.90	120	0.995	4	[10.8, 35.0] [-35.0, -24.1] [-5.7, -4.3]
176	231	0.112	0.73	183	217	-0.059	0.52	-64	0.995	4	[10.8, 18.1] $[25.2, 35.0]$ $[-35.0, -22.7]$ $[-4.7, -3.9]$
177	199	0.101	-0.24	159	218	-0.060	0.83	-67	0.994	5	
178	197	0.086	0.50	89	210	-0.053	0.40	-120	0.993	5	[10.6, 11.2] $[24.5, 35.0]$ $[-31.6, -21.8]$

 Table 3.
 (Continued.)

Galactic				Fitting	coefficients				Correlation	Number	Fitting ranges
longitude	<i>k</i> ₁₁	<i>k</i> ₁₂	<i>k</i> ₁₃	k ₁₄	<i>k</i> ₂₁	<i>k</i> ₂₂	<i>k</i> ₂₃	<i>k</i> ₂₄	coefficient	of fitting	in galactic
(deg)	$(\times 10^2 deg^{-2})$	(deg^{-1})	(deg)	$(\times 10 \text{ deg}^-)$	$^{2})(\times 10^{2} \text{deg}^{-2})$) (deg^{-1})	(deg) ($\times 10 \deg^{-2}$)	ranges	latitude (deg)
179	221	0.111	-2.40	117	210	-0.052	-1.80	-75	0.988	4	$ \begin{bmatrix} -16.8, -15.8] \\ [-4.3, -3.7] \\ [8.1, 11.1] \\ [20.5, 35.0] \\ [-30.0, -14.7] \\ [-9.1, -8.7] \\ [9.4, 12.2] $
180	266	0.116	-1.49	121	266	-0.083	-1.25	131	0.987	4	[22.1, 35.0] [-29.6, -17.2] [-10.1, -9.1] [12.7, 14.1] [18.9, 35.0]
181	274	0.128	-1.51	161	237	-0.065	-2.87	43	0.985	3	[-35.0, -13.7] [3.0, 3.3]
182	208	0.117	-2.29	158	245	-0.067	-1.83	23	0.988	3	[-35.0, -14.1] [2.9, 3.4]
183	222	0.104	-1.35	135	241	-0.071	-0.67	25	0.984	4	[-35.0, -15.7] [-7.1, -6.8] [3.3, 3.4]
184	223	0.089	-1.90	78	228	-0.075	-1.61	91	0.995	5	$[17.0, 35.0] \\ [-35.0, -28.8] \\ [-17.4, -16.2] \\ [-7.4, -6.8] \\ [1.7, 3.1]$
185	229	0.076	-1.57	3	243	-0.084	-0.76	111	0.994	5	[6.8, 35.0] [-35.0, -27.9] [-16.8, -15.8] [-7.0, -6.7] [1.6, 2.0]
186	264	0.095	-1.33	88	257	-0.093	-0.06	133	0.996	5	[10.4, 35.0] [-35.0, -24.5] [-12.4, -9.8] [1.7, 2.1] [10.8, 20.3]
187	271	0.077	-0.41	-24	286	-0.087	-1.71	107	0.994	5	$\begin{bmatrix} 28.5, 35.0 \\ [-35.0, -25.8] \\ [-11.8, -10.8] \\ [-7.0, -6.3] \\ [1.6, 1.8] \end{bmatrix}$
188	284	0.090	-1.14	39	283	-0.105	0.06	166	0.996	5	$\begin{array}{l} [9.8, 35.0] \\ [-35.0, -23.2] \\ [-16.4, -15.0] \\ [-6.8, -6.1] \\ [9.1, 20.8] \end{array}$
189	327	0.102	-1.28	99	327	-0.089	-1.28	99	0.983	2	[27.5, 35.0] [-35.0, -14.4] [25.1, 35.0]
190	314	0.085	-0.45	-16	326	-0.126	-0.32	255	0.992	3	[-35.0, -18.8] [-6.2, -5.3] [9.0, 35.0]
191	363	0.070	1.25	-215	303	-0.096	-0.17	164	0.996	4	[-30.6, -17.8] [-5.8, -5.1] [8.6, 9.9]

Table 3. (Continued.)

Galactic				Fitting	g coefficients				Correlation	Number	Fitting ranges
longitude	<i>k</i> ₁₁	<i>k</i> ₁₂	<i>k</i> ₁₃	k_{14}	k ₂₁	k ₂₂	<i>k</i> ₂₃	<i>k</i> ₂₄	coefficient	of fitting	in galactic
(deg)	$(\times 10^2 \mathrm{deg}^{-2})$	(\deg^{-1})	(deg)	(×10 deg	$^{-2}$) (×10 ² deg ⁻²)	(\deg^{-1})	(deg)	$(\times 10 \mathrm{deg}^{-2})$		ranges	latitude (deg)
192	327	0.077	0.38	-69	325	-0.109	-0.33	217	0.994	4	[24.4, 35.0] [-35.0, -17.8] [-6.0, -5.4] [7.3, 9.2]
193	324	0.073	0.59	-98	311	-0.109	-0.13	215	0.992	4	[18.4, 35.0] [-35.0, -17.1] [-6.5, -5.9] [84, 9, 1]
194	373	0.076	1.87	-81	292	-0.090	-0.42	139	0.994	4	[19.8, 35.0] [-35.0, -18.9] [-6.5, -5.7]
195	320	0.076	-0.70	-83	296	-0.085	-1.14	119	0.995	4	[23.2, 35.0] [-35.0, -18.0] [-6.5, -5.7] [8.6, 9.1]
196	306	0.075	-0.73	-63	316	-0.091	-0.87	131	0.995	4	[24.5, 35.0] [-35.0, -18.5] [-7.0, -6.1] [2.3, 2.8]
197	312	0.060	0.22	-215	290	-0.081	-0.81	84	0.993	5	$\begin{bmatrix} 22.2, 35.0 \\ [-35.0, -25.6] \\ [-18.3, -17.5] \\ [-6.4, -5.9] \end{bmatrix}$
198	310	0.062	-0.44	-229	285	-0.072	-1.08	22	0.993	4	[8.1, 9.4] [21.4, 35.0] [-32.2, -17.2] [-6.2, -5.4] [7 8, 9 2]
199	305	0.071	-0.86	-96	281	-0.070	-2.00	29	0.992	4	[7.3, 9.2] [21.8, 35.0] [-31.2, -16.5] [-7.4, -6.6] [7.7, 9.0]
200	374	0.088	1.32	76	295	-0.091	-2.14	184	0.995	5	[21.5, 35.0] [-28.3, -16.4] [-7.4, -6.7] [1.7, 2.0]
201	290	0.104	-1.50	187	294	-0.103	-1.42	226	0.996	4	[6.0, 9.5] [19.7, 35.0] [-27.9, -18.1] [-8.4, -6.8] [6, 1, 9, 7]
202	308	0.108	-1.79	183	319	-0.119	-0.53	244	0.997	4	[23.8, 35.0] [-26.2, -17.1] [-7.5, -6.4] [6.8, 9.0]
203	360	0.116	-1.47	198	362	-0.136	-0.35	271	0.993	3	$[22.2, 35.0] \\ [-24.8, -17.7] \\ [-7.4, -6.4]$
204	387	0.102	-0.69	46	384	-0.127	-0.90	241	0.994	3	[7.1, 35.0] [-22.6, -17.7] [-7.2, -6.4]
205	360	0.120	0.10	218	367	-0.111	-1.14	189	0.996	4	[7.1, 35.0] [-22.5, -19.4] [-7.2, -6.6]

Table 3.(Continued.)

	Galactic				Fitting	coefficients				Correlation	Number	Fitting ranges
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	longitude	k_11	<i>k</i> 12	<i>k</i> 13	k14	<i>k</i> ₂₁	<i>k</i> 22	<i>k</i> 23	k24	 coefficient	of fitting	in galactic
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(deg)	$(\times 10^2 deg^{-2})$) (deg^{-1})	(deg)	$(\times 10 \text{ deg}^-)$	$(\times 10^2 \text{deg}^{-2})$	(deg^{-1})	(deg)	$(\times 10 \text{deg}^{-2}$)	ranges	latitude (deg)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		× 0	, , ,	× 0/	× 0		, , ,	(0)	× 0	,	0	[6 1 9 0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[0.1, 9.0]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	206	337	0 1 1 4	-0.47	218	331	-0.106	-0.62	175	0 998	2	[10.0, 55.0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200	557	0.111	0.17	210	551	0.100	0.02	175	0.770	-	[18.9. 35.0]
$ \begin{bmatrix} 17.4, 35.0 \\ 17.4, 35.0 \\ 17.0, 35.0 \\ $	207	328	0.109	-0.67	218	332	-0.107	-0.56	179	0.998	2	[4.7, 7.2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[17.4, 35.0]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	208	329	0.109	-0.63	218	316	-0.096	-0.99	142	0.997	2	[5.0, 7.2]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												[17.0, 35.0]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	209	328	0.107	-0.71	218	317	-0.090	-1.01	106	0.995	3	[4.6, 5.5]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												[16.4, 16.5]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[16.7, 35.0]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	210	311	0.107	-1.20	218	318	-0.088	-0.98	92	0.997	2	[4.3, 5.4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	211	211	0.007	1.20	210	200	0.095	1.26	05	0.007	2	[10.4, 35.0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	211	511	0.097	-1.20	218	309	-0.085	-1.20	65	0.997	Z	[5.4, 4.6] [15.7, 35.0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	212	302	0.090	-1.50	218	308	-0.091	-1 31	132	0 995	2	[10.7, 50.0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	212	302	0.070	1.50	210	200	0.071	1.01	102	0.775	-	[13.3. 35.0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	213	306	0.094	-1.80	218	325	-0.102	-1.11	183	0.997	2	[3.1, 9.7]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[12.8, 35.0]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	214	324	0.094	-1.20	218	330	-0.095	-1.00	137	0.998	2	[3.4, 13.2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[17.8, 35.0]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	215	326	0.094	-1.13	218	343	-0.113	-0.60	225	0.996	3	[5.0, 12.1]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[20.2, 30.7]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	016	2.42	0.004	0.60	210	2.42	0.007	0.60	1.57	0.007	4	[32.9, 35.0]
$ \begin{bmatrix} 10.2, 21.0 \\ [27, 1, 30.2 \\ [32, 9, 35.0] \\ [32, 9, 35.0] \\ [13, 35.0] \\ [14, 4, 7.8] \\ [19, 8, 35.0] \\ [19, 8, 35.0] \\ [19, 35.0] \\ [19, 35.0] \\ [19, 35.0] \\ [19, 35.0] \\ [19, 35.0] \\ [19, 35.0] \\ [19, 35.0] \\ [19, 35.0] \\ [19, 35.0] \\ [10, 3, 55.0] \\ [10,$	216	342	0.094	-0.60	218	342	-0.097	-0.60	157	0.997	4	[4.4, 7.7]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[10.2, 21.0] [27, 1, 30, 2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[27.1, 50.2] [32.9, 35.0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	217					367	-0.113	0.13	193	0.998	2	[4.4. 7.8]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[19.8, 35.0]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	218					376	-0.110	0.35	176	0.997	2	[5.3, 7.5]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[18.1, 35.0]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	219					384	-0.119	0.57	206	0.995	2	[5.3, 5.8]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												[14.3, 35.0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	220	•••				353	-0.105	-0.09	166	0.993	1	[10.8, 35.0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	221	•••		• • •	•••	327	-0.089	-0.95	89	0.996	2	[7.7, 23.8]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	222					222	0.080	0.88	00	0.004	1	[28.3, 35.0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	222					334	-0.089	-0.86	96	0.992	1	[10.7. 35.0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	223					399	-0.123	1.16	189	0.990	1	[13.5, 35.0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	225					444	-0.141	1.91	223	0.985	1	[15.7, 35.0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	226					318	-0.109	0.42	183	0.974	1	[17.4, 35.0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	227					277	-0.086	-1.49	123	0.970	1	[19.1, 35.0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	228					226	-0.058	-4.63	16	0.961	1	[19.4, 35.0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	229					194	-0.034	-7.40	-213	0.952	1	[21.2, 35.0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	230	••••				187	-0.035	-4.50	-223	0.945	1	[22.6, 35.0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	231	•••	•••	• • •	•••	194	-0.035	-4.25	-248	0.925	1	[23.9, 35.0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	252					194	-0.041	-4.92	-120	0.893	1	[25.2, 35.0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	233 234	•••		•••	•••	156	-0.030 -0.032	-10.57	-110 -122	0.709	1	[20.0, 33.0]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	234					184	-0.032 -0.047	-3.63	-122 -22	0.703	1	[29.3, 35.0]
$237 \qquad \cdots \qquad \cdots \qquad 387 \qquad -0.090 \qquad 2.84 \qquad 43 \qquad 0.728 \qquad 1 \qquad [31.5, 35.0]$	236					267	-0.067	0.13	14	0.741	1	[30.8, 35.0]
	237					387	-0.090	2.84	43	0.728	1	[31.5, 35.0]

 Table 4.
 Background stellar density for S plates.

Galactic				Fitting co	oefficients				Correlation	Number	Fitting ranges
longitude	<i>k</i> ₁₁	k_{12}	<i>k</i> ₁₃	k_{14}	k_{21}	<i>k</i> ₂₂	<i>k</i> ₂₃	k_{24}	coefficient	of fitting	in galactic
(deg)	$(\times 10^2 \mathrm{deg}^{-2})$	(\deg^{-1})	(deg)	$(\times 10 \text{deg}^{-2})$	$(\times 10^2 \mathrm{deg}^{-2})$	(\deg^{-1})	(deg)	$(\times 10 \text{deg}^{-2})$)	ranges	latitude (deg)
195	251	0.105	1.60	107					0.801	1	[-35.0, -25.1]
196	453	0.155	-2.80	134		•••			0.884	1	$\left[-35.0,-23.5\right]$
197	350	0.129	-1.43	113	•••				0.931	1	[-35.0, -22.1]
198	286	0.107	0.25	90	•••	•••			0.940	1	[-35.0, -22.1]
199	280	0.106	0.82	96		•••			0.958	1	[-35.0, -19.7]
200	354	0.132	-0.88	123			• • •		0.976	1	[-35.0, -17.4]
201	365	0.136	-1.25	125		•••			0.980	1	[-35.0, -17.0]
202	340	0.119	-0.67	113		•••			0.964	1	[-35.0, -18.9]
203	340	0.119	-0.07	113					0.808	1	[-35.0, -25.8]
204	340	0.119	-0.67	113					0.800	1	[-35.0, -20.1]
205	340	0.119	-0.67	113					0.880	1	[-35.0, -22.5]
200	340	0.119	-0.67	113					0.865	1	[-35.0, -24.0]
208	340	0.123	-0.67	113					0.903	1	[-35.0, -21.1]
200	340	0.123	-0.67	113					0.827	1	[-35.0, -26.9]
210	340	0.123	-0.67	113					0.913	1	[-35.0, -23.4]
211	340	0.123	-0.67	113					0.988	2	[-35.0, -20.9]
										_	[3.4, 3.8]
212	340	0.123	-0.67	113	363	-0.141	-1.17	136	0.953	1	[-35.0, -21.5]
213	363	0.135	-1.17	136	363	-0.141	-1.17	137	0.926	1	[-35.0, -21.7]
214	350	0.143	0.30	190	336	-0.117	0.08	-171	0.959	1	[5.9, 9.4]
215	407	0.130	1.47	190	328	-0.189	0.41	342	0.978	1	[5.4, 10.8]
216	383	0.130	0.97	190	403	-0.327	1.11	673	0.982	1	[5.1, 12.1]
217	366	0.130	0.63	190	373	-0.250	0.69	553	0.991	1	[4.9, 12.8]
218	345	0.131	0.13	190	359	-0.206	0.34	479	0.992	1	[5.3, 17.1]
219	314	0.131	-0.57	190	318	-0.171	0.25	394	0.996	3	[-35.0, -21.1]
											[-16.6, -16.1]
											[5.7, 17.8]
220	296	0.122	-0.29	182	318	-0.125	-0.69	199	0.996	3	[-35.0, -21.2]
											[-16.2, -14.8]
221	202	0.104	1 07	154	220	0.110	0.02	107	0.005	2	[5.1, 20.2]
221	303	0.124	-1.07	176	328	-0.112	-0.93	107	0.995	3	[-35.0, -21.2]
											[-15.6, -14./]
222	207	0.110	1.06	155	210	0.007	1.02	5	0.006	2	[7.1, 21.9]
222	297	0.118	-1.80	155	518	-0.097	-1.02	5	0.990	3	[-35.0, -21.4]
											[-14.9, -15.7]
222	200	0.112	1 72	142	215	0.000	1 44	144	0.005	2	[0.0, 22.9]
223	300	0.115	-1.72	142	515	-0.080	-1.44	-144	0.995	5	[-33.0, -19.3]
											[-14.4, -12.5]
224	310	0.113	-1.68	143	316	-0.080	-1.07	-181	0 996	4	[-35.0] -19.5]
221	510	0.115	1.00	115	510	0.000	1.07	101	0.770	•	[-14.6, -12.0]
											[4.0, 7.1]
											[12.7, 23.5]
225	303	0.109	-1.54	135	336	-0.086	-1.86	-86	0.995	4	[-35.0, -12.3]
											[4.1, 6.7]
											[11.5, 24.6]
											[27.9, 28.7]
226	331	0.117	-2.11	144	348	-0.090	-2.31	-23	0.995	3	[-35.0, -16.1]
											[4.7, 24.9]
											[27.5, 29.9]
227	349	0.122	-2.33	149	342	-0.095	-2.02	31	0.995	3	[-35.0, -16.0]
											[5.9, 21.1]
											[27.9, 31.0]
228	348	0.118	-1.88	144	347	-0.097	-2.03	44	0.995	3	[-35.0, -14.5]
											[5.4, 32.7]
220	207	0.110	0.00	146	214	0.104	0.77	70	0.007	2	[34.9, 35.0]
229	396	0.119	-0.90	146	314	-0.104	-0.66	/8	0.996	2	[-35.0, -14.4]

Table 4. (Continued.)

Galactic				Fitting c	oefficients				Correlation	Number	Fitting ranges
longitude	k_{11}	<i>k</i> ₁₂	<i>k</i> ₁₃	k ₁₄	<i>k</i> ₂₁	k ₂₂	<i>k</i> ₂₃	<i>k</i> ₂₄	coefficient	of fitting	in galactic
(deg)	$(\times 10^2 deg^{-2}$) (deg^{-1})	(deg)	$(\times 10 deg^{-2})$	$(\times 10^2 \text{deg}^{-2})$	(deg^{-1})	(deg)	(×10 deg	⁻²)	ranges	latitude (deg)
											[5.0, 35.0]
230	371	0.100	0.75	103	344	-0.122	0.43	119	0.994	4	[-35.0, -15.0]
											[-7.4, -7.1]
											[9.0, 11.7]
231	363	0.098	0.80	96	366	-0.130	0.81	132	0.996	3	[-35.0, -7.3]
											[9.8, 12.4]
222	270	0.106	0.15	110	200	0.120	0.40	122	0.007	2	[17.2, 35.0]
232	578	0.100	0.15	116	300	-0.150	0.40	155	0.997	3	[-33.0, -7.0] [9.6, 12,1]
											[17.2, 35.0]
233	366	0.126	-1.80	174	380	-0.108	-2.29	95	0.997	3	[-35.0, -7.1]
											[4.6, 9.0]
234	401	0.137	-1.90	196	395	-0.111	-2.16	95	0.997	2	[-35.0, -8.3]
										_	[4.7, 35.0]
235	419	0.137	-1.72	187	412	-0.115	-1.96	99	0.996	3	[-35.0, -11.8]
											[-7.8, -7.4]
236	424	0.127	-1.74	147	428	-0.119	-1.78	105	0.997	3	[-35.0, -15.8]
200		01127		117	120	01117	11/0	100	01777	U	[-8.1, -6.7]
	(22)					0.440		101	0.007		[6.7, 35.0]
237	423	0.127	-1.87	142	412	-0.119	-1.40	106	0.996	3	[-35.0, -15.4]
											[-8.4, -7.4] [6.7, 35.0]
238	402	0.130	-1.59	172	408	-0.117	-1.43	101	0.996	3	[-35.0, -18.5]
											[-11.5, -8.3]
220	405	0.125	1 50	149	122	0.115	1.02	07	0.007	2	[5.7, 35.0]
239	405	0.125	-1.50	140	425	-0.115	-1.92	97	0.997	3	[-33.0, -19.8] [-10.8, -8.7]
											[5.3, 35.0]
240	437	0.140	-1.71	188	437	-0.118	-1.91	106	0.997	3	[-35.0, -18.9]
											[-15.9, -8.3]
241	443	0.143	-1.83	191	461	-0.120	-1.97	106	0.997	2	[-35.0, -7.6]
											[5.7, 35.0]
242	435	0.153	-2.35	207	450	-0.119	-1.70	100	0.995	2	[-35.0, -7.7]
243	454	0 134	-177	152	422	-0.107	-1.92	65	0 999	4	[0.7, 35.0] [-35.0, -19.8]
215	151	0.151	1.77	152	122	0.107	1.72	05	0.777		[-9.2, -7.0]
											[3.3, 14.4]
244	550	0 127	0.62	160	500	0 121	1.04	107	0.009	4	[19.9, 35.0]
244	550	0.137	-0.62	160	508	-0.131	-1.24	127	0.998	4	[-35.0, -19.1] [-9.0, -8.0]
											[8.3, 13.6]
											[18.9, 35.0]
245	611	0.142	0.02	177	527	-0.148	-0.28	161	0.997	4	[-35.0, -19.7]
											[-10.1, -8.1] [8.6, 14.9]
											[18.5, 35.0]
246	584	0.140	0.30	180	537	-0.169	0.84	188	0.996	3	[-35.0, -18.1]
											[-10.2, -9.0]
247	520	0.130	0 57	168	534	-0.173	0 97	194	0 995	3	[0.1, 35.0] [-35.0, -19.5]
2.7	520	5.120	0.07	100	001	0.175	0.77	1 / F	0.770	2	[-8.0, -7.8]
											[8.0, 35.0]
248	468	0.128	0.02	172	491	-0.166	0.95	189	0.996	3	[-35.0, -19.7]
											[-0.0, -/.0]

 Table 4.
 (Continued.)

Galactic				Fitting c	oefficients				Correlation	Number	Fitting ranges
longitude	k_{11}	<i>k</i> ₁₂	<i>k</i> ₁₃	k_{14}	k_{21}	k ₂₂	<i>k</i> ₂₃	k ₂₄	coefficient	of fitting	in galactic
(deg)	$(\times 10^2 \text{ deg}^{-2})$	(\deg^{-1})	(deg)	$(\times 10 \text{deg}^{-2})$	$(\times 10^2 \text{ deg}^{-2})$	(\deg^{-1})	(deg)	$(\times 10 \text{ deg}^{-2})$)	ranges	latitude (deg)
240	175	0.126	0.76	102	440	0 145	0.54	150	0.008	4	[6.8, 35.0]
249	475	0.126	0.76	183	440	-0.145	0.54	159	0.998	4	[-35.0, -16.0] [-8.2, -7.3]
											[5.6, 13.2]
											[17.2, 35.0]
250	467	0.126	0.90	193	467	-0.163	0.90	193	0.997	3	[-35.0, -15.2]
											[-8.2, -7.7]
251	443	0.121	1.13	185	465	-0.165	1.03	204	0.996	3	[-35.0, -19.8]
										-	[-8.1, -7.3]
											[5.7, 35.0]
252	439	0.124	0.57	188	471	-0.157	0.68	201	0.997	2	[-35.0, -13.4]
253	404	0 124	-0.50	181	485	-0 147	-0.16	196	0 996	2	[5.1, 35.0] [-35.0, -13.0]
255	-0-	0.124	0.50	101	-05	0.147	0.10	170	0.770	2	[5.7, 35.0]
254	392	0.130	-1.88	182	476	-0.126	-1.73	168	0.996	3	[-35.0, -13.5]
											[4.1, 4.8]
255	407	0.144	2.04	200	416	0.110	2.00	145	0.005	2	[7.3, 35.0]
255	407	0.144	-3.04	200	416	-0.112	-2.06	145	0.995	3	[-35.0, -13.1]
											[8.3, 35.0]
256	404	0.136	-2.43	192	381	-0.102	-2.32	125	0.996	2	[-35.0, -11.8]
				101							[3.4, 35.0]
257	359	0.130	-2.75	184	372	-0.103	-1.54	118	0.993	3	[-35.0, -12.0]
											[10.8, 35.0]
258	351	0.120	-2.25	166	352	-0.092	-2.41	88	0.994	3	[-35.0, -12.0]
											[2.6, 3.3]
250	201	0.105	2.00	150	205	0.007	2.24	100	0.004	4	[11.0, 35.0]
259	381	0.125	-3.00	153	385	-0.096	-3.34	120	0.994	4	[-35.0, -18.5]
											[4.3, 4.7]
											[14.0, 35.0]
260	390	0.129	-3.21	160	395	-0.100	-3.24	137	0.995	4	[-35.0, -16.5]
											[-9.5, -8.4]
											[4.1, 4.3] [13.0, 35.0]
261	427	0.140	-3.09	196	452	-0.114	-2.41	167	0.994	4	[-35.0, -15.2]
											[-9.7, -9.0]
											[7.3, 9.0]
262	523	0 153	_3 15	213	587	_0 123	_2.80	173	0.006	4	[13.7, 35.0] [-35.0, -17.5]
202	525	0.155	-5.15	215	567	-0.125	-2.00	175	0.990	-	[-11.7, -10.0]
											[7.8, 9.1]
											[15.7, 35.0]
263	544	0.169	-3.46	247	497	-0.120	-2.53	187	0.994	3	[-35.0, -15.7]
											[-11.1, -10.0] [8 3 35 0]
264	443	0.156	-3.31	240	429	-0.118	-1.52	190	0.995	3	[-35.0, -15.8]
											[-10.1, -8.7]
	107					0.400	1 60	100	0.004		[7.8, 35.0]
265	427	0.135	-1.76	212	371	-0.100	-1.60	138	0.994	4	[-35.0, -15.5]
											[-9.2, -8.8] [7.0, 9.0]
											[14.5, 35.0]
266	366	0.121	-1.71	184	490	-0.112	-2.98	175	0.992	3	[-35.0, -14.8]
											[5.4, 6.2]
											[10.7, 35.0]

Table 4.(Continued.)

Galactic				Fitting c	oefficients				Correlation	Number	Fitting ranges
longitude	k_{11}	<i>k</i> ₁₂	<i>k</i> ₁₃	k_{14}	<i>k</i> ₂₁	<i>k</i> ₂₂	<i>k</i> ₂₃	<i>k</i> ₂₄	coefficient	of fitting	in galactic
(deg)	$(\times 10^2 \text{deg}^{-2})$) (deg^{-1})	(deg)	$(\times 10 \text{deg}^{-2})$	$(\times 10^2 \mathrm{deg}^{-2})$	(deg^{-1}) (deg^{-1})	(deg)	(×10 deg	⁻²)	ranges	latitude (deg)
267	436	0.159	-3.81	246	466	-0.107	-2.91	150	0.993	3	[-35.0, -13.5] [5.9, 6.4]
											[11.5, 35.0]
268	408	0.155	-4.09	255	387	-0.094	-2.18	97	0.994	4	[-35.0, -20.8]
											[-16.4, -13.5]
											[13.5, 35.0]
269	338	0.142	-3.44	265	371	-0.088	-2.90	75	0.996	4	[-35.0, -21.9]
											[-10.8, -9.8]
											[26.5, 35.0]
270	489	0.163	-1.89	325	432	-0.105	-2.01	139	0.992	3	[-32.4, -15.1]
											[-9.1, -8.4]
271	439	0.146	-1.80	246	473	-0.115	-1.55	167	0.997	3	[-25.0, -17.5]
											[-8.8, -6.1]
272	506	0 179	1 70	222	()(0.122	2 1 9	216	0.006	2	[12.0, 35.0]
212	390	0.178	-1./8	333	020	-0.132	-2.18	210	0.996	3	[-20.2, -0.1]
											[11.8, 35.0]
273	655	0.178	-1.93	314	620	-0.130	-1.83	209	0.998	3	[-25.2, -6.6]
											[5.9, 6.7]
274	683	0.163	-1.24	274	619	-0.142	-1.54	255	0.997	2	[-24.0, -6.8]
					- 10				0.007		[6.3, 35.0]
275	661	0.157	-1.11	267	710	-0.148	-1.49	259	0.996	3	[-23.8, -11.5]
											[8.0, 35.0]
276	693	0.173	-1.65	326	807	-0.145	-2.31	249	0.996	3	[-22.8, -8.6]
											[6.4, 7.1]
277	707	0.178	-1.85	351	745	-0.140	-2.07	235	0.996	3	[-22.9, -7.6]
											[6.0, 7.0]
278	732	0 184	_2 17	358	724	-0.142	_1 70	242	0 007	2	[10.6, 35.0]
278	152	0.104	-2.17	550	724	-0.142	-1.79	272	0.997	2	[-24.0, -7.5] [6.3, 35.0]
279	731	0.180	-1.80	374	697	-0.143	-1.76	255	0.997	2	[-23.5, -7.0]
280	673	0 173	1.04	356	651	0.146	0.04	240	0.008	3	[5.1, 35.0]
280	075	0.175	-1.94	550	0.51	-0.140	-0.94	249	0.998	5	[-23.0, -0.0] [4.3, 6.1]
											[20.4, 35.0]
281	647	0.144	-1.05	215	641	-0.135	-1.62	223	0.998	3	[-24.2, -7.1]
											[17.0, 35.0]
282	673	0.147	-1.29	212	685	-0.145	-1.46	248	0.998	4	[-24.5, -13.8]
											[-6.8, -5.7]
											[16.7, 35.0]
283	687	0.152	-1.45	242	679	-0.145	-1.35	255	0.998	4	[-25.6, -12.7]
											[-6.8, -5.6]
											[4.3, 5.0] [11.7, 35.0]
284	596	0.154	-2.52	239	706	-0.146	-1.06	252	0.996	4	[-25.7, -13.7]
											[-7.2, -6.7]
											[4.6, 4.7] [12.8, 35.0]
285	558	0.151	-3.07	207	543	-0.117	-1.66	174	0.995	3	[-26.2, -13.0]
											[-6.5, -6.3]

 Table 4.
 (Continued.)

Galactic				Fitting c	oefficients				Correlation	Number	Fitting ranges
longitude	<i>k</i> ₁₁	k_{12}	<i>k</i> ₁₃	k_{14}	k_{21}	<i>k</i> ₂₂	<i>k</i> ₂₃	k_{24}	coefficient	of fitting	in galactic
(deg)	$(\times 10^2 \mathrm{deg}^{-2})$	(\deg^{-1})	(deg)	$(\times 10 \text{deg}^{-2})$	$(\times 10^2 \mathrm{deg}^{-2})$	(deg^{-1})	(deg)	$(\times 10 \text{ deg}^-)$	-2)	ranges	latitude (deg)
											[8.3, 35.0]
286	565	0.128	-1.48	111	529	-0.105	-2.68	126	0.994	2	[-26.0, -11.1]
007	60.F	0.1.10	1.66	10.4	5 00	0.100	1.00	102	0.004		[6.4, 35.0]
287	605	0.142	-1.66	194	599	-0.122	-1.90	193	0.994	2	[-26.2, -10.7]
288	610	0.1/18	_1 75	230	654	_0.126	_2 23	221	0.004	3	[9.3, 33.0] [-27.0, -0.3]
200	010	0.140	1.75	239	0.0-4	0.120	2.23	221	0.774	5	[7.0, 13.6]
											[15.0, 35.0]
289	700	0.162	-1.81	310	659	-0.120	-2.08	201	0.996	4	[-35.0, -9.0]
											[7.1, 8.5]
											[16.1, 18.6]
200	600	0.154	1 66	286	730	0 131	2.00	225	0.004	4	[22.1, 35.0]
290	099	0.154	-1.00	280	750	-0.131	-2.09	235	0.994	+	[-30.0, -20.3]
											[7.8, 8.2]
											[15.5, 35.0]
291	831	0.162	-1.27	294	678	-0.135	-1.30	245	0.997	3	[-35.0, -28.1]
											[-13.8, -8.8]
202	757	0.125	0.57	228	757	0.146	0.57	229	0.005	4	[12.3, 35.0]
292	151	0.135	-0.57	238	/5/	-0.146	-0.57	238	0.995	4	$\begin{bmatrix} -35.0, -2/.1 \end{bmatrix}$
											[-14.0, -9.1] [11 1 15 4]
											[20.4, 35.0]
293	765	0.135	-0.49	238	816	-0.148	-1.08	281	0.996	4	[-35.0, -26.5]
											[-23.2, -21.9]
											[-8.8, -8.1]
204	740	0 160	1.60	205	000	0.147	1 57	280	0.008	4	[9.7, 35.0]
294	740	0.100	-1.09	505	909	-0.147	-1.37	289	0.998	4	[-33.0, -27.3] [-22.6, -20.5]
											[-12.5, -7.6]
											[10.7, 35.0]
295	704	0.135	-0.82	263	665	-0.134	-0.27	272	0.997	4	[-35.0, -29.9]
											[-22.2, -20.5]
											[-9.4, -8.6]
296	673	0.120	-0.20	223	648	-0.130	-0.18	266	0 998	4	[-35.0, -29.1]
270	075	0.120	0.20	223	010	0.120	0.10	200	0.770	·	[-20.9, -18.9]
											[-6.2, -5.7]
											[7.6, 35.0]
297	651	0.115	-0.16	194	661	-0.129	-0.11	264	0.997	3	[-35.0, -19.7]
											[-6./, -5./]
298	653	0 1 1 7	-0.22	205	638	-0.127	-0.05	267	0 997	3	[-35.0] -20.11
270	000	0.117	0.22	200	050	0.127	0.05	207	0.777	5	[-6.8, -5.9]
											[7.3, 35.0]
299	602	0.104	0.99	177	462	-0.125	2.37	271	0.995	4	[-35.0, -25.8]
											[-20.8, -18.9]
											[8.7, 9.1]
300	542	0.082	3 91	80	606	-0.136	1 34	299	0.995	3	[9.3, 55.0] [-35.0, -25.4]
200	512	0.002	5.71	00	000	0.120	1.01	277	0.775	5	[-16.4, -15.7]
											[9.0, 35.0]
301	651	0.096	1.80	112	636	-0.148	1.95	333	0.995	2	[-35.0, -25.9]
202		0.007	0.11			0.1.10			0.001		[8.6, 35.0]
302	552	0.097	0.46	144	676	-0.140	1.42	308	0.994	4	[-35.0, -22.9]
											[-10.4, -9.8] [9.0, 9.5]
											[14.8, 35.0]
											- 7

Table 4. (Continued.)

Galactic				Fitting c	coefficients				Correlation	Number	Fitting ranges
longitude (deg)	$\frac{k_{11}}{(\times 10^2 \mathrm{deg}^{-2})}$	k_{12} (deg ⁻¹)	<i>k</i> ₁₃ (deg)	$\frac{k_{14}}{(\times 10 \deg^{-2})}$	$k_{21} \times 10^2 \mathrm{deg}^{-2}$	k_{22} 2) (deg ⁻¹)	<i>k</i> ₂₃ (deg)	k_{24} (×10 deg	coefficient	of fitting ranges	in galactic latitude (deg)
303	552	0.103	-0.54	172	582	-0.113	-0.14	241	0.997	4	[-35.0, -24.2]
304	563	0.103	-1.18	148	613	-0.100	-1.68	177	0.997	4	$\begin{bmatrix} -12.2, -10.1 \end{bmatrix}$ [6.0, 6.8] [13.4, 35.0] [-35.0, -26.4] [-12.7, -11.4] [5.7, 6.4]
305	574	0.107	-2.31	138	599	-0.093	-1.71	116	0.996	4	[17.4, 35.0] [-35.0, -24.2] [-12.8, -12.1] [60, 68]
306	574	0.108	-2.22	148	556	-0.087	-1.81	76	0.994	4	[19.5, 35.0] [-35.0, -25.4] [-13.4, -12.8] [14.8, 18, 1]
307	619	0.101	-0.79	112	602	-0.088	-2.79	97	0.996	4	[20.7, 35.0] [-35.0, -23.8] [-15.8, -12.4] [10.7, 17.6]
308	691	0.114	-1.47	167	664	-0.100	-1.30	146	0.997	4	[21.1, 35.0] [-35.0, -24.6] [-16.2, -14.0] [11.3, 17.1]
309	725	0.122	-1.94	198	712	-0.100	-0.59	113	0.997	4	[20.8, 35.0] [-35.0, -26.8] [-16.5, -11.4] [11.3, 12.9]
310	960	0.135	-1.02	236	887	-0.105	-1.71	127	0.998	4	$\begin{array}{l} [21.1, 35.0] \\ [-35.0, -25.1] \\ [-16.6, -11.7] \\ [11.0, 17.5] \end{array}$
311	852	0.131	-1.50	247	873	-0.102	-1.73	126	0.998	4	$\begin{bmatrix} 24.5, 35.0 \\ [-35.0, -31.5] \\ [-16.6, -11.4] \\ [12.4, 15.2] \end{bmatrix}$
312	744	0.120	-1.85	204	811	-0.109	-0.80	202	0.997	5	$\begin{bmatrix} 20.7, 35.0 \\ [-35.0, -30.5] \\ [-18.2, -11.5] \\ [6.1, 6.4] \\ [13.0, 17.8] \end{bmatrix}$
313	859	0.123	-1.31	198	801	-0.099	-1.24	123	0.997	4	$ \begin{bmatrix} 20.7, 35.0 \\ -35.0, -30.3 \end{bmatrix} \\ \begin{bmatrix} -18.8, -10.8 \\ 4.7, 5.1 \end{bmatrix} $
314	852	0.125	-1.90	168	779	-0.093	-2.19	98	0.996	4	[15.4, 35.0] [-35.0, -24.2] [-19.9, -10.3] [4.6, 5.1]
315	806	0.128	-2.60	240	781	-0.086	-2.63	-12	0.997	4	[11.5, 35.0] [-35.0, -30.9] [-20.1, -13.0] [-10.8, -9.6] [110.2, -9.6] [11
316	779	0.130	-2.95	265	852	-0.097	-1.76	66	0.997	4	[10.3, 35.0] [-35.0, -30.9] [-20.1, -13.5] [-10.5, -10.0]
317	878	0.133	-2.26	292	878	-0.099	-1.97	92	0.998	3	[10.6, 35.0] [-35.0, -29.9]

 Table 4.
 (Continued.)

Galactic				Fitting c	oefficients				Correlation	Number	Fitting ranges
longitude	<i>k</i> ₁₁	<i>k</i> ₁₂	<i>k</i> ₁₃	<i>k</i> ₁₄	<i>k</i> ₂₁	<i>k</i> ₂₂	<i>k</i> ₂₃	<i>k</i> ₂₄	coefficient	of fitting	in galactic
(deg)	$(\times 10^2 \mathrm{deg}^{-2})$	(\deg^{-1})	(deg)	$(\times 10 \text{deg}^{-2})$	$(\times 10^2 \mathrm{deg}^{-2})$	(\deg^{-1})	(deg)	$(\times 10 \text{ deg})$	-2)	ranges	latitude (deg)
318	807	0.115	-1.60	215	946	-0.108	-1.50	164	0.997	4	[-19.6, -10.1] [10.8, 35.0] [-35.0, -32.2] [-22.0, -7.8]
319	905	0.119	-1.14	217	879	-0.108	-0.85	174	0.998	3	$[11.0, 11.7] \\ [15.4, 35.0] \\ [-35.0, -7.8] \\ [12.7, 17.6] \\ [22.4, 25.0] \\ \end{tabular}$
320	921	0.121	-1.30	223	886	-0.105	-1.30	158	0.997	2	[-35.0, -7.7]
321	917	0.129	-2.14	276	960	-0.102	-2.56	150	0.998	2	[-35.0, -8.3]
322	918	0.128	-2.27	274	951	-0.107	-1.77	190	0.998	2	[11.1, 35.0] [-35.0, -8.6]
323	952	0.125	-1.89	259	1038	-0.118	-1.17	265	0.998	2	[10.4, 35.0] [-35.0, -8.6]
324	1034	0.123	-1.14	256	986	-0.108	-1.59	193	0.998	3	[10.0, 35.0] [-35.0, -8.4]
325	999	0.116	-0.91	212	980	-0.107	-1.12	165	0.998	3	$[9.4, 10.4] \\ [16.2, 35.0] \\ [-35.0, -8.8] \\ [10.8, 12.5] $
326	987	0.116	-1.25	204	1001	-0.106	-0.87	134	0.997	3	[16.0, 35.0] [-35.0, -12.5] [-9.7, -9.0] [10.6, 25.0]
327	1047	0.120	-1.34	213	984	-0.097	-1.29	42	0.996	2	[10.6, 35.0] [-35.0, -12.0]
328	1294	0.117	0.61	185	1355	-0.129	0.09	235	0.996	2	[10.1, 35.0] [-35.0, -11.5]
329	1222	0.101	1.90	43	1427	-0.130	0.02	218	0.995	2	[13.0, 35.0] [-35.0, -9.8]
330	1245	0.107	1.04	70	1171	-0.122	1.49	144	0.997	3	[12.4, 35.0] [-35.0, -9.7] [13.5, 16.0]
331	1229	0.103	1.14	14	1328	-0.134	1.59	176	0.996	3	$\begin{bmatrix} 13.3, 10.9 \end{bmatrix}$ $\begin{bmatrix} 26.6, 35.0 \end{bmatrix}$ $\begin{bmatrix} -35.0, -9.0 \end{bmatrix}$ $\begin{bmatrix} 13.4, 17.3 \end{bmatrix}$ $\begin{bmatrix} 22.0, 35.0 \end{bmatrix}$
332	1331	0.116	0.37	115	1496	-0.141	0.36	233	0.996	3	[-35.0, -10.6] [12.3, 14.6]
333	1517	0.129	0.18	204	1107	-0.131	-0.73	268	0.996	3	$\begin{bmatrix} 24.9, 35.0 \\ [-35.0, -11.5] \\ [8.3, 8.5] \\ \begin{bmatrix} 28.1, 25, 0 \\ 25, 0 \end{bmatrix}$
334	1220	0.130	-1.43	230	1163	-0.128	-1.87	273	0.995	3	[28.1, 55.0] [-35.0, -12.0] [10.0, 10.2]
335	950	0.098	-0.28	56	984	-0.127	-0.57	250	0.999	3	$\begin{matrix} [25.5, 35.0] \\ [-35.0, -26.4] \\ [-18.1, -14.0] \end{matrix}$
336	913	0.107	-0.78	200	874	-0.098	-0.29	56	0.999	3	$\begin{bmatrix} -6.1, -5.4 \\ [-35.0, -27.8] \\ [-19.5, -16.8] \end{bmatrix}$
337	968	0.120	-1.46	279	908	-0.111	-0.83	200	0.999	3	[-6.0, -5.0] [-35.0, -29.1] [-18.6, -15.8]
338	1024	0.129	-1.97	311	966	-0.121	-1.47	279	0.999	3	$\begin{bmatrix} -8.1, -7.4 \\ [-35.0, -30.1] \\ [-20.6, -15.8] \end{bmatrix}$

Table 4. (Continued.)

Galactic				Fitting c	coefficients				Correlation	Number	Fitting ranges
longitude	k_{11}	<i>k</i> ₁₂	<i>k</i> ₁₃	k ₁₄	<i>k</i> ₂₁	k ₂₂	<i>k</i> ₂₃	<i>k</i> ₂₄	coefficient	of fitting	in galactic
(deg)	$(\times 10^2 \text{ deg}^{-2}$	(deg^{-1})	(deg)	$(\times 10 \text{deg}^{-2})$	$(\times 10^2 \text{deg}^{-2}$	$^{2}) (deg^{-1})$	(deg)	(×10 deg	⁻²)	ranges	latitude (deg)
339	1046	0.130	-2.14	292	1054	-0.117	-2.20	299	0.999	3	$\begin{bmatrix} -7.7, -7.4 \\ [-35.0, -32.5] \\ [-21.1, -16.2] \end{bmatrix}$
340	999	0.121	-1.78	264	1046	-0.112	-2.13	292	0.998	2	[-7.8, -7.1] [-35.0, -16.4]
341	953	0.108	-1.31	173	1003	-0.114	-1.73	264	0.998	2	[-7.4, -0.7] [-35.0, -14.8]
342	887	0.101	-0.91	148	1048	-0.113	-2.20	290	0.998	2	[-35.0, -16.1]
343	1049	0.112	-0.75	237	1335	-0.139	0.81	263	0.997	3	[-0.2, -0.0] [-35.0, -15.8] [17.2, 18.8] [27.8, 25.0]
344	1024	0.114	-1.31	245	1154	-0.120	-0.26	185	0.997	3	[27.8, 55.0] [-35.0, -15.1] [18.9, 21.3]
345	768	0.112	-4.15	216	989	-0.101	-1.59	82	0.997	4	$\begin{bmatrix} 27.2, 35.0 \end{bmatrix} \\ \begin{bmatrix} -35.0, -15.2 \end{bmatrix} \\ \begin{bmatrix} 18.2, 21.2 \end{bmatrix} \\ \begin{bmatrix} 28.2, 28.3 \end{bmatrix}$
346	1027	0.112	-2.07	175	1126	-0.122	-0.66	219	0.995	4	$\begin{bmatrix} 28.5, 35.0 \\ [-35.0, -21.1] \\ [-16.2, -15.0] \\ [19.9, 23.2] \end{bmatrix}$
347	1267	0.121	-1.68	189	1149	-0.113	-1.06	167	0.997	4	[28.8, 35.0] [-35.0, -26.9] [-17.1, -15.2] [19.4, 22.2]
348	1334	0.129	-2.37	214	1141	-0.096	-2.64	29	0.998	4	[27.6, 35.0] [-35.0, -26.9] [-17.5, -15.8] [19.2, 20.6]
349	1227	0.132	-3.48	232	1333	-0.108	-2.06	96	0.998	4	[28.8, 35.0] [-35.0, -15.5] [19.1, 20.8] [27.9, 28.2]
350	1195	0.142	-4.60	277	1211	-0.094	-3.70	21	0.998	3	$\begin{bmatrix} 28.8, 35.0 \\ [-35.0, -15.5] \\ [20.2, 20.8] \\ [27.2, 25.0] \end{bmatrix}$
351	1277	0.146	-4.41	293	1180	-0.090	-4.83	10	0.998	3	[27.3, 35.0] [-35.0, -15.4] [21.1, 21.6]
352	1203	0.151	-5.20	320	1202	-0.097	-4.70	82	0.998	3	[27.2, 55.0] [-35.0, -15.5] [21.1, 21.6] [26.8, 25.0]
353	1191	0.148	-4.90	317	2056	-0.148	-0.41	236	0.997	3	[20.8, 55.0] [-35.0, -14.8] [23.5, 24.3]
354	2774	0.152	0.37	331	2441	-0.158	-0.62	265	0.997	3	[28.5, 55.0] [-35.0, -15.2] [19.7, 19.8] [27.6, 35.0]
355	2945	0.176	-1.96	381	1056	-0.097	-5.27	134	0.996	3	[-35.0, -17.7] [12.1, 12.4] [28.1, 35.0]
356	1345	0.192	-7.54	405	1298	-0.103	-6.31	152	0.996	4	$\begin{bmatrix} -35.0, -17.4 \end{bmatrix}$ $\begin{bmatrix} 13.0, 13.2 \end{bmatrix}$ $\begin{bmatrix} 28.1, 28.2 \end{bmatrix}$ $\begin{bmatrix} 30.5, 35.0 \end{bmatrix}$

 Table 4.
 (Continued.)

Galactic				Fitting c	oefficients				Correlation	Number	Fitting ranges
longitude	<i>k</i> ₁₁	<i>k</i> ₁₂	<i>k</i> ₁₃	<i>k</i> ₁₄	<i>k</i> ₂₁	k ₂₂	<i>k</i> ₂₃	k ₂₄	coefficient	of fitting	in galactic
(deg)	$(\times 10^2 \mathrm{deg}^{-2})$	(\deg^{-1})	(deg)	$(\times 10 \text{ deg}^{-2})$	$(\times 10^2 \text{ deg}^{-2})$	(\deg^{-1})	(deg)	$(\times 10 \text{deg}^{-2})$)	ranges	latitude (deg)
357	1378	0.188	-7.19	382	1020	-0.078	-10.56	30	0.997	3	[-35.0, -17.1]
											[17.7, 17.9]
358	876	0.184	-9.29	372	1081	-0.096	-7.02	137	0.992	3	[-35.0, -17.4]
											[12.5, 13.1]
359	1303	0.151	-3.68	335	1816	-0.152	-1.20	270	0.978	4	[28.3, 35.0] [-35.0, -27.5]
											[-16.9, -16.5]
											[12.4, 12.5]
0	2268	0 177	-2.80	384	2113	-0.173	-0.44	311	0 993	5	[27.9, 35.0] [-35.0, -23.6]
0	2200	0.177	2.00	504	2115	0.175	0.77	511	0.775	5	[-16.8, -16.4]
											[12.5, 13.4]
											[25.6, 26.2]
1	2519	0.194	-3.58	419	2272	-0.175	0.12	299	0.996	4	[-35.0, -24.2]
											[-17.5, -17.0]
											[12.7, 13.4]
2	2417	0 173	-3.04	351	3537	-0.147	-4 85	243	0 997	4	[26.8, 35.0] [-35.0, -28.1]
2	2717	0.175	5.04	551	5551	0.147	7.05	245	0.777	-	[-20.3, -19.5]
											[13.1, 13.4]
3	2762	0 170	3 15	350	2583	0 141	2 65	207	0.008	4	[29.9, 35.0]
5	2702	0.179	-5.15	350	2303	-0.141	-2.03	207	0.998	4	[-19.6, -18.7]
											[13.3, 13.6]
4	2225	0.146	1.00	254	0025	0.162	1.02	254	0.000	4	[29.3, 35.0]
4	2235	0.146	-1.23	254	2235	-0.163	-1.23	254	0.998	4	[-35.0, -29.8] [-19.6, -16.0]
											[15.2, 15.6]
-			~			0.4.60					[28.9, 35.0]
5	2637	0.167	-2.44	316	2797	-0.169	0.38	240	0.997	3	[-35.0, -15.4]
											[28.3, 35.0]
6	3465	0.168	-0.92	327	3403	-0.173	-0.92	245	0.998	3	[-35.0, -15.0]
											[10.7, 10.9]
7	3038	0.155	-0.28	286	3573	-0.183	-0.72	262	0.998	3	[-35.0, -15.1]
											[10.6, 11.1]
0	2600	0.127	1 1 4	212	2799	0 172	0 (7	260	0.007	2	[27.2, 35.0]
8	2000	0.137	1.14	212	2788	-0.175	-0.07	209	0.997	3	[-35.0, -15.2] [9.6, 10.1]
											[27.5, 35.0]
9	2178	0.132	0.87	182	2070	-0.161	-0.31	269	0.996	3	[-35.0, -15.7]
											[9.3, 9.7]
10	1434	0.125	-1.27	154	2067	-0.159	-1.20	281	0.997	3	[-35.0, -15.4]
											[9.0, 9.5]
11	1607	0.127	0.06	18/	2026	0.210	1 10	360	0.007	3	[28.8, 35.0]
11	1097	0.127	0.00	104	2020	-0.210	1.10	500	0.997	5	[9.3, 9.7]
											[28.3, 35.0]
12	3463	0.168	0.13	344	1672	-0.141	-3.60	300	0.993	3	[-35.0, -18.5]
											[9.8, 10.4] [31.0, 35.0]
13	2015	0.190	-4.79	394	1753	-0.147	-3.92	336	0.990	3	[-35.0, -18.1]
											[10.4, 10.7]
											[30.1, 35.0]

 Table 4.
 (Continued.)

Galactic				Fitting c	oefficients				Correlation	Number	Fitting ranges
longitude	k_{11}	k_{12}	<i>k</i> ₁₃	k_{14}	k_{21}	k ₂₂	k ₂₃	<i>k</i> ₂₄	coefficient	of fitting	in galactic
(deg)	$(\times 10^2deg^{-2})$	(deg^{-1})	(deg)	$(\times 10 deg^{-2})$	$(\times 10^2 \text{ deg}^-$	²) (deg^{-1})	(deg)	$(\times 10 \text{ deg}^-$	²)	ranges	latitude (deg)
14	1840	0.177	-4.41	357	1997	-0.148	-4.83	394	0.995	1	[-35.0, -17.1]
15	1838	0.173	-4.27	342	1858	-0.148	-4.33	357	0.996	1	[-35.0, -17.1]
16	1857	0.177	-4.32	363	1839	-0.147	-4.27	342	0.996	1	[-35.0, -16.4]
17	1578	0.161	-3.46	342	1854	-0.147	-4.33	363	0.996	1	[-35.0, -16.8]
18	1629	0.166	-3.47	363	1603	-0.147	-3.37	342	0.995	1	[-35.0, -17.1]
19	1670	0.173	-3.65	385	1675	-0.128	-3.67	271	0.992	1	[-35.0, -16.5]
20	1717	0.180	-3.85	402	1664	-0.145	-3.67	385	0.989	1	[-35.0, -16.2]
21	1834	0.193	-4.26	422	1711	-0.145	-3.87	402	0.986	1	[-35.0, -16.5]
22	3009	0.281	-7.03	504	2388	-0.161	-6.03	482	0.981	1	[-35.0, -18.7]
23	2543	0.276	-6.79	516	2870	-0.176	-7.20	504	0.974	1	[-35.0, -18.9]
24	1259	0.194	-4.25	480	2612	-0.176	-6.67	516	0.981	1	[-35.0, -17.1]
25	1134	0.163	-2.12	446	1475	-0.174	-3.43	480	0.974	1	[-35.0, -16.4]
26	859	0.124	-0.25	341	1152	-0.164	-2.00	446	0.985	1	[-35.0, -16.8]
27	718	0.102	1.11	247	731	-0.141	0.93	257	0.988	1	[-35.0, -14.5]
28	633	0.088	2.26	164	715	-0.140	1 10	247	0.989	2	[-350, -137]
20	055	0.000	2.20	101	/15	0.110	1.10	217	0.909	2	[-92 - 87]
29	673	0.097	1 53	221	673	-0.155	1 53	230	0.992	2	[-35.0, -19.9]
2)	075	0.077	1.55	221	075	0.155	1.55	250	0.772	2	$\begin{bmatrix} -10.8 & -10.0 \end{bmatrix}$
30	652	0.005	1.85	221	673	-0.148	1 53	221	0.005	2	[-10.0, -10.0]
50	052	0.095	1.05	221	075	-0.140	1.55	221	0.995	2	$\begin{bmatrix} -35.0, -17.0 \end{bmatrix}$
31	640	0.007	1 88	252	647	0.147	1 77	221	0.002	2	[-10.3, -9.7]
51	040	0.097	1.00	232	047	-0.147	1.//	221	0.992	2	[-33.0, -18.3]
32	756	0.110	0.13	377	637	0.184	1.83	252	0.077	1	$\begin{bmatrix} -10.3, -10.0 \end{bmatrix}$
22	200	0.119	0.13	322	706	-0.184	0.57	232	0.977	1	[-35.0, -10.1]
34	812	0.120	0.43	319	790	-0.188	0.57	322	0.978	1	[-35.0, -18.4]
35	808	0.120	0.47	348					0.970	2	[-35.0, -16.7]
55	808	0.120	0.51	340	•••				0.991	2	[-33.0, -13.3]
26	708	0.112	0.56	226					0.007	2	[-0.0, -0.0]
50	/90	0.115	0.50	230	•••				0.997	2	[-33.0, -19.9]
27	802	0.114	0.57	221					0.001	2	[-9.4, -0.5]
57	805	0.114	0.57	251	•••			•••	0.991	Z	[-33.0, -19.3]
20	778	0.002	1.22	67					0.007	2	$\begin{bmatrix} -0.4, -0.1 \end{bmatrix}$
20	120	0.095	1.22	07	•••				0.997	3	[-33.0, -27.0]
											[-6.2, -6.0]
20	701	0.006	0.24	16					0.008	2	[-0.7, -0.4]
39	/91	0.090	0.24	10	•••				0.998	2	[-33.0, -26.1]
40	870	0.116	0.15	152					0.000	2	[-0.7, -0.4]
40	870	0.110	-0.13	155	•••			•••	0.999	Z	[-33.0, -22.1]
41	055	0.116	0.22	160					0.007	2	[-7.1, -0.0]
41	833	0.110	0.25	102	•••			•••	0.997	Z	[-33.0, -23.2]
42	708	0.102	1 22	126					0.082	1	[-7.8, -7.0]
42	708	0.105	1.23	150	•••			•••	0.985	1	[-33.0, -19.7]
45	125	0.108	1.05	138	•••			•••	0.993	1	[-33.0, -11.3]
44	115	0.119	0.43	194	•••				0.994	1	[-33.0, -13.7]
43 14	520	0.099	1.82	115	•••				0.992	1	$\begin{bmatrix} -33.0, -13.1 \end{bmatrix}$
40	38U 500	0.082	2.93	25	•••				0.990	1	[-33.0, -1/.1]
4/	390 710	0.090	2.08	95	•••				0.983	1	[-35.0, -18.5]
48	/10	0.112	0.35	182	•••				0.980	1	[-35.0, -20.1]
49 50	1110	0.130	-2.33	250	•••				0.973	1	[-35.0, -22.5]
50	1557	0.180	-3./0	210	•••				0.95/	1	[-35.0, -22.7]
51	2070	0.232	-0.50	314 222	•••			•••	0.910	1	[-33.0, -23.1]
52	1806	0.290	- 7.96	323	•••			•••	0.830	1	[-33.0, -26.6]

 Table 5.
 Background stellar density for XV plates.

Galactic				Fitting c	oefficients				Correlation	Number	Fitting ranges
longitude	k ₁₁	<i>k</i> ₁₂	<i>k</i> ₁₃	k_{14}	<i>k</i> ₂₁	<i>k</i> ₂₂	<i>k</i> ₂₃	k_{24}	coefficient	of fitting	in galactic
(deg)	$(\times 10^2 deg^{-2})$	(\deg^{-1})	(deg)	$(\times 10 \text{deg}^{-2})$	$(\times 10^2 deg^{-2})$	(deg^{-1})	(deg)	$(\times 10 \text{ deg}^{-2})$		ranges	latitude (deg)
243	254	0.389	-1.13	248	254	-0.294	_1 13	248			
244	254	0.389	-1.13	248	254	-0.294	-1.13	248			
245	254	0.389	-1.13	248	254	-0.264	-1.13	248			
246	254	0.389	-1.13	248	254	-0.264	-1.13	248			
247	254	0.389	-1.13	248	254	-0.264	-1.13	248			
248	254	0.389	-1.13	248	254	-0.290	-1.13	248		•••	•••
249	254	0.385	-1.13	248	254	-0.305	-1.13	248			
250	254	0.385	-1.13	248	254	-0.305	-1.13	248		•••	
251	254	0.339	-1.13	248	254	-0.305	-1.13	248			•••
252	254	0.339	-1.13	248	254	-0.305	-1.13	248			
253	254	0.339	-1.13	248	254	-0.305	-1.13	248	•••	•••	•••
254	254	0.339	-1.15	248	254	-0.505	-1.15	248		•••	
255	254	0.339	-1.13	248	254	-0.303 -0.270	-1.13	248			
250	255	0.207	_1.15	248	255	-0.270	_1.15	248			
266	273	0.276	-2.00	248	273	-0.248	-2.00	248			
267	273	0.276	-2.00	248	273	-0.248	-2.00	248			
268	273	0.276	-2.00	248	273	-0.248	-2.00	248			
269	273	0.276	-2.00	248	273	-0.248	-2.00	248			
270	273	0.276	-2.00	248	273	-0.248	-2.00	248			
271	273	0.276	-2.00	248	273	-0.248	-2.00	248			
272	273	0.276	-1.99	248	273	-0.248	-1.99	248			
273	267	0.266	-1.27	248	267	-0.264	-1.27	248			•••
276	267	0.266	-1.27	248	267	-0.264	-1.27	248			
277	267	0.266	-1.27	248	267	-0.264	-1.27	248	•••	•••	
278	267	0.266	-1.27	248	267	-0.264	-1.27	248			•••
279	267	0.266	-1.27	248	267	-0.264	-1.27	248	•••		•••
280	207	0.200	-1.27 -1.27	248 248	267	-0.204 -0.267	-1.27 -1.27	248 248			
281	267	0.200	-1.27	248	267	-0.207 -0.231	-1.27	248			
283	267	0.266	-1.27	248	267	-0.214	-1.27	248			
284	278	0.216	-1.28	147	278	-0.217	-1.28	147			
285	306	0.231	-1.28	139	306	-0.224	-1.28	139			
286	297	0.215	-0.71	139	297	-0.199	-0.71	139			
287	296	0.233	-1.57	139	296	-0.173	-1.57	139			
288	290	0.214	-0.85	139	290	-0.184	-0.85	139			
289	306	0.210	-0.43	139	306	-0.196	-0.43	139			
290	306	0.208	-0.43	139	306	-0.196	-0.43	139		• • •	•••
291	273	0.202	-0.71	139	273	-0.179	-0.71	139	•••	•••	
292	297	0.216	-1.00	139	297	-0.182	-1.00	139		• • •	•••
293	312	0.227	-1.85	139	312	-0.1/6	-1.85	139	•••		•••
294	207	0.202	-0.83	139	303 207	-0.191	-0.83	139		•••	
295	297	0.221 0.224	-0.57	139	297	-0.188 -0.220	-0.57	139			
297	295	0.224 0.259	-1.57	139	295	-0.226	-1.57	139			
298	295	0.263	-1.57	139	295	-0.242	-1.57	139			
299	285	0.244	-1.43	139	285	-0.236	-1.43	139			
300	285	0.229	-1.43	139	285	-0.236	-1.43	139			
301	286	0.229	-1.42	139	286	-0.217	-1.42	139			
302	278	0.210	-0.71	139	278	-0.229	-0.71	139			
303	267	0.202	-0.57	139	267	-0.220	-0.57	139			
304	291	0.217	-0.85	139	291	-0.240	-0.85	139			•••
305	297	0.213	-0.57	139	297	-0.223	-0.57	139	•••		
306	297	0.230	0.14	215	297	-0.288	0.14	215			•••
307	291	0.245	-0.14	215	291	-0.278	-0.14	215			•••
308 300	∠00 266	0.242	-1.2/	215 215	∠00 266	-0.222	-1.2/	215 215	•••	•••	
310	252	0.242	-0.71	215	252	-0.241	-0.71	215			••••

Table 5. (Continued.)

Galactic				Fitting c	pefficients				Correlation	Number	Fitting ranges
longitude	k ₁₁	<i>k</i> ₁₂	<i>k</i> ₁₃	k_{14}	<i>k</i> ₂₁	<i>k</i> ₂₂	<i>k</i> ₂₃	k_{24}	coefficient	of fitting	in galactic
(deg)	$(\times 10^2 deg^{-2})$	(\deg^{-1})	(deg)	$(\times 10 \text{deg}^{-2})$	$(\times 10^2 deg^{-2})$	(deg^{-1})	(deg)	$(\times 10 deg^{-2})$		ranges	latitude (deg)
311	254	0.169	-0.14	139	254	-0.227	-0.14	139			
312	276	0.178	-0.29	139	276	-0.219	-0.29	139			
313	291	0.180	-0.57	139	291	-0.217	-0.57	139			
314	306	0.184	-0.87	158	306	-0.200	-0.87	158			
315	306	0.179	-0.87	158	306	-0.161	-0.87	158			
316	306	0.176	-0.87	158	306	-0.161	-0.87	158			•••
317	312	0.175	-0.87	102	312	-0.161	-0.87	102		•••	•••
318	312	0.190	-0.87	102	312	-0.154	-0.87	102			•••
319	312	0.156	-0.87	102	312	-0.147	-0.87	102			•••
320	312	0.162	-0.87	102	312	-0.147	-0.87	102			•••
321	312	0.156	-0.87	102	312	-0.147	-0.87	102			•••
322	312	0.156	-0.87	102	312	-0.142	-0.87	102			•••
323	312	0.156	-0.87	102	312	-0.142	-0.87	102			•••
324	312	0.153	-0.87	102	312	-0.142	-0.87	102			•••
325	312	0.147	-0.85	102	312	-0.141	-0.85	102		•••	
326	288	0.145	-1.14	102	288	-0.139	-1.14	102		•••	
327	348	0.158	-0.43	102	348	-0.159	-0.43	102			•••
328	369	0.154	0.14	102	369	-0.192	0.14	102			•••
329	372	0.137	1.28	102	372	-0.178	1.28	102			•••
330	408	0.152	0.71	102	408	-0.177	0.71	102			•••
331	381	0.155	0.13	102	381	-0.159	0.13	102			•••
332	369	0.148	0.43	102	369	-0.162	0.43	102			•••
333	338	0.144	0.28	102	338	-0.148	0.28	102			•••
334	323	0.126	-0.57	-49	323	-0.115	-0.57	-49			•••
335	323	0.154	0.28	233	323	-0.168	0.28	233			•••
336	333	0.184	-1.42	233	333	-0.167	-1.42	233			•••
337	372	0.197	-1.57	233	372	-0.177	-1.57	233			•••
338	396	0.177	0.43	233	396	-0.218	0.43	233	0.962	1	[-14.2, -8.8]
339	464	0.295	-2.22	443	439	-0.197	-2.00	308	0.993	2	[-13.6, -12.5]
340	440	0.236	-1.99	308	440	-0.186	-1.99	308	0.992	2	[-9.4, -8.1] [-13.1, -12.1]
0.10		0.200		200		01100	1000	200	0.772	-	[-9.7, -8.3]
341	516	0.256	-2.09	308	398	-0.200	-0.71	301	0.985	1	[-15.6, -9.0]
342	563	0.255	-1.88	316	459	-0.200	-0.90	229	0.986	1	[-15.6, -9.8]
343	460	0.191	-0.88	229	470	-0.198	-1.00	212	0.989	1	[-15.6, -9.6]
344	470	0.188	-1.00	212	470	-0.199	-1.00	212	0.977	1	[-14.8, -10.6]
345	505	0.194	-0.93	212	562	-0.208	-1.42	215	0.968	1	[-13.8, -9.3]
346	605	0.198	-0.57	215	605	-0.203	-0.57	215	0.967	1	[-14.9, -10.1]
347	598	0.207	-0.57	290	598	-0.238	-0.57	290	0.929	1	[-14.1, -10.7]
348	617	0.232	-0.76	427	541	-0.237	-0.13	320	0.963	1	[-14.5, -10.6]
349	542	0.188	-0.14	320	542	-0.212	-0.14	320	0.979	2	[-15.1, -7.8]
											[10.1, 10.9]
350	738	0.199	0.53	320	738	-0.257	0.53	320	0.977	2	[-14.1, -7.1]
											[9.7, 15.1]
351	909	0.225	0.01	344	687	-0.201	1.57	-174	0.985	1	[-14.9, -9.7]
352	745	0.131	2.10	-174	878	-0.233	1.13	85	0.996	1	[-15.5, -6.4]
353	882	0.171	1.14	85	1011	-0.238	0.47	228	0.997	1	[-17.1, -6.4]
354	1005	0.204	0.42	228	1120	-0.224	-0.03	333	0.998	1	[-17.5, -6.6]
355	1115	0.232	-0.06	333	1204	-0.227	-0.37	370	0.998	1	[-17.5, -6.3]
356	1208	0.247	-0.35	370	1193	-0.226	-0.30	319	0.998	1	[-17.4, -5.6]
357	1196	0.235	-0.29	319	1091	-0.225	0.17	150	0.997	1	[-17.5, -6.6]
358	1095	0.198	0.18	150	1058	-0.218	0.37	15	0.998	1	[-16.8, -6.4]
359	1204	0.299	-2.26	487	1020	-0.224	-1.57	362	0.996	1	[-16.2, -7.8]
0	1193	0.225	-0.71	270	1193	-0.252	-0.71	270	0.989	2	[-15.8, -8.7]
											[9.7, 10.2]
1	1052	0.180	0.32	15	1207	-0.240	-0.29	276	0.996	1	[-15.5, -6.7]
2	1226	0.292	-2.40	450	1190	-0.245	-2.30	487	0.998	1	[-17.2, -6.4]
3	1225	0.284	-2.30	469	1175	-0.202	-2.14	226	0.997	1	[-15.9, -6.1]

Table 5. (Continued.)

Galactic				Fitting c	coefficients				Correlation	Number	Fitting ranges
longitude	k_{11}	k_{12}	<i>k</i> ₁₃	k_{14}	k_{21}	<i>k</i> ₂₂	<i>k</i> ₂₃	k_{24}	coefficient	of fitting	in galactic
(deg)	$(\times 10^2 deg^{-2})$	(deg^{-1})	(deg)	$(\times 10 deg^{-2})$	$(\times 10^2 \text{deg}^{-2})$	(deg^{-1})	(deg)	$(\times 10 deg^{-2})$		ranges	latitude (deg)
4	1094	0.247	-2.04	326	1204	-0.228	-2.37	469	0.998	1	[-16.6, -6.0]
5	1173	0.283	-2.17	503	1113	-0.202	-1.97	326	0.996	1	[-15.9, -6.8]
6	1092	0.300	-2.57	544	1178	-0.243	-2.80	668	0.993	2	[-15.8, -10.7]
											[-8.5, -6.8]
7	1202	0.371	-2.75	681	1108	-0.214	-2.50	544	0.992	2	[-14.8, -11.3]
0	0.40	0.000	1.45	214	010	0.1.00	1 07	07	0.004		[-8.2, -6.8]
8	948	0.232	-1.45	216	912	-0.169	-1.27	97	0.994	2	[-14.6, -10.6]
								4 - -	0.00 .		[-7.7, -6.8]
9	1116	0.275	-1.27	352	1120	-0.232	-1.28	407	0.995	2	[-15.5, -10.6]
10			0.60		10.51						[-7.8, -6.8]
10	994	0.240	-0.60	388	1061	-0.241	-0.85	455	0.999	2	[-16.6, -15.2]
											[-8.5, -8.0]
11	963	0.233	0.18	404	839	-0.253	0.93	248	0.996	2	[-16.1, -11.8]
											[-8.4, -6.0]
12	843	0.199	0.88	329	978	-0.274	0.27	404	0.997	2	[-16.5, -10.8]
											[-6.2, -5.9]
13	696	0.173	1.06	246	744	-0.264	0.71	329	0.997	2	[-16.2, -11.4]
											[-6.7, -5.6]
14	807	0.264	-1.31	464	702	-0.231	-0.71	246	0.978	1	[-15.9, -10.0]
15	707	0.229	-0.71	464	707	-0.265	-0.71	464	0.943	1	[-15.5, -11.3]
16	807	0.298	-1.88	575	846	-0.269	-2.03	585	0.983	1	[-16.4, -8.8]
17	810	0.298	-1.87	575	810	-0.267	-1.87	575	0.955	1	[-16.4, -9.4]
18	729	0.308	-1.53	656	729	-0.283	-1.53	656	0.951	1	[-16.5, -10.7]
20	627	0.200	-0.96	333	729	-0.283	-1.53	656	0.960	1	[-16.6, -11.1]
21	606	0.190	-0.63	302	636	-0.223	-0.87	333	0.968	1	[-15.6, -11.1]
22	587	0.185	-0.48	258	605	-0.219	-0.63	302	0.974	1	[-15.5, -10.7]
23	494	0.168	0.44	281	588	-0.213	-0.47	258	0.943	1	[-15.1, -10.8]
24	503	0.184	0.48	351	570	-0.221	-0.14	281	0.845	1	[-14.9, -12.1]
25	503	0.159	0.32	159	496	-0.232	0.40	351	0.998	2	[-15.1, -12.0]
											[-4.5, -3.9]
26	507	0.153	0.48	101	511	-0.203	0.43	159	0.998	2	[-14.9, -11.3]
											[-5.5, -4.6]
27	526	0.184	0.29	256	508	-0.195	0.50	101	0.996	2	[-14.8, -10.1]
											[-5.5, -4.6]
28	488	0.179	0.57	238	520	-0.215	0.23	256	0.995	2	[-13.6, -9.6]
											[-5.5, -5.1]
29	539	0.203	0.43	238	539	-0.219	0.43	238	0.945	1	[-13.2, -10.3]
30	538	0.203	0.43	238	538	-0.219	0.43	238	0.915	1	[-134 - 103]
31	538	0.203	0.43	238	538	-0.219	0.43	238			[15.1, 10.5]
32	538	0.203	0.13	238	538	-0.219	0.43	238			
33	538	0.203	0.43	238	538	-0.219	0.43	238			
34	538	0.203	0.43	238	538	_0.219	0.43	238			
25	538	0.203	0.43	238	538	_0.219	0.43	238			
35 36	538	0.203	0.43	∠30 238	538	-0.219 -0.219	0.43	230 238			
20	520	0.203	0.43	230	520	-0.219	0.43	230			
20	520	0.203	0.43	230	520	-0.219	0.43	230		•••	
20 20	530 520	0.203	0.43	230 229	520 520	-0.219	0.43	230 229			
39 40	538 529	0.203	0.43	238	538 529	-0.219	0.43	238			•••
40	338	0.203	0.43	238	538	-0.219	0.43	238			•••

Table 7. Catalog of dark clouds and clumps identified in the high-resolution A_V map.

Cloud	Clump	Pos	ition	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	•			associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
1	(0)	0.10	23.20	0.20	0.17	2.25E-02	0.9	0.6	0.18	1.90E-02	1.27E-02	0
2	(5)	0.13	8.00	2.57	1.97	1.54E + 00	3.7	2.7	0.38	3.25E + 00	1.70E + 00	4
	P 1	0.13	8.00	0.37	0.27	5.72E-02	3.7	2.7	0.38	1.93E-01	1.34E-01	1
	P 2	0.87	7.63	0.27	0.33	4.62E-02	4.0	2.7	0.40	1.63E-01	1.06E-01	1
	P 3	359.00	8.70	0.13	0.23	2.42E - 02	2.3	1.7	0.23	4.94E-02	3.54E-02	0
	P 4	0.93	7.10	0.13	0.07	7.72E-03	3.2	1.6	0.29	2.33E-02	1.14E - 02	0
	P 5	359.80	8.17	0.23	0.13	2.53E-02	2.4	1.6	0.24	5.63E-02	3.44E-02	0
3	(0)	0.13	10.20	0.13	0.27	2.41E-02	1.3	0.9	0.19	2.53E-02	1.54E - 02	0
4	(1)	0.23	16.53	0.27	0.33	4.90E - 02	1.4	1.0	0.15	5.61E-02	3.58E-02	0
	P 1	0.23	16.53	0.13	0.23	2.02E - 02	1.4	1.0	0.15	2.62E - 02	1.78E - 02	0
5	(9)	0.27	-4.53	3.43	1.93	1.92E + 00	2.6	1.8	0.13	3.41E + 00	1.58E + 00	5
	P 1	0.27	-4.53	0.43	0.50	8.97E-02	2.6	1.8	0.13	2.12E-01	1.38E-01	1
	P 2	0.50	-4.23	0.13	0.17	1.55E - 02	2.4	1.5	0.12	3.43E-02	1.98E - 02	0
	P 3	357.77	-4.67	0.20	0.33	3.21E-02	2.1	1.5	0.12	5.94E - 02	3.99E-02	1
	P 4	358.87	-3.83	0.37	0.27	4.99E-02	2.8	1.5	0.14	1.26E-01	6.19E-02	1
	P 5	358.00	-5.10	0.27	0.23	2.99E-02	1.7	1.3	0.11	4.52E - 02	3.32E-02	2
	P 6	359.83	-3.67	0.27	0.20	3.99E-02	2.5	1.2	0.11	9.11E-02	3.85E-02	0
	P 7	358.00	-4.77	0.10	0.10	8.86E-03	1.8	1.1	0.11	1.43E-02	8.80E-03	1
	P 8	358.30	-4.87	0.13	0.13	1.11E - 02	1.7	1.1	0.11	1.69E-02	1.05E - 02	1
	P 9	0.87	-4.80	0.13	0.17	1.55E - 02	1.7	1.0	0.10	2.37E - 02	1.35E - 02	1
6	(0)	0.30	23.17	0.17	0.27	2.15E - 02	0.9	0.6	0.18	1.82E-02	1.19E - 02	0
7	(0)	0.33	-21.47	0.37	0.33	5.48E - 02	0.8	0.7	0.12	3.51E-02	3.12E - 02	0
8	(0)	0.57	14.77	0.60	0.50	1.75E - 01	1.1	0.8	0.11	1.51E - 01	1.09E - 01	0
9	(1)	0.63	-6.87	0.83	0.63	2.46E - 01	1.2	1.1	0.11	1.95E-01	1.73E - 01	0
	P 1	0.63	-6.87	0.17	0.30	3.09E - 02	1.2	1.1	0.11	3.29E-02	3.04E - 02	1
10	(0)	0.73	24.20	0.30	0.20	3.04E - 02	0.9	0.7	0.19	2.38E - 02	1.70E - 02	0
11	(1)	0.80	-0.13	0.30	0.20	4.56E - 02	4.4	1.2	0.21	1.84E - 01	3.60E - 02	0
	P 1	0.80	-0.13	0.23	0.13	1.78E - 02	4.4	1.2	0.21	7.51E-02	1.74E - 02	0
12	(2)	0.93	-20.20	0.80	0.73	3.05E - 01	1.8	1.7	0.19	2.69E-01	2.44E - 01	1
	P 1	0.93	-20.20	0.10	0.17	1.25E - 02	1.8	1.7	0.19	1.99E-02	1.89E - 02	1
	P 2	1.33	-20.53	0.10	0.20	1.56E - 02	1.5	1.4	0.17	2.08E - 02	1.95E-02	2
13	(0)	1.03	-23.07	0.83	1.00	2.78E-01	0.9	0.8	0.15	1.91E-01	1.61E-01	2
14	(0)	1.07	2.17	0.20	0.17	2.78E-02	4.5	1.0	0.28	1.17E-01	1.90E-02	0
15	(1)	1.13	-2.10	0.43	0.37	7.00E - 02	3.4	1.3	0.13	2.08E-01	5.92E-02	0
16	PI	1.13	-2.10	0.20	0.20	2.22E - 02	3.4	1.3	0.13	7.26E-02	2.56E-02	1
16	(0)	1.13	1/.8/	0.27	0.33	5.50E - 02	1.2	0.7	0.14	5.91E-02	3.2/E - 02	0
1/	(0)	1.13	18.50	1.00	1.27	4.26E - 01	1.5	0.9	0.17	5.01E-01	2.79E-01	1
18	(1) D 1	1.30	0.03	0.23	0.23	4.30E - 02	3.4	1.0	0.30	1.1/E - 01	4.10E - 02	0
10	P I	1.30	0.63	0.10	0.13	9.93E-03	3.4	1.6	0.30	3.16E-02	1.42E - 02	0
19	(0)	1.30	1/.3/	0.27	0.37	3.30E-02	1.2	0.7	0.14	3.73E - 02	2.03E - 02	0
20	(1) D 1	1.37	1.83	0.47	0.47	1.1/E - 01	4.5	1.0	0.27	4.85E-01	7.85E - 02	0
21	P 1 (0)	1.37	1.85	0.13	0.10	1.11E - 02	4.5	1.0	0.27	4.85E - 02	9.83E-03	0
21	(0)	1.3/	2.47 16.20	0.30	0.20	3.33E-02	4.4	0.9	0.27	1.40E-01	2.29E-02	1
22	(0)	1.3/	10.30	0.23	0.50	3.84E-02	1.1	0.7	0.12	3.82E - 02	$2.1\delta E = 02$	1
23	(1) D 1	1.40	20.93	0.73	0.33	1.04E-01	2.3 2.5	2.0	0.34	∠.44E-01 3.54E 02	1.01E-01	1
24	r 1 (0)	1.40	20.93 8 12	0.23 0.17	0.17	1.30E - 02	2.3 1.0	2.0	0.54	3.54E-02	2.73E - 02	4
24	(0)	1.43	0.43 4.02	0.17	0.20	2.09E - 02	1.9	0.9	0.21 13.0†	J.40E-02	1.JUE-U2 3.30E + 01	10
23	(J8) D 1	1.4/	4.03	0.12	1.90	2.03E+01	15.2	12.1	13.0' 12.0†	7.10E+01	J.JYE+UI	40 0
		1.4/	4.03	0.15	0.27	1.//E-02	0.1	12.1 6 1	1 72	2.30E-01	1.00E-01	0
	г <u>/</u> р 2	0.90	4.03	0.27 0.12	0.27	5.00E - 02	9.1	6.0	1.75	2.77E-UI	1.09E-UI 8.01E 02	0
	гэ	0.55	4.07	0.13	0.13	1.7712-02	7.2	0.0	1./1	1.402-01	0.71E-02	U

 Table 7. (Continued.)

Cloud	Clump	Posi	tion	Si	76	Surface	Maximun	extinction	δA_V	[Avids	[Auads	Number of
Cioud	crump	1 0 31	1		<u></u>	Surface	A		-	Juvius	J 11 V 2005	
name	name	<i>l</i>	D (dec)	Δl	ΔD	$(1-2^2)$	A_{V1}	A_{V2}	(((associated
		(deg)	(deg)	(deg)	(deg)	(deg)	(mag)	(mag)	(mag)	(mag deg)	(magueg)	clouds
	P 4	1.93	3.67	0.20	0.20	2.00E - 02	8.8	5.7	1.50^{\dagger}	1.60E-01	9.69E-02	0
	P 5	357.13	7.17	0.27	0.33	5.62E - 02	6.4	5.7	0.79	3.16E-01	2.76E - 01	1
	P 6	5.43	7.07	0.20	0.17	2.65E - 02	6.1	5.0	0.79	1.41E - 01	1.12E - 01	1
	P 7	1.97	9.83	0.17	0.10	1.42E - 02	5.4	4.9	0.80	6.74E - 02	6.03E-02	2
	P8	0.67	3.83	0.20	0.17	2.22E-02	8.1	4.8	1.15	1.64E-01	9.07E-02	1
	P9	359.73	4.33	0.23	0.27	3.99E-02	7.6	4.6	0.98	2.75E-01	1.56E - 01	0
	P 10	357.70	6.53	0.33	0.27	5.30E-02	5.7	4.5	0.58	2.68E-01	2.07E - 01	0
		0.23	4.60	0.20	0.13	1.7/E - 02	7.5	4.5	0.98	1.21E-01	6.82E - 02	2
	P 12	1.93	5.83	0.17	0.40	3.8/E - 02	6.1	4.1	0.72	2.13E - 01	1.3/E - 01	0
	P 13	558.90	5.57	0.23	0.27	4.64E - 02	0.0	4.0	0.62	2.53E - 01	1.60E - 01	1
	P 14 D 15	3.07 2.17	1.51	0.20	0.37	3.74E - 02	4.8	3.9	0.52	1.30E - 01	1.24E-01	0
	P 13	2.17	5.87 7.42	0.27	0.20	2.70E - 02	5.8 4.6	3.9	0.05	1.43E - 01	8.9/E - 02	0
	P 10 D 17	0.50	1.45	0.13	0.10	8.81E-03	4.0	3.9	0.48	3.02E - 02	2.99E - 02	1
	P1/ D19	0.55	4.75	0.30	0.27	4.21E - 02	0.7	3.8 2.6	0.70	2.58E - 01	1.33E - 01	2
	P 10	1.90	5.55	0.25	0.50	4.22E = 02	0.8	5.0	0.75	2.00E - 01	1.2/E = 01	0
	P 19	2 10	5.50 8.20	0.13	0.17	1.35E - 02	5.5 4 5	3.5 2.5	0.51	1.0/E - 02	4.01E - 02	0
	P 20	5.10 2.12	8.20	0.13	0.10	1.10E - 02	4.5	3.5	0.52	4.45E - 02	3.31E - 02	1
	P 21	3.13	7.30	0.40	0.57	9.70E-02	4.0	3.3	0.49	4.09E - 01	2.75E - 01	1
	P 22	2.00	0.50	0.20	0.05	0.74E - 02	4.0	5.0	0.43	2.63E - 01	1.09E - 01	0
	P 23	5.05 2.62	9.55	0.20	0.33	5.02E - 02	5.0	2.9	0.41	1.13E - 01	0.96E - 02	0
	P 24	2.03	4.45	0.57	0.57	3.32E - 02	5.4	2.9	0.30	2.03E - 01	1.2/E = 01	0
	P 23	538.70	0.00	0.13	0.10	8.84E-03	4.4	2.8	0.37	3.01E - 02	2.13E - 02	0
	P 20	2.50	9.87	0.13	0.27	2.03E - 02	3.0	2.7	0.33	0.72E - 02	0.14E - 02	0
	P 27	5.07	9.95	0.10	0.20	1.31E - 02	5.Z 2.0	2.7	0.37	3.03E - 02	5.03E - 02	2
	P 20	2.57	9.37	0.33	0.17	5.18E - 02	5.0	2.7	0.52	0.10E - 02	1.33E - 02	1
	P 29 D 20	2.05	5.95 4.57	0.55	0.55	0.19E - 02	4.0	2.7	0.42	2.33E = 01	1.39E - 01	0
	F 30	2.15	4.57	0.17	0.20	2.44E - 02	2.5	2.7	0.40	1.20E = 01	3.01E - 02	0
	P 31 D 22	2.75	9.33 27 T	0.40	0.57	4.38E - 02	3.2 3.6	2.0	0.30	1.21E-01	9.38E - 02	0
	Г 32 D 22	4.45	6.50	0.40	0.15	3.19E - 02	2.0	2.5	0.55	1.01E - 01	0.04E - 02	0
	Г 33 D 34	4.07	6.73	0.10	0.20	1.77E - 02	3.0 3.9	2.4	0.34	3.99E = 02	3.30E - 02	0
	D 35	2.50	6.07	0.00	0.23	7.00E - 02	3.0	2.4	0.30	2.44E = 01	1.42E = 01	1
	P 36	2.55	6.23	0.23	0.17	2.32E - 02 1 77E - 02	3.0	2.5	0.33	6.29E - 02	4.47E = 02 3.29E = 02	0
	P 37	359 30	5.07	0.17	0.13	6.20E - 02	J.9 4 5	2.1	0.34	0.29E = 02 2 54E = 01	1.02E - 02	0
	P 38	2.83	3.17	0.13	0.55	$1.11E_{-02}$	5.0	2.0	0.35	5.28E - 02	1.02E 01 1.93E - 02	0
	P 30	2.03	8.00	0.13	0.10	1.11E 02 1.10E - 02	3.1	2.0	0.30	3.26E - 02	1.95E = 02 1.88E = 02	0
	P 40	5.87	8 70	0.15	0.10	2.20E - 02	24	2.0	0.30	4.61E - 02	3.78E - 02	0
	P 41	6.20	873	0.17	0.23	2.20E 02 8.45E-02	2.7	1.0	0.24	1.56E - 01	1.33E - 01	0
	P 42	1.03	3 23	0.40	0.55	1.77E - 02	53	1.9	0.23	8.98E - 02	2.88E - 02	0
	P 43	0.23	4.93	0.17	0.13	1.77E = 02 1.22E = 02	5.5 4 7	1.9	0.38	5.76E - 02	1.97E - 02	0
	P 44	359.87	2.87	0.15	0.15	2.22E = 02		1.9	0.30	1.15E - 01	3.66E - 02	0
	P 45	3 10	6.67	0.20	0.17	2.22E 02 2.10E-02	34	1.9	0.30	6.51E - 02	3.00E 02 3.28E - 02	0
	P 46	1 57	6.40	0.17	0.20	5.52E - 03	3.4	1.8	0.30	1.87E - 02	8.75E-03	0
	P 47	359 50	3 93	0.07	0.10	2.99E-02	4 9	1.8	0.31	1.07E - 02 1 40E-01	4.62E - 02	0
	P 48	2.90	4 10	0.33	0.13	3.21E - 02	43	1.0	0.33	1.32E - 01	4.80E - 02	0
	P 49	3.83	7 57	0.20	0.15	3.86E - 02	2.8	17	0.27	1.01E - 01	540E-02	0
	P 50	358 47	6 40	0.20	0.13	2.87E - 02	2.0	1.7	0.27	$7.69E_{-02}$	$3.87E_{-02}$	0
	P 51	3 50	7 43	0.17	0.13	2.07E = 02 2.42E - 02	2.8	1.5	0.25	6.30E = 02	3.24E = 02	0
	P 52	5.50	8 97	0.10	0.20	1.54E - 02	19	1.5	0.20	2.61E - 02	1.99E = 02	0
	P 53	2.87	5.60	0.17	0.13	1.77E - 02	3.4	1.5	0.28	5.70E - 02	2.30E - 02	Ő
	P 54	3.17	8.47	0.13	0.10	1.10E-02	2.3	1.3	0.24	2.30E-02	1.24E - 02	1

 Table 7. (Continued.)

Cloud	Clump	Posi	ition	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}				associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 55	4.50	8.07	0.13	0.13	1.21E-02	2.0	1.1	0.21	2.30E-02	1.16E-02	0
	P 56	6.60	8.90	0.17	0.17	2.09E-02	1.3	1.1	0.17	2.42E-02	2.00E-02	0
	P 57	7.00	8.07	0.20	0.53	6.27E-02	1.4	1.1	0.16	7.54E-02	5.70E-02	0
	P 58	1.07	2.90	0.13	0.13	9.99E-03	4.5	1.0	0.30	4.37E-02	8.95E-03	0
26	(2)	1.53	9.70	0.93	1.40	4.77E-01	2.7	2.2	0.31	8.06E-01	4.65E-01	2
	P 1	1.53	9.70	0.10	0.10	8.76E-03	2.7	2.2	0.31	2.17E-02	1.68E-02	0
	P 2	1.53	9.33	0.30	0.43	5.37E-02	2.7	2.0	0.30	1.30E-01	9.16E-02	1
27	(0)	1.60	11.43	0.23	0.23	3.16E-02	1.0	0.7	0.19	2.69E-02	1.98E-02	0
28	(1)	1.67	-21.43	1.43	1.33	7.14E-01	1.5	1.4	0.17	6.23E-01	5.58E-01	0
	P 1	1.67	-21.43	0.60	0.50	1.12E-01	1.5	1.4	0.17	1.37E-01	1.26E-01	1
29	(0)	1.67	2.07	0.27	0.30	4.77E-02	4.4	0.9	0.27	1.98E-01	3.27E-02	0
30	(0)	1.80	-0.97	0.17	0.27	3.22E-02	3.6	0.9	0.15	1.09E-01	2.22E-02	0
31	(2)	1.83	16.63	0.83	1.43	5.45E-01	2.9	2.4	0.31	6.90E-01	4.28E-01	3
	P 1	1.83	16.63	0.10	0.13	9.58E-03	2.9	2.4	0.31	2.42E - 02	1.97E - 02	3
	P 2	2.13	17.47	0.20	0.27	2.54E - 02	2.0	1.5	0.21	4.46E - 02	3.19E - 02	0
32	(0)	1.97	22.03	0.17	0.17	2.16E - 02	1.2	0.7	0.19	2.26E - 02	1.29E-02	Ő
33	(0)	1.97	22.33	0.33	0.13	2.47E - 02	1.0	0.6	0.18	2.39E - 02	1.34E - 02	Õ
34	(0)	2.03	21.13	0.23	0.17	2.90E - 02	1.3	0.8	0.19	3.37E - 02	1.87E - 02	Ő
35	(1)	2.17	21.80	0.23	0.23	3.82E - 02	1.5	11	0.22	451E-02	2.74E-02	Ő
55	P 1	2.17	21.80	0.13	0.13	1.13E-02	1.5	1.1	0.22	1.512 - 02	1.05E-02	Ő
36	(1)	2.37	20.63	0.13	0.15	4.89E - 02	1.5	1.1	0.22	6.17E - 02	344E-02	Ő
50	P 1	2.37	20.63	0.33	0.17	1.05E - 02	1.7	1.1	0.22	1.89E - 02	1.19E - 02	Ő
37	(0)	2.57	18.00	0.15	0.17	2.54E - 02	1.7	0.7	0.14	2.74E - 02	1.15E - 02 1 45E-02	0
38	(0) (1)	2.50	17.03	0.17	0.20	2.51E - 02 2.66E-02	1.5	1.0	0.16	3.21E - 02	1.132 02 1.90E-02	0
50	P 1	2.00	17.03	0.10	0.10	8 50E -03	1.5	1.0	0.16	1.20E - 02	7.75E - 03	0
30	(0)	2.00	18.27	0.17	0.10	2.85E - 02	1.5	0.7	0.15	3.24E - 02	1.73E - 03 1.72E - 02	0
40	(0) (1)	2.00 2 70	16.27	0.63	0.27	1.49E - 01	1.2	1.2	0.15	1.76E - 01	$1.72E \ 0.2$ 1.07E - 0.1	0
40	P 1	2.70	16.33	0.05	0.20	2.77E - 02	1.0	1.2	0.16	4.11E - 02	2.84E - 02	0
41	(1)	2.70	21.93	0.20	0.20	5.26E - 02	1.0	1.2	0.10	4.11E 02 6.47E - 02	4.09E - 02	0
71	P 1	2.77	21.93	0.33	0.13	1.96E - 02	1.0	1.1	0.22	2.82E - 02	1.07E - 02 1.93E-02	1
42	(2)	3.03	21.55	0.53	0.10	1.55E - 01	4.3	1.1	0.22	6.02E - 01	1.93E - 02 1.12E - 01	0
72	(2) P 1	3.03	2.50	0.55	0.70	2.11E - 02	43	1.2	0.27	8.59E-02	2.03E - 02	0
	P 2	2.83	2.50	0.13	0.20	2.00E - 02	43	1.2	0.27	8.25E-02	1.84E - 02	0
43	(0)	3 23	1.00	0.15	0.23	2.00E - 02 2.89E - 01	4.1	1.0	0.20	1.09E + 00	1.04E 02 1.92E - 01	0
43	(0) (1)	3.25	-4.40	0.17	0.05	2.00E 01 2.22E - 02	17	1.0	0.09	3.07E - 02	1.52E = 01 1.63E = 02	0
	P 1	3.27	-440	0.10	0.10	7 75E-03	1.7	1.1	0.09	1.23E - 02	7.24E-03	1
45	(0)	3 33	1 73	0.17	0.10	2.11E - 02	3.0	0.8	0.02	7.91E - 02	1.33E - 02	0
46	(0)	3 33	16.90	0.23	0.17	2.11E = 02 3.29E = 02	1 4	0.0	0.22	3.89E_02	$2.17E_{-02}$	0
40	(0)	3.40	-0.10	0.25	0.25	3.25E = 02 3.11E = 02	3.8	0.9	0.14	1.12E - 01	1.92E - 02	0
48	(0)	3.40	2 43	0.27	0.17	2.89E - 02	3.8	0.8	0.10	1.06E - 01	1.92E 02 1.87E - 02	0
-10 /10	(0) (1)	3.50	2.45	0.27	0.17	2.07E - 02	1.8	1.0	0.23	3.25E - 02	1.07E - 02 1.49E - 02	0
т <i>)</i>	(1) P 1	3.50	8.03	0.23	0.15	2.20E 02 7.68E_03	1.0	1.0	0.21	1.28E_02	6.62E - 03	0
50	(0)	3 53	35 /3	0.10	0.10	7.00E 03	1.0	0.0	0.21	2.61E - 02	2.20E - 02	0
51	(0) (1)	3.63	14.03	1.03	0.27	3.35E = 02 3.14E = 01	1.0	1.1	0.30	2.01E 02 2.01E_01	2.20E 02 2.12E_01	0
51	(1) D 1	3.63	14.03	0.27	0.70	3.14E = 01 3.88E = 02	1.3	1.1	0.25	2.91E-01	2.12E = 01 3.50E = 02	0
52	(0)	3.65	2 22	0.27 0.40	0.23	$6.44F_{02}$	37	0.8	0.23	$2.32E_{01}$	3.50E = 02 3.75E = 02	0
52	(0)	3 70	2.23 4.47	0.40	0.07	$3.64E_{-01}$	43	2.1	0.22	$1.13E \pm 00$	3.75E = 02 3.68E = 01	2
55	(2) P 1	3 70		0.27	0.37	5.0+10=01 5.32F_02	43	2.1 2.1	0.33	2.10E - 00	9.60E = 01 9.61E = 02	2
	р э	1 17	4 77	0.70	0.17	$1.77E_{-02}$	3.0	1 2	0.33	5.75E = 01	$1.74E_{-02}$	0
54	(0)	3.87	+.// 8.40	0.27	0.17	$4.18E_{-02}$	1.8	0.0	0.23 0.20	5.27E = 02 6.62E = 02	$2.75E_{02}$	0
55	(0) (0)	4.07	19.17	0.17	0.27	2.31E-02	1.3	0.9	0.20	2.79E-02	1.33E-02	0

 Table 7. (Continued.)

Cloud	Clump	Posi	tion	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}				associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
56	(1)	4.17	36.67	0.23	0.20	2.67E-02	1.5	1.3	0.39	2.61E-02	2.15E-02	0
	P 1	4.17	36.67	0.10	0.10	6.24E-03	1.5	1.3	0.39	8.19E-03	7.12E-03	1
57	(15)	4.23	18.07	4.20	3.50	3.61E + 00	5.0	4.4	0.92^{\dagger}	6.05E + 00	3.80E + 00	15
	P 1	4.23	18.07	0.27	0.10	2.01E-02	5.0	4.4	0.92^{\dagger}	8.96E-02	7.73E-02	2
	P 2	5.00	19.10	0.20	0.17	2.31E-02	4.1	3.5	0.66	8.41E-02	6.92E-02	2
	P 3	3.73	18.30	0.17	0.30	2.43E-02	3.7	3.1	0.49	8.06E-02	6.60E-02	0
	P 4	4.87	19.57	0.10	0.13	1.05E - 02	3.7	3.1	0.54	3.41E-02	2.76E - 02	0
	P 5	4.47	16.67	0.10	0.17	1.17E - 02	3.4	2.8	0.37	3.55E-02	2.90E-02	1
	P 6	3.67	16.40	0.20	0.20	2.56E - 02	2.3	1.8	0.22	5.34E-02	4.02E - 02	2
	P 7	5.13	17.90	0.63	0.30	6.66E-02	2.4	1.7	0.25	1.41E-01	9.84E-02	0
	P 8	4.50	17.17	0.13	0.17	1.70E - 02	2.2	1.6	0.22	3.33E-02	2.36E-02	0
	P 9	4.00	16.70	0.10	0.10	8.51E-03	1.9	1.3	0.18	1.46E - 02	1.00E - 02	0
	P 10	4.53	19.73	0.17	0.07	8.37E-03	1.7	1.1	0.21	1.34E - 02	8.43E-03	0
	P 11	3.37	17.67	0.17	0.13	1.69E - 02	1.7	1.1	0.17	2.57E - 02	1.64E - 02	0
	P 12	4.23	16.80	0.13	0.13	1.17E - 02	1.6	1.1	0.16	1.73E - 02	1.09E - 02	0
	P 13	6.73	17.17	0.57	0.27	6.16E - 02	1.8	1.1	0.18	9.89E-02	5.60E - 02	0
	P 14	5.73	18.60	0.13	0.13	1.26E - 02	1.7	1.0	0.19	1.98E - 02	1.13E - 02	0
	P 15	6.00	17.47	0.23	0.17	2.33E - 02	1.7	1.0	0.17	3.58E - 02	2.04E - 02	0
58	(1)	4.47	4.03	0.20	0.20	3.32E - 02	3.3	1.1	0.22	9.85E-02	2.57E - 02	0
	P 1	4.47	4.03	0.13	0.13	1.55E - 02	3.3	1.1	0.22	4.84E - 02	1.44E - 02	1
59	(0)	4.47	-3.57	0.17	0.20	2.33E - 02	1.7	0.6	0.08	3.71E - 02	1.25E - 02	0
60	(0)	4.47	4.30	0.20	0.13	2.55E - 02	2.9	0.8	0.20	6.96E - 02	1.60E - 02	0
61	(1)	4.63	22.97	1.47	1.50	7.00E - 01	2.0	1.6	0.29	7.58E - 01	4.97E - 01	2
	P 1	4.63	22.97	0.13	0.13	1.33E - 02	2.0	1.6	0.29	2.37E - 02	1.88E - 02	0
62	(10)	4.77	-1.47	4.30	3.53	4.39E + 00	5.6	2.7	0.30	1.65E + 01	4.17E + 00	6
	P 1	4.77	-1.47	0.27	0.17	3.55E-02	5.6	2.7	0.30	1.86E-01	8.32E-02	0
	P 2	3.93	-1.03	0.50	0.17	4.67E-02	5.1	2.3	0.26	2.24E-01	9.20E-02	1
	P 3	2.80	-0.47	0.37	0.43	7.89E-02	5.0	2.1	0.26	3.67E-01	1.40E-01	0
	P4	4.57	-1.93	0.30	0.30	4.66E-02	4.6	1.9	0.19	2.00E - 01	7.67E - 02	0
	P 5	3.23	-0.90	0.47	0.33	6.78E-02	4.6	1.8	0.22	2.96E - 01	1.0/E-01	0
	P 6	4.20	-1.43	0.33	0.17	3.89E - 02	4.5	1./	0.20	1.6/E - 01	5.79E-02	0
	P /	1.93	-0.03	0.23	0.27	3.6/E - 02	4.7	1./	0.24	1.62E - 01	5.12E - 02	0
		5.40 2.40	-2.40	0.17	0.23	1.89E - 02	5.4 2.0	1.5	0.12	0.09E - 02	2.50E - 02	0
	P 9	2.40	-1.37	0.17	0.15	1.33E - 02	5.9	1.3	0.10	3.78E - 02	2.01E - 02	0
62	P 10	5.07	-1.07	0.25	0.15	1.69E - 02	4.0	1.4	0.10	7.22E - 02	2.22E = 02	0
05	(2) D 1	5.30	10.80	0.00	0.80	2.23E = 01	2.0	2.4	0.31	2.99E = 01	2.31E-01	1
	\mathbf{P}_{1}	5.30	11.07	0.17	0.20	2.07E = 02 9.81E = 03	2.0	2.4	0.31	4.78E - 02 1.80E - 02	4.34E - 02 1.68E - 02	1
64	(1)	5.30	3 57	0.10	0.13	9.81E - 03 9.98E - 02	3.3	2.0	0.28	1.89E - 02 2 90E - 01	7.08E - 02	1
04	(1) D 1	5.40	3.57	0.30	0.33	9.98E - 02	3.3	1.2	0.22	2.90E - 01	7.49E = 02 2.02E = 02	1
65	(0)	5.40	-3.77	0.15	0.17	1.69E - 02 3.66E - 02	17	0.6	0.22	5.00E - 02	2.02E - 02 2.07E - 02	0
66	(0) (7)	5.70	0.70	2.03	1.80	$1.10E \pm 00$	4.6	17	0.00	3.942 02 $4.20E \pm 00$	2.07E 02 8.87E-01	1
00	P 1	5 70	0.70	0.17	0.23	2.33E - 02	4.6	1.7	0.20	1.02E - 01	3.27E - 02	0
	P 2	5 90	0.13	0.17	0.17	5.11E-02	4.4	1.7	0.20	2.13E - 01	5.27E - 02 5.87E-02	0
	P 3	4.50	1.03	0.33	0.17	3.33E - 02	4.3	1.3	0.24	1.35E-01	3.53E - 02	0
	P 4	5,97	0.63	0.17	0.17	2.00E - 02	4.2	1.2	0.22	8.03E - 02	2.08E - 02	õ
	P 5	6.03	-0.33	0.23	0.10	1.56E - 02	4.2	1.2	0.20	6.31E-02	1.62E - 02	õ
	P 6	5.40	0.80	0.10	0.17	1.44E - 02	4.1	1.1	0.22	5.75E - 02	1.43E - 02	õ
	P 7	5.40	0.20	0.13	0.30	2.78E-02	4.1	1.1	0.21	1.10E-01	2.54E-02	Õ
67	(1)	5.73	16.60	0.43	0.33	9.69E-02	2.7	2.1	0.27	1.41E-01	8.14E-02	0
	P 1	5.73	16.60	0.10	0.10	7.45E-03	2.7	2.1	0.27	1.79E-02	1.33E-02	0

 Table 7. (Continued.)

Cloud	Clump	Posi	tion	Si	ze	Surface	Maximur	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
68	(11)	6.00	36.70	2.57	2.30	1.49E + 00	5.4	5.3	2.72†	1.91E+00	1.69E+00	6
	P 1	6.00	36.70	0.17	0.17	1.43E-02	5.4	5.3	2.72 [†]	6.74E-02	6.55E-02	0
	P 2	4.13	35.73	0.13	0.13	9.02E-03	4.9	4.8	2.06^{\dagger}	3.96E-02	3.84E-02	1
	P 3	4.97	36.70	0.23	0.27	2.41E-02	2.6	2.4	0.68	5.46E-02	5.08E-02	0
	P 4	4.77	37.00	0.17	0.23	1.33E-02	2.5	2.4	0.68	2.95E-02	2.72E-02	0
	P 5	5.60	36.47	0.27	0.20	2.41E-02	2.3	2.1	0.59	4.65E-02	4.31E-02	0
	P 6	5.67	36.83	0.20	0.10	1.07E - 02	2.2	2.1	0.57	2.06E-02	1.91E-02	0
	P 7	4.67	36.73	0.20	0.10	1.25E-02	1.9	1.7	0.49	2.03E-02	1.82E-02	0
	P 8	5.13	37.00	0.13	0.10	7.99E-03	1.5	1.3	0.40	1.04E - 02	9.09E-03	0
	P 9	5.60	37.23	0.10	0.13	7.08E-03	1.3	1.1	0.36	7.79E-03	6.70E-03	0
	P 10	5.40	37.23	0.10	0.10	6.19E-03	1.2	1.1	0.36	6.98E-03	5.98E-03	0
	P 11	4.60	37.30	0.13	0.10	7.96E - 03	1.2	1.0	0.35	8.56E-03	7.11E-03	0
69	(0)	6.10	9.90	0.20	0.23	3.28E - 02	1.0	0.8	0.16	2.61E - 02	2.02E - 02	0
70	(1)	6.37	24.30	0.90	0.77	2.21E-01	1.5	1.3	0.26	2.05E - 01	1.43E-01	1
	P 1	6.37	24.30	0.13	0.13	1.22E - 02	1.5	1.3	0.26	1.64E - 02	1.31E-02	0
71	(6)	6.53	20.60	4.50	2.70	2.84E+00	4.5	4.0	0.89	4.11E+00	2.61E+00	8
	P1	6.53	20.60	0.43	0.27	2.81E-02	4.5	4.0	0.891	1.11E-01	9.53E-02	1
	P 2	8.47	21.83	0.17	0.13	1.13E - 02	3.4	2.9	0.56	3.37E-02	2.86E-02	1
	P 3	8.70	22.10	0.17	0.13	1.24E - 02	3.2	2.8	0.54	3.54E-02	3.00E - 02	2
	P 4	/.63	21.13	0.50	0.27	4.98E-02	2.3	1.8	0.31	1.02E - 01	/.66E-02	2
		8.03	20.20	0.43	0.40	6./8E-02	2.1	1.5	0.26	1.23E-01	8.5/E-02	1
70	P 0	5.80	19.90	0.23	0.33	2.40E - 02	1.8	1.2	0.22	3.83E - 02	2.43E - 02	1
12	(1) D 1	0.05	-0.00	0.40	0.40	0.00E - 02	4.4	1.4	0.21	5.06E - 01 7.00E 02	0.98E - 02	0
73	(0)	6.63	-0.00	0.10	0.23	1.89E - 02	4.4	1.4	0.21	7.99E = 02 2.36E = 02	2.37E - 02 2.37E - 02	1
73	(0) (2)	6 70	16.20	1.80	1.03	4.19E - 02 5.96E - 01	2.1	0.7	0.23	2.30E-02 8.29E_01	2.57E - 02	0
/ 4	(2) P 1	6.70	16.20	0.37	0.37	6.19E - 02	2.1	1.4	0.19	$1.15E_{-01}$	7.50E - 01	0
	P 2	7 43	15.20	0.23	0.23	2.99E - 02	2.1 2.0	1.4	0.19	5.30E - 02	3.41E-02	0
75	(1)	673	2.77	0.50	0.23	1.68E - 01	3.8	1.5	0.10	5.28E-01	1.56E - 01	0
10	P 1	6.73	2.77	0.27	0.27	3.77E - 02	3.8	1.5	0.23	1.31E-01	4.66E - 02	0
76	(0)	6.73	3.93	0.27	0.20	2.99E-02	2.7	0.9	0.18	7.34E-02	2.05E-02	0
77	(8)	6.87	-2.43	3.27	3.27	5.12E + 00	5.9	3.5	0.32	1.82E + 01	6.48E + 00	26
	P 1	6.87	-2.43	0.37	0.47	8.44E-02	5.9	3.5	0.32	4.48E-01	2.45E-01	0
	P 2	7.37	-2.13	0.23	0.23	3.89E-02	5.6	3.0	0.30	2.01E-01	9.96E-02	2
	P 3	5.97	-1.60	0.27	0.37	6.22E-02	5.2	2.3	0.26	3.03E-01	1.24E-01	0
	P 4	5.90	-1.17	0.40	0.30	4.89E-02	5.2	2.2	0.26	2.37E-01	9.13E-02	0
	P 5	6.77	-1.50	0.13	0.10	1.11E - 02	5.0	2.1	0.24	5.29E-02	2.07E - 02	0
	P 6	6.33	-1.13	0.33	0.40	4.67E-02	5.0	2.0	0.24	2.19E-01	8.08E-02	1
	P 7	6.23	-3.83	0.33	0.17	3.88E-02	2.4	1.4	0.11	8.78E-02	4.81E-02	0
	P 8	5.53	-2.23	0.13	0.10	1.22E - 02	3.6	1.1	0.14	4.28E-02	1.12E - 02	0
78	(3)	7.07	6.00	2.00	1.73	1.06E + 00	5.6	4.5	0.59	2.46E + 00	1.34E + 00	10
	P 1	7.07	6.00	0.30	0.23	3.87E - 02	5.6	4.5	0.59	1.89E-01	1.49E - 01	2
	P 2	7.87	5.57	0.10	0.13	1.22E - 02	2.1	1.0	0.17	2.37E - 02	1.08E - 02	0
	P 3	7.83	5.93	0.13	0.10	8.84E-03	2.0	1.0	0.17	1.60E - 02	7.54E-03	0
79	(0)	7.07	-9.53	0.23	0.20	3.18E-02	0.7	0.7	0.13	1.95E-02	1.94E-02	0
80	(2)	7.17	4.27	1.10	0.87	3.88E-01	3.8	2.1	0.27	1.03E + 00	4.07E-01	2
		7.17	4.27	0.17	0.13	1.77E-02	3.8	2.1	0.27	0.12E - 02	3.26E-02	0
0.1	P 2	6.90	4.27	0.20	0.43	5.10E-02	3.5	1.8	0.24	1.62E - 01	8.03E-02	0
81	(0)	1.21	21.27	0.27	0.3/	J.48E-02	1.5	U.8	0.19	0.12E - 02	3.32E-02	0
82	(1) D 1	1.31 7 57	4.30	0.23	0.30	4.03E-02	5.U 2.0	1.4 1 /	0.20	1.10E-01	4.10E-02	4
	r 1	1.57	4.30	0.13	0.20	1.00E-02	5.0	1.4	0.20	+.02E-02	1.776-02	1
Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
83	(0)	7.73	2.27	0.13	0.30	2.22E-02	3.5	0.8	0.20	7.16E-02	1.41E-02	0
84	(3)	7.87	3.77	1.03	1.07	3.83E-01	3.5	1.7	0.23	1.08E + 00	3.10E-01	0
	P 1	7.87	3.77	0.10	0.10	9.98E-03	3.5	1.7	0.23	3.28E-02	1.45E-02	0
	P 2	7.73	3.33	0.37	0.40	7.54E-02	3.2	1.2	0.20	2.33E-01	7.66E-02	0
	P 3	7.43	3.17	0.27	0.20	2.55E-02	3.2	1.1	0.20	7.85E-02	2.41E-02	0
85	(0)	8.03	16.20	0.20	0.20	2.99E-02	1.3	0.6	0.13	3.60E-02	1.64E-02	0
86	(1)	8.17	-1.70	0.23	0.27	4.22E-02	4.4	1.5	0.20	1.60E - 01	3.84E-02	0
	P 1	8.17	-1.70	0.10	0.13	1.11E-02	4.4	1.5	0.20	4.65E-02	1.45E - 02	1
87	(1)	8.23	-8.17	1.17	1.43	8.53E-01	1.4	1.3	0.14	6.82E-01	6.45E-01	3
	P 1	8.23	-8.17	0.53	0.50	1.02E - 01	1.4	1.3	0.14	1.19E-01	1.13E-01	0
88	(0)	8.23	16.23	0.23	0.33	3.41E - 02	1.3	0.6	0.14	4.17E - 02	1.90E - 02	Õ
89	(0)	8.43	3.03	0.17	0.23	2.11E - 02	3.0	0.7	0.18	6.03E - 02	1.19E - 02	Õ
90	(0)	8 50	4 60	0.30	0.27	3.43E - 02	2.2	0.7	0.16	7.25E-02	2.01E-02	Ő
91	(0)	8 53	-4 97	0.23	0.17	2.66E-02	1.1	0.6	0.09	2.61E - 02	1.48E - 02	1
92	(0)	8 77	4 93	0.43	0.17	6 20E-02	2.1	0.8	0.05	1.18E - 01	3.75E - 02	0
93	(0)	8.80	-6.30	0.43 0.47	0.27	1.68E - 01	1 1	0.0	0.10	1.10E 01 1.48E - 01	1.08E - 01	0
94	(0)	8.80	-5.50	0.77	0.77	$4.98E_{-02}$	1.1	0.9	0.10	5.07E - 02	$3.43E_{-02}$	0
05	(0)	8.83	-1.07	0.27	0.27	4.96E - 02	1.2	0.9	0.10	3.07E - 02 2.75E - 02	$1.57E_{-02}$	0
95	(0)	8.85	2 82	0.23	0.23	2.00E-02	1.1	0.7	0.09	2.73E-02	1.07E - 02	0
90	(0)	8.07	2.00	0.23	0.17	2.88E - 02	2.7	0.9	0.17	1.50E - 02	1.92E - 02	0
97	(0)	0.90	2.00	0.25	0.45	4.33E - 02	5.7 1.5	0.9	0.20	1.31E - 01	2.60E - 02	0
98	(0)	9.07	21.00	0.25	0.45	3.71E - 02	1.5	1.0	0.21	0.42E - 02	3.37E - 02	0
100	(0)	9.10	3.33	0.17	0.33	3.77E - 02	5.0	0.8	0.18	1.0/E - 01	2.41E - 02	0
100	(0)	9.10	10.//	0.57	0.25	3.02E - 02	1.4	0.7	0.13	4.01E - 02	2.12E - 02	0
101	(1) D 1	9.17	-1.45	0.50	0.25	4.33E - 02	4.2	1.2	0.19	1.70E - 01	3.34E - 02	0
102	P I	9.17	-1.43	0.13	0.15	1.22E - 02	4.2	1.2	0.19	4.90E - 02	1.30E - 02	0
102	(0)	9.55	20.87	0.17	0.20	2.28E - 02	1.2	0.7	0.18	2.40E - 02	1.31E - 02	0
105	(1) D 1	9.40	18.73	0.50	0.50	8.10E-02	1.8	1.1	0.22	1.10E - 01	5.71E - 02	0
104	P I	9.40	18.73	0.13	0.23	2.31E - 02	1.8	1.1	0.22	3.79E - 02	2.10E - 02	0
104	(0)	9.47	-13.13	0.17	0.23	2.2/E - 02	0.8	0.7	0.19	1.43E - 02	1.35E - 02	0
105	(2) D 1	9.63	21.27	0.43	0.63	1.03E - 01	1./	1.2	0.25	1.25E-01	7.60E-02	0
	PI	9.63	21.27	0.20	0.17	1.55E-02	1./	1.2	0.25	2.39E-02	1.64E - 02	0
100	P 2	9.80	21.50	0.07	0.13	8.2/E-03	1.5	1.0	0.23	1.15E - 02	/.66E-03	0
106	(0)	9.70	-28.33	0.30	0.17	2.05E - 02	0.7	0.6	0.17	1.19E-02	1.12E - 02	0
107	(0)	9.83	-11.9/	0.67	0.63	1.61E-01	0.9	0.8	0.18	1.0/E - 01	9./IE-02	0
108	(0)	9.97	-1.40	0.23	0.23	3.6/E-02	3.8	1.0	0.17	1.28E-01	2.58E-02	1
109	(0)	10.03	-11.30	0.30	0.33	5.99E-02	0.8	0.8	0.17	4.11E - 02	3.66E - 02	1
110	(1)	10.10	19.50	1.43	0.70	4.90E-01	3.1	2.4	0.44	8.02E-01	4.80E-01	2
	PI	10.10	19.50	0.17	0.17	1.99E-02	3.1	2.4	0.44	5.4/E - 02	4.14E-02	0
111	(0)	10.17	-2.20	0.33	0.17	3.33E-02	2.9	0.6	0.13	9.39E-02	1.90E - 02	0
112	(0)	10.27	26.77	0.53	0.80	1.22E-01	1.1	0.9	0.24	1.01E-01	7.54E-02	0
113	(1)	10.43	6.33	0.50	0.67	1.94E-01	1.8	1.1	0.16	2.63E-01	1.38E-01	0
	P 1	10.43	6.33	0.30	0.27	3.31E-02	1.8	1.1	0.16	5.47E - 02	3.21E-02	0
114	(0)	10.80	16.43	0.17	0.23	2.56E - 02	1.4	0.7	0.16	3.33E - 02	1.50E - 02	0
115	(1)	10.87	19.60	0.33	0.37	8.17E-02	1.7	1.0	0.23	1.09E-01	5.47E-02	1
	P 1	10.87	19.60	0.23	0.10	1.67E - 02	1.7	1.0	0.23	2.60E - 02	1.51E-02	0
116	(8)	10.93	-2.63	3.60	2.63	4.06E + 00	4.6	2.8	0.28	1.23E + 01	5.00E + 00	2
	P 1	10.93	-2.63	0.97	1.27	4.10E-01	4.6	2.8	0.28	1.70E + 00	9.60E-01	1
	P 2	11.50	-1.43	0.20	0.23	3.55E-02	4.6	2.2	0.25	1.52E-01	6.61E-02	0
	P 3	12.50	-1.53	0.13	0.10	1.11E-02	4.0	1.7	0.21	4.24E-02	1.66E-02	0
	P 4	12.53	-3.07	0.20	0.17	2.55E-02	2.7	1.4	0.15	6.42E-02	3.03E-02	0
	P 5	10.20	-3.63	0.17	0.13	1.44E-02	2.5	1.4	0.14	3.27E-02	1.69E-02	0

Cloud	Clump	Posi	tion	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 6	11.37	-3.47	0.13	0.13	1.33E-02	2.4	1.2	0.14	2.96E-02	1.41E-02	1
	P 7	12.67	-1.97	0.13	0.13	1.55E-02	3.3	1.1	0.17	4.81E-02	1.56E-02	0
	P 8	13.37	-2.37	0.33	0.37	6.55E-02	3.0	1.1	0.16	1.81E-01	6.29E-02	0
117	(0)	10.93	26.03	0.57	0.43	9.19E-02	1.2	0.9	0.24	7.80E-02	5.42E-02	0
118	(0)	11.07	-1.50	0.13	0.20	2.00E - 02	3.3	0.8	0.15	6.22E-02	1.25E - 02	0
119	(0)	11.07	5.13	0.27	0.20	3.32E-02	1.9	0.7	0.15	5.82E-02	1.93E-02	0
120	(1)	11.13	3.40	0.50	0.47	8.21E-02	4.7	2.6	0.33	2.69E-01	9.23E-02	1
	P 1	11.13	3.40	0.10	0.13	9.98E-03	4.7	2.6	0.33	4.42E - 02	2.29E-02	1
121	(1)	11.27	4.73	0.27	0.43	5.54E - 02	2.5	1.1	0.17	1.17E-01	4.06E - 02	0
	P 1	11.27	4.73	0.17	0.23	1.88E - 02	2.5	1.1	0.17	4.28E-02	1.69E - 02	0
122	(28)	11.30	1.20	7.77	5.30	1.35E + 01	5.8	2.9	0.37	5.24E + 01	1.37E + 01	8
	P 1	11.30	1.20	0.23	0.23	4.00E - 02	5.8	2.9	0.37	2.17E-01	1.01E - 01	0
	P 2	10.80	1.73	0.53	0.43	1.01E - 01	5.7	2.8	0.38	5.28E-01	2.41E-01	0
	P 3	9.80	1.93	0.67	0.40	8.99E-02	5.1	2.3	0.32	4.25E-01	1.75E-01	0
	P 4	8.50	-0.67	0.37	0.67	1.14E - 01	5.2	2.0	0.26	5.50E-01	1.90E-01	0
	P 5	10.07	-0.17	0.33	0.30	5.67E - 02	5.0	1.9	0.26	2.66E-01	9.04E - 02	0
	P 6	12.43	1.53	0.23	0.23	4.44E - 02	4.6	1.8	0.26	1.92E-01	6.94E - 02	0
	P 7	12.23	1.37	0.17	0.27	3.22E - 02	4.6	1.8	0.26	1.41E-01	5.06E - 02	0
	P 8	12.67	1.23	0.50	0.77	1.77E - 01	4.6	1.8	0.26	7.68E-01	2.71E-01	0
	P 9	10.50	3.00	0.20	0.27	2.77E - 02	4.1	1.7	0.25	1.05E-01	3.85E-02	1
	P 10	10.23	-0.50	0.40	0.53	8.22E - 02	4.8	1.7	0.24	3.67E-01	1.16E - 01	0
	P 11	10.27	0.13	0.30	0.33	6.11E-02	4.7	1.6	0.24	2.73E-01	8.47E-02	0
	P 12	6.90	1.20	0.23	0.53	8.33E-02	4.5	1.6	0.26	3.57E-01	1.16E - 01	2
	P 13	9.33	2.23	0.17	0.20	2.00E - 02	4.3	1.6	0.25	8.15E-02	2.69E - 02	0
	P 14	7.93	-0.33	0.23	0.37	4.67E - 02	4.7	1.6	0.23	2.07E-01	6.17E-02	0
	P 15	13.23	1.70	0.17	0.13	1.78E - 02	4.3	1.5	0.25	7.21E - 02	2.36E - 02	0
	P 16	12.97	2.17	0.13	0.37	3.33E - 02	4.1	1.5	0.24	1.28E - 01	4.05E - 02	0
	P 17	8.63	0.83	0.70	0.33	8.55E - 02	4.5	1.4	0.24	3.66E - 01	1.06E - 01	0
	P 18	7.63	-0.13	0.20	0.10	1.56E - 02	4.5	1.4	0.23	6.74E-02	1.90E - 02	0
	P 19	11.87	0.97	0.20	0.20	3.22E - 02	4.3	1.4	0.22	1.32E-01	3.96E - 02	0
	P 20	8.87	-1.17	0.17	0.17	1.44E - 02	4.5	1.4	0.20	6.13E-02	1.75E-02	0
	P 21	9.37	-0.03	0.20	0.20	2.22E - 02	4.5	1.4	0.22	9.65E - 02	2.60E - 02	0
	P 22	7.50	0.77	0.23	0.13	2.44E - 02	4.4	1.4	0.24	1.03E-01	2.87E-02	0
	P 23	6.93	-0.23	0.20	0.33	4.22E - 02	4.3	1.3	0.21	1.75E-01	4.76E - 02	0
	P 24	13.33	0.17	0.13	0.17	1.89E-02	4.0	1.2	0.20	7.30E-02	2.03E-02	0
	P 25	8.17	-1.30	0.13	0.13	1.44E - 02	4.2	1.2	0.19	5.88E-02	1.53E - 02	0
	P 26	10.03	1.23	0.17	0.37	3.22E-02	4.1	1.1	0.21	1.27E-01	3.16E-02	0
	P 27	9.60	2.87	0.20	0.13	1.89E-02	3.5	1.1	0.20	6.37E-02	1.75E-02	0
100	P 28	7.87	1.70	0.10	0.23	1.78E-02	3.9	1.1	0.22	6.76E-02	1.66E - 02	0
123	(0)	11.33	10.70	0.17	0.27	2.40E - 02	1.0	0.6	0.08	2.22E-02	1.35E-02	0
124	(2) D 1	11.40	-9.90	1.70	1.20	5.61E-01	1.3	1.1	0.18	4.4/E - 01	3.85E-01	1
		11.40	-9.90	0.57	0.23	7.22E-02	1.3	1.1	0.18	7.85E-02	7.03E-02	0
105	P 2	12.37	-9.87	0.33	0.20	3.72E-02	1.1	1.0	0.17	3.71E-02	3.31E-02	l
125	(0)	11.45	15.50	0.30	0.27	5.73E-02	1.5	U.0	0.15	4./JE-02	2.11E-02	0
120	(1) D 1	11.45	36.27	0.33	0.43	J./JE-02	1.1 1 1	1.1 1 1	0.30	4.18E-02	3.91E-02	0
107	$r_{(1)}$	11.43	30.27	0.10	0.13	0.00E-03	1.1	1.1 1 4	0.30	6.15E-03	1.18E - 03	
127	(1) D 1	11.30	4.17	0.8/	0.80	2.70E-01	3.3 2.2	1.0	0.22	0.03E-01	2.02E-01	0
100	r I (1)	11.30	4.1/	1.00	1.00	1.44E-02	3.3 1.0	1.0	0.22	+.49E-02	1.90E - 02	0
128	(1) D 1	11.0/	15.90	1.00	1.00	U.JOE-UI	1.9	1.2	0.20	0./JE-UI	+.2/E = 01	0
129	г 1 (0)	11.80	-3.70	0.13	0.15	3.44E - 02	1.9	0.7	0.20	2.21E - 02 5.43E - 02	1.29E - 02 1.99E - 02	0
-	× /			-	-							-

 Table 7. (Continued.)

Cloud	Clump	Posi	tion	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}				associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
130	(3)	12.07	20.03	1.33	2.23	1.12E + 00	2.3	1.6	0.31	1.57E+00	9.27E-01	1
	P 1	12.07	20.03	0.23	0.23	3.76E-02	2.3	1.6	0.31	7.49E-02	5.13E-02	0
	P 2	12.30	19.97	0.40	0.30	5.43E-02	2.3	1.6	0.31	1.07E-01	7.22E-02	0
	P 3	12.07	20.97	0.30	0.30	5.29E-02	1.6	1.1	0.24	7.76E-02	5.05E-02	0
131	(2)	12.13	27.23	0.63	0.73	1.82E-01	1.2	1.0	0.26	1.61E-01	1.22E-01	0
	P 1	12.13	27.23	0.13	0.13	1.19E-02	1.2	1.0	0.26	1.31E-02	1.06E - 02	0
	P 2	12.23	27.00	0.23	0.17	1.88E-02	1.2	1.0	0.25	2.04E - 02	1.62E - 02	0
132	(0)	12.23	11.87	0.40	0.33	8.05E-02	1.3	0.7	0.12	9.40E-02	4.89E-02	0
133	(0)	12.27	25.67	0.20	0.33	2.80E-02	1.0	0.7	0.21	2.33E-02	1.60E - 02	0
134	(1)	12.30	-4.20	0.70	0.93	3.28E-01	2.1	1.4	0.14	4.96E-01	2.66E-01	0
	P 1	12.30	-4.20	0.33	0.43	8.20E-02	2.1	1.4	0.14	1.51E - 01	9.41E-02	0
135	(1)	12.70	-0.60	0.20	0.17	2.11E-02	4.1	1.4	0.20	7.53E-02	1.80E - 02	1
	P 1	12.70	-0.60	0.10	0.10	6.67E-03	4.1	1.4	0.20	2.61E-02	8.00E-03	0
136	(0)	12.73	7.20	0.23	0.17	2.20E - 02	1.5	0.7	0.17	3.12E-02	1.26E - 02	0
137	(0)	12.77	6.83	0.73	0.43	9.38E-02	1.7	0.8	0.18	1.45E - 01	5.65E-02	0
138	(0)	12.87	5.53	0.37	0.43	8.63E-02	2.2	0.8	0.18	1.73E-01	5.45E - 02	1
139	(1)	13.03	6.57	0.20	0.17	2.21E-02	2.1	1.0	0.20	3.96E-02	1.56E - 02	2
	P 1	13.03	6.57	0.10	0.10	7.73E-03	2.1	1.0	0.20	1.53E - 02	6.88E-03	0
140	(0)	13.03	10.57	1.07	0.63	2.86E-01	1.6	1.0	0.24	3.55E-01	1.76E-01	0
141	(0)	13.03	20.00	0.23	0.30	2.09E - 02	1.3	0.6	0.19	2.49E-02	1.14E - 02	0
142	(0)	13.13	28.13	0.27	0.33	3.04E-02	0.9	0.7	0.23	2.19E-02	1.76E - 02	0
143	(0)	13.17	19.40	0.17	0.27	2.10E - 02	1.3	0.6	0.19	2.55E - 02	1.12E - 02	0
144	(1)	13.30	15.70	1.80	0.97	5.03E-01	2.0	1.2	0.22	7.56E-01	3.48E-01	0
	P 1	13.30	15.70	0.37	0.30	4.07E - 02	2.0	1.2	0.22	7.33E-02	3.95E-02	0
145	(0)	13.30	7.00	0.17	0.33	3.64E-02	1.8	0.8	0.19	6.06E - 02	2.18E-02	0
146	(0)	13.33	-0.60	0.20	0.30	3.44E-02	3.5	0.8	0.17	1.13E-01	2.07E - 02	0
147	(0)	13.43	20.13	0.20	0.37	3.03E-02	1.3	0.6	0.19	3.59E-02	1.63E - 02	0
148	(1)	13.63	5.27	0.40	0.30	6.42E - 02	2.7	1.0	0.22	1.50E - 01	4.65E - 02	0
	P 1	13.63	5.27	0.27	0.23	2.66E - 02	2.7	1.0	0.22	6.55E-02	2.25E - 02	1
149	(0)	13.70	-1.93	0.30	0.23	2.78E - 02	2.8	0.8	0.14	7.21E-02	1.67E - 02	0
150	(0)	13.73	1.27	0.17	0.27	2.89E - 02	3.5	0.7	0.18	9.69E-02	1.71E - 02	0
151	(1)	13.87	-8.43	0.93	0.77	2.85E-01	1.3	1.1	0.16	2.32E - 01	1.81E - 01	0
	P 1	13.87	-8.43	0.17	0.13	1.54E - 02	1.3	1.1	0.16	1.74E - 02	1.45E - 02	0
152	(0)	13.97	1.53	0.27	0.13	2.22E - 02	3.4	0.7	0.19	7.36E - 02	1.25E - 02	0
153	(0)	13.97	4.63	0.27	0.27	5.09E - 02	2.8	0.9	0.22	1.31E - 01	3.39E - 02	1
154	(0)	13.97	15.03	0.23	0.27	2.47E - 02	1.5	0.6	0.17	3.56E - 02	1.33E - 02	0
155	(2)	14.33	3.07	0.93	0.97	4.40E - 01	3.7	1.2	0.26	1.43E + 00	3.24E - 01	0
	P 1	14.33	3.07	0.50	0.23	4.66E - 02	3.7	1.2	0.26	1.62E - 01	4.63E - 02	0
	P 2	14.67	2.80	0.17	0.20	2.55E - 02	3.7	1.1	0.25	9.00E - 02	2.45E - 02	0
156	(1)	14.47	3.93	0.67	0.40	1.34E - 01	3.6	1.4	0.28	4.04E - 01	1.06E - 01	0
	P 1	14.47	3.93	0.23	0.17	1.88E - 02	3.6	1.4	0.28	6.44E - 02	2.26E - 02	0
157	(1)	14.50	11.50	0.70	0.53	1.80E - 01	2.7	1.6	0.40	3.60E-01	1.58E - 01	0
	P 1	14.50	11.50	0.20	0.27	2.50E - 02	2.7	1.6	0.40	6.32E - 02	3.48E - 02	0
158	(1)	14.83	-3.53	0.30	0.17	3.77E - 02	2.2	1.1	0.13	6.70E-02	2.91E - 02	0
	P 1	14.83	-3.53	0.17	0.10	1.11E - 02	2.2	1.1	0.13	2.22E - 02	1.10E - 02	1
159	(4)	14.90	13.67	1.43	1.63	8.83E-01	2.5	1.4	0.26	1.67E + 00	6.53E-01	0
	P 1	14.90	13.67	0.23	0.20	2.91E-02	2.5	1.4	0.26	6.80E-02	3.50E-02	0
	P 2	14.63	13.27	0.23	0.23	2.60E-02	2.3	1.2	0.22	5.49E-02	2.59E-02	0
	P 3	15.23	12.80	0.10	0.10	7.58E-03	2.4	1.2	0.17	1.72E-02	7.79E-03	0
	P 4	15.47	13.30	0.27	0.17	2.59E-02	2.4	1.2	0.23	5.86E-02	2.62E-02	0
160	(3)	15.20	7.20	1.63	0.93	5.46E - 01	3.5	2.0	0.20	1.31E + 00	4.71E-01	5

 Table 7. (Continued.)

Cloud	Clump	Pos	tion	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 1	15.20	7.20	0.30	0.20	2.20E-02	3.5	2.0	0.20	7.08E-02	3.75E-02	0
	P 2	15.43	6.93	0.17	0.10	1.43E-02	3.2	1.5	0.20	4.26E-02	1.92E-02	0
	P 3	14.50	6.93	0.20	0.20	2.32E-02	2.8	1.4	0.29	6.00E-02	2.84E-02	0
161	(0)	15.33	2.17	0.33	0.50	6.44E-02	3.7	0.9	0.24	2.20E-01	4.30E-02	0
162	(8)	15.37	3.90	1.77	1.67	1.45E + 00	4.2	1.9	0.36	4.56E + 00	1.19E + 00	1
	P 1	15.37	3.90	0.13	0.10	1.33E-02	4.2	1.9	0.36	5.32E-02	2.19E-02	0
	P 2	16.47	3.97	0.10	0.13	1.11E-02	4.0	1.6	0.17	4.25E-02	1.57E-02	0
	P 3	16.20	3.87	0.13	0.13	1.33E-02	4.0	1.6	0.34	5.02E-02	1.82E-02	0
	P 4	15.27	4.33	0.23	0.17	1.88E-02	3.6	1.4	0.31	6.47E-02	2.25E-02	0
	P 5	15.80	4.40	0.23	0.23	2.66E - 02	3.7	1.4	0.32	9.19E-02	3.11E-02	0
	P 6	16.33	4.33	0.10	0.13	1.11E - 02	3.7	1.3	0.19	3.89E-02	1.27E - 02	0
	P 7	15.53	4.50	0.20	0.10	1.44E - 02	3.4	1.2	0.29	4.71E-02	1.51E - 02	0
	P 8	15.50	3.53	0.17	0.13	1.55E - 02	3.5	1.0	0.27	5.15E-02	1.33E-02	0
163	(0)	15.43	-4.33	0.23	0.17	2.11E - 02	1.4	0.7	0.11	2.78E - 02	1.21E - 02	0
164	(1)	15.50	3.27	0.17	0.23	3.11E-02	3.6	1.0	0.27	1.00E - 01	2.20E - 02	0
	P 1	15.50	3.27	0.13	0.10	1.11E - 02	3.6	1.0	0.27	3.78E-02	9.82E-03	0
165	(8)	15.57	-1.30	5.20	3.50	5.70E + 00	3.9	1.8	0.19	1.76E + 01	5.00E + 00	4
	P 1	15.57	-1.30	0.47	0.40	1.11E-01	3.9	1.8	0.19	4.03E-01	1.68E-01	0
	P 2	15.30	-1.70	0.60	0.63	1.47E - 01	3.7	1.7	0.17	4.95E-01	2.12E-01	0
	P 3	16.13	-0.77	0.43	0.50	1.20E - 01	3.9	1.7	0.20	4.40E - 01	1.69E-01	0
	P 4	18.00	-0.37	0.37	0.33	7.00E - 02	3.9	1.6	0.21	2.59E-01	9.75E-02	0
	P 5	14.53	-1.00	0.57	0.43	1.03E - 01	3.7	1.4	0.18	3.57E-01	1.16E-01	0
	P 6	14.50	-2.13	0.13	0.17	1.67E - 02	3.1	1.3	0.15	4.89E-02	1.87E - 02	0
	P 7	13.83	-0.53	0.73	0.70	2.38E-01	3.8	1.2	0.19	8.39E-01	2.35E-01	0
	P 8	16.53	0.07	0.20	0.23	3.44E - 02	3.6	1.1	0.19	1.19E-01	3.22E-02	0
166	(0)	15.70	5.60	0.40	0.63	1.40E - 01	2.9	0.9	0.14	3.63E-01	8.98E-02	0
167	(0)	15.90	15.60	0.13	0.20	2.25E - 02	2.0	0.8	0.22	4.04E - 02	1.42E - 02	0
168	(0)	15.93	-2.57	0.37	0.30	6.66E - 02	2.4	1.0	0.12	1.38E-01	4.50E - 02	0
169	(2)	15.93	9.60	0.53	0.67	1.46E - 01	2.8	1.2	0.37	3.38E-01	1.06E - 01	0
	P 1	15.93	9.60	0.10	0.13	9.86E-03	2.8	1.2	0.37	2.58E - 02	1.02E - 02	0
	P 2	16.10	9.53	0.17	0.27	2.30E - 02	2.8	1.1	0.36	5.93E - 02	2.23E - 02	0
170	(2)	15.93	16.80	1.13	0.97	5.37E - 01	2.6	1.5	0.31	1.01E + 00	4.32E - 01	1
	P 1	15.93	16.80	0.40	0.33	5.53E - 02	2.6	1.5	0.31	1.31E - 01	7.27E - 02	0
	P 2	16.43	16.70	0.17	0.13	1.17E - 02	2.4	1.2	0.28	2.56E - 02	1.24E - 02	0
171	(1)	16.03	0.47	0.73	0.57	2.09E-01	3.7	1.0	0.21	6.99E-01	1.46E - 01	0
	P 1	16.03	0.47	0.40	0.27	5.44E-02	3.7	1.0	0.21	1.92E-01	4.73E-02	0
172	(1)	16.10	18.47	0.53	0.37	1.18E-01	2.4	1.4	0.31	2.00E-01	9.19E-02	0
. = =	P 1	16.10	18.47	0.13	0.13	1.58E-02	2.4	1.4	0.31	3.43E-02	1.99E-02	0
173	(0)	16.30	15.53	0.20	0.40	4.50E - 02	2.0	0.8	0.22	8.23E-02	2.74E-02	1
174	(8)	16.33	8.47	2.80	2.17	2.46E + 00	5.0	3.4	0.73	6.48E + 00	2.45E+00	l
	PI	16.33	8.47	0.13	0.17	1.54E - 02	5.0	3.4	0.73	7.01E-02	4.51E-02	0
	P 2	16.00	8.57	0.17	0.20	2.20E-02	4.5	2.9	0.61	8.78E-02	5.37E-02	0
	P 3	16.80	8.40	0.20	0.17	2.75E-02	4.0	2.3	0.26	1.01E-01	5.38E-02	0
	P4	16.33	7.63	0.13	0.13	1.43E-02	3.2	1.5	0.21	4.31E-02	1.88E-02	0
	P 5	15.70	7.77	0.13	0.17	1.21E - 02	3.0	1.4	0.15	3.39E-02	1.50E - 02	0
	P 6	15.80	8.17	0.27	0.17	2.53E-02	2.7	1.2	0.32	6.36E-02	2.53E - 02	0
	P /	16.23	9.00	0.10	0.10	0.38E-03	2.8	1.2	0.35	1.72E - 02	0.52E-03	0
175	Р 8 (0)	15.20	8.97	0.20	0.27	2.03E - 02	2.5	1.1	0.31	0.20E - 02	2.5/E-02	0
175	(0)	16.47	13.10	0.30	0.30	3.36E-02	2.3	0.8	0.13	0.88E-02	2.09E-02	0
1/0	(0)	10.53	9.07	0.17	0.13	1.05E - 02	2.1	1.0	0.34	3.94E-02	1.18E - 02	0
1//	(0)	10.03	10.93	2.03	1.0/	1./1E+00	4.3	2.9	0.71	$4.18E \pm 00$	1.01E + 00	U

 Table 7. (Continued.)

Cloud	Clump	Posi	ition	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 1	16.63	10.93	0.20	0.27	2.18E-02	4.5	2.9	0.71	8.89E-02	5.33E-02	0
	P 2	15.47	11.43	0.10	0.10	8.71E-03	3.0	1.6	0.44	2.45E-02	1.24E-02	0
	P 3	15.80	11.47	0.13	0.13	1.31E-02	3.0	1.6	0.44	3.66E-02	1.77E-02	0
	P 4	15.87	11.83	0.20	0.23	2.61E-02	2.9	1.4	0.42	6.97E-02	3.24E-02	0
	P 5	16.33	11.20	0.17	0.13	1.85E-02	3.0	1.4	0.42	5.16E-02	2.24E-02	0
	P 6	17.20	11.57	0.10	0.13	8.71E-03	2.9	1.3	0.42	2.42E-02	1.01E-02	0
178	(1)	16.83	13.47	0.43	0.70	1.66E - 01	2.5	1.1	0.19	3.51E-01	1.16E-01	0
	P 1	16.83	13.47	0.27	0.37	4.10E-02	2.5	1.1	0.19	9.55E-02	3.71E-02	0
179	(10)	16.87	3.07	3.83	2.43	2.97E + 00	4.1	1.5	0.17	9.91E+00	2.13E + 00	0
	P 1	16.87	3.07	0.23	0.23	3.33E-02	4.1	1.5	0.17	1.29E-01	4.40E-02	0
	P 2	16.97	3.30	0.30	0.30	4.21E-02	3.8	1.3	0.17	1.51E-01	4.56E-02	0
	P 3	16.23	3.00	0.17	0.13	1.44E - 02	3.8	1.3	0.29	5.22E - 02	1.53E - 02	0
	P 4	16.33	2.37	0.17	0.23	2.44E - 02	3.9	1.2	0.28	9.06E - 02	2.54E - 02	0
	P 5	16.80	2.63	0.20	0.17	2.11E - 02	3.8	1.2	0.28	7.61E - 02	2.12E - 02	Ő
	P 6	15.00	2.05	0.20	0.17	1.78E - 02	3.0	1.2	0.20	6.63E - 02	1.79E - 02	0
	Р7	17.27	2.27 2.70	0.20	0.15	3.00E - 02	37	1.2	0.17	1.05E - 01	2.76E - 02	0
	P 8	16.90	1 40	0.20	0.13	1.22E - 02	37	1.1	0.17	4.41E - 02	1.11E - 02	0
	PQ	15.50	2.03	0.10	0.13	1.22E 02 1.67E = 02	3.8	1.0	0.24	6.12E - 02	$1.11E \ 02$ 1.52E - 02	0
	P 10	18.83	2.05	0.17	0.15	$6.77E_{-02}$	3.6	1.0	0.20	$0.12E \ 0.02$ 2 34E -01	1.52E = 02 5.69E - 02	0
180	(2)	16.03	2.77	1.23	2.73	$1.15E \pm 00$	3.0	1.0	0.21	2.34E = 01 $2.35E \pm 00$	0.06E - 01	5
100	(2) D 1	16.93	-2.33	0.40	2.23	1.132 ± 00 8 44E 02	3.1	1.5	0.15	$2.33E \pm 00$ 2.34E 01	9.00E - 01	5
		16.95	-2.55	0.40	0.00	6.44E - 02	2.1	1.3	0.13	2.34E - 01	1.01E - 01 5.12E 02	0
101	P 2	10.77	-3.33	0.50	0.27	4.77E = 02	2.5	1.5	0.15	1.01E - 01	3.13E - 02	0
101	(0)	17.07	10.57	0.20	0.17	2.08E - 02	2.0	0.9	0.55	4.89E - 02	1.50E - 02	0
102	(0)	17.37	12.33	0.17	0.27	2.00E - 02	2.5	0.7	0.17	5.34E - 02	1.50E - 02	0
183	(0)	17.47	15.05	0.27	0.27	2.71E - 02	2.2	0.7	0.18	5.03E - 02	1.5/E - 02	0
184	(1) D 1	17.55	10.55	0.75	0.27	9.72E-02	3.0	1.5	0.41	2.3/E - 01	0.90E - 02	0
105	P I	17.53	10.53	0.17	0.13	1.31E - 02	3.0	1.3	0.41	3.70E-02	1.45E - 02	0
185	(0)	17.60	11.07	0.27	0.20	2.84E - 02	2.4	0.8	0.34	6.45E - 02	1.74E-02	0
186	(3)	17.63	9.73	1.07	0.40	2.40E-01	3.6	1.8	0.49	6.34E-01	2.06E-01	1
	PI	17.63	9.73	0.17	0.10	1.20E-02	3.6	1.8	0.49	4.06E - 02	1.92E-02	0
	P 2	17.93	9.77	0.13	0.17	1.53E-02	3.1	1.3	0.41	4.51E-02	1.77E - 02	0
105	P 3	18.20	9.80	0.23	0.07	1.31E-02	2.9	1.1	0.37	3.60E-02	1.24E - 02	0
187	(0)	17.77	7.17	0.20	0.13	2.43E-02	2.7	0.7	0.18	6.24E - 02	1.40E - 02	0
188	(0)	17.87	6.83	0.60	0.47	1.15E-01	3.0	1.0	0.20	3.12E-01	7.53E-02	0
189	(4)	17.97	12.57	2.80	2.20	1.94E + 00	3.8	2.3	0.43	4.61E + 00	1.66E + 00	0
	PI	17.97	12.57	0.13	0.13	1.41E-02	3.8	2.3	0.43	4.89E-02	2.73E-02	0
	P 2	17.83	12.77	0.17	0.13	1.52E - 02	3.5	2.0	0.37	4.93E-02	2.63E-02	0
	P 3	18.10	13.10	0.27	0.20	2.38E-02	3.0	1.5	0.30	6.50E-02	2.98E-02	0
	P 4	19.43	12.40	0.30	0.30	3.69E - 02	2.8	1.3	0.27	9.72E-02	4.10E-02	0
190	(0)	18.20	4.17	0.30	0.27	6.21E - 02	3.3	0.8	0.19	1.92E-01	3.86E-02	0
191	(1)	18.27	0.47	0.60	0.23	7.56E - 02	3.5	1.1	0.12	2.40E - 01	5.19E - 02	0
	P 1	18.27	0.47	0.23	0.13	1.89E - 02	3.5	1.1	0.12	6.40E - 02	1.70E - 02	0
192	(0)	18.27	-6.00	0.53	0.40	1.17E - 01	1.5	0.8	0.13	1.49E - 01	7.60E - 02	0
193	(0)	18.33	-9.77	0.40	0.33	4.38E - 02	0.8	0.6	0.15	3.01E - 02	2.48E - 02	0
194	(2)	18.37	16.60	1.03	0.77	2.97E-01	2.2	1.1	0.25	5.24E-01	1.97E-01	0
	P 1	18.37	16.60	0.30	0.17	2.56E-02	2.2	1.1	0.25	5.23E-02	2.33E-02	0
	P 2	18.77	16.73	0.17	0.13	1.81E-02	2.1	1.0	0.24	3.60E-02	1.63E-02	0
195	(0)	18.40	-1.43	0.23	0.17	2.78E-02	2.8	0.7	0.13	7.37E-02	1.59E-02	0
196	(1)	18.50	3.37	0.90	1.10	4.19E-01	3.6	1.1	0.21	1.34E + 00	2.89E-01	0
	P 1	18.50	3.37	0.47	0.30	5.77E-02	3.6	1.1	0.21	1.97E-01	5.04E - 02	0
197	(1)	18.53	7.37	0.33	0.33	6.72E-02	3.1	1.1	0.22	1.82E-01	4.64E-02	0

 Table 7. (Continued.)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cloud	Clump	Posi	tion	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2}ds$	Number of
	name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	•			associated
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 1	18.53	7.37	0.13	0.17	1.54E-02	3.1	1.1	0.22	4.56E-02	1.45E-02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	198	(10)	18.53	19.63	2.43	3.97	3.84E + 00	3.2	2.4	0.47	6.29E+00	3.24E + 00	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 1	18.53	19.63	0.27	0.47	4.09E-02	3.2	2.4	0.47	1.13E-01	8.19E-02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 2	18.77	17.87	0.27	0.20	2.96E-02	3.2	2.2	0.43	8.35E-02	5.44E-02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 3	18.47	18.47	0.13	0.23	2.00E-02	2.9	1.9	0.38	5.24E-02	3.35E-02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 4	18.13	18.30	0.17	0.23	2.00E - 02	2.6	1.6	0.32	4.64E-02	2.69E-02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 5	18.83	18.80	0.17	0.20	1.79E-02	2.2	1.3	0.28	3.55E-02	2.03E-02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 6	19.33	17.80	0.13	0.13	1.27E - 02	2.2	1.3	0.26	2.53E-02	1.36E-02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 7	19.03	19.77	0.30	0.27	3.45E-02	1.9	1.2	0.19	5.82E-02	3.56E-02	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		P 8	19.83	20.40	0.17	0.10	1.15E - 02	1.5	1.1	0.20	1.59E-02	1.10E-02	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		P 9	19.60	19.63	0.30	0.43	6.07E - 02	1.7	1.1	0.18	8.88E-02	5.50E-02	0
		P 10	19.43	20.23	0.20	0.20	2.50E - 02	1.5	1.0	0.18	3.42E-02	2.15E-02	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	199	(1)	18.67	8.90	0.17	0.10	1.43E-02	3.0	1.2	0.20	3.73E-02	1.10E-02	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 1	18.67	8.90	0.10	0.07	5.49E-03	3.0	1.2	0.20	1.55E - 02	5.36E-03	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200	(0)	18.90	6.83	0.50	0.37	6.73E-02	2.9	0.7	0.19	1.83E-01	4.05E - 02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	201	(0)	18.93	-3.90	0.27	0.33	3.55E-02	1.9	0.7	0.12	6.36E-02	2.01E - 02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	202	(0)	19.07	22.80	0.17	0.17	2.05E - 02	1.0	0.7	0.20	1.74E - 02	1.21E - 02	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	203	(4)	19.10	8.43	1.80	1.03	1.08E + 00	4.4	2.5	0.44	3.12E + 00	1.02E + 00	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 1	19.10	8.43	0.17	0.20	1.87E - 02	4.4	2.5	0.44	7.61E-02	4.09E - 02	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 2	19.43	8.17	0.17	0.10	1.65E - 02	4.2	2.2	0.40	6.41E-02	3.22E-02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 3	19.87	7.80	0.13	0.13	1.43E - 02	3.9	1.8	0.33	5.13E-02	2.22E - 02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 4	18.87	8.00	0.37	0.20	3.41E-02	3.6	1.6	0.29	1.13E-01	4.80E - 02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	204	(0)	19.10	11.53	0.23	0.17	2.40E - 02	2.5	0.9	0.21	5.41E-02	1.60E - 02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	205	(1)	19.17	6.20	0.63	0.53	1.58E - 01	3.7	1.4	0.27	4.96E-01	1.33E-01	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 1	19.17	6.20	0.33	0.30	4.09E - 02	3.7	1.4	0.27	1.42E - 01	4.72E - 02	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	206	(0)	19.40	-0.67	0.13	0.23	2.33E-02	2.9	0.7	0.10	6.53E-02	1.39E-02	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	207	(1)	19.50	0.30	0.23	0.20	3.00E - 02	4.0	1.6	0.22	1.00E - 01	2.82E - 02	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 1	19.50	0.30	0.10	0.07	6.67E - 03	4.0	1.6	0.22	2.55E - 02	9.58E-03	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	208	(1)	19.57	4.47	0.73	0.67	1.64E - 01	3.5	1.1	0.23	5.19E-01	1.11E - 01	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 1	19.57	4.47	0.20	0.17	2.55E - 02	3.5	1.1	0.23	8.64E - 02	2.29E - 02	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	209	(1)	19.60	14.87	0.90	1.30	4.98E - 01	2.3	1.1	0.24	9.87E-01	3.40E - 01	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 1	19.60	14.87	0.17	0.13	1.83E - 02	2.3	1.1	0.24	3.92E - 02	1.76E - 02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	210	(1)	19.70	-6.10	0.43	0.30	6.74E - 02	1.7	1.1	0.15	9.15E - 02	4.77E - 02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		P 1	19.70	-6.10	0.20	0.17	1.88E - 02	1.7	1.1	0.15	2.92E - 02	1.70E - 02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	211	(1)	19.70	14.20	0.17	0.23	2.80E-02	2.3	1.0	0.23	5.52E-02	1.98E-02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		P 1	19.70	14.20	0.10	0.13	1.08E - 02	2.3	1.0	0.23	2.31E-02	9.48E-03	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	212	(1)	19.73	6.90	0.40	0.37	8.71E-02	3.5	1.3	0.26	2.59E-01	6.45E-02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		PI	19.73	6.90	0.13	0.17	1.43E-02	3.5	1.3	0.26	4.79E-02	1.5/E - 02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	213	(1)	19.87	5.27	0.87	0.83	3.03E-01	4.0	1.4	0.30	9.99E-01	2.35E-01	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	014	PI	19.87	5.27	0.30	0.20	2.32E - 02	4.0	1.4	0.30	8.73E-02	2.84E - 02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	214	(0)	19.97	10.93	0.37	0.20	3.82E - 02	2.5	0.9	0.21	8.63E - 02	2.45E - 02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	215	(0)	20.00	18.27	0.37	0.27	2.74E - 02	1.4	0.7	0.16	3.40E-02	1.53E - 02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	216	(0)	20.10	6.80	0.23	0.23	3.64E - 02	3.1	0.8	0.22	1.0/E - 01	2.34E - 02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	217	(0)	20.20	-1.13	0.13	0.23	2.00E - 02	2.8	0.7	0.09	5.32E - 02	1.13E - 02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	218	(0)	20.20	14.13	0.23	0.27	3.45E - 02	2.0	0.8	0.19	6.12E - 02	2.04E - 02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	219	(1) D 1	20.23	5.83	0.50	0.40	9.93E-02	<i>3.</i> 9	1.4	0.30	3.30E-01	8.28E-02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	220	r_{1}	20.23	J.83 0.02	0.17	0.23	2.32E-02	3.9 1 4	1.4	0.30	0.01E-02	2.04E - 02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	220	(1) D 1	20.33	-0.03	1.03	1.20	J./UE-UI	1.4	1.0	0.10	4.11E-UI	2.4/E-UI	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	221	r 1 (6)	20.33 20.47	-0.03 -2.40	0.27 2.02	0.47	1.92E - 02	1.4 1 2	1.0	0.10	1.02E - 01 1.02E + 01	0.0/E - 02 4.71E + 00	1
	221	P 1	20.47	-2.40 -2.40	0.13	0.17	2.00E - 02	4.3	2.5	0.20	7.81E-02	4.22E - 02	0

 Table 7. (Continued.)

Cloud	Clump	Posi	tion	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}				associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 2	19.40	-4.40	0.27	0.37	6.43E-02	3.1	2.1	0.20	1.78E-01	1.13E-01	0
	P 3	21.40	-3.97	0.27	0.20	3.10E-02	2.9	1.8	0.20	7.96E-02	4.73E-02	0
	P 4	19.73	-3.17	0.37	0.57	9.10E-02	3.3	1.8	0.19	2.69E-01	1.34E-01	0
	P 5	20.73	-4.70	0.50	0.40	1.32E - 01	2.6	1.7	0.19	3.10E-01	1.95E-01	0
	P 6	19.87	-5.30	0.20	0.20	2.66E - 02	2.0	1.2	0.16	4.88E-02	2.81E-02	0
222	(0)	20.53	20.97	0.17	0.17	2.18E-02	1.1	0.8	0.19	2.03E - 02	1.36E-02	0
223	(1)	20.67	5.63	0.27	0.13	2.99E-02	3.7	1.2	0.28	1.01E - 01	2.51E-02	0
	P 1	20.67	5.63	0.17	0.07	8.85E-03	3.7	1.2	0.28	3.24E - 02	1.00E - 02	0
224	(1)	21.17	9.97	0.40	0.33	6.46E - 02	3.0	1.2	0.26	1.65E - 01	5.19E-02	1
	P 1	21.17	9.97	0.30	0.13	1.97E - 02	3.0	1.2	0.26	5.57E - 02	2.11E - 02	0
225	(3)	21.27	12.10	1.17	1.17	3.49E-01	3.4	2.0	0.36	7.95E - 01	3.01E - 01	2
	P 1	21.27	12.10	0.20	0.10	1.30E - 02	3.4	2.0	0.36	4.07E - 02	2.23E - 02	0
	P 2	21.73	11.80	0.13	0.10	1.20E - 02	2.8	1.4	0.27	3.15E - 02	1.49E - 02	0
	P 3	21.90	11.57	0.40	0.33	6.32E - 02	2.6	1.2	0.25	1.55E - 01	6.50E - 02	0
226	(0)	21.27	20.83	0.40	0.33	5.82E - 02	1.1	0.8	0.19	4.94E - 02	3.49E-02	0
227	(2)	21.43	0.27	1.10	1.03	5.74E-01	4.5	2.2	0.28	1.93E + 00	5.81E-01	1
	P 1	21.43	0.27	0.23	0.27	4.67E-02	4.5	2.2	0.28	1.94E-01	8.40E-02	0
	P 2	21.13	0.50	0.13	0.13	1.22E - 02	3.9	1.5	0.21	4.50E-02	1.59E-02	1
228	(0)	21.43	-2.73	0.27	0.47	7.32E-02	2.6	0.9	0.16	1.66E - 01	4.78E-02	0
229	(0)	21.93	-4.97	0.23	0.30	4.10E-02	1.4	0.7	0.13	5.32E-02	2.43E-02	0
230	(16)	22.27	3.13	3.30	3.37	3.93E+00	6.4	3.9	0.90	1.39E+01	3.99E+00	
	PI	22.27	3.13	0.13	0.20	2.33E-02	6.4 5.0	3.9	0.90	1.35E-01	7.71E-02	1
	P 2	21.63	3./3	0.20	0.10	1.44E - 02	5.9	3.5	0.73	7.82E - 02	4.29E - 02	3
	P 3	22.20	4.80	0.17	0.17	1.88E - 02	5.5	2.8	0.59	9.14E - 02	4.43E - 02	1
	P 4	21.00	4.57	0.27	0.17	2.77E - 02	4./	2.2	0.41	1.22E - 01	5.29E - 02	0
		25.05	2.33	0.57	0.33	4.88E - 02	4.9	2.2 1.9	0.40	2.20E - 01	9.02E - 02	0
		21.20	5.90 4.07	0.10	0.10	0.07E - 03	4.5	1.0	0.35	5.03E - 02	1.43E - 02	0
	Г / D 9	21.17	4.97	0.10	0.15	9.90E-03	4.5	1.0	0.30	4.07E - 02 1.57E 01	1.34E - 02	1
		21.03	4.55	0.33	0.27	3.99E - 02	4.2	1.7	0.35	1.57E = 01 1.95E = 01	5.84E - 02	0
	P 10	20.67	3.15	0.37	0.23	4.99E = 02	4.2	1.7	0.30	1.93E-01 1.53E-01	5.63E - 02	1
	P 11	20.07	5.07	0.27	0.20	1.00E - 02	3.0	1.0	0.30	$7.34E_{-02}$	2.29E_02	1
	P 12	21.07	4 33	0.20	0.13	2.55E - 02	3.8	13	0.30	9.26E - 02	2.25E = 02 2.94E -02	0
	P 13	22.23	4 20	0.57	0.17	5.76E - 02	3.7	1.3	0.27	2.02E - 01	6.09E-02	0
	P 14	22.77	4.60	0.23	0.13	2.22E-02	3.7	1.2	0.28	7.95E-02	2.38E-02	0
	P 15	23.43	2.23	0.17	0.23	2.33E - 02	3.8	1.0	0.23	8.43E - 02	2.04E - 02	Ő
	P 16	22.33	2.27	0.13	0.10	1.11E - 02	3.6	1.0	0.21	3.85E-02	9.73E-03	0
231	(15)	22.33	-1.07	6.97	3.17	7.96E + 00	5.9	3.8	0.46	2.65E + 01	8.55E + 00	11
	P 1	22.33	-1.07	0.27	0.27	4.00E-02	5.9	3.8	0.46	2.14E-01	1.28E-01	0
	P 2	25.27	-0.10	0.27	0.13	2.22E-02	5.9	3.7	0.47	1.19E-01	6.93E-02	0
	P 3	21.20	-1.23	0.30	0.37	5.78E-02	4.7	2.6	0.29	2.49E-01	1.28E-01	0
	P 4	25.63	-0.27	0.13	0.17	1.33E-02	4.5	2.3	0.29	5.44E-02	2.57E-02	1
	P 5	22.60	-0.10	0.10	0.10	7.78E-03	4.5	2.2	0.17	3.27E-02	1.48E-02	3
	P 6	21.33	-1.67	0.17	0.27	3.11E-02	4.1	2.1	0.24	1.18E-01	5.58E-02	0
	Р7	26.03	0.20	0.27	0.30	5.56E-02	4.3	1.9	0.26	2.23E-01	9.26E-02	0
	P 8	23.27	-0.20	0.47	0.33	7.78E-02	4.1	1.7	0.24	2.94E-01	1.13E-01	0
	P 9	26.17	-0.03	0.17	0.10	1.44E-02	3.9	1.7	0.23	5.38E-02	2.12E-02	0
	P 10	24.13	0.43	0.40	0.33	5.11E-02	4.1	1.6	0.12	1.94E-01	6.78E-02	0
	P 11	23.43	-0.70	0.17	0.23	3.33E-02	3.6	1.5	0.21	1.15E-01	4.25E-02	0
	P 12	22.80	-1.43	0.10	0.13	1.22E-02	3.5	1.4	0.21	4.04E - 02	1.53E-02	1
	P 13	23.57	0.53	0.13	0.27	2.56E-02	3.9	1.4	0.16	9.44E-02	3.03E-02	0

Table 7.(Continued.)

Cloud	Clump	Posi	tion	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}				associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 14	26.03	-0.50	0.13	0.10	1.00E-02	3.4	1.3	0.20	3.20E-02	1.16E-02	0
	P 15	20.80	0.07	0.23	0.13	2.22E-02	3.4	1.1	0.16	7.20E-02	2.07E-02	0
232	(1)	22.63	10.83	0.73	0.33	1.24E-01	2.5	1.1	0.23	2.72E-01	8.99E-02	0
	P 1	22.63	10.83	0.30	0.20	3.49E-02	2.5	1.1	0.23	8.36E-02	3.27E-02	0
233	(0)	22.73	7.07	0.13	0.27	2.10E - 02	3.5	0.9	0.29	6.76E-02	1.43E-02	0
234	(1)	22.80	-6.20	1.17	0.73	4.64E - 01	1.9	1.4	0.17	5.47E-01	3.24E-01	1
	P 1	22.80	-6.20	0.20	0.23	2.54E - 02	1.9	1.4	0.17	4.29E-02	2.99E-02	0
235	(1)	23.07	0.47	0.27	0.30	5.78E-02	3.9	1.4	0.19	1.91E-01	4.92E-02	0
	P 1	23.07	0.47	0.13	0.17	1.56E - 02	3.9	1.4	0.19	5.73E-02	1.90E - 02	0
236	(0)	23.07	3.40	0.40	0.50	5.10E - 02	3.4	0.8	0.21	1.61E-01	3.21E-02	1
237	(2)	23.13	4.87	0.90	0.60	1.58E - 01	4.5	1.9	0.41	5.36E-01	1.25E - 01	0
	P 1	23.13	4.87	0.13	0.07	8.86E-03	4.5	1.9	0.41	3.85E-02	1.54E - 02	0
	P 2	22.77	5.17	0.13	0.10	9.96E-03	3.6	1.0	0.27	3.46E-02	8.90E-03	0
238	(0)	23.23	-1.97	0.50	0.30	9.33E-02	2.5	0.8	0.16	2.13E-01	5.79E-02	0
239	(1)	23.33	11.80	0.23	0.13	2.39E-02	2.2	1.1	0.16	4.30E-02	1.89E-02	0
	P 1	23.33	11.80	0.13	0.07	8.70E-03	2.2	1.1	0.16	1.75E-02	8.73E-03	1
240	(0)	23.33	-6.87	0.30	0.20	3.31E-02	1.0	0.6	0.14	3.22E-02	1.84E - 02	0
241	(0)	23.37	-9.03	0.27	0.30	4.28E - 02	1.1	0.8	0.17	3.82E-02	2.56E - 02	0
242	(4)	23.43	9.97	1.47	1.33	8.79E-01	3.5	1.8	0.37	2.13E + 00	7.84E-01	2
	P 1	23.43	9.97	0.13	0.27	1.97E - 02	3.5	1.8	0.37	6.44E-02	3.06E-02	0
	P 2	23.17	10.60	0.20	0.20	1.86E - 02	3.1	1.6	0.31	5.37E-02	2.62E - 02	0
	P 3	22.87	10.20	0.10	0.17	1.31E - 02	3.2	1.6	0.31	3.90E-02	1.78E - 02	0
	P 4	23.47	10.90	0.50	0.27	5.57E - 02	2.9	1.5	0.28	1.46E - 01	7.24E - 02	0
243	(40)	23.47	8.47	7.30	4.20	1.27E + 01	13.3	11.0	38.3 [†]	4.80E + 01	1.90E + 01	22
	P 1	23.47	8.47	0.17	0.13	1.21E - 02	13.3	11.0	38.3†	1.42E - 01	1.16E-01	0
	P 2	23.53	8.20	0.30	0.13	1.76E - 02	12.8	10.5	29.9^{\dagger}	1.95E-01	1.54E - 01	0
	P 3	23.00	8.43	0.13	0.23	1.98E - 02	7.5	5.3	2.27^{\dagger}	1.32E-01	9.01E-02	0
	P 4	23.63	7.63	0.10	0.10	8.81E-03	7.5	5.0	2.25^{\dagger}	6.09E-02	3.85E-02	0
	P 5	24.10	7.97	0.10	0.13	1.10E - 02	7.1	4.6	1.86^{\dagger}	7.09E-02	4.38E-02	0
	P 6	24.97	7.90	0.13	0.10	9.91E-03	6.5	4.0	1.38^{\dagger}	5.99E-02	3.52E-02	0
	P 7	25.83	6.23	0.23	0.13	1.33E-02	6.6	3.6	1.28^{\dagger}	8.05E-02	4.13E-02	0
	P 8	25.70	6.90	0.23	0.13	1.65E - 02	6.3	3.5	1.17^{\dagger}	9.46E-02	4.90E - 02	0
	P 9	25.90	7.80	0.13	0.20	2.31E-02	5.9	3.5	0.30	1.27E - 01	7.15E-02	0
	P 10	25.23	7.10	0.20	0.10	1.54E - 02	6.2	3.4	1.11^{+}	8.79E-02	4.55E - 02	0
	P 11	25.27	7.80	0.17	0.17	1.43E-02	5.9	3.4	1.01	7.70E-02	4.16E-02	0
	P 12	21.87	8.97	0.63	0.37	5.82E - 02	5.3	3.3	0.77	2.78E-01	1.64E - 01	0
	P 13	26.50	8.03	0.27	0.27	2.53E - 02	5.4	3.3	0.26	1.26E-01	7.15E-02	1
	P 14	24.67	8.20	0.13	0.13	1.10E - 02	5.7	3.3	0.96	5.74E - 02	3.09E-02	0
	P 15	25.63	6.53	0.27	0.23	3.09E - 02	6.1	3.3	1.04^{\dagger}	1.73E-01	8.34E-02	0
	P 16	23.97	7.33	0.13	0.13	9.92E-03	5.9	3.2	0.98	5.39E-02	2.73E - 02	0
	P 17	25.87	6.53	0.13	0.10	9.94E-03	5.7	2.9	0.86	5.32E-02	2.49E - 02	0
	P 18	24.40	9.13	0.27	0.20	2.85E - 02	4.9	2.7	0.68	1.27E - 01	6.70E - 02	0
	P 19	24.67	7.80	0.23	0.40	3.52E - 02	5.2	2.6	0.74	1.69E - 01	7.98E - 02	0
	P 20	23.63	6.83	0.13	0.17	1.54E-02	5.3	2.6	0.73	7.68E-02	3.45E-02	0
	P 21	26.87	6.90	0.17	0.10	1.43E-02	5.0	2.4	0.26	6.71E-02	2.93E-02	0
	P 22	26.87	8.17	0.20	0.17	2.64E-02	4.3	2.4	0.19	1.05E-01	5.40E-02	0
	P 23	24.73	8.97	0.53	0.40	6.04E-02	4.5	2.3	0.56	2.47E-01	1.15E-01	0
	P 24	23.93	8.90	0.30	0.23	3.95E-02	4.4	2.3	0.54	1.63E-01	7.82E-02	0
	P 25	22.53	8.00	0.13	0.13	1.21E-02	4.4	2.2	0.49	5.00E-02	2.30E-02	0
	P 26	27.63	8.00	0.27	0.23	3.30E-02	4.1	2.2	0.18	1.26E-01	6.19E-02	0
	P 27	21.97	7.03	0.13	0.23	2.43E - 02	4.6	2.1	0.48	1.04E - 01	4.46E - 02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ze	Surface	Maximu	m extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 28	26.33	7.07	0.17	0.27	2.32E-02	4.8	2.1	0.19	1.02E-01	4.07E-02	0
	P 29	24.13	7.17	0.10	0.10	8.82E-03	4.8	2.0	0.58	3.95E-02	1.51E-02	0
	P 30	24.90	9.27	0.20	0.13	1.97E-02	4.0	1.9	0.17	7.26E-02	3.29E-02	0
	P 31	26.20	9.23	0.17	0.37	3.51E-02	3.4	1.9	0.15	1.11E-01	5.70E-02	0
	P 32	21.23	7.73	0.20	0.17	2.20E - 02	3.7	1.5	0.31	7.63E-02	2.84E-02	0
	P 33	21.90	7.50	0.27	0.37	4.08E - 02	3.7	1.4	0.33	1.44E - 01	4.92E - 02	0
	P 34	26.53	9.03	0.17	0.20	2.19E - 02	2.9	1.4	0.15	5.78E - 02	2.62E - 02	0
	P 35	25.83	9.30	0.30	0.33	6.69E-02	3.1	1.4	0.15	1.94E-01	7.99E-02	0
	P 36	23.90	9.67	0.20	0.23	1.97E - 02	3.2	1.3	0.32	6.04E - 02	2.20E-02	0
	P 37	21.97	8.63	0.20	0.13	1.87E - 02	3.2	1.2	0.27	5.70E-02	1.91E-02	0
	P 38	27.23	7.13	0.20	0.30	4.41E-02	3.7	1.2	0.15	1.54E - 01	4.38E-02	0
	P 39	24.23	9.50	0.13	0.10	8.77E-03	3.1	1.1	0.29	2.58E-02	8.28E-03	0
244	P 40	24.10	9.93	0.13	0.13	1.09E - 02	2.8	1.0	0.26	2.90E-02	9.74E-03	0
244	(0)	23.63	4.33	0.20	0.23	3.7/E - 02	3.4	0.8	0.24	1.23E - 01	2.54E - 02	0
245	(0)	23.11	-8.73	0.20	0.30	2.86E-02	0.9	0.6	0.16	2.43E - 02	1.60E - 02	0
246	(1) D 1	23.87	4.20	0.20	0.13	1.7/E - 02	3.8	1.1	0.28	6.08E - 02	1.39E-02	0
247	P I	23.87	4.20	0.13	0.10	7.76E-03	3.8	1.1	0.28	2.79E - 02	7.39E-03	1
247	(0)	23.87	2.20	0.20	0.17	2.22E - 02	3.5	0.7	0.21	7.52E-02	1.3/E - 02	0
248	(0)	23.90	11.10	0.17	0.27	2.18E-02	2.0	0.8	0.15	3./3E - 02	1.34E - 02	1
249	(1) D 1	24.07	1.53	0.40	0.23	5.89E - 02	3.8	1.1	0.23	2.01E - 01	4.16E - 02	0
250	P I	24.07	1.33	0.20	0.17	1.33E - 02	5.8	1.1	0.23	4.81E - 02	1.20E - 02	0
250	(0)	24.15	-10.10	0.27	0.17	2.84E - 02	0.8	0.6	0.17	2.09E - 02	1.03E - 02	0
251	(0)	24.17	-9.95	0.17	0.25	2.41E - 02	0.8	0.0	0.10	1.74E - 02	1.51E - 02	0
252	(0)	24.17	-1.57	0.17	0.17	2.33E - 02	2.4	0.9	0.15	4.99E - 02	1.33E - 02	0
235	(1) D 1	24.20	4.00	0.17	0.27	3.43E - 02	5.9 2.0	1.1	0.31	1.23E = 01	2.80E - 02	0
254	(1)	24.20	-8.00	1.57	1.37	1.33E = 02 5.71E = 01	5.9 1 /	1.1	0.51	5.82E - 02 5.41E - 01	1.55E = 02 3.89E = 01	1
234	(1) P 1	24.23	-8.90	0.50	0.50	$1.27E_{-01}$	1.4	1.1	0.19	$1.53E_{-01}$	$1.18E_{-01}$	0
255	(0)	24.20	10.23	0.30	0.30	2.51E - 02	1.7	0.9	0.13	5.53E - 02	1.10E 01 1.65E - 02	0
255	(0)	24.30 24.47	-3.47	0.20	0.17	1.06E - 01	13	1.0	0.12	1.11E - 01	7.04E - 02	0
250	(0)	24.17	-2 57	0.23	0.00	2.66E - 02	1.3	0.7	0.12	3.02E - 02	1.55E - 02	0
258	(0) (1)	24.63	7.03	0.23	0.20	3.09E - 02	3.8	1.0	0.11	1.08E - 01	2.12E - 02	Ő
200	P 1	24.63	7.03	0.13	0.10	9.92E - 03	3.8	1.0	0.36	3.67E - 02	8.72E-03	Ő
259	(3)	24.90	5.30	1.00	0.87	3.76E - 01	5.8	2.8	0.80	1.52E + 00	4.14E - 01	4
	P 1	24.90	5.30	0.10	0.17	1.44E - 02	5.8	2.8	0.80	7.79E-02	3.50E-02	1
	P 2	24.43	4.70	0.10	0.07	5.54E-03	5.1	2.2	0.55	2.68E-02	1.12E-02	0
	P 3	24.67	4.83	0.13	0.20	1.66E-02	4.0	1.1	0.33	6.41E-02	1.61E-02	2
260	(0)	24.90	-9.17	0.27	0.27	3.29E-02	0.9	0.7	0.16	2.63E-02	1.85E-02	0
261	(0)	25.03	-7.93	0.37	0.30	5.28E-02	0.9	0.6	0.15	4.38E-02	2.91E-02	0
262	(0)	25.13	-8.77	0.27	0.37	6.26E-02	1.0	0.8	0.17	5.40E-02	3.78E-02	0
263	(0)	25.27	-9.10	0.23	0.23	4.06E-02	0.9	0.7	0.17	3.38E-02	2.42E-02	0
264	(0)	25.97	1.27	0.30	0.23	5.00E-02	3.6	0.9	0.21	1.64E-01	3.41E-02	0
265	(2)	27.33	15.07	1.03	1.33	5.75E-01	1.3	1.1	0.16	4.56E-01	3.77E-01	0
	P 1	27.33	15.07	0.23	0.43	4.51E-02	1.3	1.1	0.16	4.91E-02	4.25E-02	0
	P 2	27.67	15.57	0.13	0.13	1.39E-02	1.2	1.0	0.15	1.42E-02	1.26E-02	0
266	(0)	27.47	9.03	0.27	0.23	4.61E-02	1.9	0.8	0.11	7.94E-02	2.97E-02	0
267	(0)	27.47	15.77	0.20	0.23	2.89E-02	0.8	0.6	0.12	1.95E-02	1.62E - 02	0
268	(2)	27.53	5.57	0.40	0.43	7.85E-02	4.4	1.2	0.20	3.10E-01	6.19E-02	0
	P 1	27.53	5.57	0.13	0.10	8.85E-03	4.4	1.2	0.20	3.73E-02	9.17E-03	1
	P 2	27.67	5.67	0.13	0.23	1.88E-02	4.3	1.1	0.24	7.78E-02	1.84E-02	0
269	(0)	27.53	-20.90	0.30	0.27	3.74E-02	0.9	0.9	0.15	2.42E-02	2.42E-02	0

Table 7.(Continued.)

Cloud	Clump	Posi	tion	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}				associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
270	(0)	27.60	8.63	0.17	0.13	2.09E-02	2.1	0.7	0.11	4.07E-02	1.28E-02	0
271	(0)	27.63	14.53	0.27	0.20	3.87E-02	0.8	0.6	0.12	2.70E-02	2.12E-02	0
272	(0)	27.70	5.13	0.13	0.20	2.21E - 02	4.0	0.7	0.12	8.61E-02	1.32E - 02	0
273	(0)	27.77	-0.27	0.37	0.30	6.56E-02	3.1	0.8	0.18	1.91E-01	4.26E-02	0
274	(0)	27.77	0.20	0.23	0.27	3.22E - 02	3.4	0.9	0.19	1.01E - 01	2.22E - 02	0
275	(1)	27.80	-2.93	0.27	0.23	4.77E - 02	1.7	1.2	0.14	6.35E-02	3.53E-02	0
	P 1	27.80	-2.93	0.10	0.13	8.88E-03	1.7	1.2	0.14	1.43E-02	9.15E-03	1
276	(0)	28.03	-7.70	0.27	0.20	2.20E - 02	0.8	0.6	0.15	1.61E-02	1.15E-02	0
277	(0)	28.10	-8.47	0.50	0.27	7.69E - 02	0.9	0.7	0.16	5.97E-02	4.55E - 02	0
278	(2)	28.23	4.93	0.40	0.33	8.97E - 02	4.7	1.3	0.15	3.72E-01	6.80E-02	0
	P 1	28.23	4.93	0.10	0.10	6.64E - 03	4.7	1.3	0.15	3.00E-02	7.40E - 03	0
	P 2	28.30	5.10	0.07	0.10	5.53E - 03	4.4	1.0	0.16	2.40E - 02	5.13E-03	0
279	(66)	28.37	3.27	8.47	6.00	1.94E + 01	9.6	6.2	0.79	8.98E + 01	3.39E + 01	17
	P 1	28.37	3.27	0.13	0.13	1.55E - 02	9.6	6.2	0.79	1.33E-01	8.19E-02	0
	P 2	26.80	3.80	0.13	0.20	1.55E - 02	8.8	5.9	3.16†	1.24E - 01	7.93E - 02	0
	P 3	27.20	3.40	0.17	0.17	1.55E - 02	8.5	5.5	2.64^{\dagger}	1.20E-01	7.30E - 02	0
	P 4	27.20	3.03	0.27	0.27	2.33E - 02	8.3	5.3	2.34†	1.75E-01	1.05E - 01	0
	P 5	27.03	3.27	0.17	0.27	2.00E - 02	7.9	4.9	1.94†	1.42E - 01	8.27E - 02	0
	P 6	30.90	5.23	0.50	0.33	8.30E-02	7.4	4.9	0.64	5.57E-01	3.46E-01	0
	P 7	28.77	3.70	0.30	0.23	3.44E - 02	8.2	4.9	0.82	2.56E-01	1.40E - 01	1
	P 8	28.03	3.40	0.17	0.33	3.66E - 02	8.1	4.9	0.39	2.69E - 01	1.52E - 01	0
	P 9	27.63	3.10	0.30	0.27	4.22E - 02	7.9	4.8	1.93†	3.02E-01	1.71E - 01	0
	P 10	27.37	4.43	0.13	0.13	1.22E - 02	7.9	4.8	0.43	8.88E-02	5.06E - 02	0
	P 11	26.63	4.83	0.13	0.17	1.44E - 02	7.8	4.7	2.04^{\dagger}	1.03E-01	5.92E - 02	0
	P 12	31.60	5.40	0.47	0.33	5.53E - 02	6.9	4.7	0.48	3.36E-01	2.13E - 01	1
	P 13	31.97	2.93	0.43	0.40	9.21E - 02	7.7	4.6	0.64	6.42E - 01	3.55E - 01	0
	P 14	27.47	3.47	0.10	0.13	1.11E - 02	7.6	4.5	1.68†	7.67E - 02	4.27E - 02	0
	P 15	27.10	4.83	0.13	0.13	1.33E - 02	7.6	4.5	0.46	9.12E - 02	4.96E - 02	0
	P 16	26.60	2.37	0.10	0.13	9.99E-03	7.2	4.3	1.26†	6.69E-02	3.73E - 02	0
	P 17	31.50	3.10	0.50	0.23	5.55E - 02	7.2	4.2	0.50	3.64E-01	1.93E - 01	0
	P 18	30.13	2.67	0.13	0.23	2.11E - 02	7.3	4.1	0.46	1.43E-01	7.55E - 02	0
	P 19	26.80	5.37	0.13	0.13	1.33E - 02	7.2	4.1	1.61†	8.85E-02	4.68E - 02	0
	P 20	31.37	2.87	0.20	0.17	2.11E - 02	7.2	4.0	0.41	1.39E - 01	7.28E - 02	0
	P 21	26.70	5.13	0.10	0.10	8.85E-03	7.1	4.0	1.50 [†]	5.78E-02	3.01E - 02	0
	P 22	29.13	4.27	0.17	0.17	2.22E - 02	7.2	3.9	0.52	1.49E - 01	7.40E - 02	0
	P 23	31.87	2.60	0.23	0.13	1.66E - 02	7.0	3.8	0.41	1.05E - 01	5.22E - 02	0
	P 24	31.47	4.30	0.13	0.27	2.99E-02	6.4	3.7	0.37	1.77E - 01	9.44E-02	1
	P 25	26.07	3.40	0.20	0.17	2.11E-02	6.5	3.7	1.021	1.28E-01	6.75E-02	0
	P 26	30.43	2.40	0.23	0.27	4.77E-02	6.8	3.7	0.41	3.02E-01	1.50E-01	0
	P 27	26.87	4.67	0.13	0.13	1.33E - 02	6.7	3.6	1.19	8.20E-02	4.15E-02	0
	P 28	27.53	3.87	0.30	0.23	3.88E-02	6.7	3.6	1.10	2.37E-01	1.17E-01	0
	P 29	27.87	3.80	0.13	0.10	1.11E-02	6.6	3.4	0.32	6.78E-02	3.26E-02	0
	P 30	26.40	3.27	0.30	0.23	3.44E-02	6.2	3.3	0.87	1.98E-01	9.77E-02	0
	P 31	31.27	5.67	0.20	0.13	2.10E-02	5.4	3.2	0.25	1.03E-01	5.73E-02	0
	P 32	29.90	3.50	0.23	0.43	4.33E-02	6.4	3.2	0.35	2.52E-01	1.14E-01	0
	P 33	30.07	4.73	0.17	0.13	1.77E-02	6.1	3.1	0.26	1.01E - 01	4.78E-02	0
	P 34	30.20	3.67	0.13	0.10	1.11E - 02	6.2	3.1	0.28	6.44E-02	2.99E-02	0
	P 35	32.87	2.70	0.20	0.17	2.22E-02	6.2	3.0	0.33	1.30E-01	5.80E-02	0
	P 30	26.20	4.03	0.47	0.30	1.09E-02	J./	2.9	0.71	3.70E-01	1./3E-01	0
	r 3/	21.03	2.13	0.27	0.30	4.JJE-02	J.8 5 0	2.1	0.52	2.30E-01	1.U0E-U1	0
	г эð	21.31	2.43	0.17	0.57	J.22E-02	3.8	2.1	0.44	1./JE-01	1.29E-02	0

 Table 7. (Continued.)

Cloud	Clump	Posi	tion	Si	ze	Surface	Maximur	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 39	26.10	4.20	0.23	0.43	4.43E-02	5.4	2.6	0.63	2.23E-01	9.57E-02	0
	P 40	30.37	4.53	0.13	0.27	2.33E-02	5.5	2.6	0.22	1.20E-01	5.11E-02	0
	P 41	27.07	1.73	0.20	0.13	1.89E-02	5.4	2.6	0.44	9.66E-02	4.24E - 02	0
	P 42	30.50	3.33	0.17	0.10	1.55E-02	5.6	2.5	0.25	8.14E-02	3.31E-02	0
	P 43	25.87	4.33	0.23	0.13	2.11E-02	5.3	2.5	0.60	1.03E-01	4.34E-02	0
	P 44	30.53	4.40	0.23	0.23	3.32E - 02	5.3	2.4	0.24	1.65E - 01	6.81E-02	0
	P 45	25.87	3.07	0.37	0.47	8.32E - 02	5.1	2.2	0.48	3.90E - 01	1.53E - 01	0
	P 46	25.83	4.60	0.23	0.20	2.33E - 02	4.9	2.0	0.51	1.07E - 01	3.97E-02	0
	P 47	26.87	2.00	0.13	0.13	1.33E-02	4.9	2.0	0.27	6.19E-02	2.30E-02	0
	P 48	29.63	5.23	0.10	0.17	9.96E-03	4.9	1.9	0.20	4.64E - 02	1.68E-02	0
	P 49	31.13	6.83	0.57	0.37	8.49E-02	3.1	1.7	0.14	2.36E-01	1.22E-01	0
	P 50	26.23	2.47	0.13	0.13	1.11E-02	4.6	1.7	0.36	4.88E-02	1.62E - 02	0
	P 51	31.50	2.07	0.30	0.23	3.33E-02	4.9	1.6	0.17	1.53E - 01	4.60E - 02	0
	P 52	32.10	2.37	0.23	0.20	2.00E - 02	4.8	1.6	0.18	9.12E-02	2.63E - 02	0
	P 53	28.00	2.70	0.10	0.13	1.11E - 02	4.8	1.5	0.28	5.08E - 02	1.48E-02	0
	P 54	30.17	6.50	0.17	0.13	1.66E - 02	3.5	1.5	0.14	5.46E - 02	2.14E - 02	0
	P 33	32.10	3.37	0.13	0.13	1.22E - 02	4.5	1.5	0.17	5.20E - 02	1.54E - 02	0
	P 30	25.50	4.8/	0.10	0.13	1.11E - 02	4.5	1.4	0.38	4.50E - 02	1.32E - 02	0
	P 3/	27.47	2.13	0.17	0.10	1.22E - 02	4.0	1.3	0.18	5.55E - 02	1.39E - 02	0
	P 38 D 50	28.97	2.73	0.07	0.13	0.00E - 03	4.7	1.3	0.10	3.04E - 02 1 20E 01	7.73E-03	0
	P 39	55.55 77 77	2.00	0.33	0.10	2.77E - 02	4.5	1.3	0.17	1.20E - 01	3.00E - 02	0
	P 00 D 61	21.31	1.65	0.15	0.10	1.22E = 02	4.2	1.2	0.28	4.90E - 02	1.20E - 02	0
	P 62	25.57	4.07	0.15	0.15	1.11E - 02	4.0	1.2	0.55	4.32E - 02	1.14E - 02	0
	P 62	27.07	1.00	0.55	0.17	3.00E - 02	4.1	1.1	0.27	1.17E - 01 1.87E 02	2.87E - 02	0
	P 64	29.47	2.03	0.10	0.07	4.43E = 03	4.4	1.1	0.15	1.87E - 02 3.83E - 02	4.30E - 03	0
	P 65	32.97	3.60	0.10	0.10	9.88E - 03	3.0	1.1	0.10	3.78E - 02	8.09E-03	0
	P 66	32.17	6.03	0.10	0.15	7.40E - 02	2.5	1.0	0.13	1.69E - 01	6.30E - 03	1
280	(0)	28 37	-8.20	0.43	0.37	1.40E - 02 1.85E-01	1.0	0.8	0.12	1.07E - 01 1 47E-01	1.11E - 01	0
281	(0)	28.40	-7.43	0.05	0.47	7.27E - 02	1.0	0.0	0.17	6.14E - 02	451E-02	0
282	(0) (1)	28.10	-640	0.33	0.27	4.31E - 02	2.2	1.9	0.10	5.36E - 02	4.04E - 02	0
202	P 1	28.47	-640	0.10	0.10	6.63E - 03	2.2	1.9	0.22	1.29E-02	1.09E - 02	1
283	(3)	28.47	6.27	0.73	0.60	1.82E - 01	4.1	1.3	0.14	6.53E - 01	1.41E - 01	0
-00	P 1	28.47	6.27	0.17	0.13	1.33E - 02	4.1	1.3	0.14	5.21E-02	1.53E - 02	Ő
	P 2	28.23	6.13	0.13	0.23	2.21E-02	4.1	1.2	0.16	8.75E - 02	2.33E - 02	Ő
	P 3	28.03	6.13	0.10	0.10	8.84E-03	4.0	1.1	0.16	3.40E-02	8.25E-03	0
284	(0)	28.63	-7.03	0.33	0.17	3.42E-02	1.0	0.7	0.15	2.91E-02	2.01E-02	0
285	(0)	28.63	1.00	0.23	0.17	2.44E-02	3.6	0.7	0.21	8.62E-02	1.46E-02	0
286	(1)	28.70	-3.13	0.40	0.37	7.99E-02	2.2	1.2	0.16	1.34E-01	6.08E-02	1
	P 1	28.70	-3.13	0.17	0.13	1.66E-02	2.2	1.2	0.16	3.30E-02	1.76E-02	0
287	(1)	28.83	1.87	0.20	0.27	2.44E-02	4.7	1.4	0.11	9.92E-02	1.94E - 02	1
	P 1	28.83	1.87	0.10	0.07	5.55E-03	4.7	1.4	0.11	2.48E-02	6.74E-03	0
288	(1)	29.10	9.37	1.33	0.90	4.51E-01	1.6	1.1	0.11	5.46E-01	3.09E-01	0
	P 1	29.10	9.37	0.23	0.27	3.51E-02	1.6	1.1	0.11	5.00E-02	3.17E-02	0
289	(0)	29.20	0.43	0.47	0.57	1.19E-01	3.4	0.7	0.18	3.87E-01	7.17E-02	0
290	(1)	29.43	-4.03	0.63	0.40	1.34E-01	2.5	1.5	0.20	2.34E-01	1.07E-01	0
	P 1	29.43	-4.03	0.13	0.17	1.66E-02	2.5	1.5	0.20	3.77E-02	2.14E-02	0
291	(0)	29.43	-7.57	0.30	0.23	4.07E - 02	1.0	0.7	0.07	3.54E - 02	2.49E-02	0
292	(0)	29.43	-4.80	0.30	0.17	2.88E-02	1.6	0.9	0.16	3.84E-02	1.82E-02	2
293	(1)	29.77	-3.73	0.37	0.17	4.66E-02	2.4	1.4	0.19	8.89E-02	3.89E-02	0
	P 1	29 77	-3.73	0.13	0.07	8.87E-03	2.4	1.4	0.19	2.07E - 02	1.12E - 02	2

 Table 7. (Continued.)

Cloud	Clump	Posi	tion	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}				associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
294	(1)	30.03	-4.37	0.37	0.17	4.32E-02	2.0	1.1	0.18	7.03E-02	3.00E-02	0
	P 1	30.03	-4.37	0.13	0.10	7.76E-03	2.0	1.1	0.18	1.44E-02	7.01E-03	1
295	(2)	30.17	1.90	0.93	0.47	1.90E-01	5.9	2.8	0.24	8.20E-01	2.21E-01	1
	P 1	30.17	1.90	0.20	0.17	1.67E - 02	5.9	2.8	0.24	9.29E-02	4.04E - 02	1
	P 2	29.73	2.10	0.10	0.10	7.77E-03	4.3	1.1	0.16	3.23E-02	7.30E-03	0
296	(12)	30.63	-0.37	4.57	3.47	6.85E + 00	7.5	5.2	0.38	2.44E + 01	1.13E + 01	9
	P 1	30.63	-0.37	0.50	0.47	9.44E-02	7.5	5.2	0.38	6.33E-01	4.18E-01	0
	P 2	28.53	-1.87	0.17	0.13	1.44E - 02	5.6	4.1	0.50	7.30E-02	5.12E-02	1
	P 3	29.10	-1.93	0.13	0.10	1.11E - 02	5.6	4.0	0.49	5.65E-02	3.92E-02	1
	P 4	31.10	-1.07	0.13	0.17	1.78E-02	4.1	2.1	0.12	6.79E-02	3.24E-02	0
	P 5	31.43	-2.13	0.37	0.23	4.66E-02	3.6	2.0	0.09	1.53E-01	8.01E-02	2
	P 6	31.13	0.33	0.17	0.10	1.44E - 02	4.7	1.9	0.16	6.48E-02	2.46E - 02	0
	P 7	31.47	-1.27	0.17	0.30	2.55E-02	3.3	1.4	0.09	7.81E-02	2.98E-02	0
	P 8	29.43	-2.37	0.10	0.17	1.55E-02	2.8	1.4	0.19	4.03E-02	1.83E-02	0
	P 9	27.67	-2.10	0.13	0.17	1.33E-02	2.1	1.1	0.15	2.66E-02	1.33E-02	0
	P 10	29.47	-1.53	0.27	0.17	2.44E - 02	2.8	1.1	0.18	6.54E-02	2.34E-02	0
	P 11	31.57	-1.67	0.13	0.20	1.78E-02	2.8	1.1	0.08	4.77E-02	1.67E - 02	0
	P 12	27.90	-1.97	0.17	0.13	1.44E - 02	2.3	1.1	0.15	3.05E-02	1.35E-02	0
297	(0)	30.63	7.60	0.53	0.60	2.20E-01	2.1	1.0	0.11	3.77E-01	1.49E-01	0
298	(0)	30.93	8.43	0.20	0.17	2.20E-02	1.3	0.7	0.10	2.57E-02	1.29E-02	0
299	(16)	31.27	-5.37	3.77	4.60	5.27E + 00	6.8	6.0	1.03^{\dagger}	8.75E + 00	4.93E + 00	8
	P 1	31.27	-5.37	0.10	0.10	9.96E-03	6.8	6.0	1.03^{\dagger}	5.90E-02	5.13E-02	1
	P 2	30.53	-3.17	0.27	0.13	2.22E-02	3.2	2.0	0.24	6.40E-02	3.64E-02	0
	P 3	30.87	-4.53	0.10	0.20	1.66E-02	2.7	1.7	0.23	4.02E-02	2.43E-02	0
	P 4	30.47	-4.90	0.20	0.17	1.55E-02	2.5	1.7	0.22	3.53E-02	2.21E-02	0
	P 5	31.77	-4.33	0.10	0.17	1.22E-02	2.6	1.6	0.22	2.92E-02	1.69E-02	0
	P 6	30.53	-2.93	0.13	0.17	1.78E-02	2.9	1.6	0.21	4.73E-02	2.43E-02	1
	P 7	30.70	-6.43	0.20	0.20	2.43E-02	2.0	1.5	0.21	4.46E-02	3.16E-02	0
	P 8	29.80	-6.27	0.10	0.13	1.10E-02	1.9	1.5	0.20	1.92E-02	1.42E-02	1
	P 9	29.23	-6.73	0.40	0.53	7.50E-02	1.8	1.5	0.20	1.18E-01	9.40E-02	0
	P 10	31.70	-4.63	0.17	0.17	1.77E-02	2.3	1.4	0.20	3.74E-02	2.06E-02	0
	P 11	32.17	-5.87	0.50	0.37	6.85E-02	2.0	1.3	0.20	1.24E-01	7.72E-02	0
	P 12	30.57	-6.27	0.27	0.20	3.42E-02	1.8	1.3	0.20	5.65E-02	3.72E-02	0
	P 13	30.77	-3.73	0.13	0.23	1.77E-02	2.4	1.3	0.19	3.89E-02	1.89E-02	0
	P 14	30.47	-5.93	0.33	0.33	3.98E-02	1.8	1.2	0.19	6.52E-02	4.17E-02	0
	P 15	31.17	-3.33	0.10	0.13	9.98E-03	2.3	1.0	0.17	2.12E-02	8.89E-03	0
	P 16	30.93	-3.57	0.27	0.20	2.99E-02	2.2	1.0	0.18	6.19E-02	2.65E-02	0
300	(0)	31.57	7.90	0.37	0.17	3.19E-02	1.3	0.6	0.10	4.03E-02	1.74E - 02	0
301	(0)	31.87	-3.73	0.30	0.27	5.21E-02	2.1	1.0	0.07	9.64E-02	3.65E-02	0
302	(0)	32.13	-5.17	0.47	0.20	6.31E-02	1.5	0.7	0.16	8.73E-02	3.61E-02	0
303	(0)	32.17	-4.23	0.23	0.17	2.22E - 02	1.6	0.6	0.07	3.50E-02	1.19E-02	0
304	(0)	32.23	-3.93	0.20	0.17	2.55E-02	1.9	0.8	0.07	4.38E-02	1.56E - 02	0
305	(2)	32.33	0.43	0.53	0.40	1.38E-01	4.6	1.5	0.16	5.63E-01	1.22E-01	0
	P 1	32.33	0.43	0.17	0.20	2.44E - 02	4.6	1.5	0.16	1.09E-01	3.20E-02	0
	P 2	32.67	0.50	0.07	0.13	8.89E-03	4.5	1.2	0.15	3.88E-02	9.92E-03	0
306	(0)	32.40	-15.27	0.17	0.20	2.25E - 02	1.0	0.9	0.13	1.70E - 02	1.55E - 02	0
307	(1)	32.77	0.90	0.23	0.17	3.11E-02	4.8	1.4	0.18	1.31E-01	2.73E-02	1
	P 1	32.77	0.90	0.10	0.07	6.67E-03	4.8	1.4	0.18	3.09E-02	8.54E-03	0
308	(1)	32.87	0.33	0.27	0.23	3.89E-02	4.6	1.4	0.16	1.57E-01	3.12E-02	0
	P 1	32.87	0.33	0.10	0.10	6.67E-03	4.6	1.4	0.16	3.00E-02	8.41E-03	0
309	(1)	32.87	1.17	0.50	0.27	6.67E-02	4.4	1.0	0.15	2.72E-01	4.89E-02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}				associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 1	32.87	1.17	0.47	0.20	3.00E-02	4.4	1.0	0.15	1.26E-01	2.58E-02	0
310	(0)	32.87	3.67	0.23	0.30	3.33E-02	3.7	0.8	0.14	1.15E-01	2.04E - 02	0
311	(0)	32.87	-9.80	0.40	0.17	3.28E-02	0.9	0.6	0.09	2.76E-02	1.77E - 02	0
312	(0)	32.97	-5.63	0.33	0.13	2.43E-02	1.2	0.6	0.06	2.86E-02	1.32E - 02	0
313	(0)	32.97	-9.17	0.37	0.40	8.99E-02	1.1	0.8	0.10	8.31E-02	5.35E-02	0
314	(0)	33.10	3.50	0.17	0.23	2.88E - 02	3.6	0.7	0.14	9.91E-02	1.67E - 02	0
315	(0)	33.43	-9.90	0.40	0.53	1.24E - 01	1.0	0.8	0.10	1.04E - 01	7.05E - 02	0
316	(0)	33.57	-10.93	0.30	0.20	4.15E - 02	0.9	0.7	0.09	3.35E - 02	2.35E - 02	0
317	(1)	33.67	-6.93	1.43	0.97	5.45E - 01	1.6	1.2	0.11	5.65E - 01	3.80E-01	1
	P 1	33.67	-6.93	0.33	0.13	2.54E - 02	1.6	1.2	0.11	3.65E - 02	2.66E - 02	0
318	(0)	33.90	3.13	0.33	0.33	6.43E - 02	3.9	1.0	0.16	2.30E - 01	4.20E - 02	0
319	(0)	34.17	0.13	0.13	0.20	2.22E - 02	4.3	1.0	0.14	8.90E-02	1.49E - 02	0
320	(0)	34.20	-11.27	0.27	0.13	2.07E - 02	0.8	0.6	0.09	1.56E - 02	1.09E - 02	0
321	(118)	34.37	-0.87	22.73	7.87	6.33E + 01	8.5	5.9	0.54	2.34E + 02	7.83E + 01	39
	P 1	34.37	-0.87	0.50	0.83	1.46E-01	8.5	5.9	0.54	1.07E + 00	7.32E-01	0
	P 2	46.30	-1.20	0.47	0.43	6.44E-02	6.6	4.6	0.31	3.77E-01	2.48E-01	2
	P 3	49.23	-1.33	0.13	0.13	1.33E - 02	6.6	4.6	0.31	8.11E-02	5.34E-02	2
	P 4	47.43	-0.87	0.33	0.20	2.78E-02	6.4	4.4	0.30	1.58E-01	1.04E-01	1
	P 5	37.73	-0.40	0.30	0.37	6.67E-02	8.0	4.1	0.42	4.94E-01	2.31E-01	0
	P 6	40.10	-0.90	0.43	0.37	1.01E-01	7.2	3.9	0.33	6.56E-01	3.35E-01	0
	P 7	41.77	-0.90	0.23	0.37	4.89E-02	6.4	3.8	0.26	2.85E-01	1.56E-01	0
	P8	35.37	0.07	0.17	0.23	2.56E-02	7.4	3.7	0.36	1.76E-01	8.25E-02	0
	P9	46.47	-0.73	0.50	0.33	8.55E-02	5.5	3.6	0.23	4.28E-01	2.58E-01	0
	P 10	35.53	2.17	0.23	0.33	4.44E-02	7.0	3.5	0.37	2.85E-01	1.31E-01	l
	P II D 12	52.50	1.77	0.20	0.23	3.33E-02	5.1	3.4	0.22	1.55E-01	9.78E-02	0
	P 12	47.73	-1.//	0.67	0.63	1.88E-01	5.3	3.4	0.21	9.09E-01	5.45E - 01	0
	P 13	41.13	-1.13	0.37	0.33	7.22E-02	6.0	3.4	0.23	3.92E-01	2.04E - 01	0
	P 14	53.07	0.50	0.17	0.30	3.6/E - 02	5.1 5.1	3.3	0.21	1.70E-01	1.04E - 01	0
	P 15	51.02	-0.03	0.00	0.47	1.18E - 01	5.1	3.3	0.19	5.43E - 01	3.28E-01	0
	P 10	25.02	2.05	0.17	0.27	5.00E - 02	4.5	3.2	0.19	1.18E - 01	8.39E - 02	0
	P1/ D19	33.23 45.97	1.33	0.30	0.37	4.22E - 02	0.8	3.2 2.1	0.33	2.00E-01	1.13E - 01	0
	P 10	43.87	0.25	0.80	0.85	1.01E - 01	3.2 7.1	3.1 2.1	0.22	6.02E - 01	4.80E - 01	0
	P 19	37.03	0.80	0.45	0.45	1.03E - 01	7.1 67	3.1 2.1	0.33	0.92E - 01	2.78E = 01	0
	F 20 D 21	33.30	0.07	0.10	0.15	1.33E - 02	0.7	3.1 3.1	0.32	3.43E - 02	3.34E - 02	0
	P 21	13 37.43	_0.43	0.23	0.33	3.00E = 02 2.01E = 01	7.1 5.4	2.0	0.34	$9.84E_{-01}$	1.29E = 01	0
	P 23	35.83	-0.87	0.05	0.13	$2.012 \ 01$ $3.22E_{-02}$	6.2	2.9	0.21	1.87E_01	$7.66E_{-02}$	0
	P 24	53.57	0.07	0.30	0.17	4.78E_02	4.5	2.0	0.23	1.07E 01 1.95E - 01	1.11E_01	1
	P 25	35.60	1 77	0.47	0.20	4.70E - 02 8 00F - 02	н.5 64	2.7	0.17	4.77E - 01	1.83E - 01	0
	P 26	54.60	3 13	0.30	0.55	1.55E - 02	3.9	2.7	0.50	5.52E = 02	3.71E - 02	0
	P 27	36 37	0.17	0.17	0.15	5.56E - 02	6.4	2.7	0.10	3.35E-01	1.20E - 01	0
	P 28	35.27	0.17	0.20	0.37	5.56E - 02	6.2	2.6	0.20	3.35E - 01	1.20E 01 1.23E - 01	0
	P 20	45 17	0.03	0.33	0.27	3.44E - 02	4 7	2.6	0.18	1.47E - 01	7.36E - 02	0
	P 30	36 77	1 77	0.33	0.27	3.22E-02	6.5	2.6	0.10	1.172 01 1.98E-01	7.10E-02	0
	P 31	38.63	-0.30	0.20	0.20	3.00E - 02	6.4	2.5	0.26	1.81E-01	6.45E - 02	0
	P 32	36.40	1.00	0.17	0.13	1.78E - 02	6.3	2.5	0.29	1.07E - 01	3.80E-02	Ő
	P 33	46.90	-0.93	0.13	0.13	1.56E - 02	4.4	2.5	0.17	6.42E - 02	3.36E-02	Ő
	P 34	39.83	-1.83	0.23	0.17	2.55E-02	4.3	2.5	0.15	1.00E-01	5.34E-02	Õ
	P 35	44.93	-1.93	0.13	0.10	9.99E-03	4.5	2.4	0.16	4.13E - 02	2.13E-02	0
	P 36	38.83	-2.23	0.60	0.40	1.32E-01	3.8	2.4	0.13	4.54E-01	2.73E-01	0
	P 37	34.73	1.23	0.13	0.13	1.44E-02	6.0	2.4	0.25	8.18E-02	3.07E-02	Õ

 Table 7. (Continued.)

Cloud	Clump	Posi	ition	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}				associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 38	53.87	3.00	0.20	0.13	1.78E-02	3.7	2.4	0.16	5.90E-02	3.69E-02	1
	P 39	45.23	-1.90	0.23	0.23	2.78E-02	4.4	2.4	0.16	1.14E-01	5.77E-02	0
	P 40	38.37	1.33	0.33	0.23	4.55E-02	6.4	2.4	0.29	2.72E-01	9.26E-02	0
	P 41	34.70	1.87	0.17	0.20	2.00E-02	5.8	2.4	0.25	1.10E-01	4.17E-02	0
	P 42	34.80	0.90	0.33	0.27	6.44E-02	5.9	2.4	0.25	3.58E-01	1.29E-01	0
	P 43	51.37	-1.33	0.30	0.37	6.78E-02	4.1	2.3	0.15	2.52E-01	1.35E-01	0
	P 44	34.73	1.53	0.17	0.17	1.89E-02	5.8	2.3	0.25	1.03E-01	3.72E-02	0
	P 45	53.00	2.17	0.23	0.27	3.22E - 02	3.8	2.2	0.16	1.12E-01	6.07E - 02	0
	P 46	35.37	-0.77	0.23	0.27	3.00E - 02	5.5	2.2	0.20	1.56E-01	5.73E-02	0
	P 47	45.50	-1.73	0.17	0.20	3.00E - 02	4.3	2.2	0.15	1.19E-01	5.76E-02	0
	P 48	41.67	2.43	0.33	0.20	4.55E - 02	4.7	2.2	0.19	2.01E - 01	8.68E-02	0
	P 49	34.90	2.23	0.33	0.17	3.89E - 02	5.5	2.2	0.24	2.01E - 01	7.18E - 02	0
	P 50	44.30	-0.90	0.27	0.33	6.11E - 02	4.3	2.2	0.15	2.49E - 01	1.15E - 01	0
	P 51	37.80	-0.80	0.17	0.10	1.33E - 02	5.9	2.1	0.22	7.51E - 02	2.46E - 02	0
	P 52	39.57	-2.50	0.23	0.23	3.89E - 02	3.4	2.1	0.12	1.21E - 01	7.01E - 02	0
	P 53	50.27	-1.63	0.33	0.17	3.22E-02	3.9	2.1	0.14	1.14E-01	5.61E-02	1
	P 54	37.00	-0.53	0.27	0.20	3.22E-02	6.0	2.0	0.23	1.82E-01	5.54E-02	0
	P 55	42.27	1.03	0.20	0.17	2.33E-02	5.0	2.0	0.19	1.09E-01	4.09E - 02	0
	P 56	33.50	1.30	0.27	0.40	5.78E-02	5.4	2.0	0.22	2.97E-01	1.01E - 01	0
	P 5/	54.72	1.90	0.17	0.17	2.00E - 02	5.8	2.0	0.26	1.10E - 01	3.44E - 02	0
	P 38	52.12	3.70	0.13	0.15	1.44E - 02	2.9	2.0	0.14	3.77E - 02	2.4/E - 02	0
	P 39	33.13	2.87	0.20	0.30	2.89E - 02	5.5 5.2	2.0	0.14	8.02E - 02	4.93E - 02	1
	P 00 D 61	40.55	2.43	0.00	0.70	1.3/E = 01	3.2 4.0	2.0	0.25	7.36E - 01	2.30E - 01	0
	P 62	39.90	2.65	0.33	0.30	1.36E - 01	4.9 6.0	2.0	0.21	2.94E = 01 7.60E = 01	1.03E = 01 2.25E = 01	0
	P 63	51.50	1.57	0.33	0.40	4.66E - 02	3.8	2.0	0.27	1.65E - 01	7.90E - 02	0
	P 64	51.50	1.03	0.93	0.43	1 79E-01	4.0	19	0.15	6.35E - 01	2.83E-01	0
	P 65	52.13	-1.23	0.47	0.33	9.22E - 02	3.4	1.8	0.12	2.89E - 01	1.41E - 01	Ő
	P 66	33.60	1.80	0.20	0.23	2.89E-02	5.2	1.8	0.21	1.42E-01	4.48E-02	0
	P 67	38.63	0.10	0.43	0.13	4.00E-02	5.6	1.7	0.22	2.18E-01	6.07E-02	0
	P 68	39.23	2.53	0.40	0.50	9.99E-02	5.1	1.7	0.22	4.74E-01	1.42E-01	0
	P 69	39.53	0.20	0.17	0.27	2.00E-02	5.5	1.7	0.22	1.05E-01	2.87E-02	0
	P 70	36.50	2.20	0.20	0.17	2.33E-02	5.4	1.7	0.24	1.21E-01	3.35E-02	0
	P 71	49.37	-1.00	0.17	0.17	1.89E-02	3.8	1.7	0.14	6.78E-02	2.71E-02	0
	P 72	39.57	-0.33	0.27	0.27	4.22E - 02	5.4	1.7	0.20	2.19E-01	6.09E-02	0
	P 73	51.30	-2.30	0.23	0.23	3.22E-02	2.8	1.6	0.11	8.30E-02	4.50E-02	0
	P 74	46.87	1.10	0.20	0.33	4.00E - 02	3.0	1.6	0.13	1.12E-01	5.52E-02	0
	P 75	52.97	1.47	0.47	0.20	6.00E - 02	3.4	1.6	0.13	1.91E-01	8.33E-02	0
	P 76	39.53	1.97	0.30	0.37	4.89E - 02	5.3	1.6	0.23	2.48E - 01	6.57E - 02	0
	P 77	33.80	2.13	0.07	0.13	7.77E-03	4.8	1.5	0.19	3.62E - 02	1.06E - 02	0
	P 78	46.07	-2.23	0.17	0.20	2.11E-02	3.4	1.5	0.12	6.67E-02	2.73E-02	0
	P 79	34.83	2.50	0.17	0.10	1.22E-02	4.7	1.5	0.19	5.52E-02	1.64E - 02	0
	P 80	49.37	-0.07	0.33	0.33	4.78E-02	3.7	1.5	0.14	1.66E - 01	6.06E - 02	0
	P 81	33.33	3.10	0.17	0.17	1.66E - 02	2.5	1.5	0.12	3.86E - 02	2.08E - 02	1
	P 82	48.03	-0.17	0.30	0.33	5.00E - 02	3.5 1 0	1.5	0.13	1.03E-01	0.20E - 02	0
	г б3 D 01	54.25 55 52	1.20	0.17	0.17	2.22E-02	4.ð 2.2	1.4 1 4	0.18	1.USE-UI	2.03E-02	0
	г 04 Р 85	36.53	_0.37	0.15	0.10	8 80F_02	2.2 5.2	1.4 1 /	0.12	2.42E = 02 4.48E = 02	1.44E = 02 1.05E = 02	0
	P 86	40.23	1 47	0.10	0.10	3.07E = 03	5.0	13	0.19	1.65E = 02	3.83E = 02	0
	P 87	40.63	-0.27	0.17	0.20	2.44E - 02	4.9	1.3	0.20	1.14E - 01	2.80E - 02	0
	P 88	50.93	0.40	0.37	0.20	5.11E-02	3.5	1.3	0.13	1.69E-01	5.77E-02	ů 0

 Table 7. (Continued.)

Cloud	Clump	Posi	tion	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	•			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 89	35.67	-3.07	0.30	0.30	4.77E-02	2.2	1.3	0.09	9.67E-02	5.17E-02	0
	P 90	41.30	0.77	0.17	0.20	2.89E-02	4.7	1.3	0.18	1.32E-01	3.33E-02	0
	P 91	41.27	1.73	0.20	0.20	2.11E-02	4.7	1.3	0.18	9.41E-02	2.37E-02	0
	P 92	54.17	2.40	0.23	0.23	2.78E-02	2.8	1.3	0.12	7.28E-02	3.08E-02	0
	P 93	47.03	-1.67	0.17	0.17	2.00E - 02	3.2	1.3	0.11	6.12E-02	2.20E - 02	0
	P 94	53.57	-0.87	0.13	0.27	2.89E-02	2.9	1.3	0.10	7.79E-02	3.18E-02	0
	P 95	48.83	-0.10	0.27	0.30	5.44E - 02	3.4	1.3	0.13	1.75E-01	5.78E-02	0
	P 96	41.47	1.97	0.30	0.37	5.11E-02	4.4	1.3	0.17	2.08E-01	5.49E-02	0
	P 97	54.30	-0.60	0.40	0.50	6.22E - 02	2.8	1.2	0.10	1.61E-01	6.58E-02	0
	P 98	40.57	1.33	0.10	0.13	1.11E - 02	4.8	1.2	0.19	5.16E-02	1.14E - 02	0
	P 99	50.27	-0.97	0.57	0.63	1.10E - 01	3.3	1.2	0.12	3.42E - 01	1.07E - 01	0
	P 100	48.43	-0.67	0.40	0.20	4.56E - 02	3.3	1.2	0.12	1.42E - 01	4.49E - 02	0
	P 101	39.17	1.20	0.13	0.17	1.44E - 02	5.0	1.2	0.20	7.03E - 02	1.46E - 02	0
	P 102	35.23	2.90	0.20	0.13	1.78E - 02	4.1	1.2	0.17	7.07E - 02	1.80E - 02	0
	P 103	49.73	-2.10	0.23	0.20	3.66E - 02	2.8	1.2	0.10	9.83E-02	3.71E - 02	0
	P 104	41.13	3.40	0.30	0.33	4.77E - 02	2.8	1.2	0.12	1.28E - 01	4.66E - 02	0
	P 105	35.47	-2.63	0.17	0.20	2.55E - 02	2.2	1.2	0.08	5.23E - 02	2.54E - 02	0
	P 106	51.33	-2.87	0.20	0.33	4.66E - 02	1.9	1.2	0.09	7.90E - 02	4.56E - 02	0
	P 107	48.60	-0.30	0.30	0.30	4.78E - 02	3.3	1.2	0.12	1.49E - 01	4.68E - 02	0
	P 108	55.17	-0.60	0.27	0.27	4.56E - 02	2.7	1.1	0.10	1.14E - 01	4.48E - 02	0
	P 109	34.53	2.63	0.17	0.10	9.99E-03	4.3	1.1	0.17	4.12E - 02	9.83E-03	0
	P 110	38.60	2.73	0.13	0.10	1.22E - 02	4.4	1.1	0.18	5.24E - 02	1.20E - 02	0
	P 111	55.10	3.73	0.10	0.17	1.33E - 02	2.0	1.1	0.11	2.47E - 02	1.31E - 02	1
	P 112	53.20	4.37	0.63	0.30	1.01E - 01	1.9	1.1	0.10	1.78E - 01	9.50E - 02	0
	P 113	41.63	0.73	0.23	0.17	2.44E - 02	4.4	1.1	0.16	1.03E - 01	2.33E - 02	0
	P 114	34.47	0.03	0.13	0.17	1.56E - 02	4.5	1.1	0.16	6.76E - 02	1.50E - 02	0
	P 115	33.40	0.70	0.17	0.23	2.33E - 02	4.5	1.1	0.16	1.01E - 01	2.24E - 02	0
	P 116	39.83	1.50	0.27	0.23	3.33E - 02	4.9	1.1	0.19	1.56E - 01	3.15E - 02	0
	P 117	35.00	-2.90	0.17	0.30	3.33E - 02	2.2	1.1	0.08	6.62E - 02	3.16E - 02	0
	P 118	40.30	3.30	0.17	0.23	2.44E - 02	3.4	1.1	0.14	7.69E - 02	2.29E - 02	0
322	(1)	35.27	6.20	1.23	1.13	6.31E-01	1.7	1.2	0.10	7.87E - 01	4.53E - 01	0
	P 1	35.27	6.20	0.37	0.53	9.17E - 02	1.7	1.2	0.10	1.42E - 01	9.49E - 02	0
323	(0)	35.77	29.33	0.23	0.23	2.32E - 02	0.7	0.7	0.25	1.32E - 02	1.33E - 02	0
324	(0)	36.10	29.83	0.23	0.50	4.05E - 02	0.7	0.7	0.26	2.32E - 02	2.35E - 02	0
325	(0)	37.30	-16.80	0.27	0.30	3.30E - 02	0.9	0.6	0.12	2.66E - 02	1.82E - 02	0
326	(1)	37.47	3.03	0.40	0.40	1.02E - 01	4.6	1.6	0.20	3.82E - 01	8.36E-02	0
	P 1	37.47	3.03	0.10	0.10	8.88E-03	4.6	1.6	0.20	3.94E - 02	1.26E - 02	1
327	(0)	37.87	-5.50	0.23	0.17	2.54E - 02	1.1	0.7	0.07	2.42E - 02	1.46E - 02	1
328	(0)	37.87	-15.37	0.27	0.37	4.50E - 02	0.9	0.7	0.11	3.55E - 02	2.50E - 02	0
329	(0)	37.90	3.33	0.43	0.60	1.25E - 01	3.6	1.0	0.15	4.33E-01	8.71E-02	0
330	(1)	38.37	-0.93	0.33	0.33	5.55E - 02	5.9	2.3	0.23	2.65E-01	6.23E-02	0
	P 1	38.37	-0.93	0.10	0.13	1.00E - 02	5.9	2.3	0.23	5.63E - 02	1.97E - 02	0
331	(0)	38.50	2.50	0.27	0.33	3.55E - 02	4.3	0.7	0.17	1.49E - 01	2.05E - 02	0
332	(4)	39.00	4.43	2.93	2.63	3.65E + 00	3.1	2.0	0.14	7.60E+00	3.31E+00	0
	P 1	39.00	4.43	0.47	0.33	7.42E-02	3.1	2.0	0.14	2.16E-01	1.24E-01	0
	P 2	39.50	3.53	0.13	0.13	1.44E-02	3.7	1.4	0.16	5.10E-02	1.80E-02	0
	P 3	39.30	5.20	0.23	0.13	1.99E-02	1.9	1.4	0.10	3.51E-02	2.44E-02	0
	P 4	37.97	3.93	0.20	0.17	1.88E-02	3.0	1.2	0.13	5.26E-02	1.87E-02	0
333	(0)	39.03	3.33	0.23	0.23	3.33E-02	3.5	0.9	0.15	1.09E-01	2.23E-02	0
334	(1)	39.17	-16.73	1.17	1.03	6.33E-01	1.2	1.0	0.15	5.57E-01	4.10E-01	0
	P 1	39.17	-16.73	0.23	0.37	5.32E-02	1.2	1.0	0.15	5.77E-02	4.52E - 02	0

 Table 7. (Continued.)

Cloud	Clump	Posi	ition	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}				associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
335	(0)	39.20	-7.80	0.23	0.13	2.42E-02	1.0	0.7	0.07	2.14E-02	1.42E-02	0
336	(0)	39.40	-17.47	0.20	0.30	3.60E-02	0.9	0.7	0.13	2.99E-02	2.16E-02	0
337	(1)	40.90	-3.87	1.07	1.23	8.42E-01	2.2	1.5	0.09	1.32E + 00	7.61E-01	0
	P 1	40.90	-3.87	0.73	0.53	2.24E-01	2.2	1.5	0.09	4.49E-01	2.99E-01	1
338	(0)	41.37	4.13	0.17	0.23	2.66E - 02	1.4	0.7	0.08	3.46E-02	1.54E - 02	0
339	(0)	41.63	-4.30	0.57	0.33	1.13E-01	1.4	0.8	0.07	1.38E-01	7.14E-02	0
340	(0)	42.00	-9.80	0.20	0.30	3.83E-02	0.9	0.6	0.10	3.23E-02	2.10E - 02	0
341	(0)	42.33	-4.63	0.37	0.30	5.21E - 02	1.4	0.9	0.08	5.87E-02	3.31E-02	0
342	(1)	42.80	-2.80	0.67	0.83	3.07E-01	3.8	2.4	0.14	7.72E-01	3.32E-01	0
	P 1	42.80	-2.80	0.23	0.30	3.33E-02	3.8	2.4	0.14	1.14E - 01	6.72E - 02	1
343	(0)	43.27	7.63	0.23	0.20	2.20E - 02	0.8	0.7	0.09	1.48E - 02	1.24E - 02	0
344	(1)	43.30	-2.57	0.23	0.20	3.44E - 02	2.8	1.2	0.10	8.08E-02	2.64E - 02	1
	P 1	43.30	-2.57	0.13	0.10	9.99E-03	2.8	1.2	0.10	2.62E - 02	1.04E - 02	0
345	(0)	43.67	9.27	0.30	0.23	4.50E - 02	1.1	1.0	0.11	3.50E - 02	2.96E - 02	0
346	(0)	43.73	-2.47	0.20	0.13	2.11E - 02	2.6	0.9	0.09	4.96E - 02	1.46E - 02	1
347	(2)	44.27	-2.40	0.57	0.50	1.34E - 01	3.0	1.3	0.10	3.21E-01	1.01E - 01	2
	P 1	44.27	-2.40	0.13	0.13	1.11E - 02	3.0	1.3	0.10	3.14E - 02	1.23E - 02	0
	P 2	44.37	-2.63	0.27	0.23	3.11E - 02	2.7	1.1	0.10	7.86E - 02	2.89E - 02	0
348	(0)	44.40	8.17	0.50	0.13	3.08E - 02	0.8	0.7	0.10	2.21E - 02	1.72E - 02	0
349	(1)	45.03	3.97	0.80	0.63	3.19E - 01	2.3	1.9	0.12	4.44E - 01	3.17E-01	0
	P 1	45.03	3.97	0.27	0.17	3.21E - 02	2.3	1.9	0.12	6.56E - 02	5.34E - 02	0
350	(2)	45.27	9.13	3.13	1.33	1.63E + 00	2.8	2.6	0.19	1.58E + 00	1.32E + 00	5
	P 1	45.27	9.13	0.37	0.27	3.95E - 02	2.8	2.6	0.19	9.48E - 02	8.76E-02	1
	P 2	43.10	8.37	0.23	0.10	1.43E - 02	2.0	1.9	0.13	2.42E - 02	2.29E - 02	2
351	(1)	45.27	-3.93	1.97	1.50	1.20E + 00	2.5	1.9	0.10	1.64E + 00	8.82E-01	1
	P 1	45.27	-3.93	0.27	0.23	4.21E - 02	2.5	1.9	0.10	9.45E - 02	7.02E - 02	0
352	(0)	45.50	3.17	0.40	0.47	1.20E - 01	1.5	1.0	0.09	1.46E - 01	8.21E-02	1
353	(0)	45.53	-8.73	0.60	0.70	1.97E-01	0.9	0.7	0.10	1.50E - 01	1.18E-01	1
354	(0)	45.77	-2.93	0.27	0.30	3.88E-02	2.1	0.7	0.08	7.48E-02	2.35E-02	0
355	(0)	45.77	9.43	0.33	0.20	3.18E-02	0.8	0.6	0.11	2.30E-02	1.68E - 02	0
356	(0)	45.90	5.30	0.47	0.33	7.19E-02	1.0	0.8	0.09	5.94E-02	4.33E-02	0
357	(0)	45.97	3.67	0.20	0.17	2.22E - 02	1.2	0.7	0.08	2.32E-02	1.31E-02	0
358	(0)	46.23	9.20	0.70	0.63	2.03E-01	1.1	0.9	0.12	1.59E-01	1.21E-01	l
359	(0)	46.33	5.70	0.43	0.53	1.14E - 01	1.0	0.8	0.09	8.93E-02	6.5/E - 02	0
360	(1) D 1	46.33	3.07	0.90	0.80	3.2/E - 01	2.5	1.9	0.12	4.54E - 01	2.6/E - 01	0
261	P I	46.33	3.07	0.13	0.13	1.33E - 02	2.5	1.9	0.12	2.95E - 02	2.21E - 02	0
301	(0)	46.70	6.43	0.40	0.47	8.50E-02	0.9	0.7	0.09	6.76E-02	4.99E - 02	0
362	(1) D 1	46.77	-7.70	0.70	0.30	1.0/E - 01	1.1	1.0	0.10	8.29E-02	6.8/E - 02	1
262	P I	46.//	-/./0	0.13	0.13	1.32E - 02	1.1	1.0	0.10	1.33E - 02	1.15E - 02	2
303	(0)	47.10	-5.00	0.27	0.30	3.99E-02	1.9	0.7	0.08	0.93E - 02	2.32E - 02	0
265	(0)	47.50	1.70	0.17	0.20	2.33E - 02	1.0	0.8	0.09	4.14E - 02	1.03E - 02	0
266	(0)	47.00	0.15	0.35	0.27	0.19E - 02	0.8	0.0	0.09	4.62E - 02	5.55E = 02	0
267	(0)	47.80	5.15	0.43	0.43	9.19E - 02	1.2	0.9	0.10	8.95E-02	0.1/E - 02	0
269	(0)	47.85	-5.80	0.15	0.55	3.70E - 02	1.0	0.9	0.08	5.04E - 02	2.40E - 02	1
308	(1) D 1	40.4U 10 10	-5.05	0.00	0.45	1.356-01	2.3 2.5	2.3 2.2	0.13	1.JYE-01	1.40E - 01	2
360	(D)	40.40	-5.03 7.03	0.17 0.17	0.10	1.22E = 02 2 55E 02	2.3 1.5	2.3 0.7	0.13	2.02E-02	2.44E = 02 1 $4/E = 02$	
309	(0)	40.07	_0.00	0.17	0.20	2.55E-02	1.5	0.7	0.00	3.32E - 02 2.46E = 02	1.44E-02	0
370	(0)	48 00	-10.40	0.50	0.27 0.13	2.95E = 02 2.30E = 02	0.9	0.0	0.11	2.40E = 02 1.94E = 02	1.30E = 02 1.22E = 02	0
371	(0)	40.90	_7 30	0.27 0.43	0.15	$1.33E_{-02}$	1.5	1.0	0.11	1.940 = 02 1.10E = 01	1.22E = 02 1.00E = 01	0
512	P 1	49.10	-7.30	0.43	0.17	1.65E-02	1.5	1.4	0.11	2.17E-02	2.05E-02	1

 Table 7. (Continued.)

Cloud	Clump	Posi	tion	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	•			associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
373	(0)	49.33	-8.60	0.20	0.20	3.19E-02	1.0	0.8	0.10	2.45E-02	2.04E-02	0
374	(0)	49.43	-8.93	0.30	0.20	3.18E-02	0.9	0.7	0.10	2.36E-02	1.91E-02	0
375	(1)	49.70	-7.27	0.43	0.33	6.50E - 02	1.2	1.1	0.10	5.46E - 02	4.95E - 02	0
	P 1	49.70	-7.27	0.30	0.17	1.98E - 02	1.2	1.1	0.10	2.13E-02	1.98E-02	0
376	(0)	49.70	-7.60	0.20	0.30	3.74E - 02	0.9	0.8	0.09	2.68E - 02	2.39E-02	0
377	(2)	50.70	2.47	0.57	0.60	1.85E - 01	2.4	1.4	0.11	3.73E-01	1.57E - 01	0
	P 1	50.70	2.47	0.13	0.20	1.78E - 02	2.4	1.4	0.11	4.02E - 02	2.15E - 02	0
	P 2	50.87	2.13	0.17	0.23	2.66E - 02	2.7	1.3	0.11	6.61E - 02	3.12E - 02	0
378	(0)	50.97	1.37	0.17	0.27	2.78E - 02	2.8	0.8	0.11	7.08E - 02	1.67E - 02	0
379	(1)	51.23	3.13	0.40	0.20	4.66E - 02	2.0	1.2	0.10	7.68E - 02	3.65E - 02	0
	P 1	51.23	3.13	0.13	0.10	9.99E-03	2.0	1.2	0.10	1.89E - 02	1.01E - 02	0
380	(1)	51.77	3.87	0.83	0.53	1.75E - 01	2.0	1.2	0.10	2.69E - 01	1.31E - 01	0
	P 1	51.77	3.87	0.30	0.23	4.32E - 02	2.0	1.2	0.10	8.01E - 02	4.58E - 02	1
381	(0)	51.93	3.33	0.17	0.20	2.66E - 02	1.6	0.7	0.09	4.01E - 02	1.56E - 02	0
382	(0)	53.00	6.83	0.27	0.13	2.98E - 02	1.1	0.6	0.10	2.98E - 02	1.60E - 02	0
383	(1)	53.63	6.83	0.37	0.37	8.27E-02	1.6	1.1	0.11	9.68E-02	5.82E - 02	0
	P 1	53.63	6.83	0.17	0.17	1.88E-02	1.6	1.1	0.11	2.63E-02	1.76E-02	0
384	(0)	53.83	1.77	0.27	0.23	4.11E-02	2.5	0.8	0.10	9.53E-02	2.60E-02	0
385	(1)	54.03	-2.37	0.20	0.50	6.44E-02	2.3	1.4	0.09	1.08E - 01	4.63E-02	0
200	P 1	54.03	-2.37	0.10	0.13	9.99E-03	2.3	1.4	0.09	2.10E-02	1.19E-02	0
386	(1)	54.57	6.93	1.10	1.07	5.10E-01	1.6	1.2	0.12	5.77E-01	3.54E-01	0
207	PI	54.57	6.93	0.47	0.33	9.38E-02	1.6	1.2	0.12	1.3/E - 01	9.48E-02	0
387	(0)	55.07	-1.20	0.30	0.20	3.11E-02	2.1	0.8	0.09	6.10E - 02	1.88E-02	0
388	(1) D 1	55.07	1.//	0.67	0.83	2.10E-01	2.9	1.2	0.12	4.94E-01	1.51E-01	0
200	P I	55.07	1.//	0.27	0.17	3.11E-02	2.9	1.2	0.12	8.43E-02	3.33E-02	0
389	(1) D 1	55.90	2.03	0.30	0.27	4.77E-02	2.9	1.5	0.13	1.10E - 01	3.91E-02	0
200	P I	55.90	2.05	0.10	0.10	7.77E-03	2.9	1.5	0.13	2.13E - 02	1.00E - 02	0
201	(0)	56.95	-2.10	0.57	0.47	8.99E - 02	1.9	0.9	0.08	1.46E - 01	3.08E - 02	1
391	(1) D 1	56.27	1.30	0.80	0.70	2.21E - 01	2.7	1.2	0.12	4.99E - 01	1.37E = 01	0
302	(0)	56.40	2.17	0.23	0.33	4.07E - 02	2.7	1.2	0.12	1.18E - 01	4.07E - 02	0
303	(0) (1)	56.90	-2.17	0.30	0.17	4.00E = 02	1.9	0.8	0.08	0.82E - 02	2.01E - 02 5.25E - 02	0
595	(1) P 1	56.90	4.80	0.37	0.27	0.33E = 02 2 44E = 02	1.0	1.2	0.11	7.88E - 02 3 53E - 02	2.55E - 02	2
394	(4)	57.13	3.63	0.25	1.80	6.18E - 01	3.7	3.1	0.11	1.19E + 00	2.55E 02 7.52E-01	5
574	(=) P 1	57.13	3.63	0.00	0.30	3.33E - 02	37	3.1	0.19	1.08E - 01	8.85E-02	5
	P 2	57.10	2.80	0.13	0.50	1.78E-02	37	2.9	0.19	5.94E - 02	4.47E - 02	0
	P 3	56.93	3.10	0.10	0.20	1.78E - 02	2.8	2.0	0.14	4.49E - 02	3.15E-02	Ő
	P 4	57.33	2.43	0.10	0.13	9.99E-03	2.3	1.3	0.12	2.09E - 02	1.15E-02	Ő
395	(0)	57.17	-1.83	0.37	0.60	1.28E - 01	2.1	1.0	0.09	2.36E - 01	8.55E-02	Ő
396	(0)	57.20	-1.17	0.23	0.33	4.44E - 02	2.2	0.8	0.09	8.70E-02	2.86E - 02	0
397	(0)	57.57	-6.53	0.13	0.27	2.76E-02	1.0	0.7	0.08	2.46E-02	1.59E-02	0
398	(31)	57.70	-0.07	9.20	5.73	1.80E + 01	6.2	4.8	0.31	4.74E + 01	2.04E + 01	11
	P 1	57.70	-0.07	0.20	0.17	2.22E-02	6.2	4.8	0.31	1.22E-01	9.01E-02	0
	P 2	57.40	0.13	0.17	0.23	3.33E-02	5.7	4.3	0.28	1.68E-01	1.21E-01	0
	P 3	56.87	0.33	0.40	0.23	5.44E-02	5.4	4.0	0.26	2.65E-01	1.87E-01	0
	P 4	58.13	-0.33	0.33	0.17	3.89E-02	5.3	3.8	0.23	1.83E-01	1.26E-01	0
	P 5	57.30	1.17	0.20	0.10	1.67E-02	4.4	3.0	0.20	6.68E-02	4.31E-02	0
	P 6	60.73	-1.17	0.17	0.43	4.22E-02	4.7	2.9	0.16	1.78E-01	1.06E-01	1
	P 7	62.93	1.70	0.20	0.13	2.22E-02	3.4	2.5	0.12	6.74E-02	4.78E-02	0
	P 8	57.10	0.70	0.23	0.17	2.56E-02	3.9	2.4	0.17	9.11E-02	5.37E-02	0
	P 9	61.50	0.13	0.23	0.20	3.00E-02	4.0	2.4	0.14	1.10E-01	6.13E-02	0

 Table 7. (Continued.)

Cloud	Clump	Posi	tion	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	•			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 10	59.20	-0.27	0.70	0.50	1.62E-01	4.0	2.4	0.14	5.93E-01	3.22E-01	0
	P 11	58.43	0.30	0.57	0.40	1.50E-01	3.7	2.2	0.15	5.20E-01	2.92E-01	0
	P 12	61.40	-0.53	0.97	0.63	1.98E-01	3.8	2.2	0.13	6.79E-01	3.53E-01	0
	P 13	59.00	-1.63	0.27	0.20	3.00E-02	3.5	2.0	0.13	9.84E-02	5.32E-02	0
	P 14	61.93	0.60	0.23	0.40	4.56E-02	3.4	1.9	0.12	1.46E-01	7.61E-02	0
	P 15	60.23	-0.63	0.40	0.40	8.56E-02	3.6	1.9	0.12	2.85E-01	1.36E-01	0
	P 16	62.27	0.97	0.23	0.40	6.44E - 02	3.2	1.9	0.11	1.90E-01	1.02E - 01	0
	P 17	63.83	-1.27	0.17	0.20	2.22E - 02	3.4	1.8	0.13	7.08E - 02	3.45E-02	0
	P 18	64.70	-0.63	0.40	0.23	6.33E-02	3.3	1.8	0.13	1.92E-01	9.44E-02	0
	P 19	63.43	-0.83	1.23	0.83	3.60E-01	3.3	1.7	0.12	1.09E + 00	5.04E - 01	0
	P 20	60.93	2.27	0.17	0.10	1.33E - 02	2.5	1.7	0.10	2.97E - 02	1.86E - 02	0
	P 21	60.67	2.23	0.23	0.13	2.00E - 02	2.5	1.6	0.10	4.50E - 02	2.79E - 02	1
	P 22	60.93	-0.17	0.13	0.17	1.56E - 02	3.3	1.6	0.11	4.76E - 02	2.13E - 02	0
	P 23	62.17	-2.93	0.17	0.17	1.78E - 02	2.7	1.3	0.11	4.41E - 02	2.02E - 02	0
	P 24	62.07	-2.07	0.37	0.47	8.55E - 02	2.8	1.3	0.11	2.26E - 01	9.51E-02	0
	P 25	61.60	-1.97	0.20	0.20	2.78E - 02	2.9	1.3	0.10	7.41E - 02	3.02E - 02	0
	P 26	58.97	-1.00	0.27	0.20	3.78E - 02	2.8	1.2	0.10	9.84E - 02	3.87E - 02	0
	P 27	56.53	-0.47	0.37	0.27	5.22E - 02	2.6	1.2	0.11	1.28E - 01	5.41E - 02	0
	P 28	61.17	1.70	0.20	0.17	2.22E - 02	2.2	1.2	0.09	4.59E - 02	2.24E - 02	0
	P 29	61.33	1.30	0.30	0.37	6.44E - 02	2.5	1.2	0.09	1.54E - 01	6.28E - 02	0
	P 30	63.90	-1.57	0.13	0.20	1.89E - 02	2.6	1.0	0.11	4.72E - 02	1.69E - 02	0
	P 31	61.20	0.77	0.20	0.13	1.78E - 02	2.6	1.0	0.09	4.32E - 02	1.53E - 02	0
399	(2)	57.97	-1.87	1.07	0.77	3.25E-01	2.6	1.3	0.10	6.46E-01	2.28E-01	0
	P 1	57.97	-1.87	0.10	0.13	1.11E-02	2.6	1.3	0.10	2.65E-02	1.26E - 02	1
	P 2	57.53	-1.63	0.17	0.20	2.22E-02	2.4	1.2	0.10	5.02E-02	2.22E-02	0
400	(2)	58.17	3.50	0.47	0.80	1.79E-01	2.7	2.1	0.14	2.92E-01	1.80E-01	5
	PI	58.17	3.50	0.17	0.13	1.44E-02	2.7	2.1	0.14	3.47E - 02	2.64E - 02	0
401	P 2	58.03	3.03	0.07	0.20	1.11E - 02	2.4	1./	0.12	2.46E - 02	1./3E - 02	0
401	(0)	58.53	-1.90	0.17	0.17	2.00E - 02	2.0	0.7	0.08	3.82E - 02	1.1/E - 02	0
402	(1) D 1	60.03	-1.33	0.95	0.27	1.10E - 01	2.7	1.0	0.09	2.72E - 01	1.03E - 02	0
402		60.03	-1.33	0.23	0.10	1.89E - 02	2.7	1.0	0.09	4.90E - 02	1.0/E - 02	0
405	(0)	61 52	J.00	0.00	0.55	7.80E - 02	1.0	0.7	0.08	0.30E - 02	4.3/E = 02	0
404	(0) (1)	62 20	4.05	0.27	0.15	2.44E - 02	0.9	0.0	0.08	2.02E - 02	1.29E = 02	0
403	(1) P 1	62.20	-4.53	0.17	0.20	2.99E - 02 7 75E - 03	2.2	1.4	0.11	1.61E - 02	2.01E - 02 9.51E - 03	1
406	(0)	62.20	-3.90	0.10	0.10	7.75E-03	1.8	0.7	0.11	3.61E - 02	9.51E - 03 1 29E - 02	1
407	(0) (1)	62.57	_7.23	1 30	0.20	4.94F - 01	1.0	1.0	0.07	4 79F-01	3.24E - 01	0
407	(1) P 1	62.73	_7.23	0.50	0.37	8.49F_02	1.3	1.0	0.11	9.79E - 01	7.14E - 02	0
408	(0)	63.07	-7.00	0.27	0.27	3.42E - 02	1.0	0.7	0.11	3.14E - 02	1.91E - 02	0
409	(0)	63 50	-2.73	0.27	0.20	4.22E - 02	2.2	0.8	0.10	8.54E-02	2.57E - 02	0
410	(0)	63.57	-4.63	0.60	0.40	1.26E - 01	1.8	1.0	0.11	1.86E - 01	8.35E-02	Ő
411	(0)	63.80	-6.53	0.30	0.43	6.84E - 02	1.1	0.7	0.10	6.77E - 02	3.99E - 02	Ő
412	(4)	63.80	-3.17	1.80	1.57	8.66E-01	3.0	1.6	0.14	1.74E + 00	6.79E-01	0
	P 1	63.80	-3.17	0.23	0.27	2.77E-02	3.0	1.6	0.14	7.67E-02	3.84E-02	0
	P 2	63.60	-3.67	0.20	0.13	2.00E-02	2.7	1.5	0.13	5.00E-02	2.67E-02	0
	P 3	62.67	-3.60	0.10	0.17	1.44E-02	2.4	1.2	0.11	3.15E-02	1.50E-02	1
	P 4	64.13	-2.77	0.17	0.17	1.89E-02	2.6	1.1	0.12	4.53E-02	1.78E-02	0
413	(0)	63.97	-6.83	0.20	0.23	2.10E-02	0.9	0.6	0.10	1.89E-02	1.15E-02	0
414	(0)	64.17	-3.70	0.17	0.17	2.00E-02	1.9	0.7	0.11	3.62E-02	1.16E-02	0
415	(0)	64.73	8.13	0.97	0.70	2.11E-01	0.8	0.7	0.10	1.48E-01	1.18E-01	0
416	(1)	64.83	-2.43	0.33	0.20	4.44E-02	2.6	1.1	0.12	1.01E-01	3.43E-02	1

 Table 7. (Continued.)

Cloud	Clump	Posi	tion	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}				associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 1	64.83	-2.43	0.23	0.13	1.78E-02	2.6	1.1	0.12	4.33E-02	1.66E-02	2
417	(0)	65.53	8.27	0.27	0.33	3.85E-02	0.7	0.6	0.09	2.57E-02	2.02E-02	0
418	(0)	66.17	-0.23	0.30	0.40	5.33E-02	2.0	0.7	0.09	1.02E - 01	3.27E-02	0
419	(11)	66.27	-3.13	5.07	3.20	5.95E + 00	4.5	3.1	0.23	1.54E + 01	6.89E + 00	2
	P 1	66.27	-3.13	0.50	0.30	9.10E-02	4.5	3.1	0.23	3.73E-01	2.40E-01	0
	P 2	65.83	-2.57	0.33	0.30	6.10E-02	4.4	3.0	0.21	2.43E-01	1.54E - 01	0
	P 3	66.67	-3.23	0.73	0.50	1.72E - 01	4.4	2.9	0.22	6.71E-01	4.23E-01	0
	P 4	68.57	-3.43	0.23	0.30	2.99E-02	3.9	2.5	0.19	1.06E - 01	6.42E - 02	0
	P 5	65.30	-2.67	0.20	0.13	1.89E - 02	3.9	2.4	0.18	6.67E-02	3.90E-02	0
	P 6	66.87	-1.47	0.27	0.13	2.33E-02	3.6	2.1	0.15	7.72E - 02	4.24E - 02	0
	P 7	66.97	-2.20	0.47	0.37	6.77E - 02	3.3	1.8	0.15	2.03E-01	1.04E - 01	0
	P 8	67.53	-3.77	0.47	0.37	7.76E - 02	3.0	1.7	0.15	2.10E - 01	1.10E - 01	0
	P 9	65.90	-1.97	0.17	0.20	2.89E - 02	3.1	1.6	0.14	8.20E-02	3.93E-02	0
	P 10	69.00	-3.07	0.20	0.50	4.88E - 02	2.8	1.4	0.14	1.27E - 01	5.59E-02	0
	P 11	65.13	-1.63	0.20	0.10	1.33E - 02	2.7	1.2	0.12	3.44E - 02	1.40E - 02	0
420	(0)	66.43	-1.13	0.37	0.27	5.22E - 02	2.5	1.0	0.11	1.15E - 01	3.75E - 02	0
421	(0)	66.77	-0.67	0.33	0.30	5.78E - 02	2.3	0.9	0.10	1.23E - 01	3.97E - 02	0
422	(0)	67.23	3.40	0.33	0.30	6.43E - 02	1.1	0.7	0.07	6.00E - 02	3.63E - 02	0
423	(0)	67.37	1.60	0.17	0.17	2.22E - 02	1.6	0.7	0.07	3.29E-02	1.34E - 02	0
424	(0)	67.57	2.50	0.23	0.27	3.22E - 02	1.3	0.6	0.07	4.01E - 02	1.79E - 02	0
425	(0)	67.63	-0.90	0.30	0.17	3.22E - 02	2.2	0.7	0.10	6.67E - 02	1.86E - 02	0
426	(0)	67.70	-1.13	0.23	0.17	2.89E - 02	2.4	0.9	0.10	6.26E - 02	1.91E - 02	0
427	(1)	67.70	-4.87	1.07	1.17	5.01E - 01	2.0	1.1	0.12	7.38E-01	3.32E - 01	0
	P 1	67.70	-4.87	0.27	0.20	3.87E - 02	2.0	1.1	0.12	7.03E - 02	3.63E - 02	0
428	(0)	67.83	-7.80	0.27	0.13	2.86E - 02	1.1	0.8	0.12	2.70E - 02	1.83E - 02	0
429	(0)	68.23	-7.70	0.30	0.20	3.30E - 02	1.0	0.6	0.11	2.93E - 02	1.77E - 02	0
430	(0)	68.27	-2.30	0.27	0.20	3.00E - 02	2.2	0.7	0.11	6.26E - 02	1.68E - 02	0
431	(0)	68.33	-7.30	0.27	0.37	5.73E - 02	1.1	0.7	0.11	5.67E - 02	3.23E - 02	0
432	(0)	68.47	-1.13	0.27	0.40	4.78E-02	2.4	0.8	0.10	1.06E - 01	2.99E-02	0
433	(0)	68.63	-7.33	0.27	0.13	2.75E - 02	1.2	0.7	0.11	2.87E-02	1.61E - 02	0
434	(1)	69.23	0.77	0.27	0.30	5.44E-02	2.6	1.2	0.10	1.17E-01	4.28E-02	0
10.5	P 1	69.23	0.77	0.13	0.13	1.44E - 02	2.6	1.2	0.10	3.49E-02	1.54E - 02	0
435	(0)	69.23	1.23	0.37	0.17	4.11E-02	2.1	0.9	0.08	7.66E - 02	2.73E-02	0
436	(1)	69.43	1.60	0.53	0.33	7.89E-02	2.2	1.1	0.09	1.42E - 01	5.42E-02	0
107	PI	69.43	1.60	0.17	0.13	1.6/E - 02	2.2	1.1	0.09	3.48E-02	1.61E - 02	0
437	(1) D 1	69.50	3.20	0.27	0.23	4.10E - 02	1.8	1.1	0.08	5.74E - 02	3.00E-02	0
420	P I	69.50	3.20	0.10	0.13	1.11E - 02	1.8	1.1	0.08	1.81E - 02	1.0/E - 02	0
438	(0)	69.57	3.63	0.27	0.23	2.7/E - 02	1.2	0.7	0.07	2.94E - 02	1.58E - 02	0
439	(1) D 1	69.83	1.10	0.70	0.63	2.49E - 01	3.3	2.0	0.12	5.90E - 01	2.03E - 01	0
440	PI	09.83	1.10	0.27	0.17	3.44E - 02	3.3 2.7	2.0	0.12	1.04E - 01	5.88E - 02	0
440	(1) D 1	69.97	-2.03	0.03	0.00	1.52E - 01	2.7	1.1	0.13	3.42E - 01	1.09E - 01	0
441	P I	09.97	-2.03	0.27	0.30	3.00E - 02	2.7	1.1	0.13	9.19E - 02	3.32E - 02	0
441	(0)	70.20	3.50	0.27	0.23	3.22E - 02	1.2	0.7	0.07	3.00E - 02	1.82E - 02	1
442	(J) D 1	71.23	2.33	2.23	2.43 0.22	2.00E +00	5.ð 2.0	2.ð 2.0	0.15	4.03E+00	2.1/E + 00 1 22E 01	3 0
	ri Do	/1.23 71 77	2.33	0.20	0.33	3.00E-02	J.ð 2 1	∠.ð 2.2	0.13	1.72E - 01 1.12E 01	1.23E-01	1
	г <u>/</u> D 2	/1.// 72.22	2.30 2.12	0.23	0.30	2.07E-02	5.1 2.9	2.2 1 7	0.12	1.12E = 01 7 3/F 02	1.50E-02	1
	г <i>э</i> Р/	70.57	2.13	0.20	0.37	2.09E = 02 5 77E = 02	2.0	1.7 1 A	0.11	1.3+E=02 1.20E=01	7.00E = 02	0
	1 4 D 5	71 73	2.05	0.50	0.33	$2.80E_{02}$	2.5	1.4	0.09	$6.63E_{-02}$	3.09E = 02	0
443	(1)	71 37	_12.27 _12.23	0.20	0.23	3.09E = 02	0.8	0.7	0.10 0.14	2.05E - 02	1.825E = 02	0
444	(1)	71.93	1.33	0.97	0.37	1.53E-01	2.6	1.2	0.14	3.28E-01	1.10E - 01	1

 Table 7. (Continued.)

Cloud	Clump	Posi	tion	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2}ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}				associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 1	71.93	1.33	0.37	0.20	3.00E-02	2.6	1.2	0.10	7.23E-02	3.02E-02	0
445	(0)	72.23	1.73	0.27	0.30	4.33E-02	2.1	0.9	0.09	8.34E-02	2.86E-02	0
446	(0)	72.43	-7.67	0.80	0.57	2.18E-01	1.3	0.8	0.12	2.15E-01	1.33E-01	0
447	(0)	72.50	0.70	0.57	0.40	9.67E-02	2.6	0.9	0.10	2.32E-01	6.02E - 02	1
448	(0)	72.53	-3.20	0.43	0.43	9.65E-02	2.5	0.9	0.13	2.15E-01	6.69E-02	0
449	(0)	72.70	-6.90	0.23	0.23	2.87E - 02	1.2	0.7	0.11	3.26E-02	1.63E - 02	0
450	(1)	72.70	-0.30	0.37	0.20	5.44E - 02	3.1	1.2	0.13	1.49E - 01	4.22E - 02	0
	P 1	72.70	-0.30	0.20	0.10	1.56E - 02	3.1	1.2	0.13	4.65E - 02	1.59E-02	0
451	(1)	72.70	-2.67	0.67	0.43	1.11E-01	2.8	1.0	0.14	2.72E - 01	7.48E - 02	0
	P 1	72.70	-2.67	0.20	0.13	1.89E - 02	2.8	1.0	0.14	5.07E - 02	1.67E - 02	0
452	(2)	73.70	2.47	0.47	0.60	1.34E - 01	2.2	1.2	0.10	2.20E - 01	9.76E - 02	1
	P 1	73.70	2.47	0.10	0.20	1.33E - 02	2.2	1.2	0.10	2.66E - 02	1.39E - 02	0
	P 2	73.43	2.73	0.13	0.13	1.33E - 02	1.9	1.0	0.09	2.37E - 02	1.23E - 02	0
453	(4)	73.83	-5.10	2.33	3.77	2.54E + 00	3.1	2.2	0.18	4.22E + 00	2.37E + 00	0
	P 1	73.83	-5.10	0.40	0.47	1.01E - 01	3.1	2.2	0.18	2.75E - 01	1.92E - 01	0
	P 2	73.20	-6.87	0.23	0.23	3.75E - 02	1.6	1.1	0.13	5.50E - 02	3.61E - 02	0
	P 3	73.70	-6.27	0.40	0.43	7.73E-02	1.7	1.1	0.13	1.20E - 01	7.36E - 02	0
	P 4	73.33	-7.63	0.13	0.10	9.91E-03	1.3	1.0	0.12	1.14E - 02	8.66E-03	0
454	(1)	73.97	3.60	0.33	0.43	5.66E - 02	1.6	1.3	0.09	6.49E-02	4.79E-02	1
	P 1	73.97	3.60	0.20	0.27	1.77E - 02	1.6	1.3	0.09	2.56E - 02	2.04E - 02	0
455	(0)	74.60	7.17	0.40	0.47	8.93E-02	0.8	0.7	0.10	5.82E-02	5.21E-02	0
456	(0)	74.80	-4.77	0.23	0.17	2.44E-02	1.5	0.7	0.11	3.47E-02	1.36E-02	0
457	(0)	75.07	-6.67	0.13	0.27	2.21E-02	0.9	0.7	0.11	1.82E - 02	1.26E - 02	0
458	(1)	75.23	1.87	0.40	0.47	8.33E-02	2.3	1.0	0.10	1.69E-01	6.10E-02	0
450	P I	75.23	1.87	0.27	0.37	3.22E-02	2.3	1.0	0.10	6.94E - 02	2.84E - 02	0
459	(0)	15.13	-2.37	0.30	0.13	2.55E-02	2.9	0.7	0.14	6.9/E - 02	1.56E - 02	0
460	(0)	/6.03	2.57	0.27	0.17	2.11E - 02	1.9	0.7	0.10	3.74E - 02	1.28E - 02	0
401	(0)	76.10	7.50	0.55	0.30	4.96E - 02	0.8	0.7	0.10	3.29E - 02	2.80E - 02	0
402	(1) D 1	76.77	2.23	0.35	0.37	9.44E - 02	5.4 2.4	1.0	0.15	2.00E - 01	8.08E - 02	0
162	F 1 (0)	76.20	2.25	0.20	0.20	2.44E = 02	5.4 2.1	1.0	0.15	7.97E - 02	3.40E - 02	0
405	(0)	70.80	1.87	0.25	0.27	3.33E - 02	2.1	0.8	0.11	0.20E - 02	2.13E - 02	0
404	(0) (1)	77.07	-1.07	0.20	0.17	2.44E = 02 1 54E = 01	1.5	0.7	0.15	1.29E - 02 1.65E - 01	1.49E - 02 1.06E - 01	0
405	(1) P 1	77 47	5.43	0.47	0.37	1.54E = 01 3.65E = 02	1.5	1.1	0.11	$4.77E_{-02}$	$3.33E_{-02}$	0
466	(2)	77. 4 7	0.77	1.37	1 27	7.56E - 01	5.6	2.5	0.11	$3.23E \pm 00$	9.35E 02	0
100	(2) P 1	77.77	0.77	0.43	0.50	9.00E - 02	5.6	2.5	0.29	4.73E - 01	1.93E - 01	0
	P 2	77.07	0.53	0.13	0.27	2.44E-02	5.0	2.2	0.2°	1.16E - 01	4.39E - 02	Ő
467	(1)	78.07	3.87	0.13	0.23	2.22E-02	2.7	1.3	0.14	4.95E-02	1.91E - 02	Ő
107	P 1	78.07	3.87	0.07	0.13	7.76E-03	2.7	1.3	0.14	1.93E - 02	8.58E-03	0
468	(1)	78.23	-2.60	0.33	0.30	5.99E - 02	2.8	1.1	0.15	1.43E - 01	4.56E - 02	Ő
	P 1	78.23	-2.60	0.20	0.13	2.00E - 02	2.8	1.1	0.15	5.21E-02	1.99E - 02	Ő
469	(18)	78.60	0.77	3.07	5.23	4.79E + 00	7.9	4.6	0.56	1.58E + 01	5.12E + 00	5
	P 1	78.60	0.77	0.07	0.10	5.56E-03	7.9	4.6	0.56	4.22E - 02	2.36E - 02	0
	P 2	78.60	1.30	0.10	0.10	6.66E-03	7.4	4.1	0.49	4.57E-02	2.37E-02	0
	P 3	79.07	2.83	0.23	0.20	3.22E-02	5.6	3.0	0.32	1.66E-01	8.35E-02	0
	P 4	78.77	2.57	0.23	0.43	6.44E-02	5.7	2.9	0.31	3.27E-01	1.59E-01	0
	P 5	78.13	1.87	0.10	0.10	7.77E-03	5.7	2.8	0.30	4.14E-02	1.86E-02	0
	P 6	78.17	1.40	0.20	0.27	3.00E-02	5.8	2.6	0.30	1.62E-01	6.77E-02	0
	Р7	79.43	3.30	0.20	0.23	2.66E-02	4.2	1.9	0.22	1.03E-01	4.27E-02	0
	P 8	79.90	2.63	0.73	0.53	1.27E-01	4.9	1.9	0.26	5.73E-01	2.04E-01	1
	P 9	78.00	2.23	0.23	0.27	3.44E-02	4.5	1.9	0.22	1.47E-01	5.40E-02	0

 Table 7. (Continued.)

Cloud	Clump	Posi	ition	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 10	78.77	3.97	0.10	0.20	1.66E-02	3.3	1.6	0.17	5.08E-02	2.36E-02	0
	P 11	78.97	4.20	0.13	0.10	1.11E-02	3.0	1.5	0.16	3.19E-02	1.45E-02	0
	P 12	78.43	3.80	0.13	0.13	1.22E-02	3.0	1.5	0.16	3.48E-02	1.58E-02	0
	P 13	78.20	3.10	0.10	0.13	1.11E-02	3.3	1.4	0.16	3.47E-02	1.31E-02	0
	P 14	77.50	1.83	0.23	0.17	2.55E-02	3.9	1.2	0.18	9.50E-02	2.63E-02	1
	P 15	79.37	5.30	0.17	0.13	1.55E - 02	2.2	1.1	0.14	3.12E-02	1.52E - 02	0
	P 16	80.17	4.50	0.13	0.13	1.44E - 02	2.7	1.0	0.15	3.69E-02	1.30E-02	0
	P 17	80.00	5.63	0.23	0.17	2.54E - 02	2.1	1.0	0.14	4.85E-02	2.21E-02	0
	P 18	80.13	5.00	0.20	0.13	1.99E - 02	2.4	1.0	0.14	4.43E-02	1.76E - 02	0
470	(0)	78.63	-17.60	0.20	0.27	2.75E - 02	0.8	0.8	0.20	1.64E - 02	1.71E - 02	0
471	(1)	78.80	6.43	1.00	0.70	4.54E - 01	2.1	1.7	0.14	5.69E-01	3.83E-01	1
	P 1	78.80	6.43	0.17	0.20	2.54E - 02	2.1	1.7	0.14	4.73E - 02	3.80E - 02	0
472	(0)	78.83	-3.63	0.23	0.27	3.66E - 02	1.6	0.8	0.12	5.27E - 02	2.20E - 02	0
473	(0)	79.03	-3.50	0.33	0.27	5.88E - 02	1.5	0.7	0.11	8.71E-02	3.30E - 02	0
474	(1)	79.40	1.73	0.13	0.23	2.33E - 02	4.4	1.0	0.21	9.64E - 02	1.68E - 02	0
	P 1	79.40	1.73	0.07	0.10	6.66E - 03	4.4	1.0	0.21	2.89E - 02	6.12E - 03	0
475	(0)	79.70	-4.00	0.33	0.30	4.43E-02	1.3	0.6	0.11	5.59E-02	2.44E - 02	0
476	(0)	79.70	-2.57	0.30	0.20	3.11E-02	2.5	0.8	0.14	7.36E-02	2.00E-02	0
477	(0)	79.87	-3.17	0.20	0.20	2.77E - 02	2.0	0.8	0.12	5.04E - 02	1.80E - 02	0
478	(2)	80.07	7.00	1.23	1.60	8.95E-01	1.9	1.5	0.14	1.15E + 00	6.41E-01	0
	P1	80.07	7.00	0.27	0.23	4.30E-02	1.9	1.5	0.14	7.31E-02	5.51E-02	0
	P 2	79.97	6.00	0.53	0.37	8.95E-02	1.8	1.0	0.13	1.49E-01	7.55E-02	0
479	(0)	80.17	-5.00	0.17	0.30	2.43E-02	1.0	0.6	0.10	2.24E - 02	1.31E - 02	0
480	(0)	80.23	-4.73	0.33	0.23	5.09E-02	1.3	0.9	0.11	5.75E-02	3.26E - 02	0
481	(1)	80.40	-2.93	0.77	0.97	3.51E-01	2.9	1.4	0.16	9.26E - 01	3.05E - 01	0
400		80.40	-2.93	0.20	0.77	8.44E-02	2.9	1.4	0.16	2.51E-01	1.02E - 01	0
482	(2) D 1	80.53	3.93	0.87	0.97	3.25E-01	3.2	1.1	0.17	9.49E-01	2.2/E - 01	2
		80.53	3.93	0.17	0.23	2.66E - 02	3.2	1.1 1.1	0.17	8.03E - 02	2.05E - 02	0
102	P 2	80.50	5.15	0.27	0.37	4.32E - 02	3.2 1.2	1.1	0.17	1.38E - 01	3.93E - 02	0
405	(0)	80.85	0.//	0.50	0.20	3.35E - 02	1.5	0.7	0.12	4.50E - 02	1.99E-02	0
404	(0)	80.90	-4.07	0.50	0.27	3.32E - 02	1.5	0.7	0.11	3.82E - 02	1.80E - 02	0
405	(0)	81.00	2.63	0.43	0.45	7.73E = 02	1.7	0.8	0.15	1.13E = 01	4.09E - 02	0
480	(0) (1)	81.53	-2.03 -1.23	0.47	0.37	1.21E - 02	2.7 A 1	1.0	0.15	1.09E - 01 1.40E - 01	4.82E - 02	0
-07	(1) P 1	81.53	-1.23	0.20	0.33	1.56E - 02	4.1 4.1	1.0	0.20	6.05E - 02	1.37E - 02	0
488	(3)	81 77	5.03	1 50	1 17	8.16E-01	3.1	1.0	0.20	1.85E + 00	6.66E - 01	2
100	P 1	81 77	5.03	0.23	0.17	3.10E - 02	3.1	1.7	0.18	8.93E - 02	4.45E-02	0
	P 2	81.00	5.03	0.23	0.50	6.64E - 02	2.8	1.7	0.17	1.76E - 01	8 27E-02	0
	P 3	81.67	4.63	0.17	0.27	3.21E-02	3.0	1.4	0.17	9.05E - 02	3.85E-02	Ő
489	(0)	82.13	3.30	1.27	0.50	2.45E - 01	3.1	0.9	0.16	6.57E-01	1.57E - 01	0
490	(0)	82.63	-3.70	0.23	0.30	3.10E-02	1.6	0.7	0.12	4.79E-02	1.78E - 02	0
491	(43)	82.93	1.70	16.47	7.33	3.28E+01	6.6	3.8	0.39	1.22E + 02	3.85E + 01	14
	P 1	82.93	1.70	0.80	0.63	2.33E-01	6.6	3.8	0.39	1.37E + 00	7.47E-01	1
	P 2	78.90	-0.00	0.20	0.20	2.78E-02	6.1	2.7	0.34	1.57E-01	6.25E-02	0
	P 3	79.23	0.50	0.13	0.20	2.00E-02	6.2	2.7	0.34	1.17E-01	4.61E-02	0
	P 4	70.77	-1.77	1.07	0.67	3.14E-01	4.3	2.6	0.20	1.20E + 00	6.71E-01	0
	P 5	83.57	1.20	0.43	0.40	8.44E-02	5.0	2.5	0.25	3.88E-01	1.77E-01	0
	P 6	81.00	-0.30	0.43	0.23	5.11E-02	6.1	2.5	0.34	2.88E-01	1.03E-01	0
	P 7	73.20	-0.70	0.30	0.33	7.22E-02	4.4	2.4	0.19	2.92E-01	1.50E-01	0
	P 8	78.57	-1.37	0.77	0.73	2.44E-01	5.1	2.3	0.28	1.15E + 00	4.66E-01	0
	P 9	79.17	-1.57	0.53	0.33	9.66E-02	5.1	2.3	0.28	4.55E-01	1.84E-01	0

 Table 7. (Continued.)

Cloud	Clump	Posi	tion	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}				associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 10	81.27	0.57	0.37	0.57	6.56E-02	5.9	2.2	0.31	3.58E-01	1.19E-01	0
	P 11	71.57	-1.87	0.67	0.23	8.44E-02	4.0	2.2	0.18	3.11E-01	1.59E-01	0
	P 12	73.80	-2.03	0.43	0.50	7.44E-02	4.2	2.2	0.20	2.85E-01	1.36E-01	0
	P 13	76.00	0.17	0.30	0.17	3.22E-02	4.7	2.1	0.21	1.41E-01	5.79E-02	0
	P 14	72.33	-1.80	0.27	0.40	5.78E-02	4.0	2.1	0.18	2.12E-01	1.03E-01	0
	P 15	82.37	0.03	0.47	0.40	9.22E-02	5.4	2.1	0.28	4.71E-01	1.65E-01	0
	P 16	74.77	-2.43	0.33	0.37	8.10E-02	4.1	2.1	0.20	3.10E-01	1.44E - 01	0
	P 17	79.27	-0.27	0.33	0.23	5.22E - 02	5.5	2.0	0.29	2.69E-01	8.90E-02	0
	P 18	80.23	-0.97	0.57	0.53	1.02E - 01	5.4	2.0	0.30	5.15E-01	1.71E-01	0
	P 19	70.60	-0.27	0.93	0.67	2.64E - 01	3.7	2.0	0.15	9.11E-01	4.46E-01	1
	P 20	76.93	-0.57	0.40	0.27	7.22E - 02	4.8	2.0	0.23	3.23E-01	1.23E - 01	0
	P 21	76.27	-0.70	0.40	0.37	7.11E - 02	4.6	2.0	0.22	3.04E - 01	1.20E - 01	0
	P 22	80.03	-0.40	0.27	0.20	3.33E-02	5.5	1.9	0.30	1.75E - 01	5.49E-02	0
	P 23	69.40	-0.83	0.63	0.47	1.38E - 01	3.4	1.7	0.14	4.29E - 01	2.01E - 01	0
	P 24	79.53	0.03	0.17	0.13	1.44E - 02	5.2	1.7	0.27	7.28E - 02	2.08E - 02	0
	P 25	84.97	1.13	0.17	0.27	3.22E - 02	3.4	1.6	0.16	1.03E - 01	4.62E - 02	0
	P 26	75.53	-1.60	0.17	0.13	2.11E - 02	3.9	1.6	0.18	7.69E - 02	2.91E - 02	0
	P 27	72.93	-1.27	0.30	0.33	4.78E - 02	3.5	1.6	0.15	1.57E - 01	6.40E - 02	0
	P 28	75.03	-0.87	0.20	0.13	2.22E - 02	3.8	1.5	0.17	7.85E - 02	2.91E - 02	0
	P 29	80.77	0.33	0.23	0.23	3.33E - 02	5.3	1.5	0.26	1.68E - 01	4.31E - 02	0
	P 30	73.73	-2.97	0.27	0.20	3.77E-02	3.1	1.4	0.15	1.08E-01	4.55E - 02	0
	P 31	74.97	-1.87	0.27	0.23	3.89E-02	3.5	1.3	0.16	1.28E-01	4.45E - 02	0
	P 32	76.63	-1.43	0.27	0.30	5.00E-02	3.8	1.3	0.18	1.82E-01	5.70E-02	0
	P 33	77.10	-1.10	0.17	0.17	1.89E-02	4.0	1.3	0.19	7.13E-02	2.08E-02	0
	P 34	72.77	-1.87	0.77	0.30	1.20E - 01	3.2	1.3	0.14	3.65E-01	1.32E - 01	0
	P 35	74.27	0.07	0.13	0.20	2.44E - 02	3.3	1.3	0.14	7.6/E - 02	2.64E - 02	0
	P 36	73.70	0.03	0.17	0.13	2.11E - 02	3.2	1.2	0.13	6.52E - 02	2.26E - 02	0
	P 3/	/4.0/	-0.43	0.33	0.27	5.56E - 02	3.3	1.2	0.14	1.72E-01	5.75E - 02	0
	P 38	81.27	3.50	0.27	0.33	4.7/E - 02	3.4 2.4	1.2	0.18	1.53E - 01	4.86E - 02	0
	P 39	70.50	-0.00	0.57	0.50	9.11E-02	5.4 4.6	1.1 1.1	0.14	2.94E - 01	8.78E - 02	0
	P 40 D 41	/9.50	1.33	0.13	0.17	1.78E - 02	4.0	1.1	0.22	7.92E - 02	1.04E - 02	0
	P 41 D 42	80.45 75.02	1.65	0.20	0.50	3.44E - 02	4.0	1.0	0.22	1.51E - 01	5.12E - 02	0
	Г 42 D / 3	73.95	0.55	0.30	0.25	4.07E = 02 8.11E 02	2.0	1.0	0.15	1.36E = 01	4.09E - 02	0
402	(0)	83.87	-6.63	0.40	0.40	3.11E - 02 1.40E - 01	2.0	1.0	0.11	2.12E = 01 1 38E = 01	7.09E - 02 8.67E - 02	0
492	(0)	84 10	-0.03	0.87	0.40	$2.21E_{-02}$	1.5	0.9	0.13	1.38E - 01 3.02E - 02	1.27E - 02	0
494	(0)	84 20	3.87	0.43	0.17	6.87E-02	2.4	0.8	0.13	1.49E - 01	4.38E - 02	0
495	(0) (1)	84 47	3.03	0.63	0.27	2.97E - 01	2.1	1.1	0.13	6.82E - 01	2.12E - 01	0
475	P 1	84 47	3.03	0.03	0.77	3.11E - 02	2.7	1.1	0.14	8.08E - 02	3.07E - 02	0
496	(0)	84.63	-4.70	0.10	0.27	7.53E-02	1.5	1.1	0.13	9.66E - 02	4.84E - 02	0
497	(24)	84 67	-0.80	5.87	5 77	9.93E + 00	7.1	5.4	0.19	3.19E + 01	1.61E + 01	5
.,,,	P 1	84.67	-0.80	0.77	0.63	2.29E - 01	7.1	5.4	0.49	1.42E + 00	1.07E + 00	0
	P 2	85.03	0.37	0.43	0.37	8.56E-02	6.8	5.1	0.43	5.20E-01	3.73E-01	0
	P 3	83.77	-2.13	0.23	0.27	4.11E-02	6.2	4.7	0.42	2.33E-01	1.71E-01	0
	P 4	84.70	0.40	0.33	0.43	6.89E-02	6.6	4.7	0.41	4.03E-01	2.67E-01	0
	P 5	85.07	-0.10	0.27	0.23	4.11E-02	5.9	4.3	0.34	2.16E-01	1.50E-01	0
	P 6	84.60	-0.20	0.37	0.37	5.89E-02	6.0	4.1	0.35	3.15E-01	2.01E-01	0
	P 7	82.63	-1.97	0.57	0.37	8.55E-02	6.2	4.0	0.40	4.71E-01	2.92E-01	0
	P 8	81.87	-1.77	0.33	0.27	4.44E-02	6.2	3.7	0.39	2.60E-01	1.45E-01	0
	P 9	83.07	-1.67	0.53	0.33	6.89E-02	5.2	2.9	0.29	3.26E-01	1.69E-01	0
	P 10	82.90	-3.20	0.53	0.33	8.43E-02	4.0	2.9	0.23	2.94E-01	2.02E-01	0

 Table 7. (Continued.)

Cloud	Clump	Posi	tion	Si	ze	Surface	Maximur	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2}ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 11	84.03	-1.37	0.13	0.30	2.55E-02	4.3	2.5	0.23	1.01E-01	5.40E-02	0
	P 12	82.23	-1.60	0.10	0.13	1.11E-02	5.0	2.4	0.27	5.26E-02	2.36E-02	0
	P 13	82.67	-2.77	0.57	0.53	1.17E-01	3.8	2.4	0.21	4.20E-01	2.39E-01	0
	P 14	85.87	-2.07	0.67	0.27	8.11E-02	3.2	2.3	0.17	2.37E - 01	1.56E - 01	0
	P 15	83.60	-1.13	0.30	0.23	4.22E - 02	4.4	2.1	0.23	1.75E-01	7.66E-02	0
	P 16	84.07	-0.03	0.20	0.17	1.78E - 02	4.4	2.1	0.22	7.29E - 02	3.08E - 02	0
	P 17	83.70	0.03	0.23	0.13	2.22E - 02	4.4	1.9	0.22	9.16E - 02	3.53E - 02	0
	P 18	83.60	-3.70	0.20	0.33	3.88E-02	2.7	1.8	0.16	9.26E-02	5.78E-02	0
	P 19	83.37	-0.63	0.17	0.13	1.33E-02	4.1	1.5	0.20	5.16E-02	1.68E-02	0
	P 20	83.63	-0.43	0.23	0.17	2.89E-02	4.0	1.5	0.20	1.09E - 01	3.68E-02	0
	P 21	81.67	-2.47	0.17	0.10	9.99E-03	3.3	1.4	0.18	3.20E-02	1.27E - 02	0
	P 22	86.80	-1.93	0.33	0.20	3.66E-02	2.3	1.4	0.13	7.53E-02	4.20E-02	0
	P 23	84.70	-4.10	0.47	0.30	5.54E-02	2.0	1.3	0.14	9.73E-02	5.94E-02	0
100	P 24	84.03	-4.37	0.27	0.27	5.87E-02	2.0	1.3	0.14	1.05E - 01	6.54E - 02	0
498	(0)	84.70	4.23	0.23	0.20	2.88E-02	2.1	0.7	0.13	5.77E-02	1.61E-02	0
499	(0)	84.73	2.67	1.37	0.60	2.62E-01	2.6	1.0	0.13	5.88E-01	1.76E-01	0
500	(1) D 1	84.80	-3.67	0.20	0.20	2.77E - 02	2.0	1.2	0.13	4.28E - 02	2.19E-02	0
501	PI	84.80	-3.67	0.10	0.10	7.76E-03	2.0	1.2	0.13	1.42E - 02	8.31E-03	0
501	(0)	85.17	-5.20	0.33	0.13	2.32E - 02	1.1	0.6	0.11	2.48E-02	1.30E - 02	0
502	(0)	85.20	-6.43	0.17	0.23	2.76E - 02	1.2	0.8	0.12	2.74E - 02	1.63E - 02	0
503	(1) D 1	85.30	-4.//	1.43	0.50	3.68E - 01	2.0	1.5	0.15	5.28E - 01	3.23E - 01	0
504		85.50	-4.//	0.87	0.33	9.97E-02	2.0	1.5	0.15	1.79E-01	1.24E - 01	0
504	(0)	03.33 95.27	-5.20	0.50	0.57	6.32E - 02	1.5	0.7	0.11	1.12E - 01	4.73E - 02	0
505	(0)	03.37 05 57	5.05 4.27	0.50	0.00	1.33E-01	2.2	0.7	0.13	3.17E - 01	9.00E - 02	0
300	(1) D 1	03.37 95 57	-4.27	0.00	0.40	1.43E = 01	1./	1.1	0.13	1.93E - 01 5.75E 02	1.02E - 01	0
507	r 1 (0)	86.10	-4.27	0.40	0.17	3.77E = 02	1.7	1.1	0.15	5.73E = 02	3.30E - 02	0
508	(0) (1)	86.10	4.37	0.17	0.27	3.32E = 02 2.22E = 02	2.1	1.0	0.14	0.04E - 02	2.02E - 02	0
508	(1) P 1	86.47	0.23	0.17	0.23	2.22E = 02 7 78E = 03	2.5	1.0	0.12	4.53E = 02 1.71E = 02	1.30E - 02 6 77E - 03	0
509	(0)	86.50	-6.97	0.10	0.10	7.78E = 03 2.32E = 02	2.5	0.6	0.12	1.71E = 02 2.12E = 02	1.30E - 02	0
510	(0)	86 57	_4.93	0.20	0.17	2.32E = 02 2.77E = 02	1.0	0.0	0.13	2.12E 02 3.29E_02	1.50E 02	0
511	(0)	86 70	7.83	0.25	0.17	2.77E = 02 2.42E = 02	1.4	0.5	0.12	2.42E - 02	1.05E 02 1.31E - 02	0
512	(0)	86 77	3.60	0.20	0.17	5.21E - 02	2.2	0.8	0.12	1.06E - 01	3.12E - 02	0
513	(0)	86.80	6.63	0.45	0.17	4.86E-02	1.8	0.8	0.13	7.70E - 02	3.12E 02 3.14E - 02	0
514	(0)	86.80	8 40	0.20	0.63	8.03E - 02	1.0	0.0	0.13	7.01E - 02	440E-02	0
515	(0)	87.07	-4.20	0.53	0.27	6.21E - 02	1.6	1.0	0.12	7.70E - 02	3.96E - 02	1
516	(0)	87.17	4.00	0.30	0.23	5.10E - 02	2.2	0.9	0.14	1.05E - 01	3.40E - 02	0
517	(1)	87.17	4.87	0.73	0.57	2.18E - 01	2.5	1.2	0.16	4.52E - 01	1.66E - 01	Ő
	P 1	87.17	4.87	0.27	0.20	3.99E-02	2.5	1.2	0.16	9.46E-02	4.21E - 02	0
518	(1)	87.37	5.97	1.63	0.97	6.96E-01	2.6	1.5	0.18	1.24E + 00	4.82E-01	0
	P 1	87.37	5.97	0.20	0.20	2.76E-02	2.6	1.5	0.18	6.62E-02	3.59E-02	0
519	(0)	87.37	0.33	0.30	0.17	3.67E-02	2.2	1.0	0.12	7.26E-02	2.66E-02	0
520	(0)	87.63	3.47	0.33	0.27	5.77E-02	2.2	0.8	0.14	1.19E-01	3.71E-02	0
521	(0)	87.80	4.93	0.23	0.20	2.99E-02	2.1	0.7	0.14	5.76E-02	1.80E-02	0
522	(0)	88.37	2.23	0.23	0.17	2.89E-02	2.1	0.7	0.13	5.83E-02	1.71E-02	0
523	(0)	88.43	-6.53	0.17	0.40	4.64E-02	1.2	0.8	0.13	4.72E-02	2.91E-02	0
524	(0)	88.53	-4.37	0.33	0.30	6.43E-02	1.1	0.6	0.11	6.74E-02	3.54E-02	0
525	(1)	88.53	0.80	0.30	0.27	4.89E-02	3.1	1.8	0.16	1.11E-01	4.61E-02	0
	P 1	88.53	0.80	0.10	0.10	7.78E-03	3.1	1.8	0.16	2.26E-02	1.23E-02	0
		00.00		0.00	0.17	2 00E 02	~ ~	07	0.12	4 0 CE 00	1.1(E 00	0
526	(0)	88.60	2.50	0.20	0.17	2.00E - 02	2.2	0.7	0.13	4.06E - 02	1.16E - 02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
528	(0)	88.80	-12.67	0.30	0.50	6.72E-02	0.9	0.8	0.17	4.75E-02	3.93E-02	0
529	(0)	89.10	-3.70	0.27	0.23	2.88E-02	1.2	0.7	0.10	3.11E-02	1.67E-02	0
530	(1)	89.27	3.57	0.67	0.97	2.11E-01	2.6	1.0	0.16	4.58E-01	1.37E-01	0
	P 1	89.27	3.57	0.13	0.10	9.98E-03	2.6	1.0	0.16	2.43E-02	9.08E-03	0
531	(0)	89.33	-0.03	0.30	0.47	6.33E-02	2.0	0.8	0.11	1.11E-01	3.97E-02	1
532	(0)	89.50	-3.90	0.30	0.47	9.64E-02	1.3	0.8	0.11	1.08E - 01	6.25E-02	0
533	(0)	89.70	-3.10	0.23	0.23	3.11E-02	1.3	0.7	0.10	3.54E - 02	1.86E - 02	1
534	(2)	89.77	-6.97	0.87	1.10	4.01E-01	1.9	1.6	0.16	4.45E - 01	3.13E-01	2
	P 1	89.77	-6.97	0.17	0.17	2.32E - 02	1.9	1.6	0.16	3.98E-02	3.21E-02	2
	P 2	89.70	-6.63	0.17	0.13	1.77E - 02	1.6	1.3	0.15	2.54E - 02	1.95E - 02	1
535	(6)	89.93	-1.97	2.20	2.57	1.68E + 00	3.8	3.1	0.20	3.03E + 00	1.68E + 00	5
	P 1	89.93	-1.97	0.20	0.17	2.33E - 02	3.8	3.1	0.20	7.80E - 02	6.05E - 02	1
	P 2	90.23	-1.83	0.20	0.20	3.44E - 02	3.2	2.5	0.17	9.88E-02	7.17E - 02	0
	P 3	90.57	-1.43	0.30	0.30	4.78E - 02	2.8	1.9	0.15	1.21E - 01	7.82E - 02	0
	P 4	89.47	-2.57	0.20	0.27	2.66E - 02	2.2	1.5	0.13	5.28E - 02	3.55E - 02	0
	P 5	90.63	-2.03	0.13	0.17	1.55E - 02	1.9	1.2	0.12	2.77E - 02	1.60E - 02	0
	P 6	90.57	-0.97	0.20	0.23	3.22E-02	2.1	1.1	0.12	6.30E-02	3.10E-02	0
536	(0)	90.07	-4.87	0.20	0.20	2.66E-02	1.2	0.8	0.11	2.73E-02	1.73E-02	0
537	(0)	90.13	-0.63	0.20	0.13	2.11E-02	1.7	0.6	0.10	3.42E-02	1.18E-02	0
538	(0)	90.60	1.83	0.63	0.27	9.66E-02	2.6	0.9	0.14	2.30E-01	6.67E-02	0
539	(0)	90.83	-0.70	0.33	0.20	4.56E-02	1.8	0.7	0.11	7.65E-02	2.72E-02	0
540	(2)	91.27	5.97	0.67	0.47	1.85E-01	2.4	1.2	0.17	3.50E-01	1.41E-01	0
		91.27	5.97	0.17	0.33	3.20E - 02	2.4	1.2	0.17	7.09E - 02	3.40E - 02	0
541	P 2	90.83	6.00	0.13	0.13	1.22E - 02	2.2	1.0	0.16	2.40E - 02	1.08E - 02	0
541	(42) D 1	91.87	2.97	7.40	0.10	1.75E+01	7.4	5.5 5.5	0.67	5.0/E+01	$2.23E \pm 01$	25
		91.07	2.97	0.07	0.37	1.1/E = 01	6.5	5.5 4.0	0.07	7.71E-01	3.30E - 01	1
	Г <u>2</u> Р 3	90.47	2.37 4.63	0.30	0.17	3.00E = 02 2.00E = 02	6.2	4.9	0.47	2.14L = 01 1.65E = 01	1.52E-01 1.15E-01	0
	Г <u>Ј</u> Р <u>/</u>	92.40	4.60	0.17	0.30	2.99E = 02 1 88E = 02	5.8	4.3	0.30	9.83E - 02	7.14E = 02	0
	г т Р 5	92.07	+.00 2 97	0.17 0.47	0.17	7.77E - 02	5.7	3.8	0.40	3.95E - 01	7.14E 02 2 46E -01	0
	P 6	92.27	3 33	0.17	0.20	4.99E - 02	5.6	3.8	0.40	2.55E - 01	1.63E - 01	0
	P 7	89 70	2.23	0.37	0.20	3.33E - 02	5.0	3 5	0.10	1.50E - 01	9.98E - 02	2
	P 8	91.23	2.87	0.27	0.17	3.33E - 02	5.1	3.2	0.32	1.56E - 01	9.40E - 02	1
	P 9	91.20	4.10	0.37	0.33	5.54E - 02	4.7	3.0	0.31	2.37E-01	1.41E-01	1
	P 10	94.07	5.03	0.17	0.13	1.99E - 02	4.0	2.8	0.28	7.25E-02	4.86E-02	0
	P 11	92.87	3.97	0.23	0.23	3.66E-02	4.3	2.5	0.28	1.45E-01	7.89E-02	0
	P 12	93.13	4.03	0.13	0.13	1.33E-02	4.2	2.4	0.28	5.13E-02	2.78E-02	1
	P 13	92.37	2.23	0.40	0.50	1.25E-01	4.3	2.4	0.25	4.93E-01	2.52E-01	0
	P 14	93.40	2.63	1.07	0.87	3.00E-01	4.1	2.3	0.25	1.11E + 00	5.85E-01	0
	P 15	91.23	4.67	0.23	0.13	2.33E-02	3.9	2.3	0.25	8.23E-02	4.55E-02	0
	P 16	94.33	3.93	0.13	0.17	1.66E-02	3.5	2.2	0.23	5.40E-02	3.15E-02	0
	P 17	90.93	2.53	0.17	0.17	1.67E - 02	4.0	2.2	0.22	6.09E-02	3.10E-02	0
	P 18	90.90	3.53	0.43	0.20	4.99E-02	3.6	1.9	0.22	1.65E-01	8.11E-02	1
	P 19	94.60	4.13	0.23	0.23	2.99E-02	3.1	1.8	0.21	8.41E-02	4.69E-02	0
	P 20	91.37	4.83	0.10	0.13	1.22E-02	3.2	1.7	0.21	3.66E-02	1.77E-02	0
	P 21	93.07	5.03	0.13	0.17	1.66E-02	3.1	1.7	0.21	4.81E-02	2.45E-02	1
	P 22	94.27	1.33	0.13	0.20	2.00E-02	2.9	1.6	0.17	5.41E-02	2.78E-02	0
	P 23	94.47	4.63	0.13	0.10	9.97E-03	2.8	1.6	0.19	2.53E-02	1.35E-02	0
	P 24	95.93	2.13	0.17	0.17	2.11E-02	2.6	1.6	0.17	5.11E-02	2.83E-02	0
	P 25	94.07	1.67	0.27	0.23	3.89E-02	3.0	1.6	0.17	1.09E-01	5.22E-02	0
	P 26	94.47	4.43	0.10	0.20	1.55E - 02	2.7	1.5	0.19	3.93E-02	2.03E - 02	0

 Table 7. (Continued.)

Cloud	Clump	Posi	tion	Si	ze	Surface	Maximur	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2}ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 27	91.57	5.27	0.23	0.27	2.99E-02	2.8	1.4	0.19	7.74E-02	3.58E-02	0
	P 28	92.97	1.67	0.30	0.13	2.44E-02	3.2	1.4	0.18	7.32E-02	2.92E-02	0
	P 29	94.67	1.13	0.33	0.27	3.89E-02	2.5	1.3	0.15	9.03E-02	4.39E-02	0
	P 30	91.77	0.93	0.23	0.13	2.00E-02	3.0	1.3	0.16	5.68E-02	2.39E-02	0
	P 31	95.40	2.53	0.40	0.33	4.99E-02	2.5	1.3	0.16	1.12E-01	5.36E-02	0
	P 32	94.67	2.80	0.53	0.33	8.55E-02	2.6	1.3	0.17	2.02E-01	9.16E-02	0
	P 33	91.33	0.30	0.27	0.23	3.56E - 02	2.7	1.3	0.14	8.82E-02	3.82E-02	0
	P 34	94.87	1.37	0.17	0.30	3.0/E - 02	2.4	1.2	0.15	8.10E-02	3.83E-02	0
	P 33 P 36	91.00	0.70	0.55	0.50	4.89E-02	2.7	1.2	0.14	1.23E - 01 2.87E 01	4.94E - 02 1 00E 01	0
	F 30 P 37	91.00	2.13	0.33	0.30	1.10E = 01 2.00E = 02	2.7	1.2	0.14	2.07E = 01 4.45E = 02	1.09E = 01 2.02E = 02	0
	P 38	95.15	-0.33	0.20	0.13	2.00E - 02 2 56E - 02	2.4	1.1	0.13	4.45E = 02 5.63E = 02	2.02E - 02 2.48E - 02	0
	P 39	91.33	1 33	0.17	0.23	1.11E-02	2.4	1.1	0.15	3.03E - 02 3.01E - 02	1.10E-02	0
	P 40	94.83	0.40	0.15	0.10	456E-02	2.2	1.1	0.13	9.16E-02	4.102 02 4.41E-02	0
	P 41	91.17	5.13	0.17	0.17	1.66E - 02	2.5	1.1	0.17	3.91E - 02	1.57E - 02	Ő
	P 42	94.70	2.20	0.47	0.23	6.44E-02	2.4	1.1	0.15	1.48E-01	6.04E-02	0
542	(0)	92.03	11.63	0.33	0.20	3.70E-02	0.9	0.7	0.16	3.00E-02	2.20E-02	0
543	(0)	92.17	1.03	0.13	0.23	2.78E-02	2.6	0.9	0.14	6.55E-02	1.86E-02	0
544	(1)	92.37	-4.00	0.43	0.50	9.97E-02	1.6	1.3	0.13	1.01E-01	7.53E-02	1
	P 1	92.37	-4.00	0.20	0.17	1.77E-02	1.6	1.3	0.13	2.46E-02	2.00E-02	0
545	(0)	92.77	-4.20	0.23	0.20	2.77E-02	0.9	0.7	0.11	2.22E-02	1.61E-02	0
546	(0)	92.93	11.67	0.53	0.50	1.02E - 01	1.0	0.7	0.17	9.12E-02	6.07E - 02	0
547	(5)	93.27	-0.03	1.53	1.53	9.06E-01	2.8	1.5	0.15	1.76E + 00	7.01E-01	0
	P 1	93.27	-0.03	0.27	0.17	2.78E-02	2.8	1.5	0.15	7.07E-02	3.59E-02	0
	P 2	92.70	-0.13	0.10	0.07	6.67E-03	2.8	1.5	0.15	1.70E-02	8.43E-03	1
	P 3	93.70	-0.13	0.20	0.20	2.44E - 02	2.3	1.2	0.14	5.29E-02	2.53E-02	0
	P 4	93.53	-0.57	0.20	0.17	2.22E-02	2.1	1.1	0.13	4.39E-02	2.14E-02	0
- 10	P 5	93.73	0.60	0.20	0.23	2.89E-02	2.4	1.0	0.14	6.35E-02	2.57E-02	0
548	(1)	93.47	-4.70	0.70	0.77	1.71E-01	1.8	1.6	0.15	1.84E-01	1.54E - 01	1
5 40	P I	93.47	-4.70	0.37	0.23	2.44E - 02	1.8	1.6	0.15	3.77E-02	3.35E-02	l
549	(5) D 1	93.50	9.53	1.53	2.33	1.32E + 00	3.1	2.4	0.28	2.23E+00	1.31E+00	0
		93.50	9.53	0.43	0.33	7.56E-02	3.1	2.4	0.28	2.06E-01	1.00E-01	1
	P 2 D 2	93.93	10.00	0.20	0.10	1.31E - 02	5.0 2 7	2.5	0.27	3.40E - 02	2.03E - 02	2
	Г <i>3</i> Р /	93.47	0.00	0.25	0.27	3.93E - 02 8 77E - 03	2.7	2.0	0.24	9.01E - 02 1 57E - 02	0.05E - 02 0.54E - 03	1
	1 4 P 5	97.07	9.43	0.10	0.10	9.77E = 03	1.9	1.2	0.20	1.57E = 02 1.61E = 02	9.34E - 03 1 00E - 02	1
550	(4)	93 50	-4.30	1 23	1 70	5.64E - 01	3.0	2.8	0.10	7.21E-01	6.35E-01	5
550	P 1	93 50	-4.30	0.20	0.23	1.66E - 02	3.0	2.0	0.20	4.23E - 02	3.95E - 02	0
	P 2	93.80	-4.63	0.17	0.13	1.00E 02 1.77E - 02	2.9	2.7	0.20	4.45E - 02	4.18E-02	2
	P 3	94.40	-5.57	0.10	0.27	2.43E - 02	2.4	2.2	0.19	4.85E - 02	4.51E-02	1
	P 4	94.00	-4.90	0.17	0.13	1.22E - 02	1.6	1.5	0.14	1.76E-02	1.58E-02	0
551	(3)	93.57	7.00	1.00	1.20	5.37E-01	2.2	1.2	0.18	9.36E-01	4.14E-01	1
	P 1	93.57	7.00	0.30	0.40	6.73E-02	2.2	1.2	0.18	1.35E-01	7.04E-02	0
	P 2	93.30	6.47	0.20	0.20	2.32E-02	2.2	1.2	0.18	4.83E-02	2.46E-02	0
	P 3	93.73	6.63	0.40	0.27	4.64E-02	2.2	1.2	0.18	9.42E-02	4.86E-02	0
552	(1)	94.03	-3.33	0.27	0.27	4.88E-02	1.3	1.1	0.12	4.73E - 02	3.73E-02	0
	P 1	94.03	-3.33	0.13	0.17	1.66E-02	1.3	1.1	0.12	1.99E-02	1.65E-02	1
553	(1)	94.13	6.33	0.77	0.63	1.96E-01	2.7	1.8	0.21	3.71E-01	1.75E-01	1
	P 1	94.13	6.33	0.30	0.23	2.87E-02	2.7	1.8	0.21	7.14E-02	4.30E-02	1
554	(0)	94.30	0.03	0.17	0.20	2.00E-02	1.7	0.7	0.11	3.20E-02	1.13E-02	0
555	(0)	94.40	-2.60	0.23	0.27	3.66E-02	1.1	0.7	0.11	3.58E-02	2.29E-02	0

 Table 7. (Continued.)

Cloud	Clump	Posi	tion	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}				associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
556	(1)	94.90	7.57	0.57	0.50	1.65E-01	2.0	1.1	0.19	2.76E-01	1.23E-01	0
	P 1	94.90	7.57	0.33	0.40	5.73E-02	2.0	1.1	0.19	1.07E-01	5.39E-02	0
557	(1)	94.97	-1.17	1.17	1.27	4.91E-01	1.8	1.1	0.12	7.00E-01	3.57E-01	1
	P 1	94.97	-1.17	0.60	0.57	1.17E-01	1.8	1.1	0.12	1.87E-01	1.08E - 01	0
558	(2)	95.17	6.50	0.83	0.60	2.18E-01	3.3	2.3	0.25	4.03E-01	1.95E-01	0
	P 1	95.17	6.50	0.13	0.10	1.10E - 02	3.3	2.3	0.25	3.30E-02	2.25E - 02	0
	P 2	94.73	6.30	0.17	0.13	1.55E - 02	2.4	1.4	0.19	3.39E-02	1.90E - 02	1
559	(0)	95.30	-9.67	0.43	0.53	1.17E - 01	1.1	0.9	0.16	9.30E-02	7.19E-02	0
560	(0)	95.30	4.33	0.60	0.20	5.65E - 02	2.0	0.9	0.16	9.55E-02	3.54E-02	0
561	(1)	95.43	5.87	0.30	0.17	3.65E-02	2.1	1.1	0.17	6.27E - 02	2.75E - 02	1
	P 1	95.43	5.87	0.20	0.07	1.22E - 02	2.1	1.1	0.17	2.36E-02	1.19E-02	1
562	(1)	95.57	1.80	0.30	0.17	3.55E - 02	2.1	1.0	0.14	6.37E-02	2.48E - 02	0
	P 1	95.57	1.80	0.13	0.10	8.88E-03	2.1	1.0	0.14	1.79E - 02	8.15E-03	0
563	(0)	95.67	-11.37	0.23	0.30	3.59E-02	0.8	0.7	0.16	2.44E - 02	2.05E - 02	0
564	(0)	95.80	-12.87	0.20	0.70	6.39E-02	0.9	0.9	0.18	4.18E-02	3.99E-02	0
565	(0)	95.83	-11.10	0.23	0.23	2.51E - 02	0.8	0.6	0.16	1.73E-02	1.41E - 02	0
566	(0)	95.83	-10.70	0.37	0.30	7.31E-02	0.9	0.8	0.16	5.71E-02	4.66E - 02	0
567	(0)	95.90	-10.23	0.63	0.80	1.96E - 01	1.1	0.9	0.17	1.48E - 01	1.16E - 01	0
568	(1)	95.90	6.03	0.90	0.53	1.64E - 01	2.3	1.3	0.19	2.75E-01	1.19E-01	2
	P 1	95.90	6.03	0.27	0.10	1.99E - 02	2.3	1.3	0.19	4.10E - 02	2.20E - 02	1
569	(1)	95.97	8.13	1.10	0.77	4.05E - 01	3.6	2.6	0.31	7.95E-01	4.01E - 01	0
	P 1	95.97	8.13	0.13	0.17	1.98E - 02	3.6	2.6	0.31	6.42E - 02	4.49E - 02	2
570	(0)	95.97	6.57	0.33	0.13	3.53E - 02	1.6	0.7	0.16	5.49E - 02	2.09E - 02	1
571	(1)	96.00	-1.90	1.30	1.27	6.82E - 01	2.8	2.2	0.16	9.45E-01	5.34E - 01	2
	P 1	96.00	-1.90	0.13	0.23	2.44E - 02	2.8	2.2	0.16	6.11E-02	4.68E - 02	1
572	(0)	96.30	-10.80	0.17	0.23	2.51E - 02	0.8	0.7	0.16	1.83E - 02	1.46E - 02	0
573	(0)	96.37	-10.33	0.47	0.63	1.19E - 01	1.0	0.8	0.16	9.08E - 02	7.19E - 02	0
574	(1)	96.47	4.97	0.50	0.77	1.96E - 01	2.0	1.1	0.16	3.06E - 01	1.32E - 01	0
	P 1	96.47	4.97	0.23	0.17	1.99E - 02	2.0	1.1	0.16	3.57E - 02	1.79E - 02	0
575	(1)	96.50	2.13	0.23	0.33	5.44E - 02	2.4	1.4	0.16	9.99E-02	4.38E - 02	1
	P 1	96.50	2.13	0.10	0.13	9.99E-03	2.4	1.4	0.16	2.24E - 02	1.21E - 02	0
576	(0)	96.70	-15.03	0.13	0.27	2.79E-02	0.9	1.0	0.21	2.02E-02	2.03E-02	1
577	(1)	96.83	1.73	0.30	0.30	6.44E-02	2.1	1.1	0.14	1.16E-01	5.18E-02	0
	PI	96.83	1.73	0.23	0.17	2.44E-02	2.1	1.1	0.14	4.88E-02	2.45E-02	0
578	(0)	97.33	5.43	0.30	0.17	3.87E-02	1.5	0.8	0.14	5.31E-02	2.29E-02	0
579	(0)	97.67	0.47	0.40	0.53	1.01E-01	1.8	0.9	0.12	1.55E-01	6.10E-02	0
580	(0)	97.70	5.27	0.30	0.30	3.76E-02	1.5	0.7	0.14	4.98E-02	2.24E - 02	0
581	(0)	97.73	10.73	0.30	0.27	4.80E-02	1.5	0.7	0.19	6.73E-02	2.91E-02	0
582	(1) D 1	97.87	1.60	0.30	0.43	9.11E-02	2.2	1.3	0.14	1.53E-01	6.84E - 02	0
502	P I	97.87	1.60	0.13	0.17	1.78E-02	2.2	1.3	0.14	3.63E - 02	1.9/E - 02	1
583	(0) (5)	97.93	-0.23	0.33	0.20	3.89E-02	1./	0.9	0.11	5.76E - 02	2.44E - 02	0
584	(5) D 1	98.33	5.27	0.87	1.90	8.29E-01	3.0	3.0	0.26	1.30E + 00	7.54E-01	0
		98.33	5.27	0.10	0.10	8.85E-03	3.6	3.0	0.26	2.88E-02	2.30E - 02	0
	P 2	98.23	4.75	0.20	0.15	1.77E - 02	2.4	1.7	0.18	5.93E - 02	2.03E - 02	1
		98.40	0.33	0.17	0.30	2.98E - 02	2.4	1./	0.19	0.28E - 02	4.31E - 02	0
	r4 D5	98.4/ 08 72	4.90	0.17	0.13	1.33E - 02	2.0	1.4	0.10	2.03E-02	1.79E-02	0
505	r J (1)	70./J 08 27	5.8U	0.50	0.13	2.43E-02	1.9	1.5	0.10 0.14	4.13E-02	2.03E - 02	1
202	(1) D 1	70.31 08 27	2.01 2.07	0.27	0.17	1.44E 02	2.0	1.1	0.14 0.14	3.1/E = 02 2.71E = 02	2.44E-02	1
586	r 1 (1)	70.37 08 50	∠.0/ 13.02	0.20	0.10	1.44E-02	2.0	1.1	0.14	2.71E-02	1.59E-02 3 10E 02	1
200	P 1	98.50 98.50	13.93	0.17	0.30	1.29E-02	1.6	1.2	0.23	4.70E - 02 1.85E - 02	1.31E - 02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	tion	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
587	(1)	98.77	4.30	0.30	0.23	4.43E-02	1.8	1.1	0.14	6.54E-02	3.35E-02	1
	P 1	98.77	4.30	0.20	0.13	1.66E-02	1.8	1.1	0.14	2.75E-02	1.55E-02	0
588	(1)	98.80	-1.83	0.70	0.47	1.85E - 01	2.2	1.6	0.14	2.68E-01	1.55E-01	0
	P 1	98.80	-1.83	0.20	0.17	2.67E - 02	2.2	1.6	0.14	5.33E-02	3.72E-02	1
589	(1)	98.83	6.90	0.53	0.60	1.46E-01	2.1	1.5	0.19	2.19E-01	1.19E-01	0
	P 1	98.83	6.90	0.13	0.23	1.88E - 02	2.1	1.5	0.19	3.69E-02	2.41E-02	0
590	(2)	99.10	4.73	0.50	0.60	1.53E-01	1.9	1.3	0.15	2.12E-01	1.12E-01	0
	P 1	99.10	4.73	0.17	0.13	1.55E - 02	1.9	1.3	0.15	2.76E - 02	1.77E - 02	1
	P 2	99.17	4.40	0.20	0.17	2.22E - 02	1.7	1.0	0.14	3.40E-02	1.94E - 02	0
591	(0)	99.37	-0.80	0.33	0.53	8.89E-02	1.4	0.6	0.10	1.16E - 01	4.96E - 02	0
592	(0)	99.43	5.77	0.53	0.47	1.14E - 01	1.5	1.0	0.14	1.33E-01	7.17E-02	0
593	(0)	99.47	14.93	0.30	0.17	2.04E - 02	1.0	0.6	0.20	1.92E - 02	1.11E - 02	0
594	(8)	99.53	1.47	2.37	3.80	3.53E + 00	3.2	2.3	0.19	5.99E + 00	2.85E + 00	8
	P 1	99.53	1.47	0.20	0.20	2.55E - 02	3.2	2.3	0.19	7.44E - 02	5.11E-02	0
	P 2	100.27	3.23	0.13	0.17	1.77E - 02	3.0	2.1	0.20	4.81E-02	3.32E - 02	0
	P 3	99.80	2.30	0.20	0.13	2.00E - 02	2.5	1.6	0.16	4.59E - 02	2.75E - 02	0
	P 4	99.07	0.50	0.27	0.30	5.44E - 02	2.2	1.3	0.13	1.10E - 01	6.06E - 02	0
	P 5	99.43	0.53	0.33	0.20	4.22E - 02	2.2	1.3	0.13	8.41E-02	4.61E - 02	0
	P 6	99.90	2.80	0.23	0.37	3.55E - 02	2.2	1.3	0.15	7.15E - 02	3.93E-02	1
	P 7	100.03	0.07	0.20	0.20	2.89E - 02	2.0	1.1	0.12	5.29E - 02	2.77E - 02	0
	P 8	100.77	3.13	0.23	0.30	3.11E - 02	1.9	1.0	0.14	5.37E - 02	2.73E - 02	0
595	(0)	99.83	-1.10	0.27	0.30	3.22E - 02	1.3	0.6	0.10	4.04E - 02	1.69E - 02	0
596	(1)	99.93	17.30	0.83	0.97	2.13E - 01	1.5	1.1	0.27	2.27E - 01	1.34E - 01	0
	P 1	99.93	17.30	0.13	0.20	1.70E - 02	1.5	1.1	0.27	2.31E - 02	1.59E - 02	0
597	(1)	99.97	14.77	0.80	0.37	1.02E - 01	1.7	1.3	0.25	1.19E - 01	7.71E-02	0
	P 1	99.97	14.77	0.13	0.10	1.07E - 02	1.7	1.3	0.25	1.66E - 02	1.22E - 02	1
598	(16)	100.03	8.93	5.83	3.17	7.72E + 00	3.5	2.9	0.31	1.30E + 01	7.05E + 00	7
	P 1	100.03	8.93	0.10	0.17	1.32E - 02	3.5	2.9	0.31	4.27E-02	3.38E-02	1
	P 2	97.20	9.90	0.23	0.13	2.19E-02	3.3	2.5	0.31	6.39E-02	4.55E-02	1
	P 3	96.37	10.30	0.20	0.13	1.75E-02	2.8	2.0	0.27	4.42E-02	3.00E-02	0
	P 4	97.07	10.13	0.33	0.27	2.73E-02	2.6	1.8	0.26	6.43E-02	4.17E-02	4
	P 5	99.10	9.90	0.23	0.37	4.16E - 02	2.5	1.8	0.24	9.37E-02	6.16E - 02	0
	P 6	98.03	10.07	0.77	1.23	3.78E-01	2.6	1.7	0.25	8.64E-01	5.51E-01	0
	P7	97.77	8.60	0.20	0.13	2.09E - 02	2.7	1.7	0.24	5.06E - 02	3.13E - 02	0
		100.40	8.83	0.23	0.10	1.98E-02	2.3	1./	0.22	4.06E - 02	2.90E - 02	0
	P 9	95.53	9.97	0.17	0.10	1.09E - 02	2.5	1./	0.24	2.46E - 02	1.58E - 02	0
	P 10	98.00	8.70	0.17	0.15	1.8/E - 02	2.0	1.0	0.23	4.34E - 02	2.03E - 02	0
		99.87	9.95	0.47	0.55	1.0/E - 01	2.5	1.0	0.23	2.13E - 01	1.42E - 01	0
	P 12 D 12	97.40	8.33	0.17	0.17	1.8/E - 02	2.4	1.4	0.22	4.04E - 02	2.29E - 02	0
	P 15 D 14	90.50	10.05	0.17	0.15	1.31E - 02	2.1	1.5	0.22	2.33E - 02	1.40E - 02	0
	Г 14 D 15	99.97	10.77	0.10	0.17	1.42E = 02	1.9	1.2	0.21	2.44E = 02	1.30E - 02	0
	Г 1.J D 1.6	00.90	0.17	0.17	0.17	2.19E - 02	1./	1.2	0.20	3.40E - 02	2.32E - 02	0
500	(1)	90.07	0.37	0.10	0.25	1.98E - 02	1.9	1.1	0.19	3.32E - 02	1.60E - 02	0
399	(1) D 1	100.03	4.50	0.30	0.37	9.97E - 02	1.9	1.5	0.15	1.40E - 01	3.31E - 02	5
600	г 1 (1)	100.03	4.50	0.27	0.20	5.45E-02	1.9	1.5	0.13	6.87E 02	3.70E-02	0
000	(1) P 1	100.23	4.27 1 07	0.50	0.55	1 33E_02	1.5	1.0	0.14	$1.85E_{-02}$	$1.18E_{-02}$	0
601	(0)	100.23	18 73	0.17 0.20	0.13	2.00E = 02	1.0	0.7	0.14	1.00E = 02 1.00E = 02	1.10E = 02 1.14E = 02	0
602	(0)	100.27	19.75	0.20	0.27	3.36E - 02	1.0	0.7	0.23	3.35E = 02	2.16E = 02	0
603	(0)	100.33	0.37	0.20	0.27	3.44E - 02	1.2	0.7	0.11	5.35E = 02 5.22E = 02	2.00E - 02	0
604	(1)	100.40	3.87	0.23	0.17	2.77E - 02	1.8	1.1	0.15	4.09E-02	2.15E-02	0

 Table 7. (Continued.)

Cloud	Clump	Posi	tion	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 1	100.40	3.87	0.13	0.07	7.76E-03	1.8	1.1	0.15	1.35E-02	7.99E-03	1
605	(0)	100.53	18.27	0.17	0.43	3.90E-02	1.1	0.7	0.25	3.91E-02	2.26E-02	0
606	(0)	100.63	16.37	0.60	0.60	1.50E-01	1.4	0.9	0.25	1.63E-01	9.40E-02	0
607	(1)	100.77	1.70	0.80	0.93	3.72E-01	2.4	1.5	0.16	6.45E-01	2.88E-01	0
	P 1	100.77	1.70	0.20	0.27	3.44E-02	2.4	1.5	0.16	7.67E-02	4.37E-02	0
608	(0)	100.80	18.07	0.33	0.60	1.06E - 01	1.4	1.0	0.27	1.22E-01	7.42E - 02	0
609	(2)	100.80	5.20	1.73	1.07	6.06E-01	2.6	2.2	0.20	7.82E-01	5.55E-01	4
	P 1	100.80	5.20	0.13	0.17	1.66E - 02	2.6	2.2	0.20	3.92E-02	3.19E-02	1
	P 2	101.50	5.03	0.27	0.13	2.55E-02	2.1	1.8	0.18	4.79E-02	3.85E-02	1
610	(1)	101.10	11.63	0.53	0.53	1.62E - 01	1.5	1.0	0.21	1.88E-01	1.09E-01	0
	P 1	101.10	11.63	0.13	0.20	2.29E-02	1.5	1.0	0.21	3.20E-02	2.09E - 02	0
611	(1)	101.10	-15.33	0.30	0.47	6.43E-02	1.1	1.1	0.27	4.58E-02	4.54E - 02	0
	P 1	101.10	-15.33	0.17	0.20	1.39E-02	1.1	1.1	0.27	1.27E - 02	1.26E - 02	0
612	(0)	101.27	9.60	0.23	0.50	4.49E-02	1.2	0.7	0.17	4.71E-02	2.56E-02	0
613	(0)	101.37	0.37	0.33	0.23	2.44E - 02	1.5	0.6	0.11	3.67E-02	1.28E-02	0
614	(0)	101.47	18.57	0.23	0.23	2.63E-02	1.1	0.7	0.25	2.67E-02	1.51E-02	0
615	(1)	101.50	16.80	0.37	0.27	3.51E-02	1.6	1.1	0.27	4.22E-02	2.52E - 02	0
	P 1	101.50	16.80	0.13	0.10	1.06E - 02	1.6	1.1	0.27	1.54E - 02	1.02E - 02	0
616	(1)	101.70	11.27	0.87	0.63	1.92E-01	1.6	1.1	0.21	2.19E-01	1.27E-01	0
	P 1	101.70	11.27	0.13	0.17	1.53E-02	1.6	1.1	0.21	2.20E-02	1.47E-02	0
617	(1)	101.73	16.60	0.20	0.23	2.98E-02	1.6	1.1	0.27	3.74E-02	2.29E-02	0
	P 1	101.73	16.60	0.13	0.10	1.06E-02	1.6	1.1	0.27	1.56E-02	1.04E - 02	0
618	(0)	102.17	10.70	0.30	0.27	2.51E-02	1.1	0.6	0.17	2.50E-02	1.40E - 02	0
619	(4)	102.20	15.33	1.67	1.13	6.99E-01	3.8	3.3	0.48	1.06E + 00	7.32E-01	7
	P1	102.20	15.33	0.10	0.13	1.18E - 02	3.8	3.3	0.48	3.96E - 02	3.41E-02	0
	P 2	102.73	15.33	0.13	0.10	1.07E - 02	3.5	3.0	0.44	3.29E - 02	2.77E - 02	2
	P 3	102.33	15.97	0.13	0.10	1.18E - 02	2.0	1.5	0.30	2.13E-02	1.55E - 02	2
	P 4	102.63	15.77	0.20	0.13	1.82E - 02	1.7	1.2	0.27	2.80E-02	1.89E-02	0
620	(7)	102.37	2.93	3.00	1.80	1.56E + 00	3.2	2.3	0.21	2.83E + 00	1.39E + 00	6
	P 1	102.37	2.93	0.17	0.20	1.89E - 02	3.2	2.3	0.21	5.35E-02	3.69E-02	0
	P 2	102.83	2.07	0.27	0.33	4.55E - 02	2.8	1.8	0.18	1.15E - 01	7.16E-02	0
	P 3	101.63	3.17	0.17	0.10	1.22E - 02	2.6	1.8	0.18	2.94E - 02	1.93E - 02	2
	P 4	103.17	2.67	0.20	0.20	1.89E - 02	2.5	1.6	0.18	4.42E - 02	2.70E - 02	$\frac{-}{2}$
	P 5	103.67	2.17	0.17	0.13	1.67E - 02	2.4	1.5	0.16	3.68E - 02	2.12E - 02	0
	P 6	101.57	2.60	0.13	0.17	1.78E - 02	2.3	1.3	0.16	3.69E - 02	2.03E - 02	0
	P 7	101.73	2.33	0.13	0.10	1.22E - 02	2.0	1.0	0.14	2.24E - 02	1.08E - 02	0
621	(1)	102.53	-0.37	0.33	0.27	5.44E - 02	1.9	1.0	0.12	8.56E-02	3.56E - 02	2
021	P 1	102.53	-0.37	0.13	0.10	1.00E - 02	1.9	1.0	0.12	1.80E - 02	8.69E-03	0
622	(1)	102.60	8 37	1.87	1 30	9.14E - 01	2.3	2.0	0.22	1.002 + 02 1.08E + 00	8 33E-01	1
022	P 1	102.60	8 37	0.33	0.40	9.01E - 02	2.3	2.0	0.22	1.80E - 01	1.59E - 01	0
623	(1)	103.03	16.67	0.55	0.10	1.35E-01	1.6	1.0	0.22	1.50E - 01	8.99E - 02	0
025	P 1	103.03	16.67	0.20	0.13	1.60E - 02	1.0	1.0	0.27	2.27E - 02	1.45E - 02	0
624	(1)	103.33	-17.13	0.50	0.15	4.99F - 02	1.0	1.0	0.27	3.71E - 02	3.65E - 02	0
024	P 1	103.33	_17.13	0.27	0.17	$2.23E_{-02}$	1.0	1.0	0.20	1 98F_02	1.05E - 02	0
625	(0)	103.33	17.13	0.27 0.17	0.17	2.25E = 02 2.65E = 02	1.0	0.0	0.20	$3.08E_{-02}$	1.70L = 02 1.74E = 02	0
626	(0)	103.57	18.37	0.17	0.27	$9.17E_{02}$	1.4	1.0	0.27	1.08E - 02	$6.45E_{-02}$	0
627	(0)	103.30	1 83	0.30	0.05	2.172 = 02 2.67E = 02	1.5	0.0	0.20	$4.33E_{-01}$	$1.78E_{-02}$	0
6227	(0)	104.03	_1 33	0.27 0.20	0.17	5.07E = 02	1.0	0.9	0.14	7.35E = 02	$2.96E_{02}$	0
620	(0)	104.00	14 13	1 20	1 43	5.55E_01	3.8	3.4	0.11	9.35E_01	$6.78E_{-01}$	4
029	(2) P 1	104.20	14.13	0.13	0.13	1.19E = 02	3.8	3.4	0.46	4.05E-02	3.51E = 01	2
		10 1.20		0.10	5.15		2.0	2.1	0.10			-

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 2	103.77	13.93	0.23	0.20	2.26E-02	3.4	3.0	0.41	6.95E-02	5.90E-02	2
630	(2)	104.33	11.57	0.53	0.93	1.90E-01	1.8	1.4	0.23	2.24E-01	1.45E-01	0
	P 1	104.33	11.57	0.13	0.13	1.31E-02	1.8	1.4	0.23	2.12E-02	1.61E-02	0
	P 2	104.03	12.20	0.30	0.17	2.50E-02	1.6	1.2	0.22	3.67E-02	2.61E-02	0
631	(1)	104.40	1.13	0.77	0.53	2.65E-01	2.2	1.2	0.14	4.62E-01	1.91E-01	0
	P 1	104.40	1.13	0.23	0.37	3.89E-02	2.2	1.2	0.14	7.68E-02	3.74E-02	0
632	(0)	104.47	10.03	0.37	0.57	1.02E - 01	1.1	0.9	0.17	9.24E-02	6.30E-02	0
633	(0)	104.50	12.60	0.17	0.23	2.49E-02	1.2	0.8	0.20	2.61E-02	1.54E - 02	0
634	(3)	104.67	11.30	1.30	1.50	5.29E-01	2.1	1.8	0.25	5.83E-01	4.02E-01	0
	P 1	104.67	11.30	0.20	0.30	2.83E-02	2.1	1.8	0.25	5.30E-02	4.27E - 02	0
	P 2	103.97	11.00	0.17	0.10	1.31E - 02	1.6	1.3	0.21	1.93E-02	1.42E - 02	0
	P 3	104.50	10.77	0.20	0.20	2.51E - 02	1.4	1.1	0.20	3.23E-02	2.39E-02	0
635	(0)	104.67	3.40	0.20	0.23	2.66E - 02	1.9	1.0	0.15	4.43E-02	1.97E - 02	0
636	(0)	104.83	2.87	0.20	0.30	3.55E - 02	1.9	0.9	0.15	5.91E-02	2.31E-02	0
637	(0)	105.00	11.83	0.20	0.20	2.72E - 02	1.2	0.8	0.19	2.75E - 02	1.74E - 02	0
638	(0)	105.00	2.07	0.33	0.23	4.44E - 02	1.8	0.7	0.13	7.19E-02	2.52E - 02	0
639	(0)	105.13	10.70	0.23	0.33	4.26E - 02	1.0	0.7	0.17	3.87E-02	2.54E - 02	0
640	(1)	105.13	3.17	0.17	0.63	6.77E - 02	2.1	1.1	0.16	1.16E - 01	4.68E - 02	0
	P 1	105.13	3.17	0.13	0.17	1.44E - 02	2.1	1.1	0.16	2.83E-02	1.35E - 02	0
641	(1)	105.17	13.17	0.67	0.77	1.94E - 01	1.5	1.1	0.23	2.07E - 01	1.24E - 01	0
	P 1	105.17	13.17	0.13	0.10	8.66E-03	1.5	1.1	0.23	1.22E - 02	8.53E-03	1
642	(0)	105.50	10.87	0.30	0.23	3.06E - 02	1.3	0.9	0.19	2.90E - 02	1.93E - 02	0
643	(1)	105.53	3.30	0.17	0.23	2.44E - 02	2.4	1.3	0.17	4.61E - 02	2.02E - 02	0
	P 1	105.53	3.30	0.07	0.10	5.55E - 03	2.4	1.3	0.17	1.27E - 02	6.80E - 03	0
644	(2)	105.53	3.00	0.57	0.50	1.39E - 01	2.7	1.6	0.18	2.69E - 01	1.15E - 01	0
	P 1	105.53	3.00	0.10	0.17	1.22E - 02	2.7	1.6	0.18	3.03E - 02	1.70E - 02	1
	P 2	105.73	2.77	0.17	0.10	1.33E - 02	2.3	1.2	0.16	2.86E - 02	1.36E - 02	0
645	(2)	105.57	10.40	1.17	1.20	4.57E - 01	2.0	1.8	0.23	4.80E - 01	3.58E-01	1
	P 1	105.57	10.40	0.13	0.10	1.31E - 02	2.0	1.8	0.23	2.37E - 02	2.00E - 02	0
	P 2	105.40	9.83	0.10	0.17	1.09E - 02	1.9	1.6	0.21	1.84E - 02	1.57E - 02	2
646	(0)	105.60	-11.27	0.17	0.27	2.61E - 02	0.7	0.7	0.16	1.56E - 02	1.49E - 02	0
647	(0)	105.63	19.10	0.20	0.27	2.94E - 02	1.3	0.9	0.29	3.20E-02	1.92E - 02	0
648	(1)	105.73	12.37	0.30	0.33	6.08E-02	1.4	1.0	0.21	6.82E-02	4.33E-02	0
6.40	PI	105.73	12.37	0.23	0.20	2.28E-02	1.4	1.0	0.21	2.88E-02	1.95E-02	0
649	(0)	105.83	4.73	0.23	0.17	2.55E-02	1.0	0.8	0.15	3.44E - 02	1.59E - 02	0
650	(0)	105.90	13.07	0.20	0.20	2.06E - 02	1.1	0.7	0.20	2.13E - 02	1.25E-02	0
651	(0)	105.90	18.83	0.27	0.23	3.05E - 02	1.2	0.7	0.27	3.21E - 02	1.84E - 02	0
652	(2) D 1	106.00	3.93	1.37	0.83	5.16E - 01	3.9	3.0	0.28	1.12E + 00	6.44E - 01	1
		106.00	5.95	0.20	0.17	2.00E - 02	5.9	5.0	0.28	9.35E-02	0.75E - 02	0
(52	P_{2}	106.40	4.13	0.15	0.17	1.35E - 02	2.1	1.1	0.10	3.03E - 02	1.50E - 02	0
033	(2) D 1	106.30	12.13	1.//	1.15	7.37E - 01	2.1	1.7	0.25	8.31E-01	5.34E - 01	1
		106.30	12.13	0.27	0.25	4.43E = 02	2.1	1./	0.23	8.04E - 02	0.23E - 02	0
651	P 2	106.33	12.00	0.50	0.20	3.14E - 02	1.0	1.2	0.23	4.43E - 02	3.11E - 02	0
655	(0)	100.33	0.42	0.33	0.80	1.4/E-UI	1.5	0.9	0.27	1.00E-01	7.20E-U2	0
055	(1) D 1	100.37	0.43	0.50	0.37	1.22E 02	2.4 2.4	1.2	0.15	1.01E-01 2.81E 02	J.07E-02	1
656	r 1 (1)	100.37	13 77	0.10	0.20	1.22E-02 8.53E 02	2.4 1.5	1.2	0.13	2.01E-02 0.07E 02	6.10F 02	1
050	(1) P 1	100.40	13.77	0.47	0.43	3.35E - 02 3.45E - 02	1.5	1.1	0.23	4.63E = 02	3.19E - 02	0
657	(1)	106.47	3 10	0.23	0.27	3.45E = 02 8 54E = 02	2.5	1.1	0.23	1.05E = 02	6.70E - 02	0
037	P 1	106.47	3.10	0.07	0.57	5.5+E=02 5 55E=02	2.0	1.5	0.10	1.702-01 1.37E-02	$7.15E_{02}$	2
658	(5)	106.50	0.90	1.67	1.53	1.27E + 00	3.9	2.7	0.23	2.71E + 00	1.18E + 00	3

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ize	Surface	Maximu	m extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2}ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-	Ŭ.	°	associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 1	106.50	0.90	0.13	0.20	2.11E-02	3.9	2.7	0.23	7.54E-02	4.88E-02	1
	P 2	106.60	1.30	0.20	0.20	2.78E-02	3.1	1.8	0.18	7.82E-02	4.27E-02	0
	P 3	105.97	1.53	0.43	0.23	5.22E-02	2.8	1.6	0.17	1.33E-01	7.08E-02	0
	P 4	105.70	1.13	0.17	0.10	1.67E-02	2.7	1.6	0.17	4.19E-02	2.27E-02	0
	P 5	105.97	0.87	0.23	0.57	4.56E-02	2.2	1.0	0.14	9.23E-02	3.92E-02	1
659	(3)	106.53	6.93	1.17	0.97	5.26E-01	2.0	1.7	0.19	5.53E-01	3.79E-01	0
	P 1	106.53	6.93	0.17	0.17	1.76E-02	2.0	1.7	0.19	3.23E-02	2.66E-02	0
	P 2	107.00	7.13	0.13	0.10	8.82E-03	1.7	1.3	0.17	1.34E - 02	1.02E - 02	0
	P 3	106.30	7.17	0.27	0.20	3.31E-02	1.3	1.0	0.15	3.83E-02	2.92E-02	0
660	(1)	106.87	16.73	0.53	0.67	1.95E-01	2.8	2.3	0.39	2.85E-01	1.90E-01	0
	P 1	106.87	16.73	0.13	0.10	1.17E - 02	2.8	2.3	0.39	2.90E-02	2.33E-02	0
661	(3)	106.90	5.43	1.47	3.00	2.33E+00	5.1	4.4	0.42	5.18E+00	3.32E+00	5
	PI	106.90	5.43	0.37	0.73	1.33E-01	5.1	4.4	0.42	6.00E-01	5.00E-01	0
	P 2	106.87	6.27	0.17	0.17	2.10E-02	2.1	1.6	0.19	3.88E-02	2.88E-02	0
667	P 3	107.13	0.27	0.17	0.13	1.33E-02	2.0	1.5	0.18	2.79E-02	2.01E - 02	0
663	(0) (1)	100.95	2.30	0.27	0.33	5.77E = 02	2.2	0.9	0.13	1.13E = 01	4.12E - 02	0
005	(1) P 1	107.20	-0.97	0.55	0.23	1.00E - 02	2.5	1.3	0.14	$2.87E_{02}$	3.94E = 02 1 38E = 02	0
664	(0)	107.20	18 17	0.17	0.10	1.22E 02 2.11E = 02	2.5	0.6	0.14	2.07E 02 2.12E_02	1.38E 02	0
665	(0) (1)	107.25	-0.30	0.25	0.23	1.98E - 01	3.1	1.8	0.20	4.22E - 02	1.10L 02 1.57E - 01	0
005	P 1	107.30	-0.30	0.00	0.03	1.00E 01 1.11E-02	3.1	1.0	0.17	3.20E-02	1.37E = 01 1.73E = 02	1
666	(1)	107.30	7.47	0.33	0.57	1.07E - 01	1.7	1.4	0.18	1.22E-01	8.38E-02	0
000	P1	107.30	7.47	0.13	0.17	1.54E - 02	1.7	1.4	0.18	2.33E-02	1.77E - 02	Ő
667	(10)	107.53	19.33	2.40	2.53	1.92E + 00	1.9	1.5	0.35	2.16E+00	1.37E+00	0
	P 1	107.53	19.33	0.13	0.17	1.89E-02	1.9	1.5	0.35	3.18E-02	2.43E-02	0
	P 2	107.23	19.30	0.20	0.17	1.99E-02	1.8	1.4	0.34	3.21E-02	2.41E-02	0
	P 3	108.27	17.60	0.20	0.30	3.39E-02	1.7	1.2	0.31	5.06E-02	3.65E-02	0
	P 4	107.70	18.57	0.17	0.17	1.58E-02	1.6	1.2	0.31	2.28E-02	1.60E-02	0
	P 5	108.03	17.93	0.13	0.17	1.48E - 02	1.5	1.1	0.30	2.04E - 02	1.40E - 02	0
	P 6	106.77	19.40	0.30	0.37	4.82E-02	1.5	1.1	0.31	6.23E-02	4.36E-02	0
	P 7	108.17	18.80	0.33	0.23	3.26E - 02	1.5	1.1	0.31	4.29E-02	2.97E - 02	0
	P 8	108.57	18.67	0.30	0.13	2.74E-02	1.5	1.1	0.30	3.61E-02	2.59E-02	0
	P 9	107.23	19.57	0.20	0.13	1.57E-02	1.4	1.0	0.31	2.01E-02	1.41E-02	0
	P 10	107.90	18.20	0.33	0.20	3.91E-02	1.5	1.0	0.30	5.08E-02	3.41E-02	0
668	(0)	107.57	19.90	0.23	0.17	2.30E-02	1.1	0.8	0.28	2.23E-02	1.41E - 02	0
669	(0)	107.60	7.90	0.20	0.30	3.74E-02	1.2	0.9	0.16	3.66E - 02	2.38E-02	0
670	(1) D 1	107.73	3.07	0.20	0.27	3.88E-02	2.7	1.4	0.18	8.68E-02	3.3/E-02	0
(71	P I	107.73	3.07	0.10	0.13	9.99E-03	2.7	1.4	0.18	2.59E-02	1.22E - 02	0
0/1 672	(0)	10/.//	1.20	0.20	0.20	2.11E-02	2.0	0.6	0.13	4.24E - 02	1.12E-02	0
072	(1) D 1	108.07	5.40 2.40	0.45	0.50	7.34E - 02	2.0	1.2	0.18	1.00E - 01	3.80E - 02	0
673	(1)	108.07	5.40	0.20	0.15	2.00E = 02 6 19E = 02	2.0	1.2	0.18	4.77E = 02 1.02E = 01	2.07E - 02	2
075	(1) P 1	108.20	5 57	0.55	0.30	1.11E - 02	2.3	1.4	0.19	$2.26E_{-01}$	4.96E - 02 1 32E - 02	0
674	(1)	108.20	16 70	0.10	0.15	2.45E-02	1.5	1.4	0.19	2.20E = 02 2.87E = 02	1.32E = 02 1.80E = 02	0
074	P 1	108.27	16.70	0.17	0.20	8.51E-03	1.5	1.0	0.20	1.17E - 02	7.94E - 03	0
675	(0)	108.27	-3.30	0.23	0.13	2.00E - 02	1.5	0.6	0.11	2.84E - 02	1.06E - 02	0
676	(0)	108.30	-1.07	0.23	0.23	2.89E-02	2.1	0.7	0.12	5.76E-02	1.69E - 02	Ő
677	(0)	108.43	17.17	0.20	0.17	2.02E-02	1.2	0.8	0.26	2.05E-02	1.21E - 02	0
678	(1)	108.47	1.90	0.23	0.13	2.67E-02	2.6	1.0	0.16	6.21E-02	1.95E-02	0
	P 1	108.47	1.90	0.13	0.07	8.88E-03	2.6	1.0	0.16	2.24E-02	8.19E-03	0
679	(0)	108.53	4.57	0.23	0.13	2.33E-02	2.1	0.9	0.17	4.34E - 02	1.66E-02	0

 Table 7. (Continued.)

Cloud	Clump	Posi	ition	Si	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
680	(1)	108.53	6.03	0.30	0.23	4.86E-02	2.5	1.7	0.20	8.45E-02	4.69E-02	1
	P 1	108.53	6.03	0.17	0.10	1.22E-02	2.5	1.7	0.20	2.74E-02	1.80E-02	0
681	(0)	108.67	-4.53	0.20	0.20	2.77E-02	1.1	0.6	0.11	3.05E-02	1.52E-02	0
682	(0)	108.73	-2.57	0.20	0.23	3.22E-02	1.8	0.7	0.12	5.39E-02	1.89E-02	0
683	(1)	108.87	15.27	0.43	0.23	3.97E-02	1.4	1.0	0.26	4.17E-02	2.53E-02	0
	P 1	108.87	15.27	0.13	0.10	9.65E-03	1.4	1.0	0.26	1.22E - 02	8.26E-03	0
684	(0)	108.90	-0.27	0.27	0.20	3.78E-02	2.3	0.7	0.13	8.35E-02	2.22E-02	0
685	(0)	108.97	-2.93	0.33	0.17	3.11E-02	1.7	0.7	0.12	4.97E-02	1.72E - 02	0
686	(3)	109.37	6.53	1.57	1.43	8.42E-01	4.4	3.6	0.36	1.70E + 00	1.08E + 00	1
	P 1	109.37	6.53	0.33	0.30	3.97E-02	4.4	3.6	0.36	1.54E - 01	1.23E-01	1
	P 2	109.03	6.27	0.13	0.10	1.21E - 02	3.9	3.2	0.32	4.29E-02	3.34E-02	0
	P 3	110.10	7.20	0.13	0.10	1.10E - 02	1.8	1.1	0.18	1.82E - 02	1.08E - 02	0
687	(0)	109.40	3.53	0.37	0.30	7.32E-02	2.5	1.0	0.17	1.67E-01	5.39E-02	0
688	(0)	109.50	18.37	0.20	0.20	2.64E - 02	1.1	0.8	0.28	2.56E-02	1.73E-02	0
689	(1)	109.60	3.17	0.13	0.20	2.44E - 02	2.7	1.1	0.18	5.71E-02	1.77E - 02	0
	P 1	109.60	3.17	0.10	0.10	7.77E-03	2.7	1.1	0.18	1.97E - 02	7.14E-03	0
690	(0)	109.60	2.87	0.17	0.17	2.11E-02	2.5	0.8	0.16	4.83E-02	1.32E - 02	0
691	(1)	109.73	18.77	0.43	0.37	9.04E - 02	1.4	1.1	0.31	8.76E-02	6.13E-02	0
	P 1	109.73	18.77	0.13	0.10	1.16E-02	1.4	1.1	0.31	1.47E - 02	1.13E-02	0
692	(0)	109.83	3.50	0.20	0.30	4.66E-02	2.4	0.9	0.17	1.05E - 01	3.16E-02	0
693	(11)	109.97	13.57	2.80	1.77	2.23E + 00	2.1	1.9	0.29	2.45E + 00	1.86E + 00	1
	P 1	109.97	13.57	0.23	0.20	2.59E-02	2.1	1.9	0.29	4.87E - 02	4.25E - 02	0
	P 2	109.17	13.23	0.27	0.17	2.16E - 02	2.1	1.9	0.28	3.91E-02	3.35E-02	0
	P 3	108.77	13.93	0.20	0.17	1.73E - 02	2.0	1.7	0.29	3.07E - 02	2.50E - 02	0
	P 4	109.83	13.87	0.27	0.23	3.34E-02	1.9	1.6	0.27	5.32E-02	4.43E-02	0
	P 5	110.37	13.47	0.27	0.30	3.46E-02	1.6	1.4	0.25	4.78E-02	4.03E-02	0
	P 6	109.30	13.97	0.17	0.27	2.48E - 02	1.7	1.4	0.26	3.70E-02	2.95E-02	0
	P 7	108.30	13.43	0.27	0.23	3.46E - 02	1.6	1.3	0.25	5.02E - 02	3.88E-02	0
	P 8	109.20	13.57	0.10	0.20	1.51E - 02	1.5	1.2	0.24	2.01E - 02	1.59E - 02	0
	P 9	110.27	12.67	0.20	0.23	3.36E - 02	1.4	1.2	0.22	4.18E - 02	3.53E - 02	0
	P 10	109.07	13.97	0.10	0.10	8.63E-03	1.5	1.2	0.25	1.15E - 02	8.78E-03	0
	P 11	108.10	13.20	0.10	0.10	8.65E-03	1.5	1.2	0.23	1.18E - 02	8.95E-03	0
694	(0)	109.97	18.67	0.23	0.20	2.42E - 02	1.1	0.9	0.28	2.26E - 02	1.58E - 02	0
695	(2)	110.17	17.67	0.70	0.83	2.45E - 01	1.3	1.1	0.29	2.34E - 01	1.65E - 01	0
	P 1	110.17	17.67	0.27	0.17	2.65E - 02	1.3	1.1	0.29	3.17E - 02	2.43E - 02	0
	P 2	109.90	17.23	0.13	0.10	8.49E-03	1.3	1.0	0.28	1.02E - 02	7.78E - 03	0
696	(2)	110.40	11.50	0.47	0.87	1.13E - 01	1.8	1.6	0.24	1.24E - 01	9.98E-02	1
	P 1	110.40	11.50	0.13	0.20	9.80E-03	1.8	1.6	0.24	1.62E - 02	1.39E - 02	0
	P 2	110.60	11.93	0.13	0.17	1.41E - 02	1.7	1.5	0.23	2.09E - 02	1.80E - 02	0
697	(1)	110.53	19.17	0.30	0.27	4.09E - 02	1.5	1.3	0.32	4.23E-02	3.34E - 02	0
	P 1	110.53	19.17	0.13	0.07	7.35E-03	1.5	1.3	0.32	1.03E-02	8.68E-03	0
698	(0)	110.57	12.43	0.20	0.27	2.82E - 02	1.0	0.8	0.20	2.32E - 02	1.80E-02	0
699	(22)	110.57	2.30	5.10	3.67	7.38E + 00	6.3	4.7	0.47	2.18E + 01	9.40E + 00	15
	P 1	110.57	2.30	0.23	0.20	3.00E-02	6.3	4.7	0.47	1.68E-01	1.18E-01	0
	P 2	109.70	2.50	0.10	0.17	1.44E-02	5.8	4.2	0.42	7.69E-02	5.26E-02	0
	P 3	109.83	2.03	0.37	0.43	6.22E-02	5.4	3.7	0.36	2.96E-01	1.91E-01	0
	Р4 Р <i>1</i>	110.50	1.60	0.23	0.23	3.44E-02	5.1	3.4	0.32	1.62E - 01	1.03E-01	0
	P 5	108.80	1.37	0.33	0.40	6.22E-02	4.5	2.9	0.27	2.54E-01	1.52E-01	0
	P 6	108.93	2.67	0.30	0.17	3.00E-02	4.5	2.8	0.29	1.22E - 01	7.29E-02	1
	P7	111.83	1.67	0.20	0.17	2.33E-02	4.5	2.7	0.26	9.56E-02	5.50E-02	0
	P 8	111.97	0.97	0.23	0.27	3.22E - 02	4.3	2.6	0.24	1.25E-01	6.81E - 02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ize	Surface	Maximun	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-	-	_	associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 9	108.20	2.83	0.27	0.20	3.77E-02	4.0	2.5	0.26	1.38E-01	8.22E-02	0
	P 10	112.53	2.80	0.33	0.40	5.66E-02	3.9	2.2	0.24	2.03E-01	1.04E - 01	0
	P 11	112.43	1.57	0.20	0.13	2.11E-02	3.6	1.9	0.20	7.14E-02	3.43E-02	0
	P 12	111.00	1.63	0.30	0.33	4.11E-02	3.5	1.8	0.20	1.34E-01	6.27E-02	0
	P 13	111.30	1.27	0.17	0.17	1.67E - 02	3.6	1.8	0.20	5.57E-02	2.63E-02	0
	P 14	108.43	0.23	0.33	0.40	8.33E-02	3.2	1.6	0.17	2.45E-01	1.11E-01	0
	P 15	109.20	0.93	0.13	0.13	1.33E-02	3.3	1.6	0.18	4.11E-02	1.86E - 02	0
	P 10 D 17	111.43	1.03	0.27	0.13	2.11E - 02	3.3	1.5	0.18	6.49E - 02	2.73E - 02	1
	P1/ D19	110.27	1.27	0.15	0.15	1.22E = 02	3.2 3.3	1.5	0.18	5.74E = 02	1.02E - 02	0
	F 10 P 10	108 57	0.47	0.20	0.17	2.22E = 02 1 22E = 02	3.0	1.5	0.10	0.05E - 02 3.45E - 02	2.00E - 02 1 50E - 02	0
	P 20	108.57	0.83	0.15	0.15	1.22E = 02 4 89E = 02	3.1	1.4	0.19	1.38E - 01	1.30E - 02 5 78E - 02	0
	P 21	111 77	2 50	0.17	0.27	2.44F = 02	3.1	1.4	0.17	6.96E - 02	2.70L 02 2.82E - 02	0
	P 22	110.77	1 10	0.17	0.25	3.78E - 02	3.0	1.4	0.10	1.06E - 01	3.95E - 02	0
700	(1)	110.57	-0.30	0.67	0.63	2.12E-01	2.7	1.0	0.15	5.01E - 01	1.42E-01	0
,00	P 1	110.57	-0.30	0.33	0.30	6.44E - 02	2.7	1.0	0.15	1.65E - 01	5.46E - 02	Ő
701	(0)	110.63	-12.53	0.40	0.30	4.34E-02	1.0	1.0	0.19	2.85E-02	2.74E-02	0
702	(1)	110.67	9.67	0.20	0.27	4.71E-02	2.5	2.2	0.25	6.44E-02	4.99E-02	0
	P 1	110.67	9.67	0.10	0.10	7.67E-03	2.5	2.2	0.25	1.69E-02	1.46E-02	1
703	(1)	110.67	3.73	0.90	0.57	1.87E-01	2.6	1.0	0.18	4.19E-01	1.26E-01	0
	P 1	110.67	3.73	0.23	0.13	1.77E - 02	2.6	1.0	0.18	4.30E-02	1.53E-02	0
704	(0)	110.80	8.53	0.33	0.20	2.86E - 02	1.3	0.8	0.17	3.04E-02	1.75E - 02	0
705	(0)	110.80	3.23	0.43	0.40	9.21E-02	2.4	0.8	0.16	2.06E-01	5.72E - 02	0
706	(0)	110.87	6.40	0.27	0.37	4.97E - 02	1.8	0.9	0.17	7.82E - 02	3.20E - 02	0
707	(0)	110.87	0.63	0.20	0.13	2.00E - 02	2.4	0.7	0.14	4.70E-02	1.14E-02	0
708	(0)	110.90	13.33	0.23	0.17	2.16E - 02	1.0	0.8	0.21	1.75E - 02	1.33E - 02	0
709	(0)	110.93	14.10	0.40	0.27	4.09E-02	1.2	0.9	0.23	3.77E-02	2.71E-02	0
710	(0)	111.13	-1.33	0.33	0.40	8.66E-02	2.3	0.7	0.14	1.88E-01	5.37E-02	0
711	(1)	111.30	9.43	0.33	0.50	1.01E-01	2.1	1.7	0.22	1.18E-01	8.43E-02	0
710	PI	111.30	9.43	0.13	0.13	1.21E - 02	2.1	1.7	0.22	2.23E - 02	1.85E-02	1
712	(0)	111.37	5.97	0.30	0.17	3.43E - 02	1.8	0.7	0.16	5.84E - 02	2.03E - 02	0
/13	(1) D 1	111.47	12.33	0.80	0.60	2.26E - 01	1.3	1.1	0.21	1.98E-01	1.01E - 01	0
714		111.4/	12.33	0.37	0.27	4.0/E-02	1.5	1.1	0.21	J.1/E = 02 1 1/E 01	4.41E - 02	0
714 715	(0)	111.00	4.03 5 57	0.37	0.25	5.03E - 02 6.71E - 01	2.2 2.6	13	0.17	1.14E = 01 $1.28E \pm 00$	5.44E = 02 5.11E = 01	0
113	(+) P 1	111.00	5.57	0.05	0.30	$4.98F_{0}^{-01}$	2.0	1.3	0.20	1.200 ± 00 $1.10F_01$	5.112 - 01 5.59F_02	0
	Р?	111.00	6 53	0.27 0.13	0.50	2.32E = 02	2.0	1.5	0.20	4.86E - 0?	2.44E = 02	0
	P 3	111.50	6.10	0.13	0.27	1 99E_02	2.5	1.2	0.19	4.35E - 02	$2.08E_{-02}$	0
	P 4	112.00	6.90	0.13	0.17	1.32E - 02	2.1	1.2	0.19	2.61E - 02	1.35E-02	0
716	(0)	111.67	4.37	0.17	0.23	2.55E-02	2.3	0.8	0.17	5.57E - 02	1.66E - 02	0
717	(0)	111.70	-0.00	0.23	0.17	2.89E-02	2.7	0.9	0.15	7.04E - 02	1.92E - 02	0
718	(3)	111.77	20.27	1.07	1.03	5.26E-01	3.9	3.8	0.67	7.33E-01	6.90E-01	2
	P 1	111.77	20.27	0.13	0.27	2.29E-02	3.9	3.8	0.67	7.47E-02	7.33E-02	0
	P 2	111.70	19.97	0.13	0.20	1.67E-02	2.3	2.2	0.42	3.32E-02	3.18E-02	0
	P 3	111.43	19.83	0.23	0.20	2.30E-02	2.3	2.2	0.42	4.48E-02	4.24E-02	0
719	(1)	111.90	11.63	0.27	0.97	1.24E-01	1.3	1.1	0.20	1.06E-01	8.32E-02	0
	P 1	111.90	11.63	0.17	0.23	2.39E-02	1.3	1.1	0.20	2.68E - 02	2.22E-02	0
720	(0)	111.93	13.10	0.33	0.20	3.68E-02	0.9	0.8	0.20	2.80E-02	2.25E-02	0
721	(3)	111.97	-2.63	2.43	2.17	2.20E + 00	2.4	1.1	0.16	4.40E + 00	1.59E + 00	0
	P 1	111.97	-2.63	1.10	0.63	2.55E-01	2.4	1.1	0.16	5.57E-01	2.36E-01	0
	P 2	110.87	-2.53	0.37	0.67	1.22E-01	2.4	1.1	0.16	2.72E-01	1.13E-01	0

 Table 7. (Continued.)

Cloud	Clump	Posi	ition	S	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 3	111.57	-2.43	0.17	0.17	2.11E-02	2.4	1.1	0.16	4.76E-02	1.95E-02	0
722	(2)	112.07	12.60	0.50	0.47	1.30E-01	1.2	1.0	0.21	1.05E-01	8.65E-02	0
	P 1	112.07	12.60	0.17	0.10	1.19E-02	1.2	1.0	0.21	1.23E-02	1.06E-02	0
	P 2	111.90	12.53	0.13	0.13	1.30E-02	1.2	1.0	0.21	1.33E-02	1.14E-02	0
723	(0)	112.17	-3.97	0.20	0.23	3.21E-02	1.5	0.6	0.13	4.73E-02	1.73E-02	0
724	(0)	112.17	17.43	0.27	0.33	5.30E-02	1.0	0.8	0.26	4.20E-02	3.37E-02	0
725	(3)	112.20	13.83	1.13	0.47	2.60E-01	2.7	2.5	0.34	2.78E-01	2.24E-01	0
	P 1	112.20	13.83	0.17	0.07	9.71E-03	2.7	2.5	0.34	2.27E-02	2.10E-02	1
	P 2	111.30	13.83	0.10	0.13	1.08E-02	1.4	1.2	0.24	1.37E-02	1.13E-02	0
	P 3	111.73	14.00	0.17	0.13	1.62E-02	1.4	1.1	0.24	1.94E-02	1.59E-02	0
726	(2)	112.37	5.33	0.63	0.73	2.20E-01	2.5	1.1	0.19	4.57E-01	1.56E-01	0
	P 1	112.37	5.33	0.13	0.20	1.77E-02	2.5	1.1	0.19	4.15E-02	1.71E-02	0
	P 2	112.20	5.13	0.20	0.23	2.32E-02	2.5	1.1	0.19	5.35E-02	2.12E-02	0
727	(0)	112.57	-1.47	0.67	0.43	1.62E-01	2.4	0.9	0.15	3.48E-01	1.01E-01	1
728	(1)	112.60	17.93	0.33	0.33	5.39E-02	1.2	1.0	0.28	4.59E-02	3.95E-02	0
	P 1	112.60	17.93	0.27	0.13	2.01E-02	1.2	1.0	0.28	2.03E-02	1.80E-02	0
729	(2)	112.60	8.50	1.37	2.00	9.03E-01	2.3	1.8	0.22	1.21E + 00	6.29E-01	0
	P 1	112.60	8.50	0.17	0.27	2.86E-02	2.3	1.8	0.22	5.98E-02	4.49E-02	1
	P 2	113.40	8.43	0.17	0.17	1.65E-02	1.8	1.2	0.19	2.71E-02	1.71E-02	0
730	(0)	112.67	20.80	0.37	0.37	5.29E-02	0.9	0.9	0.29	3.62E-02	3.48E-02	0
731	(0)	112.77	-2.00	0.67	0.77	1.98E-01	2.2	0.8	0.15	3.99E-01	1.26E-01	0
732	(1)	112.83	3.27	0.10	0.20	1.77E-02	2.8	1.0	0.17	4.38E-02	1.26E-02	0
	P 1	112.83	3.27	0.07	0.13	6.66E-03	2.8	1.0	0.17	1.75E-02	5.79E-03	0
733	(0)	113.03	15.47	0.30	0.27	3.53E-02	0.9	0.8	0.23	2.82E-02	2.21E-02	1
734	(0)	113.13	2.63	0.27	0.13	2.33E-02	2.6	0.8	0.15	5.55E-02	1.46E-02	0
735	(1)	113.17	20.97	0.17	0.13	1.56E-02	1.1	1.0	0.31	1.20E-02	1.16E-02	0
	P 1	113.17	20.97	0.10	0.10	5.19E-03	1.1	1.0	0.31	4.82E-03	4.70E-03	0
736	(0)	113.17	5.90	0.17	0.20	2.32E-02	2.1	0.7	0.17	4.49E-02	1.39E-02	0
737	(0)	113.30	16.17	0.40	0.30	5.98E-02	1.0	0.9	0.24	4.64E - 02	3.98E-02	0
738	(0)	113.37	-1.20	0.57	0.57	1.07E - 01	2.3	0.7	0.14	2.29E-01	6.32E-02	0
739	(9)	113.40	16.97	3.20	1.87	2.32E + 00	3.7	3.6	0.55	2.32E + 00	2.17E + 00	1
	P 1	113.40	16.97	0.13	0.17	1.49E - 02	3.7	3.6	0.55	4.78E - 02	4.66E - 02	0
	P 2	113.77	17.73	0.13	0.23	1.91E - 02	2.0	1.9	0.35	3.18E-02	3.08E-02	0
	P 3	113.97	17.80	0.13	0.20	1.69E - 02	1.5	1.5	0.31	2.26E - 02	2.20E - 02	0
	P 4	112.73	16.73	0.17	0.37	2.66E - 02	1.4	1.3	0.28	3.22E-02	2.85E - 02	0
	P 5	112.73	16.93	0.10	0.13	1.06E - 02	1.4	1.3	0.28	1.30E - 02	1.16E-02	0
	P 6	114.47	17.33	0.20	0.33	3.71E - 02	1.2	1.2	0.27	3.95E-02	3.92E-02	0
	P 7	113.03	16.33	0.10	0.13	9.60E-03	1.3	1.2	0.27	1.10E - 02	9.81E-03	0
	P 8	112.63	17.27	0.10	0.23	1.59E - 02	1.3	1.1	0.27	1.73E-02	1.52E - 02	0
	P 9	112.93	17.07	0.10	0.10	7.43E-03	1.2	1.1	0.26	7.80E-03	6.96E-03	0
740	(1)	113.43	-1.70	0.53	0.40	8.66E - 02	2.4	1.0	0.16	1.80E-01	5.78E-02	0
	P 1	113.43	-1.70	0.20	0.17	2.11E - 02	2.4	1.0	0.16	4.81E-02	1.83E-02	0
741	(0)	113.43	15.67	0.23	0.27	4.28E - 02	1.0	0.8	0.23	3.28E-02	2.68E - 02	0
742	(1)	113.63	15.00	0.50	0.73	1.79E-01	3.1	3.0	0.42	2.16E-01	1.92E - 01	1
	P 1	113.63	15.00	0.10	0.13	1.07E - 02	3.1	3.0	0.42	2.90E - 02	2.75E - 02	0
743	(0)	113.70	-2.60	0.30	0.23	3.66E-02	2.0	0.8	0.15	6.80E-02	2.31E-02	0
744	(0)	113.83	14.47	0.23	0.23	2.58E-02	0.8	0.7	0.21	1.82E-02	1.53E-02	0
745	(0)	114.03	8.23	0.27	0.13	2.64E-02	1.5	0.8	0.17	3.47E-02	1.64E-02	0
746	(1)	114.20	-1.13	0.73	0.60	1.66E-01	2.5	1.1	0.16	3.63E-01	1.24E-01	0
	P 1	114.20	-1.13	0.37	0.37	5.22E-02	2.5	1.1	0.16	1.25E-01	5.02E-02	0
747	(6)	114.37	5.90	2.67	2.37	1.77E + 00	3.9	2.4	0.29	4.22E + 00	1.70E + 00	1

 Table 7. (Continued.)

										0	0	
Cloud	Clump	Posi	ition	Si	ize	Surface	Maximun	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	D 1	11/ 37	5.00	0.33	0.53	1.08E_01	3.0	2.4	0.20	3.84E_01	2.28E_01	0
	$\mathbf{P}_{2}^{\mathbf{I}}$	114.37	5 33	0.33	0.55	1.03E = 01 1.33E = 02	3.7	2.4	0.29	3.84E = 01 4 55E = 02	2.28E - 01 2.45E - 02	0
	P 3	114 77	5 43	0.10	0.15	8.85E-03	3.4	1.8	0.20	2.75E - 02	1.37E - 02	0
	P 4	115.03	4 90	0.10	0.10	1.22E - 02	2.8	1.0	0.24	2.73E = 02 3.22E = 02	1.37E 02 1.22E - 02	0
	P 5	114.83	5 23	0.15	0.10	3.76E - 02	2.0	1.2	0.20	9.50E-02	3.51E - 02	0
	P 6	113.33	6.87	0.40	0.17	3.76E - 02 3.53E - 02	2.7	1.1	0.19	7.37E-02	3.91E 02 3.9E - 02	0
748	(0)	114 37	3 13	0.27	0.23	3.66E - 02	2.2	0.7	0.15	8.51E-02	2.07E - 02	0
740	(0) (1)	114.57	-2.60	0.30	0.23	5.66E - 02	2.5	1.3	0.15	1.09E - 01	4.35E - 02	0
777	P 1	114.43	-2.00	0.13	0.55	1.22E - 02	2.4	1.3	0.16	2.73E - 02	1.34E - 02	0
750	(2)	114 57	14 50	0.15	0.15	3.24E - 01	3.6	3.5	0.10 0.47	5.45E - 01	5.14E - 01	2
750	(2) P 1	114 57	14 50	0.23	0.30	3.76E - 02	3.6	3.5	0.17	1.14E-01	1.10E - 01	1
	P 2	114 17	14.83	0.23	0.20	1.72E-02	3.0	3.1	0.42	4.87E - 02	4.70E - 02	1
751	(1)	114 67	0.10	0.20	0.33	4.89E - 02	2.6	11	0.12	1.07E - 02 1.09E - 01	3.50E - 02	0
751	P 1	114 67	0.10	0.10	0.33	1.05E - 02 1.11E - 02	2.0	1.1	0.15	2.76E - 02	1.07E - 02	0
752	(0)	114 67	12.93	0.10	0.10	8.55E-02	0.9	0.8	0.19	5.65E-02	5.15E - 02	0
753	(0)	114 73	17.20	0.00	0.27	3.08E - 02	0.8	0.8	0.12	1.87E - 02	1.90E - 02	Ő
754	(14)	114.73	1.50	3.73	3.77	4.51E + 00	3.8	2.2	0.21	1.19E + 01	4.42E + 00	1
101	P 1	114.73	1.50	0.20	0.20	2.89E - 02	3.8	2.2	0.21	1.01E - 01	5.43E - 02	0
	P 2	115 87	3 97	0.47	0.33	5.88E - 02	3.8	2.1	0.25	2.07E - 01	1.03E - 01	Ő
	P 3	114.93	2.03	0.43	0.30	6.11E-02	3.6	2.0	0.20	2.07E - 01	1.05E - 01	0
	P 4	116.07	1.83	0.23	0.13	2.33E - 02	3.5	2.0	0.19	7.55E-02	3.99E-02	Ő
	P 5	113.37	1.63	0.40	0.20	2.67E - 02	3.6	1.9	0.20	8.85E - 02	4.22E - 02	Ő
	P 6	115.70	1.27	0.17	0.17	1.44E - 02	3.4	1.9	0.18	4.51E-02	2.31E - 02	Ő
	P 7	115.47	1.77	0.47	0.43	8.00E-02	3.4	1.8	0.18	2.49E-01	1.24E - 01	0
	P 8	114.20	1.67	0.30	0.17	3.67E - 02	3.3	1.7	0.18	1.13E-01	5.20E - 02	0
	P 9	114.33	2.10	0.50	0.33	8.66E-02	3.3	1.6	0.18	2.61E-01	1.18E - 01	0
	P 10	115.97	3.27	0.27	0.27	3.66E-02	2.9	1.2	0.18	1.01E-01	3.79E-02	0
	P 11	114.97	0.87	0.17	0.27	2.89E-02	2.7	1.2	0.15	7.42E-02	2.90E-02	0
	P 12	115.67	3.13	0.13	0.13	1.22E-02	2.8	1.2	0.17	3.29E-02	1.21E-02	0
	P 13	116.63	3.33	0.13	0.10	1.22E-02	2.8	1.1	0.17	3.27E-02	1.16E-02	0
	P 14	113.47	1.17	0.20	0.20	2.56E-02	2.8	1.0	0.15	6.69E-02	2.21E-02	0
755	(0)	114.77	3.83	0.20	0.27	3.33E-02	2.7	0.9	0.17	8.10E-02	2.19E-02	0
756	(0)	114.87	6.57	0.27	0.17	2.65E-02	2.0	0.7	0.17	5.03E-02	1.51E-02	0
757	(1)	114.97	8.53	0.27	0.27	4.61E-02	1.8	1.3	0.19	6.02E-02	3.72E-02	0
	P 1	114.97	8.53	0.13	0.13	1.10E-02	1.8	1.3	0.19	1.81E-02	1.26E-02	0
758	(1)	115.80	20.10	0.40	0.33	5.74E-02	1.0	1.1	0.29	3.76E-02	4.06E - 02	1
	P 1	115.80	20.10	0.20	0.17	1.36E-02	1.0	1.1	0.29	1.18E-02	1.24E - 02	0
759	(1)	115.83	-3.53	0.97	1.10	4.90E-01	2.7	1.8	0.18	8.69E-01	4.05E-01	2
	P 1	115.83	-3.53	0.13	0.10	9.98E-03	2.7	1.8	0.18	2.49E-02	1.60E - 02	2
760	(0)	115.87	-0.57	0.37	0.37	5.67E-02	2.0	0.7	0.12	1.03E-01	3.16E-02	0
761	(1)	115.93	9.47	0.23	0.50	6.91E-02	1.4	1.2	0.18	6.26E-02	4.86E-02	0
	P 1	115.93	9.47	0.10	0.13	1.21E - 02	1.4	1.2	0.18	1.45E-02	1.21E - 02	0
762	(0)	115.97	22.10	0.27	0.23	2.06E - 02	0.7	0.7	0.29	1.20E-02	1.19E-02	0
763	(2)	116.07	-2.40	1.47	1.43	1.05E + 00	3.3	2.3	0.20	$2.09\mathrm{E}\!+\!00$	9.01E-01	4
	P 1	116.07	-2.40	0.10	0.13	1.11E-02	3.3	2.3	0.20	3.40E-02	2.23E-02	0
	P 2	115.87	-1.80	0.43	0.40	8.22E-02	2.6	1.4	0.16	1.90E-01	9.69E-02	0
764	(1)	116.17	20.30	0.27	0.43	5.01E-02	1.1	1.2	0.31	3.37E-02	3.61E-02	0
	P 1	116.17	20.30	0.10	0.10	8.34E-03	1.1	1.2	0.31	8.28E-03	8.65E-03	0
765	(1)	116.30	1.43	0.27	0.17	3.67E-02	2.9	1.5	0.16	8.69E-02	3.25E-02	0
	P 1	116.30	1.43	0.17	0.10	1.11E-02	2.9	1.5	0.16	3.02E - 02	1.37E-02	0
766	(0)	116.67	8.97	0.37	0.47	8.01E-02	1.0	0.7	0.15	6.91E - 02	4.83E-02	0

 Table 7. (Continued.)

Cloud	Clump	Posi	ition	S	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
767	(0)	116.80	6.83	0.37	0.43	7.17E-02	2.2	0.8	0.19	1.35E-01	4.42E-02	0
768	(0)	116.80	9.37	0.23	0.30	3.84E-02	0.9	0.7	0.16	3.02E-02	2.23E-02	0
769	(0)	116.83	20.17	0.23	0.20	3.03E-02	0.9	0.9	0.29	1.95E-02	2.08E-02	0
770	(0)	116.83	22.93	0.20	0.33	3.68E-02	1.0	0.9	0.33	2.51E-02	2.35E-02	0
771	(1)	116.93	-3.03	1.03	0.90	2.09E-01	2.1	1.2	0.15	3.51E-01	1.49E-01	0
	P 1	116.93	-3.03	0.47	0.17	4.22E - 02	2.1	1.2	0.15	8.39E-02	4.22E - 02	0
772	(1)	117.13	12.40	0.53	0.33	8.68E-02	2.1	2.1	0.27	8.74E-02	8.47E-02	1
	P 1	117.13	12.40	0.13	0.10	1.09E - 02	2.1	2.1	0.27	1.98E-02	1.94E - 02	2
773	(0)	117.40	6.33	0.20	0.23	2.98E-02	2.1	0.6	0.18	6.14E-02	1.67E-02	0
774	(30)	117.73	4.13	7.40	5.17	7.35E + 00	4.5	2.8	0.31	1.84E + 01	7.10E + 00	9
	P 1	117.73	4.13	0.20	0.13	1.77E - 02	4.5	2.8	0.31	7.34E - 02	4.24E - 02	0
	P 2	120.40	3.07	0.57	0.23	5.33E - 02	4.1	2.7	0.26	1.97E - 01	1.22E - 01	0
	P 3	117.37	3.17	0.30	0.37	6.99E-02	4.2	2.6	0.26	2.71E-01	1.53E-01	0
	P 4	120.90	2.87	0.27	0.27	4.44E-02	3.8	2.5	0.24	1.57E-01	9.59E-02	0
	P 5	117.90	4.93	0.27	0.23	2.55E-02	4.1	2.4	0.29	9.53E-02	5.21E-02	0
	P 6	121.37	3.40	0.27	0.33	4.33E-02	3.7	2.4	0.24	1.45E - 01	8.56E-02	0
	P7	116.50	5.10	0.17	0.17	2.32E - 02	3.7	2.0	0.25	7.94E - 02	4.03E - 02	0
	P8	118.53	3.11	0.17	0.13	1.66E - 02	3.6	1.9	0.23	5.48E-02	2.64E - 02	0
	P9	115.90	6.23	0.27	0.23	4.9/E - 02	3.3	1.8	0.25	1.53E - 01	7.92E-02	0
	P 10	117.50	4.70	0.10	0.13	1.11E - 02	3.5	1.8	0.24	3.65E - 02	1.75E-02	0
		118.97	5.15	0.17	0.17	1.44E - 02	5.4 2.5	1.8	0.21	4.50E - 02	2.23E - 02	0
	P 12 D 12	117.20	5.25 2.17	0.20	0.15	2.10E - 02	3.3 2.2	1.8	0.25	0.7/E = 02	3.22E - 02	0
	P 15 D 14	115.47	5.17	0.25	0.17	1.00E - 02	2.2 2.2	1.0	0.20	3.01E - 02	2.26E - 02	0
	Г 14 D 15	110.47	<i>J</i> .70	0.20	0.23	5.10E - 02	3.2	1.0	0.23	9.07E - 02	4.31E-02	0
	P 16	110.07	3.63	0.33	0.37	$2.88E_{02}$	3.0	1.0	0.20	1.05E = 01 8.05E = 02	3.99E = 02 3.65E = 02	0
	P 17	120.30	2.17	0.20	0.23	2.00L 02 2.78E - 02	2.0	1.5	0.17	7.51E - 02	3.05E - 02	0
	P 18	118 10	5 13	0.13	0.23	1.22E - 02	3.1	1.5	0.17	3.57E - 02	1.54E - 02	0
	P 19	119 37	3 17	0.15	0.10	2.00E - 02	3.0	1.5	0.19	5.57E - 02	2.47E-02	0
	P 20	117.03	4.63	0.30	0.13	2.22E - 02	3.1	1.4	0.21	6.53E - 02	2.66E - 02	0 0
	P 21	121.90	3 4 3	0.23	0.17	2.33E-02	2.8	1.1	0.19	6.01E - 02	2.80E - 02	0 0
	P 22	119.80	3.87	0.33	0.20	2.99E - 02	2.9	1.4	0.19	7.98E-02	3.42E - 02	Ő
	P 23	121.73	3.93	0.20	0.20	2.11E - 02	2.7	1.4	0.19	5.40E-02	2.57E-02	0
	P 24	122.23	3.37	0.13	0.17	1.77E-02	2.7	1.4	0.19	4.50E-02	2.06E-02	0
	P 25	117.00	3.63	0.20	0.23	3.99E-02	3.1	1.3	0.19	1.18E-01	4.70E-02	0
	P 26	121.50	3.80	0.13	0.17	1.44E-02	2.6	1.3	0.18	3.53E-02	1.56E-02	0
	P 27	120.77	4.80	0.10	0.13	9.97E-03	2.6	1.2	0.19	2.39E-02	1.05E-02	0
	P 28	117.27	4.83	0.17	0.13	1.77E-02	2.9	1.2	0.20	4.92E-02	1.87E-02	0
	P 29	118.07	2.93	0.13	0.10	9.99E-03	2.7	1.0	0.16	2.53E-02	9.04E-03	0
	P 30	121.53	4.23	0.17	0.17	1.55E-02	2.4	1.0	0.17	3.49E-02	1.42E-02	0
775	(1)	117.80	-3.63	0.47	0.70	2.22E-01	2.5	1.7	0.18	3.64E-01	1.70E-01	0
	P 1	117.80	-3.63	0.17	0.20	2.00E - 02	2.5	1.7	0.18	4.65E - 02	2.89E-02	0
776	(0)	117.97	-3.20	0.27	0.40	4.11E-02	1.6	0.6	0.13	6.22E-02	2.24E - 02	0
777	(0)	118.10	-0.67	0.20	0.23	3.67E-02	1.9	0.7	0.12	6.55E-02	2.23E-02	0
778	(0)	118.17	8.83	0.23	0.20	2.20E-02	1.1	0.8	0.16	2.04E - 02	1.42E-02	0
779	(4)	118.60	6.33	2.33	1.40	1.46E + 00	3.5	2.1	0.27	$3.19\mathrm{E}\!+\!00$	$1.29\mathrm{E}\!+\!00$	0
	P 1	118.60	6.33	0.20	0.27	3.53E-02	3.5	2.1	0.27	1.15E-01	6.44E - 02	0
	P 2	119.77	5.97	0.33	0.23	3.20E-02	3.4	2.1	0.26	9.86E-02	5.52E - 02	0
	P 3	119.47	6.40	0.37	0.20	3.31E-02	2.8	1.5	0.22	8.42E-02	4.21E-02	0
	P 4	118.00	6.70	0.20	0.23	2.32E-02	2.7	1.3	0.22	5.66E-02	2.58E-02	0
780	(0)	118.63	-2.93	0.23	0.27	3.11E-02	1.7	0.7	0.13	4.78E-02	1.74E-02	0

 Table 7. (Continued.)

Cloud	Clump	Position		Size		Surface	Maximum	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
781	(2)	118.77	4.77	0.77	0.90	2.49E-01	3.5	1.9	0.24	6.05E-01	2.00E-01	0
	P 1	118.77	4.77	0.17	0.20	1.88E-02	3.5	1.9	0.24	6.18E-02	3.07E-02	0
	P 2	118.67	5.10	0.20	0.27	2.99E-02	2.7	1.1	0.20	7.57E-02	2.65E-02	1
782	(0)	118.77	-7.27	0.20	0.23	3.31E-02	1.1	0.7	0.14	3.28E-02	1.98E-02	0
783	(0)	119.03	-2.73	0.50	0.47	1.07E-01	1.7	0.8	0.13	1.69E-01	6.33E-02	0
784	(0)	119.20	21.77	0.20	0.23	2.68E - 02	0.8	0.8	0.30	1.77E - 02	1.65E - 02	0
785	(0)	119.20	-0.90	0.30	0.40	6.33E-02	2.0	0.9	0.12	1.11E-01	4.00E - 02	0
786	(0)	119.30	-2.60	0.17	0.17	2.00E - 02	1.6	0.6	0.12	3.07E-02	1.10E - 02	0
787	(0)	119.50	-1.80	0.57	0.83	2.57E-01	1.9	0.8	0.13	4.36E-01	1.62E-01	0
788	(0)	119.53	21.77	0.17	0.27	2.48E-02	0.7	0.6	0.29	1.46E-02	1.39E-02	0
789	(2)	119.63	5.10	0.50	0.70	1.51E-01	2.7	1.2	0.20	3.43E-01	1.11E-01	0
	P 1	119.63	5.10	0.17	0.17	1.99E - 02	2.7	1.2	0.20	5.02E - 02	2.02E - 02	0
	P 2	119.40	4.87	0.10	0.17	1.33E - 02	2.7	1.2	0.19	3.41E - 02	1.33E - 02	0
790	(0)	119.67	22.20	0.33	0.33	5.25E - 02	1.0	0.9	0.32	3.71E - 02	3.46E - 02	0
791	(0)	119.73	-3.63	0.33	0.67	1.06E - 01	1.6	0.8	0.13	1.50E - 01	6.37E - 02	0
792	(2)	119.90	7.60	1.07	0.87	4.46E - 01	2.2	1.6	0.20	6.06E - 01	3.45E - 01	0
	P 1	119.90	7.60	0.17	0.10	1.32E - 02	2.2	1.6	0.20	2.71E - 02	1.79E - 02	0
	P 2	119.23	7.87	0.27	0.17	2.97E - 02	1.6	1.1	0.17	4.33E - 02	2.73E - 02	0
793	(0)	119.93	4.80	0.20	0.17	2.21E - 02	2.3	0.8	0.17	4.64E - 02	1.38E - 02	0
794	(0)	120.40	6.03	0.23	0.27	3.65E - 02	1.9	0.7	0.17	6.53E - 02	2.18E - 02	0
795	(0)	120.67	-2.73	0.33	0.33	3.66E - 02	1.6	0.7	0.13	5.54E - 02	2.07E - 02	0
796	(0)	120.80	-0.57	0.17	0.23	2.78E - 02	1.8	0.6	0.12	4.84E - 02	1.51E - 02	0
797	(3)	120.83	6.60	1.93	1.27	8.73E-01	2.9	1.9	0.23	1.50E + 00	7.24E - 01	0
	P 1	120.83	6.60	0.33	0.27	4.97E - 02	2.9	1.9	0.23	1.27E - 01	7.83E-02	0
	P 2	121.13	6.93	0.43	0.57	7.39E - 02	2.0	1.1	0.18	1.29E - 01	6.80E - 02	0
	P 3	121.93	7.23	0.17	0.10	1.54E - 02	1.8	1.1	0.17	2.48E - 02	1.42E - 02	0
798	(1)	120.83	-3.80	1.03	0.50	2.79E-01	2.6	1.9	0.18	4.58E-01	2.56E-01	1
	P 1	120.83	-3.80	0.37	0.20	4.32E - 02	2.6	1.9	0.18	1.01E-01	6.97E-02	0
799	(0)	121.23	12.10	0.27	0.23	3.15E-02	0.8	0.7	0.18	2.10E-02	1.90E-02	0
800	(0)	121.27	-1.00	0.23	0.27	4.55E - 02	2.1	1.0	0.14	8.54E-02	3.14E-02	0
801	(0)	121.33	-7.73	0.27	0.17	3.08E-02	1.1	0.8	0.15	2.74E - 02	1.86E - 02	0
802	(0)	121.73	12.50	0.37	0.33	5.53E-02	0.8	0.7	0.18	3.53E-02	3.18E-02	0
803	(0)	121.77	-7.90	0.40	0.43	6.05E - 02	1.0	0.7	0.14	5.24E-02	3.64E - 02	0
804	(0)	121.83	6.70	0.20	0.23	3.09E-02	1.6	0.7	0.16	4.46E - 02	1.88E-02	0
805	(0)	121.87	12.80	0.23	0.20	2.38E-02	0.8	0.7	0.18	1.58E - 02	1.44E - 02	0
806	(1) D 1	121.97	-/.0/	0.90	0.80	2.44E-01	1.3	1.0	0.15	2.25E-01	1.52E - 01	0
0.07		121.97	-/.0/	0.17	0.13	1.76E - 02	1.3	1.0	0.15	2.10E-02	1.58E-02	1
807	(1) D 1	121.97	-10.97	0.27	0.27	4.36E - 02	1.2	1.0	0.18	3./3E-02	3.04E - 02	0
000	P I	121.97	-10.97	0.13	0.13	1.31E - 02	1.2	1.0	0.18	1.3/E - 02	1.16E - 02	0
808	(0)	122.07	5.00	0.43	0.30	6.31E - 02	2.0	0.8	0.17	1.15E-01	3.96E - 02	0
809	(1) D 1	122.20	-10.27	0.87	0.53	2.13E - 01	1.4	1.3	0.19	1.93E - 01	1.53E - 01	2
010	P I	122.20	-10.27	0.23	0.23	2.40E - 02	1.4	1.5	0.19	3.12E-02	2.68E-02	0
810	(0)	122.37	12.53	0.53	0.53	1.44E-01	1.1	1.0	0.19	9.80E-02	8./IE-02	0
811	(0)	122.67	0.27	0.20	0.43	4.22E - 02	2.2	0.8	0.13	8.52E-02	2.01E-02	0
812	(0)	122.70	4.97	0.57	0.30	1.02E-01	2.1 1.0	1.0	0.17	1.80E-01	7.09E-02	0
813	(0)	122.73	-0.5/	0.5/	0.55	4./JE-02	1.0	0.7	0.13	4.39E-02	2.77E-02	0
814	(1) D 1	122.73	9.00	1.1/ 0.12	0.97	0.12E-01	2.1 2.1	1.9	0.22	J./UE-UI	4.72E-01	1
015		122.73	9.00	0.13	0.17	1.73E - 02	2.1	1.9	0.22	3.23E-02	2.93E-02	0
813 016	(0)	122.97	12.90	0.23	0.37	4.01E - 02	0.9	0.8	0.19	2.01E - 02	2.42E - 02	0
810 017	(0)	123.00	19.00	0.13	0.27	2.41E - 02	0.8	0.8	0.20	1.32E-02	1.32E-02	0
01/	(1)	123.00	3.00	0.20	0.17	2.00E-02	∠.4	1.1	0.17	4.20E-02	1.496-02	0
Table 7. (Continued.)

Cloud	Clump	Posi	ition	S	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 1	123.00	3.00	0.13	0.10	9.99E-03	2.4	1.1	0.17	2.27E-02	8.86E-03	0
818	(13)	123.03	-0.83	3.93	4.30	4.05E + 00	3.6	2.3	0.20	8.97E+00	3.70E + 00	8
	P 1	123.03	-0.83	0.27	0.23	3.67E-02	3.6	2.3	0.20	1.18E-01	7.23E-02	0
	P 2	121.93	-1.40	0.20	0.30	3.89E-02	3.4	2.2	0.20	1.19E-01	7.39E-02	0
	P 3	121.77	0.23	0.20	0.17	2.22E-02	3.5	2.1	0.19	7.03E-02	4.04E - 02	0
	P 4	122.17	-0.13	0.17	0.17	2.22E - 02	3.4	2.0	0.19	6.83E-02	3.91E-02	0
	P 5	121.97	-0.83	0.20	0.17	2.00E - 02	3.2	2.0	0.18	5.88E-02	3.41E-02	0
	P 6	121.37	1.27	0.17	0.13	1.67E - 02	3.1	1.7	0.18	4.83E - 02	2.46E - 02	0
	P 7	122.50	-0.57	0.20	0.17	2.33E - 02	2.9	1.7	0.16	6.28E - 02	3.33E-02	Ő
	P 8	121.30	0.67	0.17	0.10	1.00E - 02	3.0	1.6	0.17	2.76E - 02	1.39E-02	Ő
	P 9	123.87	-1.00	0.13	0.17	1.67E - 02	2.8	1.5	0.17	4.32E - 02	2.27E-02	Ő
	P 10	121 77	-0.47	0.20	0.17	2.44E - 02	2.8	1.5	0.16	6.30E - 02	3.23E-02	Ő
	P 11	121.77	0.57	0.20	0.17	1.89E - 02	2.0	1.5	0.17	5.11E - 02	2 48E-02	Ő
	P 12	121.07	1 13	0.20	0.17	3.00E - 02	2.9	1.5	0.17	7.66E - 02	3.50E - 02	0
	P 13	120.97	2.13	0.20	0.20	5.00E = 02 5.11E = 02	2.0	1.4	0.16	1.26E - 01	5.30E = 02 5.26E = 02	0
810	(0)	121.10	_6.33	0.23	0.55	$1.25E_{-01}$	2.0	1.2 2.4	0.10	1.20E 01 1.77E - 01	1.20E 02	1
820	(0)	123.17	13 70	0.47	0.55	1.25E-01 2.05E-02	2.0	2.4	0.23	1.77E = 01 1.38E = 02	1.29E-01 1.18E-02	0
820	(0)	123.30	15.70	0.20	0.17	2.03E - 02 2.78E - 02	0.8	0.7	0.19	1.38E - 02 1.79E - 02	1.10L - 02 1.64E - 02	0
021 022	(0)	124.47	12.77	0.20	0.27	2.78E - 02	0.7	1.0	0.21	1.79E - 02	1.04E - 02	0
022 022	(0) (2)	124.47	15.55	0.50	0.40	3.31E - 02	1.1	1.0	0.21	4.51E - 02	3.04E - 02	0
823	(5) D 1	124.50	2.57	2.27	2.25	$2.00E \pm 00$	4.7	3.4	0.32	$3.41E \pm 00$ 2.79E 01	$2.74E \pm 00$	1
		124.30	2.37	0.30	0.57	6.99E = 02	4.7	3.4 2.1	0.52	5.76E = 01	2.39E - 01	0
	P 2	124.17	2.97	0.45	0.07	1.03E = 01	4.4	5.1 1.1	0.50	4.02E - 01	2.73E = 01	0
004	P 3	123.37	2.03	0.23	0.15	2.11E - 02	2.4 1.7	1.1	0.17	4.71E - 02	2.09E - 02	0
024 025	(0)	124.75	3.05	0.25	0.25	5.21E - 02	1./	0.8	0.10	3.03E - 02	2.08E - 02	0
823	(0)	124.77	19.40	0.27	0.13	2.41E - 02	0.0	0.7	0.25	1.22E - 02	1.38E - 02	0
820	(0)	124.95	14.00	0.17	0.20	2.11E - 02	2.1	0.7	0.14	4.1/E - 02	1.2/E - 02	0
827	(2) D 1	124.97	14.23	2.40	1.70	9.01E - 01	1.0	1.5	0.26	7.35E-01	6.28E - 01	0
		124.97	14.23	0.27	0.23	3.00E - 02	1.0	1.5	0.20	5.11E - 02	4.00E - 02	0
000	P 2	124.10	14.03	0.13	0.13	1.29E - 02	1.1	1.0	0.22	1.26E - 02	1.12E - 02	0
828	(2) D 1	125.07	-4.13	0.73	1.67	6.10E - 01	2.2	1.5	0.17	8./8E-01	4.68E-01	0
	PI	125.07	-4.13	0.20	0.37	4.54E - 02	2.2	1.5	0.17	8.72E-02	5.84E - 02	0
000	P 2	124.97	-3.13	0.17	0.33	3.33E - 02	1.8	1.1	0.14	5.52E-02	3.06E-02	0
829	(5) D 1	125.40	4.17	1.27	1.50	8.08E - 01	2.2	1.2	0.18	1.41E + 00	5.89E-01	0
	PI	125.40	4.17	0.13	0.20	1.66E - 02	2.2	1.2	0.18	3.4/E-02	1.76E-02	0
	P 2	125.70	4.13	0.27	0.30	3.77E-02	2.2	1.2	0.17	7.78E-02	3.84E-02	0
	P 3	125.43	4.43	0.30	0.30	4.8/E - 02	2.2	1.2	0.17	9.51E-02	4.76E - 02	0
	P4	125.27	3.83	0.20	0.13	1.55E-02	2.2	1.1	0.17	3.18E-02	1.52E-02	0
0.20	P 5	125.07	4.53	0.23	0.33	4.76E - 02	2.0	1.0	0.17	8.70E-02	4.11E-02	0
830	(0)	125.57	-10.4/	0.23	0.23	3.50E-02	1.1	0.8	0.17	2.98E-02	2.20E-02	0
831	(0)	125.73	15.80	0.30	0.47	6.20E - 02	0.9	0.8	0.23	4.46E - 02	3.79E-02	0
832	(0)	125.90	14.53	0.20	0.13	2.04E - 02	1.0	0.8	0.22	1.63E - 02	1.31E-02	0
833	(0)	125.93	3.20	0.53	0.30	7.77E-02	2.0	0.8	0.15	1.39E-01	5.05E - 02	0
834	(0)	126.17	1.40	0.37	0.17	4.00E - 02	2.0	0.7	0.14	7.51E-02	2.31E-02	0
835	(1)	126.27	14.63	0.37	0.57	1.01E-01	1.2	1.0	0.24	8.09E-02	6.23E-02	0
	P 1	126.27	14.63	0.10	0.10	8.60E-03	1.2	1.0	0.24	9.36E-03	7.81E-03	0
836	(0)	126.30	5.13	0.27	0.23	3.21E-02	1.9	1.0	0.17	5.22E-02	2.33E-02	0
837	(0)	126.50	10.70	0.17	0.20	2.51E-02	1.0	0.8	0.18	2.11E-02	1.60E - 02	0
838	(7)	126.67	-0.87	3.43	2.87	4.29E + 00	4.6	3.5	0.28	9.00E+00	3.85E + 00	6
	P 1	126.67	-0.87	0.20	0.33	4.33E-02	4.6	3.5	0.28	1.76E-01	1.28E-01	2
	P 2	126.47	-1.30	0.27	0.23	3.00E-02	3.8	2.7	0.23	1.01E-01	6.87E-02	0
	P 3	125.63	-0.60	0.13	0.17	1.67E-02	3.8	2.6	0.22	5.69E-02	3.75E-02	1

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	S	ize	Surface	Maximur	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}				associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 4	126.37	0.33	0.27	0.33	6.11E-02	3.3	2.1	0.19	1.83E-01	1.10E-01	0
	P 5	126.93	-1.07	0.13	0.10	1.11E - 02	2.7	1.6	0.17	2.78E-02	1.60E - 02	0
	P 6	124.87	-0.43	0.77	0.47	1.06E - 01	2.8	1.6	0.16	2.67E-01	1.37E-01	0
	P 7	125.87	1.10	0.23	0.20	2.78E - 02	2.3	1.0	0.15	6.01E-02	2.43E-02	0
839	(1)	126.73	6.17	0.47	0.33	9.39E-02	2.3	1.5	0.20	1.50E-01	7.35E-02	0
	P 1	126.73	6.17	0.17	0.10	1.22E - 02	2.3	1.5	0.20	2.49E-02	1.51E-02	0
840	(1)	127.17	19.70	0.23	0.43	5.12E-02	1.0	1.1	0.29	3.24E-02	3.38E-02	0
0.4.1	PI	127.17	19.70	0.13	0.13	1.05E - 02	1.0	1.1	0.29	9.36E-03	9.64E - 03	0
841	(0)	127.20	1.10	0.13	0.30	2.22E - 02	1.9	0.7	0.14	3.90E-02	1.2/E - 02	0
842	(0)	127.27	0.50	0.27	0.23	2.67E - 02	1.9	0.7	0.13	4.57E - 02	1.56E - 02	0
843	(0)	127.40	3.57	0.30	0.30	4.21E - 02	1.9	0.8	0.16	7.22E-02	2.63E - 02	0
844	(0)	127.80	19.40	0.37	0.27	4.30E-02	0.7	0.8	0.26	2.53E-02	2.60E - 02	0
845	(0)	127.83	-0.03	0.30	0.23	2.89E-02	1.7	0.7	0.12	4.77E-02	1.64E - 02	0
846	(1)	127.87	2.67	0.13	0.13	1.44E - 02	2.3	1.2	0.17	2.78E-02	1.12E - 02	0
0.47	PI	127.87	2.67	0.10	0.07	4.44E - 03	2.3	1.2	0.17	9.64E - 03	4.52E - 03	1
847	(0)	127.87	1.20	0.23	0.20	2.78E-02	1.9	0.7	0.14	4.89E-02	1.68E - 02	0
848	(0)	128.27	5.13	0.17	0.17	2.21E - 02	1.8	0.8	0.17	3.56E-02	1.38E-02	0
849	(0)	128.30	-0.80	0.43	0.53	1.23E - 01	1.9	0.8	0.13	2.10E-01	8.03E-02	0
850	(1) D 1	128.33	5.83	0.70	1.10	3.84E-01	2.1	1.1	0.19	6.56E - 01	2.92E-01	0
051	PI	128.33	5.83	0.47	0.53	1.38E-01	2.1	1.1	0.19	2.63E-01	1.33E-01	0
851	(0)	128.67	6.40	0.23	0.33	3.42E - 02	1.7	0.8	0.18	5.2/E - 02	1.98E - 02	0
852	(2) D 1	128.83	6.87	1.17	1.17	5.11E-01	2.4	1.4	0.22	8.81E-01	4.04E - 01	0
	PI	128.83	6.87	0.30	0.33	6.0/E - 02	2.4	1.4	0.22	1.33E-01	7.58E-02	0
052	P_{2}	129.20	0.93	0.17	0.10	1.54E - 02	2.3	1.5	0.21	3.31E-02	1.78E-02	0
853	(8) D 1	128.83	13.80	4.20	1.63	1.9/E+00	2.2	1.9	0.30	2.22E + 00	1.70E + 00	1
		128.83	13.80	0.40	0.27	4.86E - 02	2.2	1.9	0.30	9.13E-02	7.84E-02	0
	P 2	127.57	13.90	0.17	0.27	2.37E - 02	2.1	1.9	0.30	4.4/E - 02	3.89E - 02	0
		128.20	13.73	0.20	0.17	2.05E - 02	2.1	1.8	0.29	3.78E - 02	3.24E - 02	0
	P 4 D 5	120.05	12.60	0.23	0.20	2.39E - 02	1.9	1.0	0.27	4.14E - 02	3.39E - 02	0
		120.00	12.05	0.25	0.15	2.03E = 02	1.0	1.5	0.20	3.32E - 02	2.06E - 02	0
		120.80	13.37	0.13	0.13	1.51E - 02	1.4	1.1	0.25	1.93E - 02	1.44E - 02	0
	Г / D Q	127.75	14.47	0.15	0.15	1.31E - 02	1.5	1.1	0.24	1.77E - 02	1.41E - 02	0
851	гð (Д)	129.00	13.83	0.17 2.40	1 47	1.29E = 02 1.63E + 00	1.5	1.1	0.23	1.51E-02 3.58E + 00	1.13E-02	2
0.04	(+) P 1	120.07	4.37	∠.40 0.27	0.20	3.032 ± 00	+./ 17	3.0	0.37	$1.30E \pm 00$	0 70E 02	
	г 1 Р 7	120.07	4.57	0.27 0.13	0.20	$1.33E_{-02}$	+./ 3.5	5.0 2.4	0.57	$4.17E_{-02}$	2.77E = 02	0
	P 3	128.03	J.97	0.13	0.15	1.35E = 02 1.77E = 02	5.5 2 7	∠. 4 17	0.23 0.22	$4.41F_{-02}$	2.77E = 02 2.61E = 02	0
	Г <i>3</i> Р /	128.70	4.93 A 70	0.15	0.17	1.772 - 02 $1.66E_02$	2.7	1.7	0.22	$4.10F_{-02}$	2.01E-02 2.42E_02	0
855	(2)	128.07	-0.20	1 37	1 27	1.00E = 02	2.7	1.7	0.21	4.10E - 02	2.42E - 02 8 02E - 01	3
055	(2) P 1	120.95	_0.20	0.40	0.17	$2.89E_{-02}$	3.0	1.9	0.18	7.67E - 02	$4.58E_{-02}$	0
	P 2	120.75	-0.47	0.13	0.17	1.78E - 02	2.0	1.9	0.15	4.04E - 02	2.15E - 02	0
856	(0)	129.27	5.87	0.15	0.17	3.54E - 02	1.8	0.7	0.15	5.71E - 02	2.13E - 02 2.10E - 02	0
857	(0)	129.07	_5.33	0.33	0.17	$4.87E_{-02}$	1.0	0.7	0.17	5.48E_02	2.10E 02 2.85E_02	0
858	(0)	129.13	-3.33 -4.83	0.25	0.33	4.87E - 02 1 20E - 01	1.2	0.7	0.14	$1.47E_{-01}$	2.83E - 02 7.93E - 02	0
859	(0)	129.17	15 20	0.05	0.70	2.40E - 01	1.5	14	0.15	$2.15E_{-01}$	1.69E - 02	0
057	(2) P 1	129.20	15.20	0.10	0.10	9.65E-03	1.0	14	0.27	1.42E - 02	1.05E 01 1.23E - 02	0
	P 2	129.20	15.20	0.10	0.13	9.64E_03	1.0	1.4	0.27	1.01E = 02	8.41E-03	0
860	(0)	129.50	14 20	0.23	0.17	2.69E - 02	1.2	0.7	0.21	2.26E - 02	1.57E - 02	Õ
861	(1)	129.50	5 53	0.73	0.53	1.99E - 01	2.6	15	0.21	3.80E - 01	1.58E - 01	0
001	P 1	129.57	5.53	0.13	0.13	1.55E - 02	2.6	1.5	0.21	3.75E - 02	2.05E - 02	0
862	(0)	129.67	9.87	0.40	0.17	4.71E - 02	1.3	0.8	0.18	5.26E - 02	2.95E - 02	Ő
862	(0)	129.67	9.87	0.40	0.17	4.71E-02	1.3	0.8	0.18	5.26E-02	2.95E-02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	S	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
863	(0)	129.73	4.93	0.30	0.27	4.32E-02	2.0	0.9	0.17	7.75E-02	2.95E-02	0
864	(1)	129.77	7.20	0.63	0.53	1.63E-01	2.3	1.2	0.21	2.85E-01	1.10E-01	0
	P 1	129.77	7.20	0.17	0.10	1.54E - 02	2.3	1.2	0.21	3.27E-02	1.61E-02	0
865	(0)	129.83	10.33	0.27	0.17	2.30E-02	1.1	0.7	0.18	2.36E-02	1.31E-02	0
866	(0)	130.10	9.87	0.20	0.23	2.96E-02	1.3	0.7	0.18	3.31E-02	1.77E-02	0
867	(1)	130.13	11.70	1.13	1.00	5.08E-01	2.7	2.3	0.31	7.57E-01	5.36E-01	2
	P 1	130.13	11.70	0.20	0.27	3.05E-02	2.7	2.3	0.31	7.25E-02	5.97E-02	0
868	(1)	130.37	0.50	0.77	0.30	9.89E-02	2.3	1.1	0.15	1.79E-01	6.66E-02	2
	P 1	130.37	0.50	0.20	0.10	1.22E-02	2.3	1.1	0.15	2.61E-02	1.23E-02	0
869	(0)	130.50	8.47	0.30	0.23	4.29E-02	1.9	0.9	0.20	6.95E-02	2.93E-02	0
870	(0)	130.80	4.40	0.27	0.33	4.76E-02	1.9	0.7	0.16	8.70E-02	2.77E-02	0
871	(0)	131.23	7.33	0.47	0.47	1.00E-01	2.2	1.0	0.20	1.93E-01	6.52E-02	0
872	(1)	131.30	7.83	1.13	0.63	2.77E-01	2.3	1.0	0.21	5.21E-01	1.82E-01	0
	P 1	131.30	7.83	0.23	0.17	2.09E-02	2.3	1.0	0.21	4.49E-02	1.91E-02	0
873	(1)	132.17	3.83	0.30	0.30	5.65E-02	2.3	1.0	0.16	1.13E-01	4.03E-02	0
	P 1	132.17	3.83	0.13	0.17	1.77E-02	2.3	1.0	0.16	3.86E-02	1.59E-02	0
874	(4)	132.30	13.27	1.90	1.00	7.01E-01	2.2	1.9	0.28	7.63E-01	5.34E-01	0
	P 1	132.30	13.27	0.13	0.13	1.30E-02	2.2	1.9	0.28	2.54E-02	2.11E-02	0
	P 2	132.77	13.03	0.37	0.20	3.36E-02	1.7	1.3	0.24	4.98E-02	3.80E-02	0
	P 3	132.07	13.60	0.13	0.23	2.05E-02	1.4	1.2	0.23	2.70E-02	2.10E-02	0
	P 4	132.27	13.60	0.27	0.10	1.94E-02	1.3	1.0	0.22	2.21E-02	1.66E-02	0
875	(1)	132.40	6.07	0.87	0.70	3.06E-01	2.3	1.0	0.19	6.01E-01	2.00E-01	0
	P 1	132.40	6.07	0.27	0.23	4.31E-02	2.3	1.0	0.19	9.37E-02	3.70E-02	0
876	(0)	133.23	6.90	0.27	0.17	2.76E-02	2.2	0.8	0.19	5.50E-02	1.80E-02	0
877	(1)	133.40	3.00	0.67	0.50	1.92E-01	2.8	1.4	0.17	4.07E-01	1.49E-01	0
	P 1	133.40	3.00	0.17	0.20	3.22E-02	2.8	1.4	0.17	8.23E-02	3.89E-02	0
878	(15)	133.50	9.13	4.77	3.50	5.94E + 00	4.6	3.5	0.00	1.37E + 01	6.65E + 00	5
	P 1	133.50	9.13	0.67	0.43	1.37E-01	4.6	3.5	0.00	5.53E-01	4.00E-01	2
	P 2	134.07	7.83	0.43	0.20	4.62E-02	4.0	2.6	0.33	1.62E-01	1.01E-01	0
	P 3	133.30	7.73	0.17	0.20	2.31E-02	3.2	1.9	0.27	6.81E-02	3.75E-02	0
	P 4	134.23	9.37	0.23	0.47	5.15E-02	2.9	1.8	0.27	1.37E-01	8.14E-02	0
	P 5	134.57	9.70	0.33	0.17	4.05E - 02	2.9	1.8	0.27	1.08E-01	6.50E-02	0
	P 6	132.37	9.33	0.43	0.43	6.14E-02	2.8	1.8	0.27	1.58E-01	9.33E-02	0
	P 7	136.33	7.63	0.27	0.17	2.86E-02	2.9	1.7	0.25	7.63E-02	4.18E-02	0
	P 8	133.90	7.37	0.27	0.13	1.87E - 02	3.0	1.6	0.24	5.19E-02	2.67E - 02	0
	P 9	134.07	8.70	0.17	0.20	2.31E-02	2.6	1.4	0.24	5.65E - 02	2.85E - 02	0
	P 10	134.97	7.50	0.20	0.20	3.19E-02	2.5	1.2	0.21	7.42E - 02	3.20E-02	0
	P 11	132.57	10.20	0.17	0.27	3.17E-02	1.9	1.1	0.22	5.68E-02	3.17E-02	0
	P 12	132.63	7.63	0.33	0.30	3.74E-02	2.4	1.1	0.21	8.44E-02	3.49E-02	0
	P 13	135.63	7.47	0.23	0.23	3.52E - 02	2.4	1.1	0.21	7.74E - 02	3.25E-02	0
	P 14	134.57	7.07	0.53	0.20	6.73E-02	2.4	1.1	0.20	1.52E - 01	6.21E-02	0
	P 15	134.63	7.80	0.27	0.33	3.85E-02	2.4	1.1	0.21	8.51E-02	3.44E-02	0
879	(22)	133.53	0.97	7.77	4.30	8.96E + 00	4.0	2.7	0.24	2.03E + 01	9.00E + 00	15
	P 1	133.53	0.97	1.17	0.67	2.39E-01	4.0	2.7	0.24	8.57E-01	5.33E-01	0
	P 2	133.37	0.03	0.57	0.40	1.06E-01	3.7	2.4	0.22	3.53E-01	2.14E-01	0
	P 3	134.67	2.20	0.17	0.20	2.22E-02	3.5	2.1	0.20	7.09E-02	4.02E - 02	0
	P 4	135.13	-0.10	0.33	0.20	3.78E-02	3.4	2.1	0.21	1.16E-01	6.75E-02	0
	P 5	136.57	1.23	0.87	0.57	1.88E-01	3.3	2.1	0.21	5.65E-01	3.26E-01	0
	P 6	134.37	0.13	0.27	0.20	2.89E-02	3.2	1.9	0.20	8.55E-02	4.70E-02	0
	P 7	134.57	1.90	0.10	0.17	1.44E-02	3.1	1.8	0.18	4.26E-02	2.26E-02	0
	P 8	134.80	0.93	0.10	0.10	8.89E-03	3.1	1.7	0.18	2.52E-02	1.32E-02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ize	Surface	Maximun	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	1	b	Δl	Δb	area	A_{V1}	Ava	-	-	-	associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(magdeg^2)$	$(mag deg^2)$	clouds
	DO	126.27	(408)	0.10	(408)		(11148)	1.7	0.10		1.505.02	1
	P9 D 10	136.37	0.67	0.10	0.13	1.00E - 02	3.0	1./	0.19	2.76E - 02	1.50E - 02	1
	P 10 D 11	130.07	0.37	0.13	0.17	1.30E - 02	2.8	1.0	0.18	4.0/E - 02	2.11E-02	0
	P 11 D 12	132.20	2.00	0.20	0.17	2.30E - 02	2.8	1.3	0.17	0.04E - 02	3.37E - 02	0
	Г 12 Р 13	137.00	2.00	0.15	0.17	1.69E - 02 2.67E - 02	2.7	1.4	0.17	4.07E - 02 6.36E - 02	2.20E = 02 3.06E = 02	0
	P 14	132.07	_0.13	0.20	0.17	2.07E = 02 3.56E = 02	2.0	1.3	0.10	8.29E_02	3.00E - 02 4.02E - 02	0
	P 15	132.57	-0.67	0.13	0.27	1.44E = 02	2.5	1.3	0.10	3.27E - 02	1.55E - 02	0
	P 16	137.70	1 43	0.13	0.15	4.11E - 02	2.4	1.5	0.10	9.73E - 02	4.45E - 02	0
	P 17	130.93	-0.93	0.10	0.33	6.33E - 02	2.3	1.2	0.15	1.31E - 01	651E-02	0
	P 18	133.13	-0.77	0.47	0.20	5.67E - 02	2.4	1.2	0.16	1.25E-01	5.78E - 02	0
	P 19	132.47	-1.43	0.43	0.30	6.66E - 02	2.1	1.2	0.15	1.31E-01	6.50E - 02	Ő
	P 20	131.23	-1.00	0.17	0.17	2.00E-02	2.2	1.1	0.15	4.08E-02	1.96E-02	0
	P 21	130.43	-1.10	0.30	0.43	7.78E-02	2.1	1.1	0.15	1.51E-01	6.99E-02	0
	P 22	132.13	-0.87	0.30	0.20	2.11E-02	2.2	1.0	0.15	4.21E-02	1.84E-02	0
880	(1)	133.57	5.73	0.73	0.43	1.77E-01	2.5	1.2	0.19	3.62E-01	1.29E-01	0
	P 1	133.57	5.73	0.23	0.17	1.88E-02	2.5	1.2	0.19	4.44E-02	1.97E-02	0
881	(0)	133.63	6.20	0.50	0.40	7.18E-02	2.3	1.0	0.18	1.41E-01	4.61E-02	0
882	(0)	134.03	-0.33	0.33	0.23	4.22E-02	2.2	0.8	0.15	8.14E-02	2.63E-02	0
883	(0)	134.50	5.03	0.23	0.23	3.10E-02	1.9	0.6	0.15	5.73E-02	1.69E-02	0
884	(0)	134.70	5.57	0.23	0.20	2.65E-02	2.0	0.7	0.16	4.96E-02	1.52E-02	0
885	(0)	134.77	5.27	0.43	0.37	6.86E-02	2.3	1.0	0.17	1.33E-01	4.38E-02	0
886	(1)	134.83	1.40	0.27	0.30	4.33E-02	2.5	1.2	0.15	9.06E-02	3.12E-02	0
	P 1	134.83	1.40	0.10	0.13	1.11E-02	2.5	1.2	0.15	2.62E - 02	1.10E - 02	0
887	(1)	135.20	5.03	1.07	0.53	2.86E-01	2.4	1.1	0.18	5.53E-01	1.87E-01	0
	P 1	135.20	5.03	0.30	0.23	2.88E-02	2.4	1.1	0.18	6.38E-02	2.66E-02	0
888	(1)	135.23	1.00	0.80	0.70	2.42E - 01	3.0	1.6	0.18	5.26E-01	2.05E - 01	1
	P 1	135.23	1.00	0.23	0.20	3.11E-02	3.0	1.6	0.18	8.55E-02	4.41E - 02	1
889	(1)	135.53	0.27	0.20	0.23	3.11E-02	2.4	1.1	0.16	6.26E-02	2.27E - 02	0
	P 1	135.53	0.27	0.10	0.10	8.89E-03	2.4	1.1	0.16	1.99E-02	8.55E-03	0
890	(0)	135.67	10.13	0.23	0.30	4.05E - 02	1.7	0.8	0.20	6.34E-02	2.52E - 02	0
891	(0)	136.20	7.13	0.17	0.20	2.09E - 02	1.9	0.7	0.18	3.82E-02	1.23E - 02	0
892	(1)	136.37	-1.43	0.30	0.47	6.11E-02	2.1	1.1	0.16	1.04E - 01	4.28E - 02	0
	P 1	136.37	-1.43	0.13	0.10	1.11E - 02	2.1	1.1	0.16	2.22E - 02	1.10E - 02	0
893	(0)	136.47	7.00	0.43	0.50	7.28E - 02	2.1	0.9	0.19	1.32E - 01	4.39E-02	0
894	(0)	136.47	12.77	0.30	0.70	9.00E - 02	1.4	1.0	0.22	9.71E-02	5.77E - 02	0
895	(0)	136.77	7.73	0.30	0.17	2.42E - 02	1.8	0.6	0.18	4.07E - 02	1.35E - 02	0
896	(0)	136.93	8.17	0.20	0.30	2.42E - 02	1.7	0.6	0.18	3.95E - 02	1.35E-02	0
897	(0)	137.30	9.07	0.43	0.27	6.36E - 02	1.7	0.8	0.19	9.69E - 02	3.80E - 02	0
898	(0)	137.47	-2.10	0.20	0.27	3.00E - 02	1.7	0.7	0.15	4.74E - 02	1.78E - 02	0
899	(0)	137.60	6.80	0.30	0.53	1.04E-01	2.0	0.9	0.19	1.82E-01	6.96E-02	0
900	(0)	137.63	4.40	0.43	0.27	5.76E - 02	2.2	1.0	0.17	1.07E - 01	3.87E-02	0
901	(1)	137.73	7.47	0.27	0.23	4.52E - 02	2.2	1.1	0.21	8.18E-02	3.38E-02	0
	P 1	137.73	7.47	0.17	0.13	1.43E-02	2.2	1.1	0.21	2.91E-02	1.39E-02	0
902	(0)	137.87	4.07	0.17	0.20	2.00E-02	1.9	0.7	0.16	3.57E-02	1.21E - 02	0
903	(2)	137.87	8.40	1.03	0.97	4.62E-01	2.5	1.5	0.24	8.19E-01	3.79E-01	0
	P1	137.87	8.40	0.27	0.20	3.08E-02	2.5	1.5	0.24	6.86E-02	3.93E-02	0
00.4	P 2	137.67	8.57	0.23	0.17	2.53E-02	2.3	1.4	0.23	5.33E-02	2.96E-02	0
904	(0)	138.00	-2.37	0.23	0.20	2.55E-02	1.7	0.7	0.15	3.96E-02	1.4/E - 02	0
905	(1)	138.17	7.90	0.30	0.23	5.17E - 02	2.0	1.0	0.20	8.75E-02	3.59E-02	0
007	P I	138.17	/.90	0.17	0.13	1./6E - 02	2.0	1.0	0.20	5.50E-02	1.55E - 02	0
906	(0)	138.33	8.83	0.17	0.40	2.96E - 02	1.5	0.6	0.19	4.20E - 02	1.63E - 02	0

 Table 7. (Continued.)

Cloud	Clump	Posi	ition	S	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
907	(1)	138.37	7.40	0.37	0.47	1.04E-01	2.1	1.1	0.20	1.75E-01	7.14E-02	0
	P 1	138.37	7.40	0.17	0.13	1.65E-02	2.1	1.1	0.20	3.21E-02	1.55E-02	0
908	(1)	138.57	3.87	0.73	0.30	1.15E-01	2.4	1.3	0.18	2.15E-01	8.15E-02	0
	P 1	138.57	3.87	0.13	0.13	1.33E-02	2.4	1.3	0.18	2.99E-02	1.45E-02	0
909	(0)	138.60	9.43	0.13	0.27	2.52E - 02	1.7	0.9	0.20	3.69E-02	1.64E - 02	0
910	(1)	138.80	5.37	1.00	0.47	2.41E-01	2.8	1.7	0.22	4.44E-01	1.94E - 01	0
	P 1	138.80	5.37	0.13	0.33	3.21E-02	2.8	1.7	0.22	8.11E-02	4.74E - 02	0
911	(0)	138.90	-3.13	0.17	0.33	3.00E - 02	1.6	0.8	0.16	4.26E - 02	1.81E-02	0
912	(5)	138.97	2.37	1.40	1.33	9.25E-01	2.8	1.6	0.19	1.91E + 00	7.34E-01	0
	P 1	138.97	2.37	0.33	0.30	3.77E - 02	2.8	1.6	0.19	9.77E - 02	4.98E - 02	0
	P 2	138.53	2.07	0.33	0.33	5.11E - 02	2.6	1.4	0.18	1.25E - 01	6.01E - 02	0
	P 3	138.07	2.60	0.17	0.17	1.55E - 02	2.5	1.3	0.17	3.60E - 02	1.63E - 02	0
	P 4	138.57	1.60	0.33	0.20	3.33E - 02	2.5	1.2	0.17	7.73E - 02	3.46E - 02	0
	P 5	138.23	1.80	0.23	0.17	2.44E - 02	2.3	1.0	0.16	5.32E - 02	2.21E - 02	0
913	(0)	139.17	8.47	0.53	0.60	1.55E - 01	1.8	1.0	0.20	2.38E-01	1.04E - 01	0
914	(3)	139.27	-1.93	1.03	1.13	4.78E - 01	2.4	1.2	0.19	9.43E-01	3.51E-01	0
	P 1	139.27	-1.93	0.13	0.37	2.44E - 02	2.4	1.2	0.19	5.38E-02	2.57E - 02	0
	P 2	139.37	-1.53	0.20	0.30	3.78E - 02	2.4	1.2	0.19	8.34E - 02	3.73E - 02	0
	P 3	139.63	-1.27	0.17	0.37	3.78E - 02	2.4	1.1	0.18	8.33E-02	3.55E-02	0
915	(0)	139.47	5.10	0.60	0.17	4.65E - 02	1.7	0.7	0.17	7.21E - 02	2.67E - 02	0
916	(1)	139.63	8.63	0.43	0.27	8.35E-02	1.9	1.1	0.21	1.29E - 01	6.27E - 02	0
	P 1	139.63	8.63	0.23	0.13	2.86E - 02	1.9	1.1	0.21	4.94E - 02	2.65E - 02	0
917	(2)	139.63	-2.87	1.10	1.37	5.67E - 01	2.1	1.1	0.18	8.86E-01	3.79E-01	0
	P 1	139.63	-2.87	0.27	0.20	2.77E - 02	2.1	1.1	0.18	5.38E-02	2.61E - 02	0
	P 2	139.20	-2.87	0.20	0.17	2.55E - 02	2.0	1.1	0.18	4.82E - 02	2.38E-02	0
918	(1)	139.83	4.13	0.33	0.53	1.02E - 01	2.3	1.2	0.19	1.90E - 01	7.76E - 02	0
	P 1	139.83	4.13	0.17	0.23	2.55E - 02	2.3	1.2	0.19	5.45E - 02	2.65E - 02	0
919	(0)	139.87	-2.50	0.30	0.30	3.44E - 02	1.8	0.7	0.16	5.84E - 02	2.02E - 02	0
920	(1)	139.87	2.67	0.53	0.53	1.50E - 01	2.5	1.2	0.19	2.99E-01	1.12E - 01	0
	P 1	139.87	2.67	0.13	0.17	1.66E - 02	2.5	1.2	0.19	3.87E - 02	1.77E - 02	0
921	(0)	139.90	10.00	0.30	0.43	6.13E-02	1.5	0.8	0.20	8.27E-02	3.72E - 02	0
922	(1)	139.97	2.13	0.50	0.33	8.66E - 02	2.7	1.4	0.19	1.80E - 01	6.66E - 02	2
	P 1	139.97	2.13	0.13	0.17	1.55E - 02	2.7	1.4	0.19	3.89E-02	1.86E - 02	1
923	(1)	140.03	8.70	0.17	0.20	2.75E - 02	1.8	1.0	0.21	4.12E - 02	1.98E - 02	0
	P 1	140.03	8.70	0.10	0.13	9.88E-03	1.8	1.0	0.21	1.66E - 02	8.94E-03	0
924	(1)	140.07	10.60	0.70	0.33	9.17E - 02	1.7	1.0	0.22	1.23E - 01	5.94E - 02	0
	P 1	140.07	10.60	0.13	0.10	9.83E-03	1.7	1.0	0.22	1.53E - 02	8.56E-03	0
925	(0)	140.13	10.30	0.27	0.20	3.83E - 02	1.5	0.8	0.20	5.12E - 02	2.40E - 02	0
926	(1)	140.30	4.80	0.23	0.50	6.09E - 02	2.0	1.1	0.18	9.98E-02	4.24E - 02	0
	P 1	140.30	4.80	0.10	0.13	1.11E - 02	2.0	1.1	0.18	2.10E - 02	1.06E - 02	0
927	(0)	140.33	8.70	0.23	0.23	2.42E - 02	1.4	0.7	0.19	3.26E - 02	1.40E - 02	0
928	(0)	140.33	11.67	0.33	0.13	3.05E - 02	1.3	0.7	0.21	3.67E - 02	1.82E - 02	0
929	(1)	140.37	3.30	1.00	1.00	4.55E - 01	2.5	1.4	0.20	8.59E-01	3.44E - 01	0
	P 1	140.37	3.30	0.40	0.27	4.88E - 02	2.5	1.4	0.20	1.13E-01	5.66E - 02	0
930	(0)	140.40	-3.73	0.27	0.27	4.55E-02	1.6	0.8	0.16	6.62E-02	2.91E-02	0
931	(3)	140.70	-2.17	1.60	0.83	5.01E-01	3.4	2.2	0.26	1.04E + 00	3.90E-01	0
	P 1	140.70	-2.17	0.13	0.13	1.44E-02	3.4	2.2	0.26	4.49E-02	2.70E-02	0
	P 2	141.00	-2.37	0.47	0.33	5.22E-02	2.3	1.1	0.19	1.15E-01	4.92E-02	0
	P 3	141.50	-2.33	0.13	0.13	1.55E-02	2.3	1.0	0.19	3.40E-02	1.37E-02	0
932	(0)	140.73	0.90	0.17	0.30	2.56E-02	2.4	0.8	0.17	5.61E-02	1.73E-02	0
933	(0)	140.73	5.00	0.30	0.23	3.32E - 02	1.6	0.8	0.16	4.87E-02	2.08E-02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ize	Surface	Maximun	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2}ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
03/	(0)	1/0.80	11.00	0.27	0.17	2.07E_02	1.2	0.6	0.20	2 31E_02	$1.14E_{-02}$	0
035	(0)	140.80	_2 73	0.27	0.17	2.07E = 02 3.88E = 02	$\frac{1.2}{2.0}$	0.0	0.20	2.31E = 02 6.89E = 02	1.14E = 02 2 38E = 02	0
936	(0)	140.03	9.87	0.23	0.30	5.00L 02 5.04E - 02	2.0	0.0	0.17	6.01E - 02	2.36E 02 2.98E-02	0
937	(0)	140.95	5 73	1.83	1 13	9.85E - 01	3.9	3.2	0.21	1.66E + 00	9.05E - 01	1
201	P 1	140.97	5.73	0.17	0.20	1.44E - 02	3.9	3.2	0.34	4.94E-02	3.91E - 02	0
	P 2	140.50	6.10	0.13	0.20	1.99E - 02	2.6	1.8	0.23	4.60E - 02	3.07E - 02	Ő
	P 3	141.07	6.23	0.37	0.20	5.41E - 02	2.0	1.3	0.19	9.64E - 02	6.04E - 02	0
938	(0)	141.17	12.13	0.20	0.23	2.17E - 02	1.2	0.6	0.21	2.41E-02	1.25E - 02	0
939	(1)	141.20	9.47	1.00	0.90	2.03E-01	1.9	1.2	0.22	2.79E-01	1.35E-01	0
	P 1	141.20	9.47	0.13	0.17	1.75E-02	1.9	1.2	0.22	2.99E-02	1.79E-02	0
940	(1)	141.60	-2.93	0.43	0.43	9.99E-02	2.2	1.0	0.19	1.86E-01	6.60E-02	0
	P 1	141.60	-2.93	0.17	0.13	1.66E-02	2.2	1.0	0.19	3.48E-02	1.52E - 02	0
941	(1)	142.00	6.33	0.67	0.47	1.58E-01	1.6	1.1	0.18	2.00E-01	1.15E-01	0
	P 1	142.00	6.33	0.40	0.20	4.53E-02	1.6	1.1	0.18	6.61E-02	4.16E-02	0
942	(20)	142.10	1.60	8.50	4.90	1.69E + 01	5.1	3.6	0.39	4.68E + 01	2.00E + 01	0
	P 1	142.10	1.60	0.87	0.50	1.87E - 01	5.1	3.6	0.39	8.48E-01	5.58E-01	0
	P 2	142.87	0.90	0.23	0.20	3.67E-02	5.1	3.4	0.39	1.70E-01	1.06E - 01	0
	P 3	142.17	0.67	0.63	0.77	2.21E - 01	4.9	3.2	0.36	9.54E-01	5.85E-01	0
	P 4	146.23	-0.50	0.23	0.23	4.00E - 02	4.6	3.0	0.34	1.67E-01	1.04E - 01	0
	P 5	147.70	-0.37	0.17	0.17	2.33E - 02	4.0	2.6	0.30	8.46E-02	5.21E - 02	0
	P 6	144.87	0.30	0.30	0.27	5.56E - 02	4.4	2.6	0.31	2.17E-01	1.18E - 01	0
	P 7	148.07	0.10	0.17	0.43	5.00E - 02	3.9	2.6	0.30	1.75E-01	1.08E-01	0
	P 8	148.37	-0.60	0.33	0.23	5.89E-02	3.7	2.3	0.27	1.96E-01	1.17E - 01	0
	P 9	143.57	1.27	0.27	0.40	4.11E-02	3.9	2.1	0.28	1.47E-01	7.37E-02	0
	P 10	146.50	0.40	0.30	0.20	4.56E-02	3.4	1.9	0.24	1.44E-01	7.49E-02	0
	P II D 12	140.83	-0.20	0.27	0.23	4.11E - 02	3.4	1.8	0.24	1.28E-01	6.48E - 02	0
	P 12	140.87	-1.1/	0.30	0.53	1.01E - 01	3.2	1.8	0.23	2.9/E - 01	1.50E - 01	0
	P 13	142.10	2.17	0.20	0.23	2.44E - 02	3.0 2.2	1./	0.21	0.71E - 02	3.40E - 02	0
	P 14 D 15	142.80	-0.50	0.25	0.20	3.44E - 02	5.5 2.4	1.5	0.25	1.00E - 01	4.31E - 02 5.72E 02	0
	P 15	144.05	1.20	0.40	0.20	4.44E = 02	3.4	1.5	0.23	1.40E-01	3.73E = 02	0
	P 10	141.45	-1.20	0.15	0.17	1.78E = 02	2.0	1.5	0.22	3.09E = 02 1.05E = 01	2.35E = 02	0
	P 18	140.00	_0.37	0.37	0.20	4.00E - 02	2.9	1.4	0.21	$2.72E_{-02}$	1.04E - 02	0
	P 19	145 50	1 10	0.10	0.13	8.89E-03	2.7	1.2	0.20	2.72E = 02 2.25E = 02	8.79E-03	0
	P 20	142.00	-0.63	0.10	0.13	4.11E-02	2.7	1.1	0.20	1.05E-01	3.63E - 02	0
943	(0)	142.17	5.13	0.33	0.50	5.42E - 02	1.4	0.8	0.15	6.20E - 02	3.29E - 02	0
944	(1)	142.60	4.77	0.40	0.43	9.63E - 02	1.7	1.2	0.17	1.20E - 01	6.98E - 02	Ő
	P 1	142.60	4.77	0.17	0.17	1.88E - 02	1.7	1.2	0.17	2.96E - 02	1.99E - 02	0
945	(0)	142.60	7.27	0.20	0.30	2.98E - 02	1.4	0.8	0.17	3.56E-02	1.92E - 02	0
946	(1)	142.67	7.73	0.23	0.37	4.62E - 02	1.7	1.1	0.19	6.16E-02	3.49E-02	0
	P 1	142.67	7.73	0.20	0.27	1.87E-02	1.7	1.1	0.19	2.81E-02	1.73E-02	0
947	(0)	142.70	-1.63	0.30	0.23	3.67E-02	2.3	0.7	0.18	8.00E-02	2.18E-02	0
948	(1)	142.90	8.73	0.37	0.60	1.12E-01	1.7	1.0	0.20	1.47E-01	7.68E-02	0
	P 1	142.90	8.73	0.17	0.20	2.53E-02	1.7	1.0	0.20	3.87E-02	2.29E-02	0
949	(0)	143.07	-7.17	0.53	0.57	1.15E-01	1.3	0.9	0.17	1.15E-01	7.02E-02	0
950	(0)	143.20	-6.57	0.43	0.30	5.96E-02	1.3	0.9	0.17	6.50E-02	3.78E-02	0
951	(9)	143.37	10.10	3.47	1.93	3.34E + 00	2.5	1.9	0.28	$5.05\mathrm{E}\!+\!00$	2.97E + 00	1
	P 1	143.37	10.10	0.90	0.37	1.44E-01	2.5	1.9	0.28	3.17E-01	2.31E-01	0
	P 2	142.60	9.47	0.17	0.23	2.96E-02	2.2	1.6	0.25	6.00E - 02	4.11E-02	0
	P 3	142.50	10.10	0.37	0.37	6.13E-02	2.2	1.6	0.26	1.21E-01	8.22E-02	0
	P 4	142.03	10.03	0.33	0.40	5.47E-02	2.2	1.5	0.25	1.06E-01	7.01E-02	0

 Table 7. (Continued.)

Cloud	Clump	Posi	tion	S	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 5	142.83	10.47	0.23	0.17	2.40E-02	2.1	1.5	0.25	4.45E-02	2.97E-02	0
	P 6	141.60	9.93	0.23	0.23	3.61E-02	2.1	1.4	0.24	6.58E-02	4.15E-02	0
	Р7	141.53	9.47	0.13	0.10	1.21E-02	1.9	1.2	0.22	2.09E-02	1.28E-02	0
	P 8	142.03	9.37	0.17	0.13	1.53E-02	1.8	1.2	0.22	2.51E-02	1.51E-02	0
	P 9	142.37	10.57	0.13	0.23	2.29E-02	1.7	1.0	0.22	3.49E-02	2.03E-02	0
952	(2)	143.60	-3.40	1.20	0.63	4.07E-01	2.7	1.6	0.21	7.79E-01	3.48E-01	0
	P 1	143.60	-3.40	0.23	0.30	4.21E-02	2.7	1.6	0.21	1.03E-01	5.89E-02	0
	P 2	144.27	-3.33	0.13	0.20	2.00E-02	2.3	1.2	0.19	4.31E-02	2.18E-02	0
953	(0)	143.63	9.03	0.40	0.30	5.71E-02	1.4	0.8	0.19	6.72E-02	3.43E-02	0
954	(0)	143.67	-5.80	0.23	0.27	3.10E-02	1.3	0.7	0.16	3.58E-02	1.82E-02	0
955	(1)	143.73	4.03	0.93	0.57	2.93E-01	1.7	1.2	0.17	3.40E-01	2.09E-01	0
	P 1	143.73	4.03	0.17	0.23	2.77E-02	1.7	1.2	0.17	4.23E-02	2.93E-02	0
956	(1)	143.87	-1.47	0.53	0.43	1.34E-01	2.9	1.2	0.21	3.33E-01	9.66E-02	0
	P 1	143.87	-1.47	0.17	0.17	2.33E-02	2.9	1.2	0.21	6.40E-02	2.28E-02	0
957	(0)	144.00	-5.77	0.43	0.30	4.86E - 02	1.2	0.7	0.15	5.47E - 02	2.76E - 02	0
958	(0)	144.10	11.50	0.20	0.23	2.18E - 02	1.3	0.8	0.22	2.32E-02	1.37E - 02	Ő
959	(1)	144.30	-6.63	0.40	0.83	1.42E - 01	1.5	1.0	0.17	1.47E - 01	9.17E - 02	Ő
202	P 1	144.30	-6.63	0.20	0.33	2.87E - 02	1.5	1.0	0.17	3.67E - 02	2.46E - 02	Ő
960	(0)	144 37	-4.13	0.27	0.30	4.76E - 02	17	0.8	0.16	6.95E - 02	2.94E-02	Ő
961	(2)	144 47	8 70	0.90	0.93	3.52E - 01	2.0	1.5	0.23	4.70E - 01	2.88E-01	Ő
201	P 1	144 47	8 70	0.33	0.50	5.60E - 02	2.0	1.5	0.23	9.94E - 02	7.08E-02	Ő
	P 2	144 53	8 33	0.00	0.20	7 70E-03	17	1.2	0.23	1.22E-02	8 30E-03	Ő
962	(0)	144 50	-1.20	0.10	0.10	4.67E - 02	2.6	0.8	0.18	1.22E - 01	2.84E - 02	Ő
963	(1)	144 50	7.83	0.63	0.50	2.03E - 01	17	1.2	0.10	2.43E-01	1.46E - 01	Ő
200	P 1	144 50	7.83	0.02	0.20	2.63E - 01 2.64E-02	1.7	1.2	0.21	3.99E - 02	2.74E - 02	Ő
964	(0)	144 57	4.03	0.20	0.20	2.51E - 02 2.55E-02	1.7	0.8	0.15	2.59E - 02	1.58E-02	0
965	(0)	144 57	-1.50	0.33	0.20	4.44E - 02	2.6	0.0	0.19	1.05E-01	2.83E - 02	Ő
966	(1)	144 77	-0.97	0.30	0.30	5.67E - 02	2.9	11	0.20	1.032 01 1.44E-01	4.23E - 02	Ő
200	P 1	144 77	-0.97	0.13	0.13	1.44E-02	2.9	1.1	0.20	4.04E - 02	1.23E - 02	Ő
967	(2)	145 43	9.50	1.83	1 47	1.712 + 0.02	2.4	1.1	0.20	1.69E + 00	1.08E + 00	Ő
201	P 1	145 43	9 50	0.23	0.30	2.96E - 02	2.4	19	0.27	6.03E - 02	457E-02	Ő
	P 2	146 17	8.83	0.17	0.20	2.20E - 02	19	1.9	0.23	3.73E-02	2.71E-02	Ő
968	(1)	145 77	7 27	0.63	0.33	9.26E - 02	1.5	1.1	0.20	9.79E - 02	6.10E - 02	Ő
200	P 1	145 77	7.27	0.02	0.33	1.10E - 02	1.6	1.2	0.20	1.56E - 02	1.12E - 02	Ő
969	(1)	145.87	17.77	0.60	0.60	1.09E - 01	1.1	1.1	0.28	7.08E-02	7.36E-02	Ő
202	P 1	145.87	17.77	0.13	0.10	9.52E - 03	1.1	1.1	0.28	9.27E-03	9.50E - 03	Ő
970	(1)	146.07	-2.27	0.33	0.70	1.27E - 01	2.7	1.3	0.21	2.71E-01	9.14E - 02	Ő
210	P 1	146.07	-2.27	0.13	0.17	1.55E-02	2.7	13	0.21	3.98E - 02	1.76E - 02	Ő
971	(0)	146.13	10.13	0.13	0.17	2.63E - 02	13	0.8	0.21	2.85E-02	1.70E - 02 1.64E-02	0
972	(0)	146.20	-7.47	0.33	0.17	3.86E - 02	0.8	0.6	0.15	2.83E - 02	2.12E-02	Ő
973	(0)	146.27	8 47	0.30	0.23	4.18E - 02	11	0.7	0.18	4.30E - 02	2.43E-02	Ő
974	(0) (1)	146 73	2.03	0.17	0.17	1.78E - 02	1.1	1.1	0.17	2.72E - 02	1.33E - 02	0
271	P 1	146 73	2.03	0.07	0.10	6.66E - 03	1.9	1 1	0.17	1.17E - 02	6.52E - 03	1
975	(1)	146.93	4 50	0.23	0.10	5.32E - 02	1.2	1.1	0.16	5.15E - 02	3.70E - 02	0
215	P 1	146.93	4 50	0.13	0.17	$1.44E_{-02}$	1.4	1.1	0.16	1.75E - 02	$1.35E_{-02}$	0
976	(1)	147.27	_3.50	1.00	0.17	$2.65E_{-01}$	1.4	1.1	0.18	4.73E 02 4.74E - 01	1.35E 02 1.81E - 01	0
270	P 1	147.27	_3.70	0.37	0.43	5.05E 01 5.77E - 02	1.9	1.1	0.18	1.05E - 01	$5.23E_{-02}$	0
977	(1)	147 47	9.70	0.27	0.70	4 38E_02	1.5	1.1	0.10	5.26E = 02	3.23E = 02 3.24E = 02	0
711	P 1	147 47	9.37	0.27 0.17	0.13	1.86F_02	1.5	1.1	0.22	2 55E_02	$1.70F_{02}$	0
978	(0)	147.63	6 57	0.17	0.15	$9.16F_{-02}$	1.5	0.8	0.22	8.23F_02	5.61E - 02	0
979	(1)	147.63	-3.07	0.83	1.20	3.86E-01	2.6	1.5	0.21	7.55E-01	2.85E-01	0

 Table 7. (Continued.)

Cloud	Clump	Posi	ition	Si	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	•			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 1	147.63	-3.07	0.20	0.20	2.66E-02	2.6	1.5	0.21	6.38E-02	3.38E-02	0
980	(0)	147.67	10.20	0.43	0.53	8.64E-02	1.3	0.9	0.21	9.29E-02	5.39E-02	0
981	(0)	147.67	5.23	0.23	0.17	2.77E-02	1.0	0.8	0.16	2.37E-02	1.68E-02	0
982	(1)	147.80	9.20	0.40	0.50	1.20E-01	2.1	1.6	0.25	1.65E-01	1.11E-01	0
	P 1	147.80	9.20	0.20	0.20	2.74E-02	2.1	1.6	0.25	5.06E-02	3.83E-02	0
983	(0)	147.93	-1.80	0.43	0.30	8.11E-02	2.3	1.0	0.19	1.65E-01	5.51E-02	0
984	(0)	147.97	6.03	0.57	0.37	6.08E-02	1.0	0.8	0.16	5.16E-02	3.61E-02	0
985	(0)	148.20	-1.57	0.13	0.17	2.00E-02	2.0	0.6	0.17	3.82E-02	1.13E-02	0
986	(0)	148.37	-1.50	0.20	0.13	2.00E-02	2.1	0.7	0.17	3.87E-02	1.19E-02	0
987	(0)	148.93	11.97	0.20	0.20	2.72E - 02	1.0	0.6	0.22	2.55E-02	1.55E-02	0
988	(0)	149.00	12.27	0.23	0.20	2.93E-02	1.0	0.6	0.22	2.67E-02	1.68E-02	0
989	(3)	149.17	-2.13	2.17	2.37	1.24E + 00	3.3	2.0	0.25	2.44E + 00	9.32E-01	0
	P 1	149.17	-2.13	0.13	0.30	2.78E-02	3.3	2.0	0.25	8.28E-02	4.84E-02	0
	P 2	149.50	-1.20	0.13	0.17	1.44E - 02	2.6	1.4	0.21	3.51E-02	1.73E-02	0
	P 3	149.80	-1.63	0.33	0.37	5.66E-02	2.3	1.1	0.19	1.20E-01	5.09E-02	0
990	(1)	149.20	11.20	1.70	1.50	8.37E-01	1.6	1.2	0.25	8.70E-01	5.49E-01	0
	P 1	149.20	11.20	0.23	0.23	3.49E-02	1.6	1.2	0.25	4.93E-02	3.56E-02	0
991	(0)	149.67	10.03	0.23	0.20	2.52E - 02	0.9	0.6	0.20	2.26E-02	1.35E-02	0
992	(0)	149.90	8.63	0.37	0.13	2.97E - 02	1.1	0.8	0.19	2.68E-02	1.72E - 02	0
993	(0)	150.13	2.50	0.60	0.30	8.10E-02	1.6	0.9	0.17	1.08E-01	5.28E-02	0
994	(10)	150.27	3.90	3.10	3.27	2.18E + 00	4.6	4.2	0.44	3.51E + 00	2.37E + 00	14
	P 1	150.27	3.90	0.20	0.13	1.66E - 02	4.6	4.2	0.44	6.67E-02	5.94E-02	1
	P 2	149.23	3.03	0.13	0.17	1.78E-02	4.0	3.5	0.35	6.33E-02	5.37E-02	0
	P 3	149.60	3.47	0.23	0.13	2.11E-02	3.6	3.1	0.32	6.83E-02	5.81E-02	1
	P 4	151.07	4.43	0.07	0.17	1.11E-02	3.0	2.6	0.28	2.97E-02	2.55E-02	1
	P 5	148.63	2.10	0.30	0.23	2.78E - 02	2.5	1.8	0.22	6.24E-02	4.12E-02	0
	P 6	150.07	3.27	0.17	0.37	2.99E-02	2.1	1.6	0.20	5.52E-02	3.97E-02	1
	P 7	151.17	4.97	0.17	0.17	1.88E - 02	1.8	1.5	0.21	3.03E-02	2.44E - 02	0
	P 8	149.00	2.33	0.10	0.10	8.88E-03	2.2	1.5	0.20	1.77E - 02	1.16E-02	0
	P 9	148.73	2.77	0.20	0.13	1.66E - 02	1.8	1.2	0.18	2.64E - 02	1.67E - 02	0
	P 10	150.73	4.57	0.20	0.20	1.99E - 02	1.5	1.1	0.18	2.64E - 02	1.95E - 02	0
995	(1)	150.57	9.50	1.17	1.10	6.78E-01	2.5	2.2	0.31	8.41E-01	6.14E-01	0
	P 1	150.57	9.50	0.27	0.27	3.62E - 02	2.5	2.2	0.31	7.86E-02	6.67E - 02	0
996	(0)	150.60	2.90	0.53	0.60	9.65E - 02	1.4	0.8	0.16	1.16E-01	5.67E-02	0
997	(1)	150.60	-8.53	0.17	0.27	3.74E - 02	1.2	1.0	0.18	3.06E-02	2.56E - 02	0
	P 1	150.60	-8.53	0.10	0.13	8.79E-03	1.2	1.0	0.18	9.04E-03	7.87E-03	0
998	(0)	150.70	-4.07	0.43	0.30	7.09E - 02	1.7	1.0	0.17	9.87E-02	4.32E - 02	0
999	(0)	150.80	11.07	0.20	0.23	2.29E - 02	1.0	0.6	0.21	2.07E - 02	1.26E - 02	0
1000	(4)	151.13	-1.17	2.53	1.77	2.36E + 00	2.5	1.3	0.19	4.34E + 00	1.64E + 00	0
	P 1	151.13	-1.17	0.27	0.20	3.44E - 02	2.5	1.3	0.19	7.79E - 02	3.87E - 02	0
	P 2	151.73	-0.73	0.37	0.33	5.00E - 02	2.3	1.1	0.18	1.03E - 01	4.69E - 02	0
	P 3	150.70	-1.57	0.33	0.30	4.89E - 02	2.3	1.1	0.18	1.01E - 01	4.53E - 02	0
	P 4	151.90	-1.40	0.33	0.37	4.78E - 02	2.1	1.0	0.17	9.30E-02	3.97E - 02	0
1001	(0)	151.23	8.93	0.23	0.20	2.30E-02	1.0	0.7	0.19	1.98E-02	1.36E-02	0
1002	(1)	151.37	5.53	0.27	0.20	3.43E-02	1.3	1.1	0.18	3.33E-02	2.40E-02	1
	P 1	151.37	5.53	0.10	0.10	9.95E-03	1.3	1.1	0.18	1.18E-02	9.14E-03	0
1003	(1)	151.43	3.97	0.47	0.80	2.16E-01	4.5	4.1	0.43	3.57E-01	2.59E-01	1
	P 1	151.43	3.97	0.13	0.13	1.22E-02	4.5	4.1	0.43	4.90E-02	4.33E-02	1
1004	(0)	152.40	8.50	0.27	0.27	3.19E-02	0.9	0.7	0.19	2.48E-02	1.84E-02	0
1005	(1)	152.43	3.90	0.27	0.53	9.20E-02	1.8	1.3	0.20	1.23E-01	7.41E-02	1
	P 1	152.43	3.90	0.13	0.23	2.00E - 02	1.8	1.3	0.20	3.35E - 02	2.28E - 02	0

 Table 7. (Continued.)

Cloud	Clump	Posi	tion	Si	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
1006	(0)	152.53	-3.47	0.40	0.30	4.66E-02	1.6	0.7	0.15	6.98E-02	2.72E-02	0
1007	(1)	152.53	5.30	0.33	0.33	4.20E-02	1.8	1.4	0.21	4.90E-02	3.49E-02	1
	P 1	152.53	5.30	0.13	0.10	8.85E-03	1.8	1.4	0.21	1.42E-02	1.12E-02	0
1008	(1)	152.57	-8.90	0.37	0.33	5.16E-02	1.3	1.1	0.18	4.50E-02	3.67E-02	0
	P 1	152.57	-8.90	0.10	0.17	1.10E-02	1.3	1.1	0.18	1.25E-02	1.08E-02	0
1009	(0)	152.77	8.20	0.20	0.17	2.53E-02	1.0	0.8	0.19	1.99E-02	1.52E - 02	0
1010	(0)	152.80	11.47	0.30	0.23	4.36E-02	1.2	0.9	0.23	3.93E-02	2.79E-02	0
1011	(0)	152.83	-1.73	0.30	0.30	5.77E-02	1.9	0.8	0.15	9.82E-02	3.59E-02	0
1012	(0)	152.83	-1.43	0.83	0.67	1.28E-01	1.9	0.8	0.16	2.16E-01	7.64E-02	0
1013	(0)	153.00	-6.10	0.27	0.30	2.43E-02	1.0	0.6	0.15	2.40E-02	1.28E-02	0
1014	(0)	153.13	-2.80	0.50	0.47	1.25E-01	1.8	0.8	0.16	2.00E-01	7.74E-02	0
1015	(0)	153.20	2.97	0.20	0.17	2.44E-02	1.6	0.9	0.18	3.46E-02	1.68E-02	1
1016	(1)	153.23	8.50	0.57	0.57	1.64E-01	1.4	1.2	0.21	1.47E-01	1.19E-01	1
	P 1	153.23	8.50	0.30	0.23	3.74E-02	1.4	1.2	0.21	4.37E-02	3.75E-02	0
1017	(1)	153.33	11.33	0.87	0.50	1.73E-01	1.4	1.2	0.25	1.60E-01	1.23E-01	0
	P 1	153.33	11.33	0.13	0.23	1.96E-02	1.4	1.2	0.25	2.49E-02	2.08E-02	0
1018	(0)	153.33	-8.00	0.20	0.23	3.19E-02	1.0	0.8	0.16	2.79E-02	1.88E-02	0
1019	(0)	153.43	3.70	0.40	0.27	4.55E-02	1.3	0.7	0.17	5.36E-02	2.59E-02	0
1020	(1)	153.47	1.40	0.63	0.57	1.97E-01	2.5	1.6	0.21	3.43E-01	1.55E-01	0
	P 1	153.47	1.40	0.20	0.13	2.22E-02	2.5	1.6	0.21	5.17E-02	3.03E-02	0
1021	(0)	153.63	9.10	0.17	0.27	2.74E-02	0.8	0.7	0.19	1.96E-02	1.59E-02	0
1022	(0)	153.67	-2.13	0.33	0.33	6.66E-02	1.8	0.8	0.15	1.06E-01	4.00E-02	0
1023	(0)	153.73	4.97	0.23	0.27	3.10E-02	1.1	0.7	0.17	3.17E-02	1.85E-02	0
1024	(0)	153.77	1.07	0.27	0.27	4.55E-02	1.8	0.8	0.17	7.23E-02	2.74E-02	0
1025	(1)	154.07	5.10	0.23	0.27	4.32E-02	1.7	1.3	0.20	5.37E-02	3.65E-02	0
	P 1	154.07	5.10	0.13	0.10	9.96E-03	1.7	1.3	0.20	1.56E-02	1.16E-02	1
1026	(1)	154.10	11.87	0.20	0.27	3.48E-02	1.2	1.1	0.24	3.06E-02	2.51E-02	0
	P 1	154.10	11.87	0.07	0.13	8.70E-03	1.2	1.1	0.24	9.85E-03	8.48E-03	0
1027	(0)	154.10	-1.77	0.40	0.37	8.22E-02	1.7	0.7	0.15	1.31E-01	4.79E-02	0
1028	(0)	154.17	-2.57	0.30	0.30	5.11E-02	1.8	0.8	0.16	8.05E-02	3.37E-02	0
1029	(0)	154.17	13.90	0.17	0.17	2.05E - 02	0.9	0.7	0.23	1.54E - 02	1.26E-02	0
1030	(0)	154.17	8.97	0.43	0.47	1.15E-01	1.1	1.0	0.20	8.54E-02	7.28E-02	0
1031	(0)	154.20	3.93	0.33	0.30	5.99E-02	1.3	0.7	0.17	7.05E-02	3.58E-02	0
1032	(1)	154.30	12.37	1.20	1.13	3.30E-01	1.2	1.1	0.24	2.55E-01	2.07E-01	0
	P 1	154.30	12.37	0.17	0.17	1.63E-02	1.2	1.1	0.24	1.71E - 02	1.48E - 02	0
1033	(0)	154.47	3.70	0.23	0.20	3.10E-02	1.5	0.9	0.17	3.98E-02	2.09E - 02	0
1034	(0)	154.57	0.80	0.30	0.23	3.67E - 02	1.8	0.8	0.17	5.95E-02	2.26E - 02	0
1035	(1)	154.67	-15.23	0.47	0.43	1.07E - 01	1.6	1.5	0.27	1.06E-01	9.93E-02	0
	P 1	154.67	-15.23	0.17	0.30	2.89E-02	1.6	1.5	0.27	3.97E-02	3.79E-02	0
1036	(5)	154.70	2.63	1.63	1.43	8.89E-01	3.3	2.5	0.28	1.57E + 00	8.50E-01	1
	P 1	154.70	2.63	0.13	0.17	1.78E-02	3.3	2.5	0.28	5.27E-02	3.89E-02	0
	P 2	154.37	2.67	0.30	0.20	4.11E-02	2.8	2.0	0.24	1.05E - 01	7.26E-02	0
	P 3	154.07	2.20	0.13	0.13	1.44E - 02	2.6	1.8	0.22	3.38E-02	2.17E-02	0
	P 4	154.37	1.93	0.17	0.13	1.78E-02	2.5	1.6	0.21	4.01E-02	2.45E-02	0
	P 5	154.70	1.97	0.13	0.20	1.89E-02	2.0	1.1	0.18	3.46E-02	1.83E-02	0
1037	(0)	154.73	-1.00	0.60	0.43	1.17E-01	1.8	0.7	0.16	1.94E-01	6.95E-02	0
1038	(0)	154.97	11.30	0.20	0.27	2.83E-02	0.8	0.7	0.20	1.99E-02	1.72E-02	0
1039	(0)	155.10	3.93	0.27	0.20	3.77E-02	1.4	0.8	0.17	4.40E-02	2.31E-02	0
1040	(0)	155.23	2.37	0.17	0.23	2.89E-02	1.5	0.7	0.16	3.98E-02	1.72E-02	0
1041	(2)	155.27	0.60	1.73	2.03	1.08E + 00	2.6	1.6	0.21	1.82E + 00	7.71E-01	0
	P 1	155.27	0.60	0.27	0.23	3.22E-02	2.6	1.6	0.21	7.43E-02	4.32E-02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}				associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 2	154.97	0.03	0.40	0.30	5.89E-02	2.2	1.1	0.19	1.20E-01	5.83E-02	0
1042	(0)	155.27	-15.03	0.13	0.27	2.79E-02	0.8	0.8	0.22	1.93E-02	1.74E-02	0
1043	(2)	155.50	-14.57	1.37	0.83	4.39E-01	2.8	2.7	0.38	4.42E-01	4.12E-01	0
	P 1	155.50	-14.57	0.17	0.17	1.94E - 02	2.8	2.7	0.38	4.62E-02	4.49E-02	1
	P 2	155.00	-14.70	0.13	0.13	1.18E-02	1.4	1.3	0.25	1.43E-02	1.36E - 02	0
1044	(0)	155.57	3.40	0.20	0.17	2.00E - 02	1.3	0.7	0.16	2.42E - 02	1.23E - 02	Õ
1045	(3)	155.60	-0.57	1.87	0.97	7.08E-01	2.4	1.4	0.20	1.19E + 00	5.17E-01	0
	P 1	155.60	-0.57	0.53	0.20	5.44E - 02	2.4	1.4	0.20	1.15E - 01	6.30E - 02	Õ
	P 2	156.30	-0.43	0.37	0.33	5.11E - 02	2.0	1.1	0.18	9.15E - 02	4.57E - 02	Õ
	P 3	155.43	-0.77	0.30	0.17	2.89E - 02	2.0	1.1	0.18	5.52E - 02	2.67E - 02	Ő
1046	(7)	156.20	5.30	2.87	2.10	1.81E + 00	3.1	2.8	0.30	2.43E + 00	1.77E + 00	8
1010	P 1	156.20	5 30	0.50	0.20	6.09E - 02	3.1	2.8	0.30	1.63E - 01	1.42E-01	0
	P 2	155.20	4 73	0.17	0.13	1.55E - 02	23	1.0	0.23	3.10E - 02	2.46E - 02	Ő
	P 3	155.75	4.75	0.17	0.15	2.21E - 02	1.6	1.2	0.19	3.10E 02 3.31E - 02	2.40E - 02 2.38E - 02	0
	Р <u>/</u>	154.87	4.63	0.23	0.17	$1.33E_{-02}$	1.0	1.2	0.19	1.96E - 02	1.35E - 02	0
	D 5	156.07	6.03	0.17	0.10	1.33E = 02 0.04E = 03	1.7	1.2	0.19	1.90E - 02 1.26E - 02	1.55E = 02	1
	P 6	156.77	5.03	0.10	0.15	9.94E = 03 3.54E = 02	1.4	1.1	0.19	1.20E = 02 4.31E = 02	$3.13E_{-02}$	0
		155.87	<i>J</i> .05 <i>A</i> 17	0.27	0.20	3.34E = 02	1.4	1.0	0.18	4.31E - 02	3.13E - 02	0
1047	(0)	156.02	4.17	0.17	0.23	2.33E = 02	1.5	1.0	0.17	3.38E - 02	2.19E - 02	0
1047	(0)	156.25	4.33	0.17	0.25	2.86E - 02	1.0	0.0	0.15	2.77E - 02	1.37E - 02	0
1048	(0)	156.22	-11.40	0.27	0.27	4.03E - 02	1.1	0.9	0.21	5.53E = 02	2.73E - 02	0
1049	(0)	156.50	1.47	0.40	0.27	3.89E - 02	1.0	0.8	0.10	8.43E - 02	3.00E - 02	0
1030	(1) D 1	150.50	5.55 2.52	0.55	0.17	4.21E - 02	1.0	1.1	0.18	3.30E - 02	5.1/E = 02	0
1051	P I	150.50	3.33	0.17	0.10	1.33E - 02	1.0	1.1	0.18	1.99E - 02	1.32E - 02	0
1051	(2) D 1	150.07	-14.90	1.23	0.03	2.30E - 01	1.5	1.4	0.27	1.98E - 01	1.81E - 01	0
		150.07	-14.90	0.27	0.13	2.58E - 02	1.5	1.4	0.27	3.36E-02	3.1/E - 02	0
1050	P 2	155.97	-15.27	0.27	0.20	2.68E - 02	1.1	1.0	0.24	2.58E-02	2.39E-02	0
1052	(0)	156.90	-14./3	0.23	0.23	3.55E-02	0.9	0.9	0.23	2.55E-02	2.2/E - 02	0
1053	(0)	156.97	-18.13	0.20	0.30	2.85E - 02	1.1	1.0	0.27	2.38E-02	1.93E - 02	0
1054	(8)	157.13	-8./3	3.37	1.80	2.15E+00	4.0	3.7	0.45	3.05E+00	2.21E+00	2
	PI	157.13	-8./3	0.17	0.27	2.53E-02	4.0	3.7	0.45	8./3E-02	7.81E-02	0
	P 2	159.03	-8.47	0.23	0.10	1.8/E - 02	3.6	3.2	0.41	5.97E-02	5.09E-02	0
	P 3	157.83	-8.63	0.13	0.17	1.54E - 02	2.7	2.3	0.31	3.61E-02	3.00E-02	0
	P 4	157.97	-8.27	0.40	0.13	3.41E-02	2.3	2.0	0.27	7.02E-02	5.76E-02	0
	P5	159.17	-8.73	0.10	0.17	1.10E - 02	2.3	1.8	0.27	2.28E-02	1.71E-02	0
	P 6	156.37	-8.93	0.10	0.17	1.21E-02	2.0	1.6	0.25	2.14E-02	1.72E - 02	1
	P7	156.93	-9.67	0.10	0.13	1.10E - 02	1.8	1.5	0.24	1.80E-02	1.40E - 02	0
	P 8	156.50	-8.63	0.23	0.10	1.76E - 02	1.7	1.3	0.22	2.58E-02	1.98E-02	0
1055	(0)	157.23	1.03	0.27	0.20	3.78E-02	1.7	1.0	0.17	5.35E-02	2.70E-02	0
1056	(5)	157.27	-1.03	1.40	3.10	1.63E + 00	3.8	3.1	0.33	2.54E + 00	1.43E + 00	2
	P 1	157.27	-1.03	0.17	0.17	1.67E - 02	3.8	3.1	0.33	5.63E-02	4.46E - 02	2
	P 2	157.20	-2.73	0.23	0.40	4.00E - 02	2.2	1.7	0.21	7.68E - 02	5.68E - 02	0
	P 3	157.27	-0.60	0.20	0.27	3.11E - 02	2.1	1.4	0.20	5.88E - 02	3.66E - 02	1
	P 4	157.53	-0.37	0.13	0.20	2.00E - 02	2.0	1.3	0.19	3.63E - 02	2.28E - 02	0
	P 5	157.20	-1.90	0.20	0.23	2.67E - 02	1.7	1.1	0.18	4.22E - 02	2.51E - 02	0
1057	(2)	157.30	-10.27	1.13	0.53	2.45E - 01	1.5	1.1	0.23	2.74E - 01	1.64E - 01	0
	P 1	157.30	-10.27	0.20	0.17	1.86E-02	1.5	1.1	0.23	2.43E-02	1.70E-02	0
	P 2	157.60	-10.23	0.23	0.10	1.64E - 02	1.5	1.1	0.23	2.21E-02	1.49E-02	0
1058	(1)	157.33	-13.73	0.37	0.57	9.50E-02	1.3	1.2	0.25	8.20E-02	7.09E-02	1
	P 1	157.33	-13.73	0.20	0.17	1.94E-02	1.3	1.2	0.25	2.26E-02	2.04E - 02	0
1059	(0)	157.40	4.50	1.07	0.70	2.50E-01	1.3	0.9	0.16	2.46E-01	1.48E-01	0
1060	(1)	157.47	-20.57	0.13	0.17	1.66E-02	1.3	1.1	0.32	1.55E-02	1.24E-02	0

 Table 7. (Continued.)

Cloud	Clump	Posit	ion	Si	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 1	157.47 -	-20.57	0.07	0.10	5.20E-03	1.3	1.1	0.32	6.08E-03	5.11E-03	1
1061	(1)	157.50	-4.07	0.27	0.23	4.43E - 02	1.5	1.2	0.19	4.75E - 02	3.38E-02	0
	P 1	157.50	-4.07	0.13	0.10	9.97E-03	1.5	1.2	0.19	1.39E-02	1.08E-02	0
1062	(0)	157.53 -	-22.80	0.23	0.17	2.87E-02	1.1	1.0	0.33	2.46E-02	2.04E-02	0
1063	(1)	157.57 -	-24.03	0.27	0.17	2.84E-02	1.2	1.1	0.36	2.43E-02	2.06E-02	0
	P 1	157.57 -	-24.03	0.13	0.10	9.13E-03	1.2	1.1	0.36	9.68E-03	8.51E-03	0
1064	(6)	157.63 -	-12.17	2.40	1.37	1.25E + 00	2.9	2.6	0.37	1.46E + 00	1.10E + 00	0
	P 1	157.63 -	-12.17	0.13	0.20	1.52E - 02	2.9	2.6	0.37	3.83E-02	3.41E-02	0
	P 2	158.70 -	-12.47	0.17	0.10	1.08E - 02	2.5	2.1	0.34	2.44E - 02	2.03E-02	0
	P 3	156.93 -	-11.80	0.37	0.33	5.88E-02	1.8	1.6	0.26	9.23E-02	7.94E - 02	1
	P 4	156.67 -	-11.87	0.13	0.17	1.41E - 02	1.7	1.5	0.25	2.12E - 02	1.88E-02	0
	P 5	158.43 -	-12.07	0.23	0.17	2.50E - 02	1.9	1.5	0.28	4.31E-02	3.32E-02	0
	P 6	156.80 -	-11.53	0.13	0.13	1.31E - 02	1.5	1.3	0.24	1.76E - 02	1.49E-02	0
1065	(0)	157.70 -	-21.70	0.23	0.27	2.89E - 02	1.0	0.8	0.30	2.27E - 02	1.81E-02	0
1066	(0)	157.70 -	-23.40	0.30	0.23	2.75E - 02	0.9	0.7	0.32	1.98E - 02	1.60E - 02	0
1067	(0)	157.80	-1.10	0.30	0.47	8.89E-02	1.6	1.0	0.17	1.19E-01	6.52E - 02	0
1068	(0)	157.83 -	-20.07	0.20	0.27	2.30E - 02	1.0	0.8	0.29	1.95E - 02	1.44E - 02	0
1069	(0)	157.90 -	-16.27	0.33	0.20	2.13E - 02	0.8	0.7	0.24	1.48E - 02	1.18E - 02	0
1070	(0)	157.90 -	-16.00	0.17	0.23	2.03E - 02	0.9	0.7	0.24	1.46E - 02	1.18E-02	0
1071	(0)	157.93 -	-18.00	0.17	0.23	2.01E - 02	0.9	0.7	0.26	1.60E - 02	1.16E-02	0
1072	(0)	158.00	-2.37	0.67	0.43	1.09E - 01	1.2	0.8	0.16	1.17E - 01	6.67E - 02	0
1073	(0)	158.13	-0.73	0.60	0.53	1.73E-01	1.6	1.0	0.17	2.19E-01	1.20E - 01	0
1074	(0)	158.17 -	-15.10	0.33	0.17	3.33E - 02	1.0	0.8	0.24	2.53E - 02	2.05E - 02	0
1075	(0)	158.20 -	-24.07	0.20	0.27	2.33E - 02	0.9	0.7	0.33	1.73E - 02	1.41E - 02	0
1076	(1)	158.53 -	-24.40	0.70	0.30	1.16E-01	1.5	1.4	0.40	1.18E - 01	1.01E - 01	0
	P 1	158.53 -	-24.40	0.43	0.17	3.54E - 02	1.5	1.4	0.40	4.69E - 02	4.21E - 02	0
1077	(0)	158.67	0.10	0.97	0.50	2.77E - 01	1.5	1.0	0.17	3.37E-01	1.89E - 01	0
1078	(0)	158.87 -	-17.90	0.23	0.33	4.54E - 02	1.2	0.8	0.28	4.25E - 02	2.78E - 02	0
1079	(0)	159.10	-2.00	0.33	0.57	8.11E-02	1.3	1.0	0.17	8.10E - 02	5.17E - 02	0
1080	(0)	159.37 -	-24.40	0.23	0.37	3.74E - 02	1.1	1.0	0.36	3.10E - 02	2.53E - 02	0
1081	(1)	159.63	11.40	1.10	1.00	3.52E - 01	1.6	1.6	0.26	2.60E - 01	2.66E - 01	0
	P 1	159.63	11.40	0.20	0.17	1.96E - 02	1.6	1.6	0.26	2.71E-02	2.74E - 02	0
1082	(1)	159.67 -	-22.17	0.23	0.23	3.50E - 02	1.5	1.3	0.36	3.44E - 02	2.80E-02	0
	P 1	159.67 -	-22.17	0.10	0.13	1.03E - 02	1.5	1.3	0.36	1.33E - 02	1.15E-02	0
1083	(0)	159.70	-0.90	0.93	0.50	1.82E-01	1.4	1.0	0.16	2.00E-01	1.15E-01	1
1084	(0)	159.70	-5.73	0.13	0.20	2.21E-02	1.1	0.9	0.18	2.01E-02	1.55E-02	0
1085	(30)	159.70 -	-19.67	4.80	6.27	7.16E+00	6.0	5.6	1.20	1.25E + 01	1.01E+01	16
	P1	159.70 -	-19.67	0.20	0.17	1.67E - 02	6.0	5.6	1.20	8.71E-02	8.13E-02	0
	P 2	159.13 -	-19.97	0.13	0.20	1.5/E - 02	5.6	5.3	1.08	7.66E-02	7.21E-02	0
	P 3	160.10 -	-18.63	0.63	0.70	8.75E-02	5.6	5.2	1.03	4.17E - 01	3.77E-01	0
	P 4	158.20 -	-20.43	0.10	0.13	8.33E-03	5.4	5.2	1.03	3.96E-02	3.78E-02	0
	P 5	159.20 -	-20.27	0.20	0.30	2.92E-02	5.3	5.1	1.01	1.40E-01	1.32E-01	0
	P 6	160.80 -	-18.17	0.17	0.17	2.32E - 02	5.1	4.7	0.89	1.02E - 01	9.19E-02	0
	P7	158.77 -	-21.60	0.23	0.20	2.79E-02	4.3	4.1	0.80	1.05E - 01	1.00E - 01	1
	Р8 Р	159.17 -	-21.07	0.13	0.10	1.04E - 02	4.1	3.9	0.73	3.72E - 02	5.51E-02	0
	P 10	160.53 -	-16.83	0.13	0.20	1.81E-02	4.2	3.1	0.63	0.03E - 02	5.85E-02	2
	P 10	158.57 -	-20.70	0.13	0.20	1.7/E - 02	5.8	3.0 2.5	0.67	3.96E-02	3.39E-02	1
		160.03 -	-19.00	0.23	0.23	2.73E-02	5.9	3.5	0.64	9.09E-02	1.90E-02	0
	P 12	159.83 -	-19.30	0.20	0.27	2.73E-02	5.1	3.3	0.61	8.0/E-02	1.03E-02	0
	P 13	158.10 -	-21.83	0.10	0.10	1.22E-03	5.0	2.9	0.56	1.8/E - 02	1./3E-02	0
	P 14	158.40 -	-21.8/	0.13	0.10	9.28E-03	3.0	2.8	0.55	2.38E-02	2.22E-02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	sition	Si	ize	Surface	Maximur	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}		2	2	associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 15	158.03	-21.47	0.20	0.13	1.34E-02	2.9	2.8	0.53	3.43E-02	3.19E-02	1
	P 16	158.67	-21.00	0.20	0.13	1.45E-02	2.7	2.5	0.50	3.47E-02	3.17E-02	0
	P 17	159.60	-20.00	0.20	0.13	1.78E - 02	2.7	2.4	0.47	4.11E-02	3.56E-02	0
	P 18	160.37	-19.77	0.27	0.10	1.57E - 02	2.4	2.1	0.43	3.47E-02	2.94E - 02	0
	P 19	159.13	-20.70	0.13	0.10	8.32E-03	2.2	1.9	0.41	1.55E-02	1.36E-02	0
	P 20	160.47	-17.63	0.20	0.13	1.69E-02	2.3	1.9	0.39	3.44E-02	2.67E-02	0
	P 21	160.03	-17.63	0.30	0.37	3.39E-02	2.1	1.6	0.36	6.04E-02	4.62E-02	0
	P 22	160.90	-18.77	0.37	0.30	4.21E-02	2.0	1.5	0.37	7.21E-02	5.41E-02	0
	P 23	160.67	-16.33	0.13	0.10	1.0/E - 02	1.9	1.5	0.33	1.89E-02	1.45E - 02	0
	P 24	161.23	-1/.03	0.20	0.27	2.01E - 02	1.8	1.4	0.34	3.31E-02	2.41E - 02	0
	P 23	150.60	-19.8/	0.10	0.13	9.40E-03	1.5	1.2	0.33	1.20E - 02	1.01E - 02	0
	P 20	157.05	-21.15	0.15	0.20	1.70E - 02	1.3	1.2	0.54	2.23E = 02	1.87E - 02	0
	P 27	157.50	-21.27	0.20	0.17	1.24E - 02	1.4	1.2	0.34	1.32E - 02 1.10E 02	1.32E - 02	0
	F 20 P 20	150.15	-20.93 -21.33	0.15	0.15	1.04E - 02 8 28E - 03	1.5	1.1	0.33	1.19E = 02 0.63E = 03	9.00E - 03 7.05E - 03	0
	F 29 P 30	159.57	-21.33 -21.87	0.10	0.10	8.28E = 03 1.44E = 02	1.5	1.1	0.33	9.03E = 03 1 58E = 02	1.31E - 03	0
1086	(0)	159.55	-21.07	0.20	0.15	1.44E = 02 6 11E = 02	1.2	1.0	0.55	1.38E = 02 6.98E = 02	1.31E - 02 4 24E - 02	0
1087	(0)	160.20	-24.40	0.33	0.30	2.73E = 02	0.9	0.7	0.15	2.98E - 02 2.09E - 02	1.65E = 02	0
1088	(0)	160.20	3.00	0.60	0.30	1.10E-01	1.2	0.7	0.15	1.13E - 01	7.37E - 02	0
1089	(0) (1)	160.10	-12.10	1 17	0.50	2.12E-01	2.1	1.6	0.19	2.53E-01	1.65E - 01	0
1007	P 1	160.60	-12.10	0.27	0.10	1.85E - 02	2.1	1.6	0.29	3.33E-02	2.56E - 02	0
1090	(0)	160.63	-24.53	0.33	0.13	2.32E - 02	0.9	0.7	0.33	1.72E-02	1.37E - 02	Ő
1091	(0)	160.83	1.47	0.30	0.33	4.11E - 02	1.0	0.6	0.13	3.89E-02	2.26E - 02	Ő
1092	(0)	160.93	-1.57	0.37	0.57	1.12E-01	1.1	0.9	0.15	1.05E-01	7.36E-02	0
1093	(0)	161.30	-1.83	0.20	0.30	3.22E-02	0.9	0.6	0.14	2.51E-02	1.73E-02	0
1094	(0)	161.33	-16.53	0.27	0.23	3.41E-02	1.3	0.9	0.28	3.63E-02	2.15E-02	0
1095	(0)	161.60	-17.07	0.23	0.27	2.44E-02	1.1	0.7	0.27	2.54E-02	1.42E-02	0
1096	(25)	161.60	-8.43	8.27	5.23	9.93E + 00	4.5	3.8	0.51	1.87E + 01	1.19E + 01	5
	P 1	161.60	-8.43	0.60	0.40	1.07E - 01	4.5	3.8	0.51	4.20E-01	3.50E-01	0
	P 2	164.27	-8.37	0.20	0.20	2.09E - 02	4.5	3.6	0.52	8.06E-02	6.38E-02	0
	P 3	162.43	-8.73	0.17	0.20	2.20E - 02	4.2	3.5	0.48	8.05E-02	6.55E-02	0
	P 4	164.90	-8.50	0.23	0.17	2.20E - 02	4.0	3.2	0.47	7.88E-02	6.13E-02	0
	P 5	160.63	-9.63	0.27	0.37	4.38E-02	3.8	3.2	0.44	1.46E-01	1.18E-01	1
	P 6	163.10	-8.43	0.77	0.43	8.57E-02	3.9	3.1	0.44	2.90E-01	2.26E-01	0
	P 7	164.10	-8.17	0.30	0.27	4.07E - 02	3.9	3.1	0.45	1.42E-01	1.08E - 01	0
	P 8	164.37	-7.77	0.23	0.20	3.30E-02	4.0	3.1	0.45	1.19E-01	9.02E-02	0
	P 9	165.47	-9.07	0.60	0.20	4.61E - 02	3.5	2.8	0.41	1.40E-01	1.09E-01	0
	P 10	160.37	-9.07	0.37	0.53	9.00E - 02	3.2	2.6	0.36	2.50E-01	1.95E - 01	0
	P 11	162.27	-9.07	0.13	0.17	1.54E - 02	3.0	2.3	0.34	4.07E - 02	3.06E-02	0
	P 12	165.33	-7.50	0.27	0.13	2.09E - 02	3.1	2.2	0.34	5.88E-02	4.00E - 02	0
	P 13	162.37	-7.83	0.13	0.17	1.54E - 02	2.6	1.8	0.29	3.66E-02	2.43E-02	0
	P 14	164.63	-8.13	0.10	0.13	1.10E-02	2.6	1.7	0.30	2.60E-02	1.65E-02	0
	P 15	159.90	-10.47	0.23	0.43	5.25E-02	2.2	1.7	0.29	1.05E-01	7.34E-02	0
	P 16	159.50	-9.70	0.37	0.30	5.80E-02	2.1	1.4	0.27	1.08E-01	7.26E-02	0
	P 17	159.50	-10.40	0.40	0.33	4.81E-02	2.0	1.4	0.27	8.33E-02	5.4/E - 02	0
	P 18	166.40	-9.00	0.10	0.10	7.68E-03	2.0	1.3	0.27	1.42E - 02	9.24E-03	0
	P 19	159.17	-11.87	0.20	0.17	2.28E-02	1.7	1.2	0.26	5.58E-02	2.52E-02	0
	P 20	162.73	-8.33	0.23	0.27	3.90E-02	1.9	1.1	0.24	7.01E-02	5.98E-02	0
	P 21	162.73	-/.5/	0.13	0.13	1.52E-02	2.0	1.1	0.24	2.38E-02	1.28E-02	0
	P 22	159.50	-11.80	0.23	0.20	3.13E-02	1.0	1.1	0.25	4.5/E-02	3.11E-02	0
	r 23	100.37	-ð.//	0.27	0.17	2.13E-02	1.ð	1.1	0.25	4.00E-02	2.02E-02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	S	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 24	160.07	-10.67	0.13	0.13	1.64E-02	1.6	1.0	0.24	2.41E-02	1.47E-02	0
	P 25	159.07	-12.30	0.20	0.13	1.95E-02	1.5	1.0	0.25	2.63E-02	1.79E-02	0
1097	(0)	161.63	-23.57	0.27	0.37	4.48E - 02	0.9	0.9	0.33	3.30E-02	2.86E-02	0
1098	(0)	161.73	-24.70	0.37	0.17	3.03E-02	0.8	0.7	0.33	2.05E - 02	1.72E - 02	0
1099	(0)	161.80	-23.97	0.33	0.13	2.44E - 02	0.9	0.8	0.33	1.77E - 02	1.53E-02	0
1100	(0)	162.30	14.30	0.27	0.20	2.58E-02	0.7	0.7	0.22	1.46E - 02	1.49E-02	0
1101	(0)	162.33	-23.70	0.33	0.17	3.15E-02	1.1	1.0	0.35	2.38E-02	2.15E-02	0
1102	(0)	162.60	-17.93	0.17	0.20	2.11E-02	1.3	0.9	0.30	2.31E-02	1.41E-02	0
1103	(0)	162.63	-17.57	0.50	0.43	1.20E - 01	1.3	0.9	0.30	1.32E-01	7.82E-02	0
1104	(0)	162.67	-6.97	0.23	0.27	2.98E-02	1.6	0.8	0.21	4.24E - 02	1.79E-02	0
1105	(5)	162.77	1.37	2.57	1.50	1.59E + 00	3.0	2.6	0.23	2.00E + 00	1.37E + 00	3
	P 1	162.77	1.37	0.40	0.30	6.11E-02	3.0	2.6	0.23	1.59E-01	1.35E-01	0
	P 2	162.90	1.73	0.10	0.13	1.11E-02	2.0	1.6	0.17	1.98E-02	1.54E - 02	0
	P 3	162.17	1.50	0.30	0.17	4.22E - 02	1.6	1.2	0.15	5.88E-02	4.18E-02	0
	P 4	161.60	1.93	0.33	0.20	3.55E-02	1.4	1.0	0.15	4.55E-02	3.17E-02	0
	P 5	163.30	1.67	0.20	0.13	2.11E-02	1.4	1.0	0.14	2.67E-02	1.84E-02	0
1106	(0)	162.87	-16.67	0.20	0.27	2.87E - 02	1.2	0.7	0.28	3.04E-02	1.70E - 02	0
1107	(1)	162.90	-17.17	0.33	0.20	3.72E-02	1.6	1.1	0.32	4.45E-02	2.73E-02	0
	P 1	162.90	-17.17	0.13	0.10	8.49E-03	1.6	1.1	0.32	1.23E-02	8.42E-03	0
1108	(0)	162.93	-24.00	0.43	0.23	5.58E-02	0.9	0.9	0.34	3.70E-02	3.38E-02	0
1109	(1)	163.17	-5.17	1.17	0.73	3.44E-01	1.7	1.1	0.21	4.35E-01	2.43E-01	0
	P 1	163.17	-5.17	0.50	0.30	8.96E-02	1.7	1.1	0.21	1.37E-01	8.33E-02	0
1110	(0)	163.27	-16.80	0.30	0.27	3.62E-02	1.2	0.8	0.28	3.78E-02	2.14E-02	0
1111	(0)	163.27	-17.77	0.17	0.30	3.38E-02	1.3	0.9	0.30	3.60E-02	2.18E-02	0
1112	(1)	163.27	-18.20	0.83	0.63	1.93E-01	1.6	1.3	0.34	2.05E-01	1.32E-01	0
	P 1	163.27	-18.20	0.10	0.13	8.44E-03	1.6	1.3	0.34	1.22E - 02	9.13E-03	0
1113	(0)	163.60	-5.27	0.20	0.20	2.43E-02	1.4	0.7	0.19	3.22E-02	1.38E-02	0
1114	(2)	163.90	-17.33	0.93	0.57	2.15E-01	1.8	1.3	0.34	2.45E-01	1.52E - 01	0
	P 1	163.90	-17.33	0.13	0.13	1.17E - 02	1.8	1.3	0.34	1.82E - 02	1.34E - 02	0
	P 2	163.50	-17.40	0.17	0.17	1.27E - 02	1.6	1.1	0.32	1.79E - 02	1.24E - 02	0
1115	(0)	164.27	-17.37	0.30	0.17	2.55E-02	1.2	0.8	0.30	2.57E-02	1.56E - 02	0
1116	(2)	164.30	-5.63	1.93	1.03	1.07E + 00	3.2	2.3	0.32	2.01E + 00	1.08E + 00	0
	P 1	164.30	-5.63	0.40	0.17	4.42E - 02	3.2	2.3	0.32	1.25E - 01	8.66E-02	1
	P 2	164.40	-5.27	0.30	0.20	3.10E-02	2.2	1.4	0.24	6.22E - 02	3.65E-02	0
1117	(1)	164.73	-16.33	0.30	0.23	4.05E - 02	1.6	1.2	0.32	4.60E - 02	2.93E-02	0
	P 1	164.73	-16.33	0.10	0.10	7.46E-03	1.6	1.2	0.32	1.06E - 02	7.49E-03	0
1118	(0)	165.50	-8.10	0.33	0.17	3.74E - 02	1.7	0.8	0.23	5.60E-02	2.39E-02	0
1119	(0)	165.53	-3.47	0.13	0.27	2.11E - 02	1.4	0.7	0.17	2.70E - 02	1.23E - 02	0
1120	(0)	165.53	4.30	0.33	0.17	2.88E - 02	1.2	0.7	0.14	3.02E - 02	1.68E - 02	0
1121	(1)	165.73	-17.57	0.63	0.27	9.64E-02	1.3	1.0	0.32	9.43E-02	6.40E - 02	0
	P 1	165.73	-17.57	0.20	0.17	1.48E - 02	1.3	1.0	0.32	1.68E - 02	1.24E - 02	0
1122	(1)	165.77	-15.70	0.93	0.93	3.75E-01	1.6	1.2	0.32	4.20E-01	2.73E-01	0
	P 1	165.77	-15.70	0.23	0.23	2.78E - 02	1.6	1.2	0.32	3.96E-02	2.89E-02	0
1123	(0)	165.80	-16.20	0.27	0.17	2.45E - 02	1.1	0.8	0.29	2.43E-02	1.53E - 02	0
1124	(0)	166.00	-1.40	0.37	0.23	4.22E-02	1.1	0.6	0.14	4.23E-02	2.32E-02	0
1125	(0)	166.00	-15.97	0.33	0.20	3.42E-02	1.1	0.7	0.28	3.30E-02	2.05E-02	0
1126	(0)	166.03	-15.20	0.30	0.27	5.15E-02	1.4	1.0	0.29	5.49E-02	3.51E-02	0
1127	(0)	166.17	-4.40	0.33	0.23	2.77E-02	1.5	0.7	0.19	3.78E-02	1.60E-02	0
1128	(1)	166.67	-23.97	0.47	0.50	9.54E-02	1.5	1.6	0.43	7.90E-02	8.09E-02	0
	P 1	166.67	-23.97	0.17	0.10	1.22E-02	1.5	1.6	0.43	1.66E-02	1.69E-02	0
1129	(0)	166.70	-7.10	0.17	0.37	2.65E-02	1.5	0.6	0.22	3.84E-02	1.50E-02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	S	ize	Surface	Maximun	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2}ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
1120	(2)	167.00		1 42	0.97	7.70E_01	27	1.0	0.22	1 20E + 00	6 5 5 E 01	1
1150	(2) D 1	167.00	-1.11	1.43	0.87	7.79E-01	2.7	1.9	0.32	1.30E + 00	0.55E - 01	1
		167.00	-1.11	0.27	0.17	2.35E - 02	2.7	1.9	0.52	0.19E - 02	4.09E - 02	0
1121	P 2	107.43	-/.4/	0.17	0.17	1.98E - 02	2.1 1.0	1.5	0.20	3.79E - 02	2.13E - 02	0
1151	(1) D 1	107.10	-1.55	1.23	0.05	4.10E - 01	1.0	1.2	0.18	4.90E-01	2.83E - 01	0
1122	(2)	167.10	-1.55	0.33	0.50	3.69E - 02	1.0	1.2	0.10	0.00E - 02	4.01E - 02	0
1152	(2) D 1	167.23	-15.55	0.77	0.57	1.0/E = 01	2.0	1.0	0.30	1.00 E = 01 1.74 E = 02	1.27E = 01	0
		107.23	-15.55	0.13	0.10	9.04E - 03	2.0	1.0	0.30	1.74E - 02 1.27E - 02	1.38E - 02	0
1122	(0)	167.27	-15.55	0.15	0.10	1.07E = 02	1.4	1.0	0.30	1.37E - 02	9.01E-03	0
1133	(0) (1)	167.27	-8.07	0.27	0.27	4.30E = 02 1.23E = 01	1.0	0.9	0.24	0.19E - 02 1.47E - 01	3.07E - 02 8 57E - 02	0
1154	(1) P 1	167.27	4.23	0.47	0.40	1.23E = 01 1.88E = 02	1.0	1.1	0.10	1.47E = 01 2.73E = 02	1.78E - 02	0
1135	(2)	167.27	-4.20	0.13	0.17	1.88E - 02 2 30E - 01	2.0	1.1	0.10	2.75E = 02 3.46E = 01	1.78E - 02 1.74E - 01	0
1155	(2) D 1	167.30	-4.20	0.70	0.03	2.30E = 01 3.32E = 02	2.0	1.3	0.22	5.40E = 01 6.15E = 02	1.74E = 01 3.60E = 02	0
	\mathbf{p}_{2}	167.03	-4.20	0.20	0.23	3.32E - 02 1.44E - 02	2.0	1.5	0.22	0.13E - 02 2 33E - 02	1.26E - 02	0
1136	(0)	167.33	-15.80	0.10	0.20	$2.57E_{-02}$	1.0	1.0	0.20	2.55E = 02 2.75E = 02	1.20E 02	0
1130	(0)	167.55	-6.63	0.17	0.20	7.95E - 02	1.5	0.9	0.30	1.20E - 01	5.19E - 02	0
1137	(0)	167.57	-8.73	0.40	0.30	3.18E - 02	1.7	0.9	0.23	$3.99E_{-02}$	1.87E - 02	0
1130	(0)	167.67	-6.93	0.20	0.50	3.10E - 02 3.31E - 02	1.4	0.0	0.23	4.74E - 02	1.07E - 02 1 94F-02	0
1140	(0)	167.67	-4.27	0.33	0.17	3.99E - 02	1.0	1.0	0.22	$5.57E_{02}$	2.69E - 02	0
1140	(0)	167.70	2 57	0.35	0.20	4.00E - 02	1.7	0.7	0.20	4.55E - 02	2.02E 02 2.22E - 02	0
1141	(0)	167.87	-6.20	0.23	0.17	2 10E-02	1.2	0.7	0.14	2 90E-02	1.14E - 02	0
1142	(0)	167.93	-540	0.20	0.20	5.09E - 02	1.4	0.8	0.20	7.15E-02	3.27E - 02	1
1143	(0) (1)	168.03	-19.13	0.30	0.20	3.09E - 02	1.0	1.8	0.21	3.24E-02	3.58E - 02	1
	P 1	168.03	-19.13	0.10	0.07	5.25E-03	1.7	1.8	0.38	7.82E-03	8 26E-03	1
1145	(4)	168.10	-6.37	1.07	1 27	6 54E-01	2.8	1.0	0.30	1.02E = 0.000	5.26E - 01	0
1110	P 1	168.10	-6.37	0.13	0.13	1.33E - 02	2.8	1.9	0.30	3.31E-02	2.23E - 02	0
	P 2	168.37	-6.23	0.43	0.17	3.87E - 02	2.4	1.6	0.27	8.30E-02	5.28E - 02	Ő
	P 3	168.03	-7.03	0.10	0.20	1.76E - 02	2.1	1.3	0.26	3.40E-02	1.98E - 02	0
	P 4	168.37	-6.50	0.10	0.20	1.77E-02	2.1	1.3	0.25	3.35E-02	1.95E - 02	0
1146	(0)	168.50	-1.10	0.23	0.33	5.11E-02	1.5	0.9	0.17	6.60E-02	3.59E-02	0
1147	(0)	168.57	-9.20	0.70	0.80	2.47E-01	1.5	0.9	0.24	2.91E-01	1.51E-01	0
1148	(0)	169.00	-5.00	0.83	0.50	1.87E-01	1.5	0.9	0.20	2.44E-01	1.22E-01	1
1149	(0)	169.07	-1.40	0.17	0.23	2.11E-02	1.3	0.7	0.16	2.46E-02	1.20E-02	0
1150	(1)	169.17	-14.87	0.17	0.13	1.61E-02	1.6	1.2	0.31	2.04E-02	1.29E-02	0
	P 1	169.17	-14.87	0.10	0.07	5.37E-03	1.6	1.2	0.31	8.15E-03	5.64E-03	1
1151	(0)	169.43	-18.60	0.40	0.40	9.27E-02	1.0	0.9	0.30	7.15E-02	6.26E-02	0
1152	(1)	169.50	-20.20	0.20	0.17	2.40E - 02	1.0	1.1	0.32	1.70E-02	1.97E-02	0
	P 1	169.50	-20.20	0.13	0.10	9.38E-03	1.0	1.1	0.32	8.29E-03	9.34E-03	0
1153	(0)	169.57	2.20	0.57	0.50	1.08E-01	1.5	0.8	0.15	1.40E-01	6.43E-02	0
1154	(1)	169.77	-15.60	0.30	0.57	8.35E-02	1.5	1.0	0.31	9.91E-02	5.81E-02	0
	P 1	169.77	-15.60	0.17	0.30	2.25E - 02	1.5	1.0	0.31	3.09E-02	1.99E-02	0
1155	(3)	169.80	-19.43	0.87	1.30	3.91E-01	2.6	2.6	0.48	4.23E-01	4.08E-01	1
	P 1	169.80	-19.43	0.13	0.10	9.43E-03	2.6	2.6	0.48	2.12E-02	2.13E-02	0
	P 2	170.00	-19.03	0.20	0.23	1.89E-02	2.5	2.4	0.47	4.13E-02	3.98E-02	1
	P 3	170.27	-19.27	0.13	0.23	1.68E-02	1.4	1.3	0.34	1.96E-02	1.87E-02	0
1156	(1)	169.87	-7.60	0.30	0.23	3.96E-02	1.9	1.3	0.25	5.51E - 02	3.17E-02	0
	P 1	169.87	-7.60	0.13	0.07	8.81E-03	1.9	1.3	0.25	1.54E - 02	1.02E - 02	0
1157	(5)	169.87	-9.07	1.77	1.73	1.56E + 00	2.7	2.2	0.34	$2.34\mathrm{E}\!+\!00$	1.57E + 00	1
	P 1	169.87	-9.07	0.43	0.37	8.01E-02	2.7	2.2	0.34	1.93E-01	1.53E-01	0
	P 2	169.83	-9.63	0.13	0.13	1.10E-02	2.3	1.8	0.30	2.22E - 02	1.71E-02	0
	P 3	169.13	-8.93	0.17	0.13	1.54E-02	2.2	1.6	0.29	3.05E - 02	2.16E-02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 4	169.33	-9.40	0.17	0.13	1.43E-02	1.8	1.2	0.26	2.27E-02	1.52E-02	0
	P 5	170.30	-9.67	0.33	0.53	6.35E-02	1.6	1.2	0.25	9.04E-02	6.44E-02	0
1158	(4)	170.03	-12.27	1.23	2.30	6.89E-01	1.8	1.4	0.30	8.15E-01	5.18E-01	1
	P 1	170.03	-12.27	0.37	0.20	3.91E-02	1.8	1.4	0.30	6.49E-02	4.88E-02	0
	P 2	169.87	-13.20	0.10	0.20	1.73E-02	1.7	1.3	0.30	2.77E-02	1.99E-02	0
	P 3	170.07	-13.10	0.17	0.27	2.27E-02	1.6	1.1	0.29	3.18E-02	2.17E-02	0
	P 4	170.07	-12.60	0.30	0.17	3.25E-02	1.5	1.1	0.27	4.32E-02	2.97E-02	0
1159	(0)	170.50	-4.93	0.53	0.27	5.87E-02	1.2	0.8	0.19	6.36E-02	3.52E-02	0
1160	(1)	170.57	-7.87	0.20	0.17	1.87E-02	1.5	1.0	0.23	2.28E-02	1.36E-02	0
	P 1	170.57	-7.87	0.10	0.10	7.70E-03	1.5	1.0	0.23	1.07E-02	6.88E-03	0
1161	(1)	170.67	-0.23	0.33	0.37	5.00E-02	1.7	1.1	0.18	6.75E-02	3.58E-02	0
	P 1	170.67	-0.23	0.17	0.17	1.56E - 02	1.7	1.1	0.18	2.42E-02	1.44E - 02	0
1162	(1)	170.80	-8.53	0.27	0.20	3.96E - 02	1.7	1.2	0.25	4.82E - 02	3.12E-02	0
	P 1	170.80	-8.53	0.17	0.10	1.21E - 02	1.7	1.2	0.25	1.80E - 02	1.28E - 02	0
1163	(1)	170.80	-13.40	0.17	0.27	3.57E - 02	1.7	1.2	0.30	4.77E - 02	2.83E - 02	Ő
1100	P 1	170.80	-1340	0.10	0.17	1.30E - 02	17	1.2	0.30	2.03E-02	1.33E-02	Ő
1164	(0)	170.83	2.00	0.10	0.40	6.00E - 02	1.5	0.8	0.16	8 17E-02	3.63E - 02	Ő
1165	(0)	170.02	-8.87	0.30	0.10	5.002 - 02	1.0	0.7	0.10	4.89E - 02	2.88E-02	Ő
1166	(0)	171 10	3 70	0.10	0.30	3.44E - 02	1.0	0.7	0.15	4.36E - 02	1.96E - 02	Ő
1167	(0)	171.10	3 27	0.30	0.20	2.00E - 02	1.1	0.7	0.15	2.61E - 02	1.90E - 02 1.14E-02	0
1168	(0)	171.30	-0.83	0.13	0.17	3.89E - 02	1.4	0.7	0.15	4.55E - 02	2.41E - 02	0
1160	(0) (5)	171.30	-10.67	1 73	1.47	$9.63E_{-01}$	3.5	3.1	0.10	$1.26E \pm 00$	2.41E 02 8.91E_01	8
1107	(J) P 1	171.33	-10.67	0.10	0.10	9.03E = 01 8 74E $= 03$	3.5	3.1	0.45	$2.67E_{-02}$	2.36E - 02	0
	D 2	170.73	-10.07	0.10	0.10	$2.20E_{-02}$	2.8	2.5	0.45	5.81E - 02	2.50E - 02	0
	D 2	171.63	_11.10	0.20	0.20	2.25E = 02	2.0	1.5	0.30	7.50E_02	$5.82E_{-02}$	0
	$\mathbf{P}\mathbf{A}$	171.03	-11.10 -11.30	0.33	0.40	4.23E - 02 3.02E - 02	2.0	1.0	0.30	7.50E - 02	3.82E - 02	0
	D 5	170.83	-10.57	0.30	0.37	3.92E - 02 1 20E - 02	1.0	1.4	0.28	1.79E - 02	4.34E - 02	0
1170	r J (1)	170.03	-10.57	0.17	0.10	1.20E = 02	1.7	1.5	0.27	1.79E = 02 5 14E 02	1.34E - 02	0
1170	(1) D 1	171.43	12.03	0.23	0.23	3.77E = 02	1.7	1.1	0.31	3.14E - 02	2.86E - 02	0
1171	(0)	171.45	-13.95	0.15	0.17	1.40E = 02 0.22E = 02	1.7	1.1	0.51	2.19E - 02 1.03E - 01	1.55E - 02	1
1171	(0)	171.57	-2.03	0.40	0.03	9.22E = 02	1.4	1.0	0.16	2.80E 02	3.93E - 02	1
1172	(0) (1)	171.05	-0.55	0.50	0.15	2.44E = 02	1.5	0.7	0.10	2.69E - 02	1.42E - 02	0
1175	(1) D 1	171.07	-18.07	0.43	0.55	1.17E = 01	1.0	1.4	0.35	1.24E = 01	9.01E - 02	0
1174	r 1 (0)	171.07	-16.07	0.20	0.15	1.60E = 02	1.0	1.4	0.55	2.34E - 02	2.02E - 02	0
11/4	(0)	171.77	-11.07	0.20	0.17	2.01E - 02	1.2	0.8	0.25	2.60E - 02	1.03E - 02	0
1175	(0) (1)	171.00	-0.10	0.25	0.55	4.00E - 02	1.4	0.0	0.10	4.97E - 02	2.43E = 02	0
1170	(1) D 1	171.00	-5.20	0.50	0.75	1.70E = 01	2.2	1.9	0.20	2.01E - 01	1.42E = 01	0
1177	\mathbf{r} (2)	171.00	-5.20	0.15	0.15	1.11E - 02	2.2	1.9	0.20	2.19E - 02	1.62E - 02	1
11//	(2) D 1	1/1.80	-9.73	0.87	1.10	3.00E - 01	1.0	1.5	0.25	2.92E - 01	2.00E - 01	0
		171.02	-9./3	0.15	0.10	9.80E - 03	1.0	1.5	0.25	1.39E - 02	1.09E - 02	0
1170	P Z	171.93	-9.40	0.20	0.15	1.04E - 02	1.3	1.0	0.23	1.94E - 02	1.45E - 02	0
11/8	(0)	1/1.8/	-0.23	0.17	0.20	2.10E - 02	1.2	0.9	0.20	2.0/E - 02	1.3/E - 02	0
11/9	(0)	1/1.9/	-18.17	0.30	0.13	2.85E - 02	1.1	0.8	0.30	2.5/E - 02	1.79E-02	0
1180	(4)	172.03	-17.00	1.93	1.97	6.88E-01	5.7	5.2	1.10	1.0/E+00	8.18E-01	2
	PI	172.03	-1/.00	0.20	0.10	1.1/E - 02	5.7	5.2	1.10	6.06E-02	5.54E-02	0
	P 2	171.83	-18.33	0.10	0.10	8.44E-03	2.8	2.6	0.50	2.0/E-02	1.88E-02	0
	P 3	171.20	-17.53	0.23	0.20	2.12E-02	2.9	2.6	0.50	5.51E-02	4.74E-02	1
1101	P 4	171.07	-17.90	0.10	0.13	9.52E-03	1.4	1.1	0.33	1.22E - 02	9.30E-03	U
1181	(0)	172.07	-0.27	0.17	0.23	2.11E-02	1.2	0.6	0.16	2.44E-02	1.16E-02	U
1182	(0)	172.07	-21.50	0.23	0.27	3.62E-02	0.9	0.9	0.33	2.45E-02	2.31E-02	0
1183	(1)	172.17	7.47	0.70	0.70	2.51E-01	1.5	1.1	0.19	2.63E-01	1.81E-01	0
	Р1	172.17	7.47	0.20	0.33	3.75E-02	1.5	1.1	0.19	4.87E-02	3.61E - 02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ze	Surface	Maximun	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}				associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
1184	(1)	172.17	-16.03	0.23	0.33	4.48E-02	1.9	1.3	0.36	5.96E-02	3.41E-02	0
	P 1	172.17	-16.03	0.07	0.10	5.34E-03	1.9	1.3	0.36	9.30E-03	6.21E-03	1
1185	(0)	172.33	-18.23	0.43	0.27	4.64E - 02	1.2	1.0	0.32	4.34E - 02	3.05E - 02	0
1186	(0)	172.37	-0.00	0.37	0.17	4.78E - 02	1.6	0.9	0.17	6.54E - 02	3.33E-02	0
1187	(2)	172.37	-8.07	1.30	0.77	3.50E-01	2.8	2.5	0.34	4.59E-01	3.49E-01	3
	P 1	172.37	-8.07	0.17	0.27	2.42E - 02	2.8	2.5	0.34	5.97E-02	5.29E-02	6
	P 2	171.77	-8.43	0.10	0.10	9.89E-03	2.7	2.4	0.34	2.37E-02	2.06E-02	1
1188	(0)	172.47	-21.60	0.30	0.40	4.44E-02	0.8	0.7	0.32	2.82E-02	2.59E-02	0
1189	(0)	172.53	-16.30	0.17	0.10	1.17E - 02	1.5	1.0	0.32	1.41E-02	7.70E-03	0
1190	(0)	172.63	-11.37	0.23	0.20	2.83E - 02	1.2	0.8	0.25	3.12E-02	1.76E-02	l
1191	(3)	172.77	-20.80	0.87	1.07	2.49E-01	1.3	1.2	0.36	1.94E - 01	1./1E-01	0
	PI	172.77	-20.80	0.10	0.10	8.31E-03	1.3	1.2	0.36	9.51E-03	8.70E-03	0
	P 2	172.63	-21.07	0.10	0.13	9.33E-03	1.2	1.1	0.35	9.65E-03	8.88E-03	0
1100	P 3	172.80	-20.47	0.10	0.10	7.29E-03	1.1	1.0	0.34	/.4/E - 03	6.66E - 03	0
1192	(10) D 1	1/2.8/	2.27	4.73	3.73	6.38E + 00	3.3	2.5	0.27	1.1/E + 01	6.74E + 00	3
		172.87	2.27	0.97	0.47	2.05E - 01	3.3	2.5	0.27	6.01E - 01	4.34E - 01	0
	P 2	1/1.3/	2.57	1.00	0.43	1.05E - 01	2.8	2.1	0.23	2.64E - 01	1.84E - 01	0
	P 3	1/1.5/	1.30	0.27	0.53	7.78E-02	2.2	1.4	0.20	1.56E - 01	9.42E-02	0
	P 4	1/4./0	2.00	0.13	0.13	1.55E - 02	2.1	1.3	0.20	3.01E-02	1.81E - 02	0
		1/1.0/	0.40	0.13	0.20	1.89E - 02	2.0	1.3	0.19	3.52E-02	2.18E-02	0
		171.57	1.8/	0.13	0.27	2.0/E - 02	2.1	1.3	0.19	5.10E - 02	2.98E - 02	0
	P/	1/1.3/	0.87	0.17	0.23	2.22E - 02	2.0	1.3	0.19	4.11E - 02	2.40E - 02	0
		1/1.8/	1.45	0.13	0.25	2.22E = 02	2.1	1.5	0.19	4.20E - 02	2.39E - 02	0
	Г 9 D 10	1/1.//	1.07	0.15	0.17	1.76E - 02	2.1	1.5	0.19	5.55E = 02	1.00E - 02	0
1103	(1)	172.07	5.50	0.45	0.50	3.07E - 02	1.0	1.1	0.17	0.00E - 02	3.24E = 02	0
1195	(1) P 1	172.97	-5.50	0.40	0.57	6.64E - 03	2.8	2.0	0.31	1.20E = 01 1.71E = 02	9.78E - 02 1 54E - 02	1
1104	(0)	172.97	7 30	0.67	0.10	$1.85E_{-01}$	1.2	0.9	0.51	$1.71E \ 02$ 1.75E - 01	1.0 = 02	0
1195	(0)	173.00	-21.33	0.05	0.70	5.27E - 02	0.9	0.9	0.10	3.60E - 02	3.18E - 02	0
1196	(0)	173.00	-357	0.33	0.90	2.26E - 01	1.2	0.9	0.55	2.30E-01	1 50E-01	0
1197	(0)	173.23	-21.00	0.17	0.23	2.20E = 01 2 49E -02	1.2	0.9	0.10	1.86E - 02	1.50E - 01 1 59E-02	0
1198	(6)	173 33	-1630	2.17	1.93	1.42E + 00	5.1	4.6	0.92	2.71E + 00	2.09E + 00	6
1170	P 1	173.33	-16.30	0.23	0.13	1.71E - 02	5.1	4.6	0.92	7.50E - 02	6.68E - 02	2
	P 2	172.90	-16.73	0.13	0.17	1.38E - 02	4.9	4.5	0.89	6.09E - 02	5.46E - 02	0
	P 3	174.03	-15.80	0.43	0.27	4.17E - 02	4.4	4.0	0.76	1.57E - 01	1.39E-01	4
	P 4	174.70	-15.53	0.13	0.17	1.39E-02	3.9	3.6	0.66	4.85E-02	4.42E-02	3
	P 5	173.67	-15.60	0.13	0.13	1.18E-02	3.3	2.8	0.54	3.40E-02	2.78E-02	1
	P 6	173.93	-16.23	0.13	0.17	1.49E-02	2.9	2.5	0.49	3.80E-02	3.19E-02	0
1199	(0)	173.37	-20.67	0.23	0.23	2.60E-02	1.1	1.0	0.34	2.11E-02	1.80E-02	0
1200	(0)	173.43	-5.43	0.20	0.20	2.65E-02	1.0	0.8	0.19	2.28E-02	1.63E-02	0
1201	(0)	173.50	-19.87	0.23	0.23	2.19E-02	1.0	0.8	0.32	1.69E-02	1.34E-02	0
1202	(0)	173.63	-15.23	0.43	0.40	8.26E-02	1.5	0.9	0.31	1.00E-01	5.55E-02	0
1203	(0)	173.77	-20.17	0.63	0.33	6.05E-02	1.0	0.8	0.33	4.64E-02	3.71E-02	0
1204	(0)	173.87	-3.03	0.20	0.30	3.88E-02	1.1	0.7	0.17	3.80E-02	2.22E-02	0
1205	(0)	174.00	1.60	0.37	0.20	4.33E-02	1.7	0.8	0.17	6.28E-02	2.64E-02	0
1206	(0)	174.03	-3.17	0.17	0.13	2.00E-02	1.1	0.7	0.17	1.90E-02	1.13E-02	0
1207	(0)	174.20	1.10	0.43	0.40	8.55E-02	1.8	1.0	0.18	1.29E-01	5.68E-02	0
1208	(0)	174.23	-19.53	0.20	0.17	2.09E-02	0.9	0.7	0.32	1.63E-02	1.24E-02	0
1209	(1)	174.33	-23.03	0.23	0.17	2.35E-02	1.2	1.1	0.39	1.90E-02	1.74E-02	0
	P 1	174.33	-23.03	0.10	0.07	5.11E-03	1.2	1.1	0.39	5.62E - 03	5.27E - 03	0
	1 1										0.2/2 00	0

 Table 7. (Continued.)

Cloud	Clump	Pos	sition	S	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	•			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 1	174.33	-15.00	0.07	0.10	4.29E-03	1.7	1.2	0.33	6.44E-03	4.61E-03	1
1211	(41)	174.37	-13.77	10.57	6.30	1.19E + 01	6.6	6.1	1.31 [†]	2.24E + 01	1.69E+01	28
1211	P 1	174.37	-13.77	0.20	0.20	2.59E - 02	6.6	6.1	1.31 [†]	1.49E - 01	1.36E - 01	0
	P 2	168.70	-15.67	0.17	0.33	2.68E - 02	6.4	6.0	1.27 [†]	1.44E - 01	1.33E - 01	0
	P 3	168.23	-16.17	0.27	0.40	3.84E - 02	6.1	5.8	1.22	1.97E - 01	1.83E - 01	2
	P 4	173.37	-13.77	0.17	0.10	1.19E - 02	6.3	5.6	1.17	6.52E - 02	5.76E-02	0
	P 5	173.73	-13.50	0.27	0.23	3.35E-02	6.2	5.6	1.14	1.73E-01	1.53E-01	0
	P 6	173.47	-13.37	0.27	0.10	2.27E-02	5.6	5.0	0.96	1.09E-01	9.51E-02	0
	Р7	169.30	-16.17	0.17	0.07	8.54E-03	4.8	4.3	0.81	3.55E-02	3.17E-02	0
	P 8	172.70	-14.60	0.23	0.43	4.30E-02	4.8	4.2	0.79	1.76E-01	1.48E-01	0
	P 9	167.70	-16.50	0.13	0.10	1.07E-02	4.2	3.9	0.72	3.92E-02	3.59E-02	0
	P 10	169.83	-16.17	0.23	0.07	1.28E - 02	4.4	3.9	0.72	5.13E-02	4.52E-02	0
	P 11	168.00	-15.70	0.10	0.10	9.63E-03	4.1	3.7	0.66	3.44E-02	3.09E-02	1
	P 12	170.20	-16.03	0.17	0.10	9.61E-03	4.0	3.5	0.65	3.44E-02	2.96E - 02	1
	P 13	172.33	-13.87	0.13	0.10	1.08E - 02	4.0	3.4	0.61	3.87E-02	3.16E-02	0
	P 14	170.97	-15.80	0.27	0.20	2.35E-02	3.6	3.1	0.57	7.62E - 02	6.34E-02	2
	P 15	172.17	-14.10	0.13	0.17	1.72E - 02	3.5	2.9	0.53	5.41E-02	4.31E-02	0
	P 16	171.53	-14.93	0.17	0.10	1.40E - 02	3.4	2.8	0.52	4.21E-02	3.41E-02	1
	P 17	171.83	-15.67	0.33	0.13	2.57E - 02	3.3	2.7	0.53	7.77E-02	6.26E-02	2
	P 18	171.23	-15.67	0.13	0.13	1.18E-02	3.2	2.7	0.51	3.38E-02	2.71E-02	1
	P 19	170.77	-15.10	0.20	0.13	1.82E-02	3.1	2.5	0.47	4.96E-02	3.97E-02	0
	P 20	175.47	-12.40	0.50	0.23	7.16E-02	2.8	2.5	0.43	1.76E-01	1.51E-01	0
	P 21	171.53	-14.67	0.17	0.13	1.40E - 02	3.0	2.5	0.47	3.70E-02	2.89E-02	1
	P 22	171.77	-15.40	0.10	0.20	1.50E-02	2.9	2.3	0.46	3.91E-02	3.03E-02	1
	P 23	175.17	-13.40	0.23	0.30	3.35E-02	2.6	2.3	0.42	7.53E-02	6.39E-02	0
	P 24	172.07	-15.17	0.10	0.10	8.58E-03	2.8	2.2	0.44	2.07E-02	1.55E-02	0
	P 25	173.93	-14.37	0.33	0.20	3.44E-02	2.7	2.2	0.44	8.15E-02	6.32E-02	0
	P 26	175.70	-12.80	0.37	0.27	5.63E-02	2.3	2.0	0.37	1.12E-01	9.59E-02	0
	P 27	169.77	-14.80	0.13	0.13	1.50E - 02	2.4	1.9	0.39	3.17E-02	2.43E-02	0
	P 28	175.40	-13.17	0.30	0.20	4.65E-02	2.1	1.8	0.36	8.58E-02	7.18E-02	0
	P 29	167.40	-17.00	0.17	0.30	2.97E-02	2.1	1.8	0.39	5.26E-02	4.47E - 02	0
	P 30	175.77	-13.17	0.27	0.20	2.81E-02	2.0	1.7	0.35	4.90E-02	4.17E - 02	0
	P 31	166.47	-17.30	0.10	0.13	8.49E-03	1.9	1.6	0.37	1.45E - 02	1.22E - 02	0
	P 32	171.17	-14.80	0.10	0.13	8.59E-03	2.2	1.6	0.36	1.71E - 02	1.23E-02	0
	P 33	171.77	-13.73	0.23	0.30	3.56E-02	2.2	1.6	0.35	6.94E - 02	4.74E - 02	0
	P 34	170.23	-15.10	0.37	0.37	5.90E-02	2.0	1.5	0.35	1.05E - 01	7.51E-02	0
	P 35	166.83	-16.43	0.10	0.17	1.07E - 02	1.7	1.4	0.34	1.61E - 02	1.27E - 02	0
	P 36	167.83	-16.03	0.13	0.10	1.07E - 02	1.6	1.3	0.33	1.55E - 02	1.18E - 02	0
	P 37	166.20	-16.50	0.23	0.13	1.92E - 02	1.6	1.2	0.33	2.68E-02	2.03E - 02	0
	P 38	175.13	-11.73	0.23	0.23	3.15E-02	1.5	1.1	0.28	4.21E-02	3.08E-02	0
	P 39	171.50	-15.93	0.10	0.17	1.28E - 02	1.7	1.1	0.33	1.94E - 02	1.21E - 02	0
	P 40	166.13	-16.77	0.13	0.13	1.28E - 02	1.3	1.0	0.31	1.53E-02	1.11E-02	0
	P 41	165.93	-17.40	0.10	0.13	1.17E - 02	1.3	1.0	0.32	1.35E-02	1.02E - 02	0
1212	(0)	174.40	-0.27	0.37	0.37	4.78E - 02	1.4	0.7	0.17	6.31E-02	2.93E-02	0
1213	(1)	174.47	-19.87	0.33	0.23	4.28E-02	1.5	1.3	0.38	4.03E-02	3.30E-02	0
	P 1	174.47	-19.87	0.13	0.10	8.36E-03	1.5	1.3	0.38	1.09E-02	9.43E-03	0
1214	(0)	174.47	3.57	0.33	0.43	8.10E-02	1.5	0.8	0.17	1.04E - 01	5.01E-02	0
1215	(0)	174.50	-2.17	0.67	0.40	1.18E-01	1.4	0.9	0.18	1.31E-01	7.73E-02	0
1216	(0)	174.60	-19.57	0.33	0.23	2.93E-02	1.0	0.8	0.33	2.35E-02	1.79E-02	0
1217	(0)	174.63	1.53	0.13	0.23	2.11E-02	1.6	0.8	0.17	2.98E-02	1.28E-02	0
1218	(0)	174.63	-16.73	0.20	0.20	2.24E-02	1.2	0.9	0.31	2.10E - 02	1.50E-02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ize	Surface	Maximur	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2}ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-	-	-	associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
1219	(0)	174.70	-10.93	0.17	0.20	2.51E-02	1.0	0.6	0.23	2.22E-02	1.39E-02	0
1220	(0)	174.73	-12.93	0.27	0.23	2.82E-02	1.1	0.7	0.26	2.77E-02	1.64E-02	0
1221	(0)	174.77	3.70	0.30	0.30	5.10E-02	1.4	0.8	0.17	6.28E-02	3.15E-02	0
1222	(1)	174.80	5.97	0.33	0.40	9.95E-02	1.9	1.4	0.21	1.29E-01	8.48E-02	0
	P 1	174.80	5.97	0.17	0.23	1.99E-02	1.9	1.4	0.21	3.28E-02	2.41E-02	0
1223	(1)	174.90	-17.13	0.23	0.17	2.55E-02	1.6	1.4	0.36	2.68E-02	2.09E-02	0
	P 1	174.90	-17.13	0.10	0.10	6.37E-03	1.6	1.4	0.36	9.15E-03	7.69E-03	0
1224	(0)	175.17	-14.07	0.13	0.27	2.59E - 02	1.0	0.6	0.27	2.28E - 02	1.46E - 02	0
1225	(0)	175.37	-10.80	0.17	0.17	2.07E - 02	1.2	0.9	0.25	1.95E - 02	1.35E - 02	0
1226	(0)	175.53	-0.10	0.30	0.33	5.78E - 02	1.7	0.9	0.18	8.13E-02	3.87E - 02	0
1227	(3)	175.57	-16.67	1.03	1.40	6.40E-01	4.0	3.8	0.71	8.49E-01	7.40E-01	3
	P 1	175.57	-16.67	0.13	0.23	1.70E - 02	4.0	3.8	0.71	5.88E-02	5.60E - 02	0
	P 2	175.17	-16.73	0.13	0.10	9.58E-03	2.9	2.7	0.52	2.46E - 02	2.26E - 02	1
	P 3	175.83	-16.03	0.30	0.37	5.66E-02	2.0	1.8	0.39	9.50E-02	8.65E-02	0
1228	(0)	175.63	-10.40	0.40	0.30	7.32E-02	1.0	0.8	0.23	6.27E-02	4.26E - 02	1
1229	(1)	175.73	-11.47	0.40	0.53	9.14E-02	1.3	1.0	0.27	9.11E-02	6.31E-02	0
1000	PI	175.73	-11.47	0.20	0.30	3.05E-02	1.3	1.0	0.27	3.56E-02	2.63E - 02	0
1230	(0)	1/5.83	0.03	0.43	0.37	9.22E-02	1.6	0.8	0.17	1.28E-01	5.56E - 02	0
1231	(0)	175.83	-7.93	0.37	0.47	7.81E-02	1.1	0.8	0.21	6.94E - 02	4.66E - 02	0
1232	(0)	1/5.8/	-10.83	0.23	0.40	4.26E - 02	1.0	0.7	0.24	3./IE-02	2.53E - 02	0
1233	(0)	176.07	-20.40	0.23	0.27	2.19E - 02	0.8	0.6	0.32	1.49E - 02	1.22E - 02	0
1234	(1) D 1	176.30	-20.93	0.70	0.90	2.54E - 01	2.6	2.5	0.56	2.68E - 01	2.36E - 01	1
1225	P I	176.30	-20.95	0.10	0.27	1.43E - 02	2.0	2.3	0.30	3.19E - 02	5.00E - 02	0
1233	(2) D 1	176.73	1.00	0.30	0.07	2.01E - 01	1.9	1.1	0.19	2.91E - 01	1.57E - 01 1.57E 02	0
	Г 1 Р 2	176.60	1.00	0.15	0.20	1.07E - 02 2.78E - 02	1.9	1.1	0.19	2.89E - 02	1.37E - 02 2.44E - 02	1
1236	(0)	176.00	_19.90	0.20	0.23	2.78E-02 4.39E-02	1.7	1.0	0.18	4.48E - 02 3.34E - 02	2.44E = 02 2.97E = 02	0
1230	(0)	177.07	-20.53	0.30	0.93	1.30E - 01	1.0	0.9	0.34	5.54E 02	7.39E - 02	0
1238	(0) (1)	177.07	4 50	0.50	0.50	1.20E 01 1.43E-01	2.4	2.0	0.25	1.91E - 01	1.40E - 01	0
1230	P 1	177.07	4.50	0.17	0.20	2.22E - 02	2.4	2.0	0.25	4.57E - 02	3.76E - 02	Ő
1239	(1)	177.10	-19.43	0.47	0.40	8.07E-02	1.1	1.0	0.35	6.50E - 02	5.82E - 02	0
	P 1	177.10	-19.43	0.13	0.10	7.34E-03	1.1	1.0	0.35	7.36E-03	6.80E-03	0
1240	(1)	177.10	-24.30	0.47	0.30	6.58E-02	1.3	1.2	0.43	5.19E-02	4.73E-02	0
	P 1	177.10	-24.30	0.10	0.17	1.11E-02	1.3	1.2	0.43	1.23E-02	1.15E-02	0
1241	(0)	177.30	0.93	0.17	0.13	2.00E - 02	1.4	0.7	0.17	2.71E-02	1.16E-02	0
1242	(1)	177.40	-19.53	0.40	0.40	5.97E-02	1.1	1.1	0.35	4.42E - 02	4.05E-02	0
	P 1	177.40	-19.53	0.10	0.10	8.38E-03	1.1	1.1	0.35	8.25E-03	7.77E-03	0
1243	(0)	177.53	5.23	0.20	0.13	2.10E - 02	1.1	0.8	0.18	1.96E - 02	1.35E - 02	0
1244	(0)	177.53	-19.17	0.33	0.37	4.31E-02	0.9	0.8	0.32	2.78E - 02	2.57E - 02	0
1245	(1)	177.53	0.33	0.40	0.83	1.47E - 01	2.0	1.1	0.19	2.20E - 01	9.79E-02	0
	P 1	177.53	0.33	0.13	0.27	2.44E - 02	2.0	1.1	0.19	4.47E - 02	2.40E - 02	0
1246	(4)	177.70	-20.20	2.03	1.07	9.76E-01	4.6	4.5	0.96	1.26E + 00	1.22E + 00	6
	P 1	177.70	-20.20	0.13	0.10	1.04E - 02	4.6	4.5	0.96	4.10E-02	4.06E - 02	0
	P 2	178.80	-20.10	0.17	0.20	1.98E - 02	3.3	3.3	0.67	5.59E-02	5.52E - 02	1
	P 3	177.63	-20.57	0.10	0.13	9.36E-03	2.1	2.1	0.48	1.72E - 02	1.66E-02	0
10.45	P 4	178.47	-20.23	0.17	0.27	2.19E-02	1.3	1.3	0.38	2.53E-02	2.45E-02	0
1247	(3)	177.97	-9.70	2.97	1.67	1.66E + 00	3.5	3.3	0.45	1.88E+00	1.44E + 00	2
		1//.9/	-9.70	0.23	0.13	1.9/E - 02	5.5	3.3	0.45	0.08E - 02	5.58E-02	3
	P 2	1/6.50	-9.83	0.27	0.13	2.63E-02	2.6	2.3	0.36	0.01E - 02	5.30E-02	0
1040	P 3	1//.1/	-9.8/	0.23	0.55	5.30E-02	1.5	1.3	0.26	4.0/E-02	3./3E-02	0
1248	(0)	1/0.1/	-1.03	0.27	0.00	J.//E-02	1.0	0.7	0.18	0.70E-02	J.10E-02	U

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	S	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
1249	(0)	178.27	0.10	0.27	0.17	2.56E-02	1.7	0.8	0.18	3.84E-02	1.56E-02	0
1250	(9)	178.30	-0.60	4.17	3.40	4.74E + 00	3.4	2.4	0.29	7.99E + 00	3.81E + 00	0
	P 1	178.30	-0.60	0.17	0.23	3.22E-02	3.4	2.4	0.29	9.69E-02	6.63E-02	0
	P 2	179.17	-2.37	0.27	0.23	3.00E-02	2.6	1.6	0.24	7.26E - 02	4.12E - 02	0
	P 3	176.47	-0.60	0.33	0.27	5.11E-02	2.4	1.6	0.22	1.08E - 01	6.66E - 02	0
	P 4	177.67	-0.37	0.27	0.23	4.67E - 02	2.4	1.5	0.22	1.03E - 01	6.15E-02	0
	P 5	176.50	-1.73	0.20	0.30	4.44E - 02	2.1	1.4	0.22	8.55E-02	5.30E-02	0
	P 6	175.97	-0.80	0.27	0.20	3.44E-02	2.1	1.4	0.21	6.68E-02	4.18E-02	0
	P 7	177.20	-1.63	0.17	0.20	2.11E-02	2.2	1.3	0.22	4.21E-02	2.40E - 02	0
	P 8	177.17	-1.23	0.27	0.23	3.00E - 02	2.1	1.2	0.21	5.88E-02	3.26E-02	0
	P 9	176.83	-1.30	0.23	0.57	7.55E - 02	1.9	1.1	0.20	1.33E-01	7.14E - 02	0
1251	(0)	178.37	-5.97	0.20	0.27	2.65E - 02	1.1	0.6	0.18	2.78E - 02	1.51E-02	0
1252	(0)	178.43	-19.00	0.17	0.20	2.10E - 02	1.0	0.9	0.32	1.51E - 02	1.43E-02	0
1253	(4)	178.47	-6.77	3.37	2.43	2.79E + 00	4.3	3.8	0.48	3.99E + 00	2.75E + 00	8
	P 1	178.47	-6.77	0.20	0.13	2.21E - 02	4.3	3.8	0.48	8.37E-02	7.37E-02	0
	P 2	178.87	-6.70	0.23	0.17	2.54E - 02	4.0	3.6	0.44	9.16E-02	7.97E-02	0
	P 3	179.10	-6.27	0.23	0.13	2.32E - 02	2.9	2.4	0.31	5.91E-02	4.72E - 02	0
	P 4	177.10	-7.10	0.40	0.43	9.26E-02	1.4	1.0	0.22	1.13E-01	8.17E-02	0
1254	(0)	178.63	0.57	0.27	0.37	5.11E-02	1.7	0.8	0.18	7.66E - 02	3.30E-02	0
1255	(0)	178.70	-4.80	0.27	0.27	4.76E - 02	1.6	0.9	0.20	6.28E-02	2.99E-02	0
1256	(0)	178.70	-23.57	0.40	0.27	3.77E-02	0.9	0.8	0.38	2.63E-02	2.28E - 02	0
1257	(0)	178.97	-23.97	0.27	0.17	2.34E - 02	1.0	0.9	0.40	1.79E - 02	1.55E-02	0
1258	(0)	179.20	18.07	0.17	0.27	3.06E-02	0.9	0.8	0.26	2.05E - 02	1.94E - 02	0
1259	(1)	179.23	-24.03	0.30	0.30	3.75E - 02	1.2	1.1	0.42	2.96E-02	2.56E - 02	0
	P 1	179.23	-24.03	0.13	0.10	9.13E-03	1.2	1.1	0.42	9.33E-03	8.34E-03	0
1260	(2)	179.30	4.17	0.87	0.50	2.03E-01	2.0	1.7	0.22	2.49E-01	1.86E-01	2
	P 1	179.30	4.17	0.10	0.13	8.87E-03	2.0	1.7	0.22	1.61E - 02	1.34E - 02	1
	P 2	179.07	4.30	0.17	0.10	1.44E - 02	2.0	1.7	0.23	2.57E - 02	2.12E - 02	0
1261	(0)	179.33	-2.00	0.27	0.23	4.11E-02	1.7	0.7	0.18	6.77E-02	2.48E-02	0
1262	(1)	179.57	-23.50	0.67	0.47	1.25E - 01	1.8	1.7	0.49	1.13E-01	1.00E - 01	0
	P 1	179.57	-23.50	0.13	0.10	8.15E-03	1.8	1.7	0.49	1.26E - 02	1.18E-02	0
1263	(1)	179.60	-2.73	0.73	0.77	1.90E - 01	2.1	1.0	0.20	3.30E-01	1.30E-01	0
	P 1	179.60	-2.73	0.30	0.23	2.77E - 02	2.1	1.0	0.20	5.37E-02	2.45E - 02	0
1264	(1)	179.83	-1.13	1.67	1.30	6.45E - 01	2.1	1.1	0.20	1.08E + 00	4.27E - 01	0
	P 1	179.83	-1.13	0.30	0.40	6.44E - 02	2.1	1.1	0.20	1.23E - 01	5.76E - 02	0
1265	(0)	179.97	-1.67	0.33	0.53	7.89E - 02	1.8	0.8	0.18	1.30E - 01	4.79E - 02	0
1266	(0)	179.97	-5.77	0.20	0.20	2.76E - 02	1.4	0.7	0.19	3.55E - 02	1.68E - 02	0
1267	(0)	180.00	-5.33	0.40	0.33	8.74E - 02	1.6	0.9	0.20	1.19E - 01	5.64E - 02	0
1268	(1)	180.23	5.23	0.53	0.37	1.06E - 01	1.3	1.1	0.19	9.93E-02	7.30E - 02	0
	P 1	180.23	5.23	0.13	0.10	1.11E - 02	1.3	1.1	0.19	1.36E - 02	1.09E - 02	0
1269	(0)	180.33	-4.37	0.27	0.17	2.22E - 02	1.5	0.6	0.18	3.19E - 02	1.19E - 02	0
1270	(0)	180.33	-22.10	0.20	0.30	2.68E - 02	1.0	0.9	0.37	1.91E - 02	1.74E - 02	0
1271	(0)	180.40	-1.90	0.30	0.33	4.77E - 02	1.7	0.7	0.17	7.72E - 02	2.74E - 02	0
1272	(0)	180.50	-7.80	0.30	0.17	2.64E - 02	1.0	0.6	0.19	2.41E - 02	1.50E - 02	0
1273	(0)	180.60	-23.50	0.30	0.33	3.57E - 02	0.9	0.8	0.38	2.59E - 02	2.26E - 02	0
1274	(0)	180.63	-5.37	0.33	0.40	5.75E-02	1.7	0.9	0.20	7.68E-02	3.41E-02	0
1275	(0)	180.73	-5.07	0.27	0.40	4.65E-02	1.7	0.9	0.20	6.57E-02	2.87E-02	0
1276	(1)	180.77	5.67	0.57	0.63	1.71E-01	1.3	1.1	0.19	1.65E-01	1.25E-01	0
	P 1	180.77	5.67	0.23	0.40	6.41E-02	1.3	1.1	0.19	7.31E-02	5.80E-02	0
1277	(1)	180.83	-19.63	0.30	0.27	4.29E-02	1.7	1.7	0.41	4.22E-02	4.17E-02	1
	P 1	180.83	-19.63	0.13	0.10	1.05E - 02	1.7	1.7	0.41	1.54E-02	1.53E-02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	S	ize	Surface	Maximun	extinction	δA_{V}	[Auids	[Auads	Number of
nomo	nomo	100	h	<u> </u>	<u> </u>		A	4	-	Juvius	Juvzus	associated
name	name	l (daa)	D (dec)	Δl	ΔD	$(1-2^2)$	A_{V1}	A_{V2}	(((associated
		(deg)	(deg)	(deg)	(deg)	(deg)	(mag)	(mag)	(mag)	(magdeg)	(mag deg)	clouds
1278	(8)	180.83	4.37	4.83	1.60	2.15E + 00	2.6	2.4	0.27	2.25E + 00	1.72E + 00	2
	P 1	180.83	4.37	0.20	0.20	1.99E-02	2.6	2.4	0.27	4.68E-02	4.15E-02	0
	P 2	181.70	4.17	0.27	0.20	2.22E - 02	2.1	1.8	0.23	4.18E-02	3.57E-02	0
	P 3	181.20	4.33	0.37	0.23	3.32E-02	2.0	1.8	0.23	5.94E-02	5.03E-02	0
	Р4 Р5	181.90	4.53	0.13	0.23	1.66E - 02	1.8	1.6	0.21	2.63E - 02	2.19E-02	0
	P 5	183.27	5.00	0.17	0.20	2.21E-02	1.6	1.4	0.20	3.21E-02	2.70E - 02	0
	P 6	184.33	4.83	0.37	0.43	5.98E-02	1.0	1.3	0.20	8.22E-02	6.81E - 02	0
		182.30	5.00	0.23	0.37	4.10E-02	1.5	1.2	0.20	3.23E - 02	4.22E - 02	0
1270	$P \delta$ (1)	180.40	4.15	0.25	0.17	5.21E - 02 5.02E 01	1.4	1.1	0.19	5.96E - 02	3.09E - 02 3.18E 01	0
1279	(1) P 1	180.87	-5.27	0.20	0.30	3.02E = 01 3.21E = 02	1.0	1.1	0.21	0.90E = 01 5 33E = 02	3.16E - 01 2.80E - 02	1
1280	(0)	180.87	-21.97	0.20	0.50	3.21E = 02 2.47E = 02	1.0	0.9	0.21	$1.80E_{-02}$	2.89E = 02 1 76E = 02	0
1200	(0)	180.87	_8.13	0.23	0.17	2.47E 02 2.09E - 02	1.0	0.9	0.50	1.05E 02 1.85E - 02	1.70E - 02 1.30E - 02	0
1201	(0) (1)	180.07	-24.60	0.17	0.13	1.41E - 02	1.0	1.1	0.17	1.03E 02 1.22E - 02	1.50E - 02 1.05E - 02	0
1202	P1	180.97	-24.00	0.10	0.15	5.05E-03	1.2	1.1	0.43	5 39E-03	4.78E - 03	0
1283	(0)	181.00	-6.23	0.53	0.57	1.19E-01	1.4	0.8	0.19	1.52E-01	7.33E-02	0
1284	(0)	181.10	7.73	0.27	0.23	3.52E - 02	0.9	0.7	0.18	2.86E - 02	2.08E - 02	Ő
1285	(0)	181.13	-21.73	0.37	0.33	5.98E-02	1.0	0.9	0.36	4.31E-02	4.03E-02	0
1286	(0)	181.27	-17.27	0.33	0.57	7.22E-02	0.9	0.9	0.29	4.86E-02	4.64E-02	0
1287	(1)	181.37	-23.03	0.13	0.10	1.12E-02	1.2	1.1	0.40	9.72E-03	8.86E-03	0
	P 1	181.37	-23.03	0.07	0.07	4.09E-03	1.2	1.1	0.40	4.36E-03	4.05E-03	0
1288	(1)	181.47	-3.63	0.23	0.27	4.55E-02	2.6	1.6	0.24	8.72E-02	4.26E-02	0
	P 1	181.47	-3.63	0.13	0.10	9.98E-03	2.6	1.6	0.24	2.38E-02	1.40E - 02	0
1289	(1)	181.47	-2.17	0.83	0.90	3.68E-01	2.4	1.4	0.21	6.38E-01	2.65E-01	0
	P 1	181.47	-2.17	0.23	0.13	2.22E - 02	2.4	1.4	0.21	4.89E-02	2.61E-02	0
1290	(2)	181.73	-19.33	0.53	0.67	1.56E - 01	1.5	1.5	0.38	1.30E-01	1.27E - 01	0
	P 1	181.73	-19.33	0.20	0.17	2.41E-02	1.5	1.5	0.38	3.21E-02	3.18E-02	0
	P 2	181.93	-19.63	0.13	0.17	1.26E - 02	1.2	1.1	0.34	1.28E-02	1.27E-02	0
1291	(0)	181.80	-1.47	0.40	0.23	4.00E - 02	1.8	0.8	0.17	6.21E-02	2.41E-02	0
1292	(0)	181.83	-12.83	0.30	0.17	3.14E-02	1.0	0.8	0.24	2.43E-02	1.96E - 02	0
1293	(8)	181.93	0.33	2.37	2.47	2.86E+00	2.4	1.8	0.22	4.61E+00	2.61E+00	0
	PI	181.93	0.33	0.47	0.27	6.89E-02	2.4	1.8	0.22	1.50E-01	1.09E-01	0
	P 2	182.83	-0.8/	0.23	0.13	2.44E - 02	2.6	1.8	0.22	5.70E - 02	3.89E-02	0
	P 3	182.17	-1.00	0.23	0.47	0.22E - 02	2.0	1./	0.22	1.42E - 01	9.08E - 02	0
	P 4 D 5	182.27	-0.47	0.07	0.35	1.34E - 01	2.5	1.0	0.21	3.21E - 01 1 24E 01	2.10E-01 8.27E 02	0
	F J P 6	182.43	-0.03	0.37	0.27	0.00E - 02 3 78E - 02	2.5	1.0	0.20	1.24E = 01 6.07E = 02	0.27E - 02 4.78E - 02	0
		102.43	0.27	0.30	0.30	5.78E - 02	2.1 2.1	1.5	0.20	0.97E - 02	4.78E-02	0
	1 / P 8	183.63	-0.10	0.43	0.30	2.00E - 02	1.0	1.5	0.19	1.23E = 01 3.42E = 02	2.45E - 02	0
1294	(0)	182.03	-11.93	0.17	0.15	3.15E-02	1.2	1.2	0.10	2.59E - 02	2.03E - 02 2.08E - 02	0
1295	(0) (2)	182.13	-17.97	0.17	1 40	4.60E-01	2.5	2.5	0.24	4.55E - 01	4.43E - 01	1
12/0	P 1	182.13	-17.97	0.17	0.47	3.49E - 02	2.5	2.5	0.46	7.47E-02	7.37E-02	0
	P 2	181.83	-18.43	0.10	0.17	1.16E - 02	1.2	1.2	0.33	1.20E - 02	1.18E - 02	Ő
1296	(1)	182.20	-21.43	0.90	0.50	1.96E-01	1.4	1.4	0.40	1.55E - 01	1.47E-01	0
	P 1	182.20	-21.43	0.20	0.13	1.45E-02	1.4	1.4	0.40	1.80E-02	1.74E - 02	0
1297	(0)	182.23	-19.60	0.37	0.13	2.30E-02	0.9	0.9	0.32	1.58E-02	1.55E-02	0
1298	(1)	182.23	-6.10	0.57	0.50	1.61E-01	1.6	1.0	0.20	2.08E-01	1.12E-01	0
	P 1	182.23	-6.10	0.37	0.30	5.64E-02	1.6	1.0	0.20	7.98E-02	4.74E-02	0
1299	(1)	182.30	-18.40	0.17	0.20	2.53E-02	1.1	1.1	0.32	1.94E-02	1.88E-02	0
	P 1	182.30	-18.40	0.10	0.13	9.49E-03	1.1	1.1	0.32	9.25E-03	9.01E-03	0
1300	(0)	182.33	-19.20	0.20	0.13	1.99E-02	1.0	1.0	0.32	1.42E - 02	1.37E-02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	S	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}				associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
1301	(0)	182.40	-12.03	0.37	0.27	5.32E-02	1.1	0.9	0.23	4.37E-02	3.45E-02	0
1302	(0)	182.53	-17.27	0.27	0.17	2.55E-02	0.9	0.9	0.28	1.77E-02	1.66E-02	0
1303	(0)	182.57	-10.70	0.27	0.27	4.59E-02	1.1	0.9	0.22	4.05E-02	3.15E-02	0
1304	(2)	182.63	-8.33	1.60	1.47	6.78E-01	1.3	1.0	0.20	6.05E-01	4.44E-01	0
	P 1	182.63	-8.33	0.13	0.30	2.42E-02	1.3	1.0	0.20	2.62E-02	2.08E-02	0
	P 2	182.37	-8.00	0.20	0.27	2.86E-02	1.3	1.0	0.20	3.16E-02	2.48E-02	0
1305	(0)	182.70	-4.60	0.37	0.30	2.44E-02	1.4	0.6	0.18	3.14E-02	1.33E-02	0
1306	(0)	182.70	-6.13	0.20	0.33	3.43E-02	1.3	0.8	0.18	3.82E-02	2.02E-02	0
1307	(1)	182.70	-10.90	0.23	0.23	4.04E-02	1.2	1.0	0.23	3.61E-02	2.83E-02	0
	P 1	182.70	-10.90	0.13	0.17	1.42E - 02	1.2	1.0	0.23	1.51E-02	1.24E - 02	0
1308	(0)	183.20	-11.33	1.30	0.70	2.18E-01	1.0	0.8	0.22	1.74E-01	1.34E-01	0
1309	(0)	183.37	-13.77	0.23	0.17	2.05E - 02	0.8	0.6	0.23	1.46E - 02	1.14E - 02	0
1310	(0)	183.43	-14.13	0.40	0.63	8.19E-02	0.9	0.8	0.24	6.07E-02	4.85E-02	0
1311	(1)	183.43	-20.23	0.17	0.17	2.19E-02	1.2	1.1	0.36	1.75E - 02	1.62E - 02	0
	P 1	183.43	-20.23	0.10	0.10	7.30E-03	1.2	1.1	0.36	7.56E-03	7.14E-03	0
1312	(0)	183.63	-13.20	0.17	0.27	2.38E-02	0.8	0.6	0.22	1.71E-02	1.31E-02	0
1313	(0)	183.70	-10.97	0.23	0.17	2.40E - 02	0.9	0.7	0.21	1.91E-02	1.45E - 02	0
1314	(2)	183.70	-3.70	2.30	1.70	2.25E + 00	3.1	2.3	0.28	3.72E + 00	2.31E + 00	0
	P 1	183.70	-3.70	0.20	0.13	2.11E-02	3.1	2.3	0.28	5.76E-02	4.20E - 02	0
	P 2	184.77	-4.23	0.63	0.40	9.42E - 02	2.7	2.2	0.26	2.27E-01	1.73E-01	0
1315	(0)	184.07	-20.17	0.20	0.33	2.71E-02	0.8	0.7	0.31	1.82E - 02	1.63E-02	0
1316	(0)	184.23	-0.13	0.27	0.23	4.33E-02	1.4	0.8	0.15	5.29E-02	2.72E - 02	0
1317	(0)	184.30	-9.83	0.50	0.33	7.99E-02	1.0	0.8	0.20	6.25E - 02	4.90E - 02	0
1318	(1)	184.37	0.33	0.40	0.27	7.44E - 02	1.6	1.1	0.17	9.66E-02	5.72E - 02	0
	P 1	184.37	0.33	0.23	0.20	3.00E-02	1.6	1.1	0.17	4.44E - 02	2.85E - 02	0
1319	(0)	184.40	-0.30	0.27	0.13	2.33E-02	1.2	0.6	0.14	2.69E - 02	1.28E - 02	0
1320	(0)	184.60	-19.77	0.23	0.17	2.61E - 02	1.1	1.0	0.31	2.00E - 02	1.81E-02	0
1321	(1)	185.33	-2.13	1.00	0.63	2.52E - 01	2.4	1.7	0.21	3.99E-01	2.13E-01	0
	P 1	185.33	-2.13	0.23	0.23	3.11E-02	2.4	1.7	0.21	6.67E - 02	4.37E - 02	0
1322	(0)	185.63	-21.53	0.20	0.20	2.38E - 02	0.9	0.9	0.33	1.63E - 02	1.53E - 02	0
1323	(0)	186.00	-0.50	0.37	0.27	6.00E - 02	1.4	0.8	0.15	7.49E - 02	3.46E-02	0
1324	(0)	186.00	-4.60	0.67	0.50	1.79E - 01	1.3	0.9	0.17	1.84E - 01	1.16E - 01	0
1325	(1)	186.17	-1.17	1.13	0.97	5.10E - 01	1.8	1.1	0.17	7.30E-01	3.64E - 01	0
	P 1	186.17	-1.17	0.53	0.33	9.78E - 02	1.8	1.1	0.17	1.62E - 01	9.18E - 02	0
1326	(0)	186.30	-21.97	0.23	0.27	2.27E - 02	0.7	0.7	0.31	1.44E - 02	1.37E - 02	0
1327	(0)	186.53	-19.93	0.43	0.23	4.91E - 02	0.9	0.9	0.29	3.57E - 02	3.17E - 02	0
1328	(0)	186.77	0.07	0.47	0.50	6.67E - 02	1.5	0.8	0.15	8.78E-02	3.95E - 02	0
1329	(0)	186.80	-19.47	0.17	0.17	2.09E - 02	1.0	0.9	0.29	1.54E - 02	1.36E - 02	0
1330	(2)	186.83	-5.27	0.63	0.67	2.48E - 01	1.7	1.4	0.19	2.60E - 01	1.94E - 01	0
	P 1	186.83	-5.27	0.13	0.23	1.99E - 02	1.7	1.4	0.19	2.96E - 02	2.43E-02	0
	P 2	186.47	-5.37	0.13	0.17	1.77E - 02	1.6	1.3	0.18	2.48E - 02	2.01E-02	0
1331	(1)	187.13	-4.03	0.27	0.27	4.99E-02	1.7	1.2	0.18	6.09E-02	3.70E-02	1
	P 1	187.13	-4.03	0.10	0.10	8.87E-03	1.7	1.2	0.18	1.36E - 02	9.38E-03	0
1332	(1)	187.20	-16.67	0.93	0.57	1.75E-01	1.5	1.4	0.29	1.47E-01	1.30E-01	0
1000	P 1	187.20	-16.67	0.23	0.13	2.13E-02	1.5	1.4	0.29	2.73E-02	2.53E-02	0
1333	(0)	187.37	4.57	0.37	0.37	5.65E-02	1.1	0.7	0.16	5.65E - 02	3.28E-02	0
1334	(4) D 1	187.53	-1.50	1.53	1.80	1.05E + 00	2.1	1.3	0.18	1.08E + 00	7.40E-01	0
		187.53	-1.50	0.20	0.20	2.11E-02	2.1	1.5	0.18	4.05E-02	2.54E-02	0
	P 2	18/.//	-1.40	0.23	0.20	3.00E-02	2.1	1.2	0.17	5.05E-02	3.10E-02	0
	P 3	188.20	-1.27	0.17	0.30	5.11E-02	2.0	1.1	0.17	3.8/E - 02	3.00E-02	0
	P 4	19/.00	-0.43	0.30	0.20	4.22E-02	1.9	1.0	0.16	7.30E-02	3./3E-02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	sition	S	ize	Surface	Maximun	n extinction	δA_V	$\int A_{V1} ds$	[Avads	Number of
name	name	1	h	ΔI	Δh	area	A	1	- '	J , I	J + 2	associated
name	Hame	i (dag)	(deg)	(dag)	(dag)	(dag^2)	AV_1	A_{V2}	(mag)	$(magdag^2)$	$(magdag^2)$	clouds
		(ueg)	(ueg)	(ueg)	(ueg)	(ueg)	(mag)	(mag)	(mag)	(magueg)	(magueg)	ciouus
1335	(0)	187.80	4.37	0.20	0.23	3.32E-02	1.2	0.8	0.16	3.56E-02	2.01E-02	0
1336	(0)	187.90	-4.73	0.20	0.20	3.10E-02	1.0	0.7	0.15	2.80E-02	1.85E-02	0
1337	(0)	188.03	-3.37	0.20	0.20	2.88E-02	1.3	0.7	0.15	3.39E-02	1.6/E - 02	0
1338	(0)	188.03	-3.70	0.27	0.20	2.22E-02	1.2	0.7	0.15	2.49E - 02	1.29E - 02	0
1559	(2) D 1	100.17	-22.10	0.03	0.37	9.27E-02	1.1 1.1	1.0	0.33	0.34E - 02	0.38E - 02	0
		100.17	-22.10	0.17	0.20	1.03E - 02	1.1	1.0	0.33	1.30E - 02	1.46E - 02	0
1340	r 2 (0)	107.95	-22.03 -12.07	0.15	0.10	0.24E = 03 7 58E = 02	1.0	1.0	0.33	7.43E = 03 6.08E = 02	7.30E = 03 5.25E = 02	0
1340	(0)	188.20	-12.97	0.30	0.40	7.38E - 02 3.88E - 02	1.1	0.9	0.22	4.10E - 02	2.55E - 02	0
1342	(0) (1)	188.90	-13 30	0.35	0.20	3.89E - 02	1.5	1.0	0.15	3.16E - 02	2.55E - 02 2.68E-02	0
1342	P1	188 90	-13.30	0.17	0.20	1.09E - 02	1.1	1.0	0.22	1.18E - 02	1.03E - 02	0
1343	(6)	188.97	4.57	2.13	2.47	2.73E + 00	2.6	2.0	0.22	4.17E + 00	2.51E + 00	4
1010	P 1	188.97	4.57	0.30	0.53	9.75E - 02	2.6	2.0	0.24	2.21E-01	1.71E-01	1
	P 2	189.40	3.80	0.23	0.23	3.33E - 02	2.7	2.0	0.24	7.76E - 02	5.66E - 02	0
	P 3	189.57	4.30	0.13	0.17	1.55E - 02	2.5	2.0	0.23	3.51E-02	2.64E - 02	0
	P 4	188.53	3.60	0.17	0.17	1.89E-02	2.3	1.7	0.21	3.94E-02	2.78E-02	0
	P 5	188.60	3.00	0.57	0.33	1.03E-01	2.4	1.7	0.21	2.18E-01	1.46E-01	0
	P 6	189.00	2.90	0.17	0.17	2.00E-02	2.4	1.6	0.21	4.30E-02	2.78E-02	0
1344	(4)	189.43	-10.00	1.13	1.10	5.68E-01	1.6	1.4	0.22	5.18E-01	4.15E-01	0
	P 1	189.43	-10.00	0.17	0.17	1.64E - 02	1.6	1.4	0.22	2.27E - 02	1.99E-02	0
	P 2	189.27	-9.63	0.27	0.17	3.40E-02	1.3	1.2	0.20	3.95E-02	3.42E-02	0
	P 3	189.43	-10.30	0.13	0.17	1.53E-02	1.3	1.2	0.21	1.80E-02	1.50E-02	0
	P 4	189.83	-10.37	0.13	0.13	1.53E - 02	1.3	1.1	0.20	1.81E-02	1.50E - 02	0
1345	(0)	189.70	-1.23	0.60	0.30	9.33E-02	2.1	0.8	0.17	1.72E-01	5.89E-02	0
1346	(0)	189.70	-15.63	0.20	0.17	2.46E-02	0.9	0.8	0.23	1.84E-02	1.57E-02	0
1347	(9)	189.70	0.20	3.37	4.47	5.47E + 00	3.2	1.9	0.23	1.17E + 01	4.95E + 00	1
	P 1	189.70	0.20	0.93	0.67	2.50E - 01	3.2	1.9	0.23	7.11E-01	3.95E - 01	0
	P 2	190.67	-0.43	0.17	0.10	1.33E-02	3.0	1.5	0.21	3.65E-02	1.76E-02	1
	P 3	190.73	0.77	0.37	0.50	9.89E-02	2.8	1.5	0.21	2.58E-01	1.20E-01	0
	P 4	188.93	-1.27	0.30	0.30	4.44E-02	2.5	1.4	0.19	9.99E-02	5.24E - 02	0
	P 5	188.93	-1.97	0.20	0.17	2.33E-02	2.2	1.3	0.18	4.77E - 02	2.57E - 02	0
	P 6	189.83	-0.77	0.13	0.17	2.00E-02	2.5	1.2	0.19	4.64E - 02	2.06E - 02	0
	P /	190.87	-0.00	0.40	0.17	5.00E - 02	2.0	1.2	0.19	1.22E - 01	4.98E - 02	0
		190.43	-1.20	0.15	0.17	1.89E - 02	2.5	1.2	0.19	4.51E - 02	1.88E - 02	0
1249	P 9	191./5	0.77	0.10	0.17	1.22E = 02	2.5	1.1	0.19	2.84E - 02	1.20E - 02	0
1340	(0)	109.03	-2.20	0.25	0.33	3.00E - 02 3.78E - 02	2.0	0.9	0.17	9.00E - 02 6.75E - 02	3.70E = 02 2.42E = 02	0
1349	(0) (1)	109.90	-14.50	0.20	0.23	5.78E - 02 5.27E - 02	1.3	0.8	0.17	0.75E - 02	2.42E - 02	0
1550	(1) P 1	190.10	-14.50	0.23	0.40	3.27E = 02 1 04E = 02	1.3	1.1	0.24	4.80E - 02 2.18E - 02	4.18E - 02 1.03E - 02	0
1351	(2)	190.10	-13.80	0.17	0.30	1.94E 02 1.39E - 01	1.5	1.1	0.24	1.25E - 01	1.05E - 01	0
1551	(2) P 1	190.17	-13.00	0.00	0.10	9.71E - 03	1.0	1.5	0.20	1.25E - 01 1.37E - 02	1.03E - 01 1.22E - 02	0
	P 2	190.17	-13.50	0.10	0.10	7.56E - 03	1.0	1.3	0.20	9.68E - 03	8.53E-03	0
1352	(1)	190.10	-2.20	1 23	1 17	5.45E-01	3.4	2.2	0.21	1.16E+00	4.93E-01	0
1002	P 1	190.50	-2.20	0.23	0.33	4.66E - 02	3.4	2.2	0.26	1.43E - 01	8.73E - 02	0
1353	(0)	190.63	-15.77	0.33	0.53	7.06E - 02	1.0	0.9	0.23	5.08E - 02	4.35E-02	0
1354	(0)	190.80	-2.53	0.30	0.13	2.44E-02	1.8	0.7	0.17	4.17E-02	1.40E - 02	Õ
1355	(0)	191.03	-15.80	0.27	0.30	3.96E-02	1.0	0.9	0.23	2.95E-02	2.58E-02	0
1356	(2)	191.17	-16.70	0.63	0.73	1.97E-01	1.8	1.7	0.31	1.77E-01	1.64E-01	0
	P 1	191.17	-16.70	0.17	0.10	1.17E-02	1.8	1.7	0.31	1.81E-02	1.73E-02	0
	P 2	191.07	-16.40	0.10	0.13	9.59E-03	1.6	1.5	0.29	1.35E-02	1.28E-02	0
1357	(0)	191.27	-2.90	0.97	0.57	1.98E-01	1.9	0.9	0.17	3.04E-01	1.28E-01	0

 Table 7. (Continued.)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cloud	Clump	Pos	ition	S	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
	name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
			(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1358	(0)	191.33	-10.53	0.33	0.40	6.23E-02	1.0	0.8	0.18	4.99E-02	3.80E-02	0
	1359	(0)	191.43	2.93	0.37	0.33	6.77E-02	1.5	0.8	0.16	8.84E-02	4.24E-02	0
	1360	(0)	191.43	-10.80	0.23	0.23	2.73E-02	0.9	0.7	0.18	2.02E - 02	1.52E - 02	0
	1361	(0)	191.47	-0.17	0.27	0.33	6.44E-02	2.4	1.0	0.18	1.34E-01	4.11E-02	0
	1362	(0)	191.60	-9.40	0.33	0.23	4.60E-02	1.1	0.9	0.18	3.56E-02	2.86E-02	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1363	(1)	191.63	-13.60	0.53	0.77	1.50E-01	1.3	1.2	0.23	1.21E-01	1.01E - 01	0
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$		P 1	191.63	-13.60	0.17	0.17	1.62E - 02	1.3	1.2	0.23	1.79E-02	1.57E-02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1364	(18)	192.00	-0.87	5.30	5.27	8.38E + 00	4.3	2.9	0.32	1.55E + 01	7.06E + 00	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 1	192.00	-0.87	0.13	0.10	1.00E - 02	4.3	2.9	0.32	3.89E-02	2.48E-02	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 2	191.60	-0.80	0.20	0.13	1.78E - 02	3.9	2.5	0.29	6.40E-02	3.83E-02	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 3	196.00	-2.77	0.13	0.10	9.99E-03	2.8	2.2	0.23	2.56E - 02	1.92E - 02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 4	192.30	-2.67	0.20	0.13	1.66E - 02	3.0	2.0	0.24	4.66E-02	2.84E - 02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 5	195.73	-2.30	0.20	0.17	2.11E - 02	2.6	1.9	0.21	5.01E-02	3.52E-02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 6	192.97	-0.93	0.23	0.23	4.55E - 02	3.2	1.9	0.23	1.33E-01	7.72E - 02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 7	194.17	-0.77	0.43	0.47	7.67E - 02	2.8	1.8	0.21	1.91E-01	1.16E-01	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 8	194.83	-3.40	0.23	0.23	3.99E-02	2.3	1.7	0.20	8.20E-02	5.85E-02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 9	194.47	-0.10	0.17	0.17	2.56E - 02	2.4	1.6	0.18	5.60E - 02	3.46E - 02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 10	192.00	-1.83	0.13	0.17	1.55E - 02	2.8	1.5	0.22	4.07E - 02	1.95E - 02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 11	192.73	-2.40	0.13	0.10	9.99E-03	2.5	1.4	0.20	2.32E - 02	1.20E - 02	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		P 12	192.97	-2.50	0.13	0.13	1.33E - 02	2.4	1.4	0.20	2.99E - 02	1.59E - 02	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		P 13	194.00	-2.67	0.27	0.27	3.22E - 02	2.2	1.3	0.19	6.38E - 02	3.66E - 02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 14	193.83	-2.47	0.20	0.20	3.00E - 02	2.2	1.3	0.19	5.98E - 02	3.27E - 02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 15	191.90	-2.40	0.10	0.17	1.44E - 02	2.5	1.3	0.20	3.37E - 02	1.56E - 02	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		P 16	195.97	-3.57	0.37	0.20	3.88E - 02	1.8	1.3	0.17	6.32E - 02	4.27E - 02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 17	191.80	-1.50	0.13	0.23	2.67E - 02	2.5	1.0	0.19	6.11E - 02	2.35E - 02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 18	191.57	-2.40	0.10	0.13	1.11E - 02	2.3	1.0	0.19	2.42E - 02	1.01E - 02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1365	(5)	192.30	-11.37	1.93	1.87	1.56E + 00	3.8	3.6	0.43	2.02E + 00	1.78E + 00	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 1	192.30	-11.37	0.13	0.20	1.96E - 02	3.8	3.6	0.43	6.39E-02	6.12E-02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 2	192.13	-11.90	0.30	0.23	3.91E-02	2.9	2.7	0.34	9.51E-02	8.99E-02	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P 3	191.80	-11.57	0.13	0.10	1.09E - 02	2.8	2.7	0.33	2.70E-02	2.54E - 02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		P 4	191.90	-11.23	0.13	0.13	1.20E - 02	2.6	2.4	0.30	2.76E - 02	2.57E - 02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1266	P 5	192.47	-12.23	0.27	0.23	2.17E - 02	1.6	1.5	0.24	3.00E - 02	2.73E - 02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1366	(1) D 1	192.63	-3.70	0.87	0.50	1.88E - 01	2.3	1.8	0.20	2.69E - 01	1.58E-01	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1267	PI	192.03	-3.70	0.20	0.13	1.00E - 02	2.3	1.8	0.20	3.4/E - 02	2.53E - 02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1307	(1) D 1	192.03	-13.07	0.43	0.07	1.34E - 01	1.3	1.1 1.1	0.22	1.21E-01	1.01E - 01	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1269	P I (1)	192.05	-15.07	0.27	0.37	4.33E - 02	1.5	1.1	0.22	4.80E - 02	4.22E - 02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1506	(1) D 1	192.03	-0.00	0.95	0.70	5.16E = 01	1.5	1.4	0.20	2.00E - 01	2.24E - 01	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1360	(0)	192.03	-0.00	0.17	0.10	1.43E = 02	1.5	1.4	0.20	1.94E - 02	1.79E - 02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1309	(0)	193.03	-14.03	0.15	0.20	2.50E = 02 3.56E = 02	1.5	0.7	0.15	3.03E - 02 2.83E - 02	1.49E - 02 2.26E - 02	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1370	(0)	193.03	-14.03 -14.30	0.30	0.25	3.30E - 02 3.87E - 02	1.0	0.0	0.21 0.22	2.83E - 02 3.17E - 02	2.20E - 02 2.59E - 02	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1371	(0)	193.13	-14.50 -14.67	0.20	0.30	3.87E - 02 2.04E - 02	0.0	0.9	0.22	1.55E - 02	2.39E - 02 1 26E - 02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1372	(0)	103.13	-14.07	0.17	0.17	2.04E = 02 8 59E $= 02$	0.9	0.8	0.22	1.55E = 02	1.20E = 02 5.28E = 02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1373	(0)	193.23	-15.23	0.40	0.33	2.68E - 02	0.9	0.8	0.10	1.96E - 02	1.63E - 02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1374	(0)	193.47	0.50	0.23 0.27	0.20	2.00E = 02 2.11F=02	14	0.6	0.22 0.14	2.91E = 02	1.03E = 02 1.13E = 02	0
1377 (12) 195.27 -16.93 4.27 2.33 3.20E+00 4.6 4.6 0.68 3.46E+00 3.23E+00 4 P1 195.27 -16.93 0.13 0.17 1.49E-02 4.6 4.6 0.68 3.46E+00 3.23E+00 4 P1 195.27 -16.93 0.13 0.17 1.49E-02 4.6 4.6 0.68 5.95E-02 5.92E-02 0 P2 195.10 -16.43 0.33 0.27 3.52E-02 3.3 3.2 0.45 9.73E-02 9.56E-02 0 P3 194.93 -16.73 0.10 0.10 7.45E-03 2.5 2.5 0.37 1.69E-02 1.65E-02 0 P4 196.90 -15.97 0.10 0.10 8.55E-03 2.4 2.4 0.34 1.77E-02 1.74E-02 0	1376	(0)	195.00	0.50	0.27 0.23	0.23	4.11E = 02	1.4	0.0	0.14	5.18E = 02	2.45E = 02	0
P1 195.27 -16.93 0.13 0.17 1.49E-02 4.6 4.6 0.68 5.95E-02 5.92E-02 0 P2 195.10 -16.43 0.33 0.27 3.52E-02 3.3 3.2 0.45 9.73E-02 9.56E-02 0 P3 194.93 -16.73 0.10 0.10 7.45E-03 2.5 2.5 0.37 1.69E-02 1.65E-02 0 P4 196.90 -15.97 0.10 0.10 8.55E-03 2.4 2.4 0.34 1.77E-02 1.74E-02 0	1377	(12)	195.00	-16.93	4 27	2.33	320E+00	4.6	4.6	0.14	3.46E + 00	3.23E + 00	4
P 2 195.10 -16.43 0.33 0.27 3.52E-02 3.3 3.2 0.45 9.73E-02 9.56E-02 0 P 3 194.93 -16.73 0.10 0.10 7.45E-03 2.5 2.5 0.37 1.69E-02 1.65E-02 0 P 4 196.90 -15.97 0.10 0.10 8.55E-03 2.4 2.4 0.34 1.77E-02 1.74E-02 0	1011	$\mathbf{P1}$	195.27	-16.93	0.13	0.17	1.49E = 0.020	4.6	4.6	0.68	5.150 ± 00 5.95E -02	5.23E = 00 5.92E = 02	0
P 3 194.93 -16.73 0.10 0.10 7.45E-03 2.5 2.5 0.37 1.69E-02 1.65E-02 0 P 4 196.90 -15.97 0.10 0.10 8.55E-03 2.4 2.4 0.34 1.77E-02 1.74E-02 0		P 2	195.10	-16.43	0 33	0.27	3.52E - 02	3 3	3.2	0.45	9.73E_02	9.56E - 02	0
P 4 196.90 -15.97 0.10 0.10 8.55E-03 2.4 2.4 0.34 1.77E-02 1.74E-02 0		P 3	194.93	-16.73	0.10	0.10	7.45E-03	2.5	2.5	0.37	1.69E - 02	1.65E - 02	Ő
		P 4	196.90	-15.97	0.10	0.10	8.55E-03	2.4	2.4	0.34	1.77E-02	1.74E-02	ů 0

 Table 7. (Continued.)

Cloud	Clump	Pos	sition		ize	Surface	Maximur	n extinction	δΑυ	[Auds	[Aunds	Number of
norma	nome	1 08	L	Δ1	Λ L	orac	Λ	1		Juvius	Juvyus	
name	name	l (dag)	(dag)	Δl	$\Delta \theta$	(dag^2)	A_{V1}	A_{V2}	(mag)	$(magdag^2)$	$(magdag^2)$	associated
		(ueg)	(ueg)	(ueg)	(ueg)	(ueg)	(mag)	(inag)	(mag)	(magueg)	(magueg)	ciouus
	P 5	194.43	-15.77	0.33	0.33	4.49E-02	2.2	2.1	0.33	8.63E-02	8.24E-02	1
	P 6	193.90	-15.57	0.17	0.13	1.28E-02	1.8	1.7	0.29	2.03E-02	1.89E - 02	0
	P/	194.43	-10.33	0.33	0.30	5.22E - 02	1.0	1.5	0.28	7.04E-02	6.74E - 02	0
		197.50	-15.57	0.20	0.17	2.14E - 02	1.0	1.4	0.20	2.9/E - 02	2.70E - 02	0
	Г Э Р 10	194.03	-15.47 -15.53	0.10	0.17	1.29E = 02 1.82E = 02	1.4	1.5	0.25	1.37E = 02 2.16E = 02	1.44E = 02 1.08E = 02	0
	P 10	195.05	-15.55	0.20	0.15	1.82E - 02 5.35E - 02	1.5	1.2	0.23	2.10E - 02 5.86E - 02	1.96E = 02 5.42E = 02	0
	P 12	190.20	-15.00 -15.07	0.45	0.37	3.55E-02 8.55E-03	1.5	1.2	0.24	9.24E - 02	3.42E = 02 8.67E = 03	0
1378	(0)	195.63	5.40	0.30	0.17	2.43E - 02	0.9	0.6	0.15	1.89E-02	1.32E-02	0
1379	(0)	196.00	4.90	0.23	0.23	2.99E - 02	0.9	0.7	0.15	2.42E - 02	1.68E - 02	Ő
1380	(0)	196.20	0.23	0.17	0.20	2.22E - 02	1.5	0.9	0.15	2.79E-02	1.41E - 02	ů 0
1381	(0)	196.20	-8.10	0.23	0.23	3.30E-02	1.0	1.0	0.17	2.53E-02	2.24E-02	0
1382	(1)	196.30	-0.17	0.40	0.33	6.78E-02	1.8	1.1	0.16	9.18E-02	4.75E-02	0
	P 1	196.30	-0.17	0.10	0.13	1.11E-02	1.8	1.1	0.16	1.81E-02	1.08E-02	0
1383	(0)	196.60	-8.10	0.23	0.23	3.52E-02	0.9	0.8	0.16	2.56E-02	2.23E-02	0
1384	(1)	196.97	-10.33	0.40	0.30	5.14E-02	1.7	1.5	0.22	5.05E-02	4.17E-02	0
	P 1	196.97	-10.33	0.10	0.10	7.65E-03	1.7	1.5	0.22	1.18E-02	1.05E-02	3
1385	(0)	197.00	-1.07	0.67	0.57	1.63E-01	1.6	0.9	0.15	2.06E-01	1.01E-01	0
1386	(1)	197.10	-8.47	0.27	0.23	3.85E-02	1.1	1.0	0.17	3.10E-02	2.67E-02	0
	P 1	197.10	-8.47	0.13	0.13	1.10E - 02	1.1	1.0	0.17	1.10E-02	9.77E-03	0
1387	(1)	198.07	-15.27	0.60	0.27	9.33E-02	2.0	1.8	0.29	9.57E-02	8.13E-02	0
	P 1	198.07	-15.27	0.13	0.10	1.07E-02	2.0	1.8	0.29	1.83E-02	1.67E-02	1
1388	(0)	198.23	-0.77	0.27	0.33	5.44E-02	1.3	0.8	0.14	6.42E-02	3.34E-02	0
1389	(0)	198.50	-0.73	0.20	0.17	2.56E-02	1.3	0.8	0.14	3.02E - 02	1.59E-02	0
1390	(0)	198.53	-0.43	0.17	0.20	2.22E - 02	1.3	0.8	0.14	2.01E - 02	1.3/E - 02	0
1391	(1) D 1	198.00	-9.07	0.07	0.00	2.72E = 01	2.7	2.3	0.28	3.09E - 01	2.38E - 01	0
1302	F 1 (0)	198.00	-9.07	0.25	0.15	1.98E - 02 6 70E - 02	2.7	2.3	0.28	4.02E - 02 5.06E - 02	4.24E = 02 4.20E = 02	1
1392	(0)	198.07	-9.70	0.40	0.55	4.33E = 02	1.1	0.9	0.15	5.90E - 02 5.07E - 02	4.29E = 02 2 76E = 02	0
1394	(0) (1)	198.97	1 43	0.40	0.17	6.00E - 02	1.4	1.2	0.15	6.72E-02	4.12E-02	0
1571	P 1	198.97	1.13	0.13	0.00	1.00E - 02	1.7	1.2	0.17	1.49E - 02	1.05E-02	0
1395	(0)	199.17	-10.47	0.23	0.37	3.17E - 02	1.1	0.8	0.19	2.91E-02	1.84E - 02	Ő
1396	(0)	199.27	-0.57	0.20	0.27	3.33E - 02	1.3	0.7	0.14	3.71E-02	1.94E - 02	0
1397	(0)	199.30	-0.20	0.27	0.27	3.44E-02	1.3	0.8	0.14	3.91E-02	2.08E-02	0
1398	(0)	199.67	-13.83	0.30	0.33	3.24E-02	1.1	0.7	0.21	3.01E-02	1.90E-02	0
1399	(2)	199.70	-11.70	1.30	1.70	6.50E-01	2.4	2.0	0.29	8.78E-01	5.87E-01	1
	P 1	199.70	-11.70	0.23	0.40	4.79E-02	2.4	2.0	0.29	1.01E - 01	7.88E-02	0
	P 2	199.13	-12.07	0.10	0.10	8.69E-03	1.4	1.0	0.22	1.12E-02	7.86E-03	0
1400	(0)	199.90	-10.77	0.23	0.20	2.40E - 02	1.1	0.6	0.19	2.44E - 02	1.34E - 02	0
1401	(0)	199.93	-13.17	0.20	0.20	3.03E-02	1.3	0.9	0.23	3.30E-02	2.06E - 02	0
1402	(0)	199.93	-13.57	0.30	0.23	2.59E-02	1.1	0.7	0.21	2.47E-02	1.50E - 02	0
1403	(0)	200.17	12.20	0.37	0.37	7.82E - 02	0.8	0.8	0.24	5.19E-02	4.88E-02	0
1404	(1)	200.33	-10.97	0.23	0.20	3.27E-02	2.0	1.5	0.25	4.49E-02	2.83E-02	0
1405	P I	200.33	-10.97	0.10	0.07	5.45E - 03	2.0	1.5	0.25	1.03E - 02	7.54E-03	0
1405	(1) D 1	200.47	-10.57	0.57	0.60	1.56E-01	1.7	1.2	0.22	1.90E-01	1.14E - 01	0
1404		200.47	-10.5/	0.25	0.55	3.30E-02	1./	1.2	0.22	3.30E-02	3.03E-02	0
1400	(0)	200.33	-13./3	0.50	0.15	2.91E-02 3.18E_02	1.2	0.8	0.22	2.91E-02	1.79E-02	0
1407	(0)	200.55	- 7.05	0.15	0.55	4 70F_02	0.7	0.7	0.10	2.87E_02	$2.71E_{-02}$	0
1400	(0)	200.70	-13 33	0.37	0.23	4.00E = 02	13	0.7	0.22	4.35E = 02	2.712 = 02 2.53E = 02	0
1410	(7)	201.50	0.67	3.00	2.00	1.89E+00	5.0	4.4	0.39	3.31E+00	2.31E+00	6
	× /											

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 1	201.50	0.67	0.33	0.37	7.33E-02	5.0	4.4	0.39	3.24E-01	2.83E-01	0
	P 2	199.87	0.93	0.10	0.10	7.78E-03	2.7	2.2	0.22	1.84E-02	1.47E-02	0
	P 3	200.33	0.80	0.30	0.20	3.44E-02	2.5	1.9	0.20	7.53E-02	5.79E-02	0
	P 4	201.70	1.70	0.20	0.17	1.78E-02	2.4	1.9	0.20	3.85E-02	2.90E-02	1
	P 5	199.53	0.70	0.13	0.13	1.33E-02	2.2	1.7	0.19	2.62E - 02	1.96E-02	0
	P 6	201.70	-0.03	0.43	0.17	3.44E-02	2.2	1.6	0.17	6.72E - 02	4.79E-02	0
	P 7	202.00	1.50	0.17	0.13	1.22E - 02	2.1	1.6	0.18	2.38E-02	1.69E - 02	0
1411	(2)	201.80	-9.73	1.07	1.13	5.02E - 01	1.6	1.2	0.21	5.81E-01	3.60E-01	0
	P 1	201.80	-9.73	0.53	0.37	6.02E - 02	1.6	1.2	0.21	8.58E-02	5.89E-02	0
	P 2	201.40	-9.83	0.17	0.23	2.19E - 02	1.5	1.1	0.20	3.01E-02	2.03E-02	0
1412	(1)	201.87	-13.37	0.40	0.50	9.73E - 02	1.6	1.1	0.25	1.15E - 01	6.48E - 02	0
	P 1	201.87	-13.37	0.13	0.17	1.41E - 02	1.6	1.1	0.25	2.09E - 02	1.38E - 02	0
1413	(1)	201.90	-4.90	0.50	0.33	1.17E-01	1.2	1.0	0.15	1.07E - 01	8.54E-02	0
	P 1	201.90	-4.90	0.40	0.23	4.87E - 02	1.2	1.0	0.15	5.18E-02	4.28E - 02	0
1414	(1)	202.27	1.73	0.23	0.20	3.78E-02	1.7	1.1	0.16	4.93E-02	2.83E-02	0
	P 1	202.27	1.73	0.17	0.10	1.33E - 02	1.7	1.1	0.16	2.02E - 02	1.28E-02	0
1415	(1)	202.30	-8.43	0.13	0.27	2.64E - 02	1.4	1.1	0.18	2.76E - 02	2.01E - 02	0
1416	PI	202.30	-8.43	0.07	0.13	7.69E-03	1.4	1.1	0.18	9.78E-03	7.61E-03	0
1416	(3)	202.33	-8.93	0.83	0.70	2.6/E - 01	2.9	2.5	0.29	3.43E - 01	2.40E - 01	1
	PI	202.33	-8.93	0.10	0.13	9.88E-03	2.9	2.5	0.29	2.52E - 02	2.16E - 02	0
	P 2	202.17	-9.10	0.17	0.30	2.19E-02	1.6	1.2	0.20	3.10E-02	2.25E-02	0
1417	P 3	202.77	-9.20	0.20	0.20	2.08E-02	1.5	1.0	0.20	2.7/E - 02	1.85E-02	0
141/	(5) D 1	202.40	2.50	3.13	1.50	1.79E + 00	4.1	3.7	0.34	3.29E+00	2.38E+00	1
		202.40	2.50	0.07	0.27	6.88E - 02	4.1	3.7	0.34	2.43E - 01	2.11E - 01	0
	P2 D2	203.00	1.83	0.33	0.50	7.22E-02	3.5	2.9	0.26	2.15E-01	1./4E-01	0
	P 3	203.00	2.13	0.33	0.23	3.89E - 02	5.4 2.4	2.8	0.20	1.10E - 01	9.35E-02	1
	P 4	205.70	1.//	0.50	0.15	2.00E - 02	5.4 1.6	2.0	0.23	3.97E - 02	4.77E - 02	0
1/10	\mathbf{F} \mathbf{J}	201.50	2.43	0.15	0.15	1.33E - 02	1.0	1.2	0.10	1.96E-02	1.41E - 02	0
1410	(0)	202.55	-10.25	0.30	0.45	0.78E - 02	1.4	0.8	0.20	6.23E - 02	4.34E - 02	0
1419	(0)	202.00	8 70	0.30	0.30	4.00E - 02	1.4	1.0	0.14	4.75E - 02	2.43E - 02	1
1420	(0)	203.17	-6.70	0.25	0.17	5.30E - 02	1.5	1.0	0.18	3.30E - 02	2.33E - 02	1
1421	(0) (1)	203.27	-10.20	0.57	0.55	$1.33E_{-01}$	1.0	1.0	0.21	1.44E - 01	4.33E - 02	2
1422	(1) P 1	203.47	-8.27	0.00	0.55	1.33E = 01 1.43E = 02	1.0	1.3	0.20	1.44E = 01 2.09E = 02	1.00E = 01 1.62E = 02	0
1423	(1)	203.47	2 77	0.17	0.15	1.45E - 02 1.09E - 01	1.0	1.5	0.20	1.31E - 01	7.99E - 02	0
1123	P 1	203.80	2.77	0.13	0.17	2.00E - 02	1.7	1.2	0.16	3.10E - 02	2 17E-02	0
1424	(0)	203.00	-21.90	0.13	0.23	3.20E - 02	1.0	0.9	0.10	2.45E-02	1.93E - 02	0
1425	(0)	204.53	21.90	0.20	0.17	2.20E 02	1.0	0.7	0.14	2.13E - 02 2.47E - 02	1.33E - 02	0
1426	(0) (1)	204.70	-12.83	0.33	0.17	7.22E 02 7.26E-02	1.5	1.0	0.25	9.88E-02	4.96E - 02	0
1120	P 1	204.70	-12.83	0.20	0.17	2.27E - 02	1.7	1.0	0.25	3.54E - 02	2.00E - 02	0
1427	(13)	204.73	-11.80	4 93	2.03	3.91E + 00	5.1	4 5	0.68	640E+00	4.02E + 00	6
1127	P 1	204 73	-11.80	0.17	0.17	1.74E - 02	5.1	4 5	0.68	7.78E - 02	6.69E - 02	2
	P 2	203 23	-11.00	0.10	0.13	1.09E - 02	3.8	3.1	0.00	3.71E-02	3.01E-02	0
	P 3	204.27	-11.67	0.37	0.27	4.90E - 02	3.5	2.8	0.40	1.49E-01	1.17E - 01	Ő
	P 4	201.70	-11.23	0.17	0.10	1.42E - 02	2.7	2.1	0.31	3.39E-02	2.55E-02	Ő
	P 5	204.50	-11.30	0.23	0.33	3.60E-02	2.6	2.0	0.30	8.19E-02	5.96E-02	Ő
	P 6	201.97	-11.07	0.23	0.17	3.05E - 02	2.4	1.8	0.28	6.48E-02	4.64E - 02	Ő
	P 7	202.17	-10.83	0.13	0.17	1.86E - 02	2.3	1.7	0.27	3.86E-02	2.73E - 02	Õ
	P 8	201.50	-11.03	0.17	0.33	2.95E - 02	2.2	1.7	0.27	5.85E-02	4.17E-02	0
	P 9	202.83	-10.67	0.17	0.13	1.64E - 02	1.9	1.3	0.24	2.84E-02	1.82E - 02	0
	P 10	205.30	-11.13	0.20	0.23	2.83E-02	1.8	1.3	0.22	4.56E-02	3.02E-02	0

Table 7.(Continued.)

Cloud	Clump	Pos	ition	Si	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 11	205.80	-10.93	0.27	0.20	2.51E-02	1.5	1.1	0.20	3.49E-02	2.30E-02	0
	P 12	203.10	-10.60	0.10	0.13	9.83E-03	1.7	1.0	0.22	1.51E-02	9.00E-03	0
	P 13	204.17	-11.00	0.23	0.50	5.67E-02	1.7	1.0	0.22	8.38E-02	4.84E-02	0
1428	(0)	204.90	0.47	0.67	0.37	1.23E-01	1.7	1.0	0.14	1.60E-01	7.84E-02	0
1429	(0)	204.97	1.13	0.30	0.20	3.00E-02	1.2	0.6	0.13	3.46E-02	1.60E-02	0
1430	(1)	205.13	-12.57	0.57	0.30	6.73E-02	1.7	1.0	0.22	8.82E-02	4.48E - 02	0
	P 1	205.13	-12.57	0.10	0.13	1.08E - 02	1.7	1.0	0.22	1.67E-02	9.71E-03	0
1431	(0)	205.23	-18.97	0.27	0.17	2.52E - 02	1.0	0.8	0.23	2.16E-02	1.54E - 02	0
1432	(2)	205.27	-5.97	0.53	0.60	1.41E - 01	1.8	1.5	0.19	1.57E-01	1.18E - 01	0
	P 1	205.27	-5.97	0.27	0.13	1.99E - 02	1.8	1.5	0.19	3.06E - 02	2.54E - 02	0
	P 2	205.37	-5.73	0.13	0.20	1.66E - 02	1.4	1.1	0.16	2.07E - 02	1.59E - 02	0
1433	(0)	205.27	-7.10	0.20	0.37	4.74E - 02	1.0	0.8	0.16	3.97E-02	2.93E - 02	0
1434	(0)	205.27	-0.07	0.87	0.30	1.57E - 01	1.6	0.9	0.14	2.11E-01	9.97E - 02	0
1435	(0)	205.30	-6.67	0.23	0.47	4.86E - 02	1.1	0.8	0.15	4.13E-02	3.04E - 02	0
1436	(4)	205.57	-8.23	1.40	1.47	1.03E + 00	3.5	3.2	0.34	1.33E + 00	1.05E + 00	1
	P 1	205.57	-8.23	0.17	0.23	1.87E - 02	3.5	3.2	0.34	5.63E-02	5.11E-02	0
	P 2	206.23	-8.40	0.13	0.10	1.10E - 02	2.6	2.3	0.27	2.51E-02	2.19E-02	0
	P 3	205.87	-7.87	0.30	0.17	2.97E-02	1.8	1.5	0.19	4.63E-02	3.85E-02	0
	P 4	205.40	-8.67	0.13	0.13	1.21E - 02	1.5	1.2	0.17	1.61E-02	1.24E - 02	0
1437	(1) D 1	205.60	-12.73	0.47	0.20	5.42E-02	1.7	1.1	0.23	7.41E-02	3.90E-02	0
1 4 2 0	PI	205.60	-12.73	0.10	0.13	9.75E-03	1.7	1.1	0.23	1.51E - 02	8.8/E-03	0
1438	(0)	205.63	-5.43	0.37	0.30	5.42E - 02	1.2	0.8	0.15	5.44E - 02	3.55E-02	0
1439	(1) D 1	205.67	-19.47	0.27	0.27	4./1E-02	2.0	1.8	0.36	5.46E - 02	4.24E - 02	0
1440	P I	205.67	-19.47	0.10	0.10	7.33E-03	2.0	1.8	0.36	1.32E - 02	1.13E - 02	0
1440	(0)	205.77	-21.57	0.13	0.17	1.24E - 02	1.2	1.0	0.28	1.11E - 02	8.08E-03	1
1441	(0)	205.90	-11./0	0.20	0.23	3.48E - 02	1.4	0.8	0.19	4.14E - 02	2.31E - 02	0
1442	(2) D 1	200.33	-18.83	0.70	0.77	2.04E - 01	1.0	1.2	0.27	2.11E - 01	1.43E - 01	0
		200.55	-10.03	0.17	0.15	1.10E - 02	1.0	1.2	0.27	1.0/E = 02	1.20E - 02	0
1443	(0)	200.10	-19.20	0.17	0.13	1.08E = 02 2.44E = 02	1.5	1.0	0.28	2.00E = 02 2.55E = 02	1.49E - 02 1.40E - 02	0
1443	(0)	200.37	16.37	4.50	3.00	2.44E = 02	6.8	6.2	0.15	2.55E = 02	1.40E - 02	3
1444	$\mathbf{P1}$	200.43	-16.37	4.50	0.30	$2.13E_{-02}$	6.8	6.2	0.79	$1.45E \pm 01$ 1.26E = 01	$9.04E \pm 00$ 1 13E -01	0
	\mathbf{P}_{1}	200.43	-10.37 -14.10	0.13	0.30	2.13E = 02 3.02E = 02	5.6	0.2 5.0	0.79	1.20E-01 1.51E-01	1.13E = 01 1.32E = 01	0
	1 2 D 3	205.25	-14.10 -15.73	0.23	0.20	3.02E - 02 1 71E - 02	1.8	1.0	0.85	7.03E-02	1.52E = 01 6.02E = 02	0
	Г <u>Ј</u>	200.20	-13.73 -14.43	0.17	0.13	1.71E = 02 1.40E = 02	4.0	4.2	0.67	7.03E = 02 5.87E = 02	0.02E - 02	0
	1 4 P 5	200.37	-14.43 -13.80	0.17	0.15	1.40E = 02 3.24E = 02	4.7 1 1	4.0	0.07	$1.23E_{-01}$	1.03E - 01	0
	P 6	204.05	-15.63	0.23	0.27	2.24E = 02	т.т 4 2	3.6	0.30	1.25E 01 8.40E_02	6.92E - 02	0
	P 7	200.47	-15.05	0.15	0.27	1.18E - 02	37	2.0	0.44	3.83E - 02	2.93E - 02	0
	Р Я	207.63	-16.80	0.17	0.10	1.10E - 02 1.06E - 02	3.1	2.2	0.44	3.00E_02	2.93E = 02 2.12E = 02	0
	P 9	207.05	-15.00	0.15	0.10	1.00E - 02 1.60E - 02	3.0	2.5	0.57	4 28F-02	3.00E - 02	0
	P 10	206.97	-1470	0.17	0.15	1.00E 02 1.83E-02	27	2.2	0.43	4.20E 02 4.48E - 02	3.00E - 02	0
	P 11	208.40	-1673	0.13	0.17	1.09E - 02 1.60E-02	2.7	1.9	0.35	3.95E-02	2.58E-02	0
	P 12	208.37	-16.30	0.10	0.10	7.46E-03	2.6	1.7	0.44	1.78E - 02	1.15E - 02	0
	P 13	208.00	-15.60	0.10	0.13	9.63E-03	2.1	1.3	0.28	1.90E - 02	1.13E - 02	Ő
	P 14	208.70	-16.27	0.20	0.17	1.71E - 02	1.9	1.1	0.32	3.06E - 02	1.63E - 02	Ő
	P 15	205.87	-14.03	0.13	0.10	8.62E-03	1.8	1.1	0.26	1.38E-02	8.10E-03	Õ
1445	(0)	206.50	-19.80	0.43	0.33	5.96E-02	1.0	0.7	0.24	5.22E-02	3.49E-02	Ő
1446	(1)	206.57	-4.37	0.83	0.40	1.88E-01	2.1	1.5	0.19	2.62E-01	1.56E-01	2
	Ρĺ	206.57	-4.37	0.27	0.17	2.33E-02	2.1	1.5	0.19	4.41E-02	3.12E-02	0
1447	(0)	206.63	-11.43	0.30	0.27	3.70E-02	1.2	0.7	0.17	3.91E-02	2.12E-02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	sition	S	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
1448	(0)	206.70	-18.67	0.23	0.17	2.21E-02	1.2	0.8	0.25	2.23E-02	1.31E-02	0
1449	(1)	206.80	-19.37	0.27	0.30	4.30E-02	1.4	1.0	0.28	4.51E-02	3.05E-02	0
	P 1	206.80	-19.37	0.20	0.17	1.68E-02	1.4	1.0	0.28	2.04E-02	1.47E-02	0
1450	(0)	206.97	-11.10	0.50	0.43	7.41E-02	1.2	0.8	0.16	7.61E-02	4.28E-02	0
1451	(1)	207.27	-19.20	0.40	0.83	1.47E-01	1.5	1.1	0.29	1.69E-01	1.08E-01	0
	P 1	207.27	-19.20	0.17	0.20	1.99E-02	1.5	1.1	0.29	2.62E-02	1.82E-02	0
1452	(7)	207.43	-1.87	4.67	2.13	4.33E + 00	3.6	2.8	0.26	8.69E+00	5.38E + 00	1
	P 1	207.43	-1.87	0.80	0.70	2.41E-01	3.6	2.8	0.26	7.61E-01	5.66E-01	0
	P 2	206.73	-2.47	0.37	0.33	6.77E-02	3.5	2.7	0.25	2.06E-01	1.54E-01	0
	P 3	207.40	-1.37	0.40	0.40	8.66E-02	3.4	2.6	0.23	2.57E-01	1.88E-01	0
	P 4	206.03	-2.67	0.37	0.30	6.22E-02	2.7	2.0	0.20	1.49E-01	1.06E-01	0
	P 5	205.80	-2.23	0.10	0.23	1.78E-02	2.3	1.6	0.18	3.64E-02	2.39E-02	0
	P 6	205.30	-2.73	0.27	0.17	3.22E-02	1.8	1.2	0.16	5.39E-02	3.40E-02	0
	P 7	209.13	-2.43	0.23	0.47	5.44E-02	1.9	1.1	0.16	9.14E-02	4.75E-02	0
1453	(1)	207.57	-23.07	0.37	0.63	1.12E-01	1.7	1.6	0.40	1.00E-01	8.88E-02	0
	P 1	207.57	-23.07	0.07	0.13	7.16E-03	1.7	1.6	0.40	1.09E-02	1.02E-02	0
1454	(0)	207.73	-17.27	0.23	0.30	3.08E-02	1.6	0.8	0.28	4.31E-02	1.80E-02	0
1455	(0)	208.07	-14.30	0.23	0.17	2.48E-02	1.4	0.7	0.22	3.25E-02	1.43E-02	0
1456	(3)	208.40	-17.70	1.37	0.67	3.58E-01	2.6	1.8	0.47	5.74E-01	2.83E-01	0
	P 1	208.40	-17.70	0.10	0.13	1.06E - 02	2.6	1.8	0.47	2.48E-02	1.64E - 02	0
	P 2	209.03	-17.77	0.20	0.10	1.38E-02	2.1	1.3	0.38	2.62E-02	1.51E-02	0
	P 3	209.00	-17.43	0.17	0.10	1.17E-02	2.1	1.3	0.37	2.25E-02	1.26E-02	0
1457	(0)	208.43	-2.93	0.23	0.27	4.44E-02	1.7	0.9	0.16	6.57E-02	3.03E-02	0
1458	(0)	208.50	-0.23	0.43	0.23	5.78E-02	1.5	0.8	0.14	7.61E-02	3.67E-02	0
1459	(0)	208.97	-0.23	0.17	0.17	2.22E - 02	1.4	0.7	0.13	2.86E-02	1.35E-02	0
1460	(0)	209.20	-1.40	0.23	0.33	3.89E-02	1.4	0.6	0.13	5.14E-02	2.19E-02	0
1461	(1)	209.23	-14.50	0.77	0.43	1.42E-01	1.7	1.0	0.26	1.92E-01	9.46E-02	0
	P 1	209.23	-14.50	0.10	0.17	1.40E-02	1.7	1.0	0.26	2.14E-02	1.19E-02	0
1462	(1)	209.23	2.13	1.10	1.10	6.17E-01	2.3	2.0	0.19	7.34E-01	5.57E-01	1
	P 1	209.23	2.13	0.27	0.20	3.33E-02	2.3	2.0	0.19	6.61E-02	5.69E-02	0
1463	(0)	209.27	-12.77	0.33	0.30	6.50E-02	1.4	0.8	0.20	7.41E-02	3.96E-02	0
1464	(0)	209.27	-16.53	0.37	0.20	2.34E-02	1.5	0.7	0.26	3.27E-02	1.32E-02	0
1465	(2)	209.30	-13.67	1.10	1.23	5.89E-01	2.3	1.7	0.34	8.09E-01	4.65E-01	0
	P 1	209.30	-13.67	0.13	0.17	1.94E-02	2.3	1.7	0.34	4.02E-02	2.85E-02	0
	P 2	209.47	-13.20	0.20	0.23	2.70E-02	2.1	1.5	0.22	4.96E-02	3.46E-02	0
1466	(0)	209.37	-3.13	0.27	0.23	3.88E-02	1.5	0.7	0.14	5.39E-02	2.29E-02	0
1467	(0)	209.47	-16.10	0.50	0.43	6.40E-02	1.7	0.9	0.28	9.39E-02	4.34E-02	0
1468	(1)	209.93	-12.23	0.60	0.47	9.02E-02	1.5	1.0	0.19	1.00E-01	5.72E-02	0
	P 1	209.93	-12.23	0.13	0.13	1.19E-02	1.5	1.0	0.19	1.65E - 02	1.08E-02	0
1469	(0)	210.03	-2.47	0.30	0.23	5.33E-02	1.5	0.7	0.12	7.51E-02	3.25E-02	0
1470	(0)	210.07	-14.10	0.23	0.20	2.37E-02	1.3	0.7	0.20	2.74E-02	1.34E-02	0
1471	(1)	210.20	-17.23	0.47	0.30	6.69E-02	2.0	1.2	0.35	1.06E-01	4.93E-02	0
	P 1	210.20	-17.23	0.17	0.13	1.27E - 02	2.0	1.2	0.35	2.42E-02	1.35E-02	0
1472	(1)	210.27	-17.70	0.57	0.37	6.03E-02	2.2	1.4	0.40	9.63E-02	4.73E-02	0
	P 1	210.27	-17.70	0.17	0.13	1.06E-02	2.2	1.4	0.40	2.20E-02	1.34E-02	0
1473	(0)	210.50	-5.10	0.50	0.20	7.30E-02	1.5	0.8	0.14	9.46E-02	4.78E-02	0
1474	(0)	210.60	-13.97	0.37	0.23	2.70E-02	1.3	0.7	0.20	3.07E-02	1.50E-02	0
1475	(2)	210.87	-3.27	1.73	1.03	8.57E-01	2.0	1.2	0.17	1.28E+00	6.06E-01	0
	P 1	210.87	-3.27	0.23	0.23	3.44E-02	2.0	1.2	0.17	6.36E-02	3.62E-02	0
	P 2	209.87	-3.60	0.27	0.37	5.55E-02	1.9	1.1	0.16	9.40E-02	5.09E-02	0
1476	(0)	210.93	-18.07	0.17	0.37	3.80E-02	1.7	0.9	0.32	5.54E-02	2.53E-02	0

Table 7.(Continued.)

Cloud	Clump	Pos	ition	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
1477	(0)	211.13	-14.03	0.33	0.20	2.59E-02	1.2	0.6	0.20	2.90E-02	1.41E-02	0
1478	(1)	211.17	-12.47	0.77	0.60	1.88E-01	1.6	1.0	0.21	2.28E-01	1.28E-01	0
	P 1	211.17	-12.47	0.17	0.27	2.93E-02	1.6	1.0	0.21	4.12E-02	2.57E-02	0
1479	(0)	211.27	3.03	0.43	0.53	9.54E-02	1.0	0.8	0.14	7.71E-02	5.67E-02	0
1480	(0)	211.30	-14.27	0.20	0.17	2.37E-02	1.4	0.8	0.22	2.90E-02	1.48E-02	0
1481	(0)	211.30	-0.43	0.30	0.17	3.22E-02	1.5	0.9	0.12	4.10E-02	2.10E-02	0
1482	(0)	211.47	5.47	0.17	0.23	2.76E-02	0.8	0.6	0.15	1.89E-02	1.54E - 02	0
1483	(0)	211.83	-18.53	0.17	0.20	2.32E-02	1.6	0.8	0.30	3.17E-02	1.47E-02	0
1484	(0)	211.83	1.93	0.13	0.20	2.33E - 02	1.2	0.9	0.13	2.35E-02	1.59E-02	0
1485	(0)	212.00	-15.4/	0.70	0.43	1.3/E - 01 1.24E 01	1.4	0.8	0.24	1./IE-01	8.42E-02	0
1480	(0)	212.37	-4.85	0.47	0.40	1.24E = 01 2.00E = 02	1.4	0.7	0.15	1.33E = 01 1.35E = 02	1.10E - 02 1.14E - 02	0
1407	(0)	212.75	-10.73	0.23	0.15	2.09E - 02 6 77E - 02	0.7	0.0	0.10	7.35E-02	1.14E = 02 4.46E = 02	0
1480	(0)	213.03	-10.75	0.30	0.27	2.99E - 02	1.4	0.9	0.13	7.55E = 02 3 55E = 02	4.40E - 02 1.66E - 02	0
1490	(62)	213.07	-19.80	9.90	5 53	1.52E + 01	5.4	4.8	2 09	2.72E + 01	1.00E 02 1.88E + 01	6
1150	(02) P 1	213.13	-19.80	0.17	0.13	1.52E + 01 1.25E - 02	5.4	4.8	2.0°	5.92E - 02	5.15E - 02	0
	P 2	213.07	-19.37	0.10	0.20	1.15E - 02	5.2	4.6	1.91 [†]	5.29E-02	4.54E - 02	0
	P 3	212.80	-19.53	0.30	0.23	2.93E-02	5.2	4.5	1.89†	1.34E-01	1.14E-01	0
	P 4	214.37	-19.80	0.13	0.23	1.57E-02	4.9	4.5	1.61†	6.51E-02	5.86E-02	0
	P 5	213.07	-19.03	0.20	0.20	2.00E-02	4.5	3.8	1.30 [†]	7.66E-02	6.32E-02	0
	P 6	211.43	-19.23	0.17	0.17	1.57E-02	4.3	3.6	1.21^{+}	5.97E-02	4.87E-02	0
	P 7	212.03	-19.47	0.20	0.17	2.20E-02	4.3	3.6	1.19^{\dagger}	8.34E-02	6.83E-02	0
	P 8	213.40	-18.87	0.17	0.10	1.16E-02	4.1	3.5	1.08^{+}	4.19E-02	3.44E-02	0
	P 9	213.23	-18.73	0.30	0.17	3.05E-02	4.1	3.5	1.08^{+}	1.07E-01	8.64E-02	0
	P 10	211.57	-19.53	0.13	0.17	1.57E-02	3.9	3.3	1.00^{+}	5.42E-02	4.37E-02	0
	P 11	210.70	-19.83	0.13	0.17	1.15E-02	3.8	3.2	0.95^{\dagger}	3.88E-02	3.23E-02	0
	P 12	211.03	-19.60	0.13	0.17	1.47E-02	3.8	3.1	0.94†	4.86E-02	3.90E-02	0
	P 13	207.97	-19.77	0.10	0.10	8.37E-03	3.5	3.1	0.82†	2.61E-02	2.30E - 02	0
	P 14	213.27	-18.30	0.20	0.20	2.22E - 02	3.8	3.1	0.88^{\dagger}	7.44E-02	5.90E - 02	0
	P 15	213.83	-19.53	0.43	0.47	5.13E-02	3.5	3.0	0.84	1.59E-01	1.30E-01	0
	P 16	210.93	-19.33	0.23	0.17	1.89E-02	3.7	3.0	0.88	6.19E-02	4.88E-02	0
	P 17	209.70	-18.90	0.17	0.27	2.42E-02	3.6	2.9	0.81	7.59E-02	5.91E-02	0
	P 18	211.53	-20.00	0.10	0.10	8.35E-03	3.5	2.9	0.82	2.61E-02	2.12E-02	0
	P 19	214.83	-19.90	0.17	0.20	2.09E - 02	3.2	2.9	0.72	5.//E-02	5.08E - 02	0
	P 20 D 21	208.65	-20.00	0.25	0.27	5.03E - 02 5.74E 02	5.2 3.2	2.8	0.71	0.33E - 02	1.33E - 02	0
	P 21 P 22	215.00	-20.13	0.30	0.57	3.74E - 02 0.41E 03	5.2 3.1	2.8	0.72°	1.3/E = 01 2.53E 02	1.31E - 01 2.21E 02	0
	P 23	207.55	-19.03	0.13	0.10	$2.00E_{02}$	3.1	2.8	0.07	2.33E = 02 5 85E = 02	2.21E - 02 4.54E - 02	0
	P 24	207.55	-19.60	0.10	0.27	1.88E-02	3.1	2.7	0.74	5.05E - 02 5.25E-02	4.34L 02 4.12E-02	0
	P 25	208 50	-20.20	0.13	0.13	1.00E 02 1.15E-02	2.9	2.5	0.62	2.84E-02	2.46E - 02	0
	P 26	215.03	-19.47	0.20	0.17	2.62E - 02	2.9	2.5	0.60	6.69E - 02	5.68E - 02	Ő
	P 27	209.43	-18.50	0.13	0.13	1.16E-02	3.2	2.4	0.65	3.22E-02	2.39E-02	0
	P 28	207.30	-19.87	0.20	0.20	2.51E-02	2.7	2.4	0.55	5.90E-02	5.10E-02	0
	P 29	210.17	-19.47	0.37	0.20	3.67E-02	2.9	2.3	0.61	9.35E-02	7.12E-02	0
	P 30	208.70	-18.93	0.13	0.13	1.47E-02	2.9	2.3	0.59	3.76E-02	2.82E-02	0
	P 31	210.00	-20.07	0.17	0.13	1.46E-02	2.7	2.2	0.55	3.41E-02	2.79E-02	0
	P 32	210.00	-19.07	0.13	0.20	1.47E-02	2.8	2.2	0.57	3.69E-02	2.70E - 02	0
	P 33	213.83	-18.90	0.20	0.13	1.89E-02	2.7	2.1	0.54	4.63E-02	3.52E-02	0
	P 34	216.27	-15.20	0.13	0.10	1.18E-02	2.5	2.1	0.41	2.62E-02	2.13E-02	0
	P 35	209.80	-19.53	0.13	0.33	2.83E-02	2.7	2.1	0.54	6.54E-02	4.92E-02	0
	P 36	215.27	-17.27	0.23	0.10	1.80E - 02	2.4	1.9	0.43	3.88E - 02	2.90E - 02	0

 Table 7. (Continued.)

Cloud	Clump	Posi	ition	S	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 37	214.20	-17.53	0.13	0.13	1.48E-02	2.5	1.8	0.45	3.32E-02	2.35E-02	0
	P 38	214.73	-19.23	0.20	0.17	1.78E-02	2.3	1.8	0.44	3.54E-02	2.76E-02	0
	P 39	216.27	-15.80	0.37	0.30	3.85E-02	2.2	1.8	0.37	7.59E-02	5.95E-02	0
	P 40	214.97	-18.97	0.30	0.20	3.15E-02	2.2	1.8	0.43	6.19E-02	4.76E-02	0
	P 41	212.47	-20.03	0.13	0.13	1.15E-02	2.3	1.7	0.47	2.40E - 02	1.69E-02	0
	P 42	213.77	-17.57	0.30	0.20	2.65E-02	2.4	1.7	0.43	5.49E-02	3.67E-02	0
	P 43	214.87	-17.30	0.20	0.13	2.02E - 02	2.2	1.6	0.40	4.01E-02	2.83E-02	0
	P 44	212.23	-20.00	0.13	0.10	1.04E - 02	2.2	1.5	0.44	2.05E - 02	1.41E-02	0
	P 45	214.57	-18.50	0.20	0.17	1.79E-02	2.1	1.5	0.39	3.36E-02	2.38E-02	0
	P 46	215.13	-16.73	0.17	0.23	2.23E-02	1.9	1.4	0.33	3.79E-02	2.62E - 02	0
	P 47	215.90	-15.37	0.13	0.10	7.50E-03	1.7	1.3	0.28	1.17E-02	8.33E-03	0
	P 48	216.37	-17.80	0.27	0.17	1.90E - 02	1.6	1.2	0.30	2.74E - 02	2.01E - 02	0
	P 49	209.57	-17.93	0.20	0.17	1.59E-02	2.0	1.2	0.36	2.89E-02	1.64E - 02	0
	P 50	210.13	-18.47	0.10	0.10	7.38E-03	1.9	1.2	0.36	1.31E-02	7.64E-03	0
	P 51	215.67	-19.10	0.13	0.30	2.52E - 02	1.6	1.2	0.31	3.49E-02	2.60E - 02	0
	P 52	212.57	-18.67	0.13	0.10	1.05E - 02	1.9	1.2	0.36	1.86E - 02	1.10E - 02	0
	P 53	210.47	-18.93	0.17	0.20	1.58E - 02	1.8	1.1	0.35	2.61E-02	1.50E - 02	0
	P 54	212.23	-18.57	0.10	0.17	1.26E - 02	1.8	1.1	0.35	2.11E-02	1.20E - 02	0
	P 55	209.90	-18.43	0.17	0.13	1.37E - 02	1.8	1.1	0.34	2.32E - 02	1.31E-02	0
	P 56	215.73	-18.17	0.23	0.27	2.32E - 02	1.5	1.1	0.29	3.18E-02	2.17E - 02	0
	P 57	210.40	-18.23	0.17	0.20	1.48E - 02	1.9	1.1	0.34	2.54E - 02	1.42E - 02	0
	P 58	209.13	-18.73	0.13	0.10	9.47E-03	1.8	1.1	0.34	1.55E-02	9.00E-03	0
	P 59	209.37	-18.13	0.10	0.13	1.16E - 02	1.8	1.1	0.34	1.95E-02	1.06E - 02	0
	P 60	215.43	-16.40	0.13	0.10	9.59E-03	1.5	1.0	0.27	1.33E-02	8.55E-03	0
	P 61	214.07	-18.17	0.10	0.10	9.50E-03	1.7	1.0	0.31	1.43E-02	8.18E-03	0
	P 62	215.60	-16.00	0.13	0.27	2.03E - 02	1.5	1.0	0.26	2.71E-02	1.74E - 02	0
1491	(3)	213.47	-20.70	1.27	0.60	2.41E-01	1.7	1.4	0.35	2.30E-01	1.80E - 01	0
	P 1	213.47	-20.70	0.20	0.10	1.56E - 02	1.7	1.4	0.35	2.27E - 02	1.93E-02	0
	P 2	213.87	-20.77	0.27	0.13	2.18E - 02	1.3	1.1	0.29	2.39E-02	1.95E - 02	0
	P 3	214.07	-20.73	0.17	0.13	1.35E - 02	1.2	1.0	0.28	1.48E - 02	1.21E - 02	0
1492	(0)	214.03	-3.87	0.33	0.30	4.43E - 02	1.5	0.7	0.13	5.90E - 02	2.57E - 02	0
1493	(10)	214.30	-12.87	3.90	3.03	3.59E + 00	2.7	2.2	0.40	5.18E + 00	3.46E + 00	4
	P 1	214.30	-12.87	0.30	0.17	3.25E - 02	2.7	2.2	0.40	7.66E - 02	6.08E - 02	0
	P 2	213.57	-12.67	0.50	0.47	9.11E - 02	2.7	2.2	0.39	2.11E - 01	1.66E - 01	0
	P 3	214.30	-13.50	0.13	0.13	1.30E - 02	2.5	2.0	0.37	2.85E - 02	2.23E - 02	0
	P 4	212.60	-12.10	0.17	0.17	2.17E - 02	2.3	1.8	0.31	4.48E-02	3.38E-02	0
	P 5	214.80	-12.77	0.37	0.27	4.98E - 02	2.2	1.7	0.31	9.92E - 02	7.57E - 02	0
	P 6	213.47	-13.20	0.33	0.23	4.65E - 02	2.2	1.7	0.31	8.96E-02	6.63E - 02	0
	P 7	214.03	-11.47	0.20	0.33	3.05E - 02	2.0	1.6	0.26	5.39E-02	4.05E - 02	0
	P 8	213.80	-11.77	0.40	0.27	5.98E-02	2.0	1.5	0.26	1.06E-01	7.95E-02	0
	P9	213.73	-13.70	0.20	0.13	1.94E - 02	1.9	1.4	0.27	3.21E-02	2.25E-02	0
	P 10	214.60	-11.00	0.13	0.10	1.09E-02	1.5	1.0	0.20	1.45E-02	9.59E-03	0
1494	(0)	214.30	-5.13	0.33	0.20	3.65E-02	1.3	0.8	0.12	4.15E-02	2.14E-02	0
1495	(0)	214.37	-4.80	0.20	0.20	2.44E - 02	1.2	0.6	0.11	2.70E-02	1.28E-02	0
1496	(0)	214.40	-4.03	0.37	0.17	3.88E-02	1.4	0.7	0.12	4.95E-02	2.15E-02	0
1497	(0)	214.50	-1.80	0.80	0.47	1.38E-01	1.6	0.8	0.12	2.00E-01	8.33E-02	0
1498	(0)	214.57	-23.47	0.20	0.23	2.14E-02	1.0	0.9	0.28	1.41E - 02	1.32E - 02	0
1499	(0)	214.67	-5.50	0.30	0.27	4.44E-02	1.5	0.7	0.12	0.18E - 02	2.00E-02	U
1500	(0)	214.70	-12.3/	0.20	0.20	2.28E-02	1.1	0.6	0.17	2.35E-02	1.2/E = 02	0
1501	(1) D 1	214.70	-12.00	0.73	0.83	2.90E-01	1.8	1.4	0.24	5.40E-01	2.19E-01	0
	Γl	214.70	-12.00	0.27	0.55	3.70E - 02	1.8	1.4	0.24	J.88E-02	4.24E-02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ize	Surface	Maximun	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2}ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	•			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
1502	(0)	215.43	-0.33	0.17	0.20	2.11E-02	1.5	0.7	0.11	2.94E-02	1.25E-02	0
1503	(0)	215.43	-2.93	0.27	0.27	3.88E-02	1.4	0.6	0.12	5.32E-02	2.10E-02	0
1504	(0)	215.90	8.03	0.23	0.20	2.31E-02	0.6	0.6	0.11	1.32E-02	1.25E-02	0
1505	(0)	215.93	9.43	0.20	0.30	3.29E-02	0.7	0.6	0.10	2.02E - 02	1.82E-02	0
1506	(0)	215.97	7.37	0.27	0.53	7.93E-02	1.0	0.9	0.13	5.36E-02	5.11E-02	0
1507	(0)	216.00	-12.57	0.17	0.20	2.39E-02	1.2	0.8	0.19	2.44E-02	1.45E-02	0
1508	(0)	216.07	-8.00	0.30	0.17	3.30E - 02	1.1	0.7	0.13	3.06E-02	1.93E - 02	0
1509	(0)	216.07	-0.13	0.23	0.37	5.56E-02	1.5	0.7	0.10	7.56E-02	3.10E-02	0
1510	(0)	216.13	-17.00	0.17	0.20	2.55E - 02	1.1	0.7	0.22	2.57E-02	1.49E-02	0
1511	(0)	216.40	-12.53	0.30	0.23	3.04E - 02	1.3	0.9	0.19	3.11E-02	1.90E - 02	0
1512	(0)	216.43	9.97	0.43	0.40	9.08E-02	0.8	0.7	0.12	6.11E-02	5.39E-02	0
1513	(1)	216.53	-13.87	1.00	0.20	1.19E - 01	1.7	1.4	0.26	1.34E-01	9.07E - 02	0
	P 1	216.53	-13.87	0.27	0.07	1.08E - 02	1.7	1.4	0.26	1.66E - 02	1.26E - 02	0
1514	(0)	216.57	-18.80	0.23	0.27	3.15E - 02	1.1	0.8	0.24	2.75E-02	1.86E - 02	0
1515	(0)	216.60	-1.87	0.27	0.17	2.67E - 02	1.5	0.6	0.11	3.81E-02	1.52E - 02	0
1516	(1)	216.67	-7.50	1.00	0.50	2.66E-01	1.4	1.1	0.16	2.71E-01	1.78E-01	0
	P 1	216.67	-7.50	0.17	0.20	2.64E - 02	1.4	1.1	0.16	3.38E-02	2.46E-02	0
1517	(0)	216.70	-8.33	0.43	0.43	7.15E-02	1.1	0.8	0.14	6.76E-02	4.21E-02	0
1518	(2)	216.73	-16.03	0.63	0.53	1.60E - 01	1.5	1.1	0.26	1.72E-01	1.13E-01	0
	PI	216.73	-16.03	0.17	0.23	1.82E - 02	1.5	1.1	0.26	2.45E-02	1.76E - 02	0
1510	P 2	217.07	-16.27	0.17	0.13	1.60E - 02	1.4	1.0	0.25	2.00E-02	1.45E - 02	0
1519	(0)	216.77	-2.27	1.17	1.07	5.6/E - 01	1.7	0.8	0.13	8.23E-01	3.50E-01	0
1520	(0)	217.03	-1/.//	0.27	0.33	3.92E-02	1.3	1.0	0.25	3.78E-02	2.5/E - 02	0
1521	(0)	217.10	-8.20	0.23	0.23	2.97E-02	1.0	0.6	0.13	2./IE-02	1.64E - 02	0
1522	(0)	217.17	-1.2/	0.20	0.20	2.78E - 02	1.4	0.6	0.11	3.82E-02	1.52E - 02	0
1525	(2) D 1	217.17	-12.55	1.07	0.90	4.21E - 01	2.0	1.0	0.27	4.77E-01	3.20E - 01	0
		217.17	-12.55	0.17	0.23	5.04E - 02	2.0	1.0	0.27	3.41E - 02	4.20E - 02	0
1524	F 2	217.70	-12.13 1173	0.57	0.40	0.41E - 02	1.4	1.1	0.20	0.14E - 02	5.79E = 02	0
1524	(0)	217.23	-11.75	0.30	0.45	3.92E - 02	1.5	0.9	0.16	9.12E-02	3.04E - 02	0
1525	(0)	217.30	-6.23	0.30	0.50	3.90E = 02	1.1	0.8	0.14	3.84E - 02	2.38E - 02	0
1520	(0)	217.37	-14.70	0.23	0.17	2.04E = 02 3.44E = 02	1.0	0.7	0.19	1.65E = 02	1.19E - 02 1.03E - 02	0
1527	(0)	217.43	-0.67	0.27	0.23	3.44E = 02 2.08E = 01	1.4	0.7	0.10	4.00E = 02 2.88E = 01	1.93E - 02 1.17E - 01	0
1520	(0) (2)	217.50	-0.07 -17.53	1 10	1 17	2.08E - 01	1.0	1.5	0.11	2.00E = 01 6 77E = 01	5.12E - 01	0
1527	(2) P 1	217.50	-17.53	0.37	0.27	3.71E - 02	1.0	1.5	0.32	5.64E - 02	4.63E - 02	0
	P 2	217.50	-17.93	0.37	0.27	4.23E - 02	1.0	1.5	0.32	4.93E - 02	3.99E - 02	0
1530	(0)	217.53	-9.63	0.10	0.20	2.96E - 02	1.1	0.6	0.15	3.01E-02	1.64E - 02	0
1530	(0)	217.53	-14.90	0.33	0.27	5.05E - 02	1.1	0.9	0.13	5.02E - 02	3.42E - 02	Ő
1532	(0)	217.33	-16.13	0.33	0.23	3.52E - 02	1.2	0.8	0.21	3.02E 02 3.26E - 02	2.20E - 02	0
1533	(0)	217.77	-2.07	0.20	0.20	2.00E - 02	1.4	0.6	0.11	2.73E-02	1.09E - 02	0
1534	(0)	217.83	-1.50	0.27	0.27	3.89E - 02	1.5	0.6	0.11	5.31E-02	2.11E-02	Ő
1535	(0)	217.83	-0.27	1.63	1.40	6.86E - 01	1.8	1.0	0.12	9.91E-01	4.43E - 01	1
1536	(0)	217.97	-1.73	0.23	0.33	4.11E - 02	1.5	0.7	0.11	5.71E-02	2.36E - 02	0
1537	(0)	218.20	-17.37	0.20	0.13	2.02E - 02	1.0	0.7	0.21	1.68E - 02	1.22E - 02	Ő
1538	(1)	218.27	-14.90	0.23	0.17	2.58E-02	1.3	1.0	0.22	2.57E-02	1.88E-02	0
	P 1	218.27	-14.90	0.13	0.10	9.66E-03	1.3	1.0	0.22	1.11E-02	8.55E-03	0
1539	(1)	218.37	-11.10	0.73	0.90	2.57E-01	1.7	1.3	0.22	2.88E-01	1.89E-01	1
	P 1	218.37	-11.10	0.23	0.30	4.03E-02	1.7	1.3	0.22	6.12E-02	4.52E-02	0
	(0)	218.40	-18.23	0.27	0.17	2.32E-02	0.8	0.7	0.20	1.71E-02	1.33E-02	0
1540	(0)											
1540 1541	(0)	218.77	-10.30	0.30	0.27	5.14E-02	1.4	0.9	0.18	5.83E-02	3.49E-02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	S	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	•			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 1	219.23	-17.90	0.20	0.20	2.43E-02	1.6	1.5	0.29	3.43E-02	3.08E-02	0
1543	(2)	219.27	-7.87	0.63	0.93	2.93E-01	1.8	1.5	0.19	3.53E-01	2.41E-01	0
	P 1	219.27	-7.87	0.17	0.33	3.74E-02	1.8	1.5	0.19	6.06E-02	4.63E-02	0
	P 2	219.33	-8.17	0.13	0.17	1.32E-02	1.7	1.3	0.18	1.97E-02	1.46E-02	0
1544	(3)	219.37	-9.50	2.13	3.73	2.05E + 00	2.6	2.2	0.31	2.65E + 00	1.87E + 00	3
	P 1	219.37	-9.50	0.57	1.00	1.41E-01	2.6	2.2	0.31	3.18E-01	2.57E-01	0
	P 2	219.60	-10.73	0.23	0.47	7.21E-02	1.9	1.6	0.24	1.24E - 01	9.73E-02	0
	P 3	219.60	-11.60	0.23	0.20	2.39E-02	1.6	1.3	0.21	3.35E-02	2.64E - 02	0
1545	(0)	219.63	-13.80	0.20	0.27	3.24E-02	0.9	0.8	0.17	2.61E-02	2.08E - 02	0
1546	(0)	219.73	-8.67	0.53	0.47	5.82E - 02	1.1	0.7	0.14	5.54E - 02	3.28E-02	0
1547	(1)	219.73	-18.13	0.43	0.23	6.12E - 02	1.2	1.1	0.24	4.90E-02	4.19E-02	0
	P 1	219.73	-18.13	0.17	0.10	1.16E - 02	1.2	1.1	0.24	1.25E - 02	1.11E - 02	0
1548	(0)	219.83	-12.33	0.23	0.37	4.56E - 02	1.1	0.9	0.17	3.85E-02	2.84E - 02	0
1549	(0)	219.90	-12.10	0.23	0.20	2.06E - 02	0.9	0.6	0.15	1.61E - 02	1.13E - 02	0
1550	(0)	219.97	-7.90	0.17	0.30	2.86E - 02	1.0	0.6	0.12	2.65E - 02	1.57E - 02	0
1551	(0)	220.20	-11.23	0.33	0.43	7.85E - 02	1.1	0.8	0.16	7.01E - 02	4.81E - 02	0
1552	(0)	220.23	-2.03	0.33	0.47	6.22E - 02	1.5	0.7	0.11	8.41E-02	3.50E - 02	0
1553	(0)	220.63	-4.83	0.30	0.27	3.43E-02	1.1	0.6	0.11	3.62E - 02	1.86E - 02	0
1554	(1)	220.63	-1.93	0.83	0.63	2.21E-01	1.9	1.1	0.14	3.34E-01	1.60E-01	1
	P 1	220.63	-1.93	0.30	0.40	4.55E-02	1.9	1.1	0.14	7.88E-02	4.33E-02	1
1555	(0)	220.90	-12.03	0.47	0.30	6.19E-02	0.8	0.7	0.14	4.37E-02	3.45E-02	0
1556	(1)	220.93	-8.33	0.77	1.03	3.73E-01	2.1	1.8	0.22	4.25E-01	2.90E - 01	0
1557	P I	220.93	-8.33	0.13	0.17	1.43E - 02	2.1	1.8	0.22	2.66E - 02	2.16E - 02	0
1557	(0)	221.07	-18.03	0.27	0.40	3.90E - 02	0.9	0.8	0.21	4.30E - 02	3.83E - 02	0
1556	(1) D 1	221.07	-2.70	0.77	0.37	2.00E - 01	2.0	1.2	0.15	3.24E = 01 8 21E 02	1.00E - 01	1
1550	(0)	221.07	-2.70 -17.83	0.30	0.30	4.44E = 02 3.91E = 02	2.0	0.9	0.15	2.82E - 02	4.03E - 02 2 51E - 02	1
1560	(0) (2)	221.45	-17.03	0.27	0.27	2.97E - 01	1.0	1.6	0.21	2.52E - 02	$2.31E \ 0.2$ 2.32E - 0.1	0
1500	(2) P 1	221.70	-17.07	0.13	0.20	1.70E - 02	1.7	1.0	0.20	2.33E - 01 2 48E-02	2.32E = 01 2.34E = 02	0
	P 2	221.70	-17.50	0.13	0.17	1.76E - 02 1 48E-02	1.7	1.0	0.20	1.58E - 02	1.47E - 02	0
1561	(1)	221.03	-2.80	0.43	0.20	6.10E - 02	1.2	1.0	0.14	9.28E - 02	4.21E-02	0 0
1001	P 1	221.77	-2.80	0.20	0.13	1.89E - 02	1.9	1.0	0.14	3.23E - 02	1.66E - 02	Ő
1562	(0)	221.97	-1.13	0.17	0.23	2.22E - 02	1.5	0.7	0.11	3.06E - 02	1.34E - 02	0
1563	(1)	222.13	-0.50	0.57	0.43	1.37E-01	2.0	1.2	0.14	2.00E-01	9.84E-02	0
	P 1	222.13	-0.50	0.20	0.17	2.56E-02	2.0	1.2	0.14	4.53E-02	2.64E-02	0
1564	(0)	222.17	-4.73	0.40	0.27	5.09E-02	1.4	0.7	0.12	6.16E-02	2.86E-02	0
1565	(2)	222.33	-3.00	0.77	0.77	2.97E-01	2.1	1.2	0.16	4.82E-01	2.34E-01	0
	P 1	222.33	-3.00	0.23	0.17	2.55E - 02	2.1	1.2	0.16	4.83E-02	2.67E-02	0
	P 2	222.77	-3.43	0.33	0.47	5.88E-02	2.0	1.2	0.16	1.06E - 01	5.77E-02	0
1566	(1)	222.33	-6.50	1.07	0.97	3.70E-01	1.6	1.2	0.15	4.24E-01	2.62E-01	0
	P 1	222.33	-6.50	0.37	0.17	3.53E-02	1.6	1.2	0.15	5.06E - 02	3.57E-02	0
1567	(0)	222.87	-4.67	0.20	0.13	2.10E - 02	1.4	0.7	0.12	2.63E-02	1.24E - 02	0
1568	(0)	222.97	-0.40	0.50	0.20	6.44E - 02	1.7	1.0	0.13	9.54E-02	4.73E-02	0
1569	(0)	223.17	-17.60	0.13	0.23	2.33E - 02	0.7	0.6	0.17	1.41E - 02	1.29E - 02	0
1570	(4)	223.67	-1.97	2.97	1.67	1.72E + 00	3.0	2.2	0.23	3.10E + 00	1.69E + 00	2
	P 1	223.67	-1.97	0.90	0.33	1.57E-01	3.0	2.2	0.23	4.10E-01	2.81E-01	1
	P 2	224.60	-2.67	0.20	0.23	3.66E-02	2.4	1.6	0.18	8.10E-02	5.09E-02	0
	P 3	224.73	-1.77	0.17	0.20	2.55E-02	2.3	1.5	0.16	5.45E-02	3.42E-02	0
1	P 4	225.40	-2.67	0.10	0.10	7.77E–03	2.1	1.3	0.15	1.49E-02	8.81E-03	0
1571	(3)	223.90	-3.97	1.77	1.67	7.62E-01	2.0	1.3	0.16	1.09E + 00	5.65E - 01	0
	ЧI	223.90	-3.97	0.23	0.30	4.21E - 02	2.0	1.3	0.16	/.90E - 02	4.78E-02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ize	Surface	Maximun	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	р 🤉	224.40	_3 77	0.20	0.20	2 11E_02	2.0	1.2	0.15	3.84E_02	$2.24E_{-0.02}$	0
	P 3	224.40	-4.60	0.20	0.20 0.47	2.11E - 02 8 86E - 02	1.8	1.2	0.15	1.44E-01	2.24E = 02 8 42E = 02	0
1572	(0)	223.97	-6.00	0.37	0.17	3.54E - 02	1.1	0.6	0.11	3.70E - 02	1.93E - 02	0
1573	(0)	224.00	-5.67	0.37	0.13	2.43E - 02	1.2	0.6	0.11	2.64E-02	1.33E - 02	0
1574	(4)	224.23	-0.97	4.00	1.53	2.81E + 00	2.9	2.1	0.22	4.80E + 00	2.85E + 00	1
	P 1	224.23	-0.97	0.53	0.60	8.11E-02	2.9	2.1	0.22	2.03E-01	1.43E-01	0
	P 2	225.73	-0.30	0.87	0.77	2.67E-01	2.6	2.0	0.20	6.13E-01	4.36E-01	0
	P 3	223.73	-0.83	0.17	0.17	2.11E-02	2.1	1.3	0.15	4.01E-02	2.39E-02	0
	P 4	225.23	-0.93	0.37	0.30	4.11E-02	2.0	1.3	0.14	7.44E-02	4.46E-02	0
1575	(0)	224.37	-0.10	0.57	0.20	5.78E-02	1.3	0.7	0.11	7.23E-02	3.30E-02	0
1576	(0)	224.80	-5.13	0.20	0.13	2.21E-02	1.3	0.7	0.11	2.61E - 02	1.26E-02	0
1577	(0)	224.87	-3.30	0.30	0.23	3.88E-02	1.6	0.8	0.12	5.46E-02	2.37E-02	0
1578	(0)	224.90	0.67	0.27	0.23	4.00E - 02	1.2	0.7	0.10	4.36E-02	2.40E - 02	0
1579	(0)	225.03	8.33	0.20	0.13	2.20E - 02	0.7	0.7	0.11	1.27E - 02	1.25E - 02	0
1580	(0)	226.30	-8.40	0.47	0.33	8.69E - 02	1.1	0.9	0.13	7.80E-02	5.26E - 02	0
1581	(1)	226.77	-7.50	0.80	0.50	2.06E - 01	1.6	1.2	0.15	2.24E - 01	1.46E - 01	0
	P 1	226.77	-7.50	0.37	0.20	3.64E-02	1.6	1.2	0.15	4.93E-02	3.54E-02	0
1582	(1)	226.87	-8.00	0.80	0.60	1.54E - 01	1.4	1.1	0.14	1.53E-01	1.04E - 01	0
1500	P 1	226.87	-8.00	0.13	0.30	2.53E-02	1.4	1.1	0.14	3.11E-02	2.26E-02	0
1583	(0)	227.07	-7.10	0.30	0.20	3.53E-02	1.2	0.8	0.12	3.64E-02	2.18E-02	0
1584	(0)	227.63	-7.30	0.70	0.40	1.4/E - 01	1.3	0.9	0.12	1.44E-01	8.80E-02	0
1585	(0)	227.73	-9.43	0.17	0.23	2.74E - 02	0.9	0.6	0.11	2.13E - 02	1.56E - 02	0
1580	(0)	228.30	- 1.95	0.27	0.33	2.97E - 02	1.0	0.7	0.11	2.49E - 02	1.04E - 02	0
1500	(0)	228.70	-/.8/	0.30	0.37	4.29E-02	1.0	0.7	0.11	3.08E-02	2.43E = 02	0
1580	(0)	220.07	-0.83	0.30	0.23	3.97E - 02 1 10F - 01	1.1	0.7	0.11	0.06E - 02	2.24E = 02 7 52E $= 02$	0
1500	(0) (1)	229.43	-9.17	0.50	0.55	1.19E - 01 1.85E - 01	1.0	0.8	0.12 0.14	9.23E = 02 1.65E = 01	1.32E = 02 1.33E = 01	0
1570	(1) P 1	229.57	-8.33	0.00	0.05	4.07E - 02	1.3	1.1	0.14	4.61E - 02	3.90E - 02	0
1591	(0)	230.07	-2.77	0.53	0.37	1.07E - 02 1.21E-01	1.5	0.8	0.11	1.56E - 01	7.54E - 02	0
1592	(0)	231.10	-1.47	0.93	1.23	6.15E - 01	1.5	0.8	0.11	8.14E-01	3.59E-01	0
1593	(0)	231.73	-2.17	0.27	0.23	2.66E - 02	1.3	0.6	0.10	3.32E-02	1.41E - 02	0
1594	(0)	232.33	-4.97	0.37	0.30	7.08E - 02	1.1	0.8	0.10	6.73E-02	4.39E-02	0
1595	(0)	232.37	-3.63	1.13	0.67	2.83E-01	1.3	0.8	0.10	3.14E-01	1.69E-01	0
1596	(0)	232.73	-4.60	0.40	0.37	7.64E-02	1.2	0.8	0.10	7.48E-02	4.54E-02	0
1597	(3)	232.87	0.80	3.43	2.13	3.03E + 00	2.0	1.4	0.14	4.17E + 00	2.10E + 00	0
	P 1	232.87	0.80	0.30	0.23	5.33E-02	2.0	1.4	0.14	9.75E-02	6.29E-02	0
	P 2	232.40	-0.40	0.73	0.77	1.96E-01	2.0	1.3	0.13	3.48E-01	2.07E - 01	0
	P 3	233.20	0.17	0.27	0.27	3.67E-02	1.7	1.0	0.12	5.78E-02	3.20E-02	0
1598	(0)	233.17	-3.90	0.30	0.23	4.43E-02	1.2	0.7	0.10	4.89E-02	2.74E - 02	0
1599	(0)	233.27	1.33	0.20	0.20	3.00E - 02	1.4	0.8	0.10	3.66E-02	1.80E - 02	0
1600	(0)	234.10	0.63	0.37	0.43	8.33E-02	1.3	0.7	0.10	9.96E-02	4.63E - 02	0
1601	(0)	234.17	-5.10	1.00	0.80	4.40E - 01	1.2	0.9	0.10	4.29E-01	2.78E-01	0
1602	(0)	234.50	0.97	0.43	0.33	7.67E - 02	1.4	0.8	0.10	9.17E-02	4.53E - 02	0
1603	(0)	234.63	0.07	0.30	0.17	2.22E - 02	1.2	0.6	0.09	2.64E - 02	1.17E - 02	0
1604	(0)	235.00	0.70	0.40	0.53	1.02E-01	1.3	0.7	0.10	1.19E-01	5.78E-02	0
1605	(0)	235.47	-4.33	0.23	0.17	2.55E-02	1.2	0.7	0.09	2.72E-02	1.52E - 02	0
1606	(0)	236.23	-3.53	0.37	0.37	4.77E-02	1.3	0.7	0.09	5.40E-02	2.74E - 02	0
1607	(0)	236.40	0.60	0.20	0.20	2.44E-02	1.2	0.6	0.09	2.72E-02	1.36E-02	0
1608	(0)	236.43	-2.07	0.23	0.20	4.00E - 02	1.3	0.6	0.09	5.03E - 02	2.21E - 02	0
1609	(1) D 1	237.33	-4.77	0.80	0.53	2.43E-01	2.2	1.8	0.16	3.04E-01	1.95E-01	1
	ЧI	231.33	-4.77	0.20	0.17	2.44E - 02	2.2	1.8	0.16	4.8/E - 02	5.82E - 02	1

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	S	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
1610	(0)	237.70	-3.57	0.17	0.17	2.22E-02	1.3	0.7	0.09	2.69E-02	1.27E-02	0
1611	(2)	238.40	-4.17	1.40	1.37	6.29E-01	2.1	1.5	0.15	9.15E-01	4.97E-01	1
	P 1	238.40	-4.17	0.30	0.43	6.32E-02	2.1	1.5	0.15	1.21E-01	8.04E-02	1
	P 2	238.93	-3.50	0.50	0.17	4.55E-02	1.9	1.2	0.13	7.87E-02	4.66E-02	0
1612	(3)	238.73	-1.50	3.20	3.47	2.82E + 00	2.4	1.7	0.14	3.94E + 00	2.03E + 00	5
	P 1	238.73	-1.50	0.40	0.27	7.22E-02	2.4	1.7	0.14	1.52E-01	1.01E-01	1
	P 2	237.40	-1.83	0.17	0.17	1.89E-02	2.0	1.3	0.12	3.44E-02	2.08E-02	0
	P 3	237.10	-1.97	0.27	0.23	4.11E-02	1.8	1.1	0.11	6.97E-02	4.02E-02	0
1613	(1)	239.50	-4.60	0.83	0.80	3.89E-01	2.4	1.9	0.17	5.96E-01	3.98E-01	1
	P 1	239.50	-4.60	0.33	0.23	4.98E-02	2.4	1.9	0.17	1.07E - 01	8.22E-02	1
1614	(0)	239.77	-4.03	0.20	0.20	2.66E - 02	1.4	0.7	0.10	3.35E-02	1.58E - 02	0
1615	(1)	240.07	-1.83	0.40	0.30	6.33E-02	1.7	1.0	0.10	8.93E-02	4.57E - 02	0
	P 1	240.07	-1.83	0.27	0.20	2.67E - 02	1.7	1.0	0.10	4.19E-02	2.35E-02	1
1616	(0)	242.07	-3.17	0.23	0.20	3.00E-02	1.2	0.6	0.08	3.53E-02	1.64E - 02	0
1617	(0)	242.30	-2.80	0.27	0.37	7.10E - 02	1.5	0.8	0.09	8.98E-02	4.46E - 02	0
1618	(0)	243.00	-2.93	0.37	0.40	9.88E-02	1.3	0.7	0.09	1.19E-01	6.05E - 02	0
1619	(0)	243.43	-1.50	0.43	0.23	6.00E - 02	1.3	0.7	0.08	7.43E-02	3.56E-02	0
1620	(0)	243.43	-2.43	0.20	0.40	5.00E - 02	1.4	0.8	0.09	6.02E - 02	2.98E-02	0
1621	(0)	243.63	-0.93	0.33	0.30	4.67E - 02	1.3	0.6	0.08	5.56E - 02	2.57E - 02	0
1622	(0)	244.57	-1.30	0.23	0.33	4.89E - 02	1.3	0.6	0.08	5.96E-02	2.69E-02	0
1623	(0)	244.60	0.87	0.17	0.33	3.67E - 02	1.2	0.7	0.08	4.16E-02	2.14E - 02	0
1624	(0)	244.80	-2.07	0.17	0.23	3.11E-02	1.3	0.7	0.08	3.87E-02	1.81E-02	0
1625	(0)	245.97	-0.57	0.30	0.20	4.11E-02	1.4	0.8	0.19	5.09E-02	2.41E-02	0
1626	(0)	246.60	-0.63	0.93	0.43	1.88E-01	1.5	0.9	0.20	2.46E-01	1.25E-01	1
1627	(0)	247.10	-4.13	0.20	0.17	2.44E - 02	1.2	0.7	0.10	2.68E - 02	1.43E-02	0
1628	(0)	247.13	-5.57	0.57	0.37	9.29E-02	1.2	1.0	0.10	8.23E-02	5.92E-02	1
1629	(0)	247.33	-2.93	0.33	0.23	3.11E-02	1.4	0.7	0.09	3.91E-02	1.76E - 02	0
1630	(1)	247.73	-12.43	1.03	0.93	5.33E-01	1.9	1.8	0.22	5.70E-01	5.10E-01	0
	P 1	247.73	-12.43	0.47	0.50	9.77E - 02	1.9	1.8	0.22	1.54E - 01	1.44E - 01	1
1631	(0)	247.93	-0.73	0.57	0.40	8.67E - 02	1.4	0.8	0.19	1.08E - 01	5.16E - 02	0
1632	(0)	248.07	-1.17	0.20	0.13	2.11E - 02	1.4	0.7	0.19	2.70E - 02	1.28E - 02	0
1633	(0)	248.70	-1.13	0.17	0.17	2.11E - 02	1.3	0.6	0.18	2.61E - 02	1.16E - 02	0
1634	(0)	249.33	-0.97	0.43	0.33	7.89E - 02	1.6	0.9	0.10	1.06E - 01	5.28E - 02	0
1635	(0)	249.37	0.63	0.43	0.27	4.22E - 02	1.1	0.6	0.16	4.37E - 02	2.30E - 02	0
1636	(0)	249.37	-12.80	0.20	0.20	2.71E-02	0.7	0.6	0.13	1.75E-02	1.52E - 02	0
1637	(0)	250.03	-2.73	0.40	0.40	5.99E-02	1.6	0.8	0.12	8.48E-02	3.54E-02	0
1638	(2)	250.23	0.33	1.27	0.70	4.48E-01	1.8	1.3	0.09	5.71E-01	3.40E-01	1
	P 1	250.23	0.33	0.27	0.13	2.78E-02	1.8	1.3	0.09	4.46E-02	3.08E-02	0
	P 2	249.73	0.10	0.17	0.17	1.78E-02	1.6	1.1	0.21	2.62E-02	1.67E-02	1
1639	(10)	251.97	-3.37	6.37	3.97	8.02E+00	2.8	2.1	0.21	1.18E+01	6.62E+00	8
	PI	251.97	-3.37	0.43	0.30	7.54E-02	2.8	2.1	0.21	1.84E-01	1.30E-01	0
	P 2	248.70	-2.97	0.53	0.60	1.63E-01	2.3	1.6	0.16	3.39E-01	2.19E-01	l
	P 3	252.47	-4.23	0.37	0.27	6.54E - 02	2.1	1.5	0.16	1.25E-01	8.43E-02	0
	P 4	247.90	-2.47	0.17	0.13	1.6/E - 02	2.1	1.3	0.13	3.14E-02	1.93E-02	0
	P 5	248.60	-3.67	0.43	0.30	8.54E-02	2.0	1.3	0.14	1.49E-01	9.07E-02	0
	Р6 р7	253.07	-4.27	0.33	0.27	4.21E - 02	1.9	1.2	0.14	/.16E-02	4.44E-02	3
	P /	249.27	-4.13	0.47	0.93	1.60E-01	1.8	1.2	0.14	2.04E-01	1.54E-01	1
	P 8	249.87	-3.90	0.50	0.43	8.98E-02	1.9	1.1	0.14	1.52E-01	8.28E-02	0
	P 9	247.33	-1.77	0.17	0.13	1.55E-02	1.8	1.1	0.09	2.52E-02	1.42E - 02	0
1640	P 10	251.80	-2.63	0.47	0.20	4.99E-02	1.8	1.0	0.12	8.01E-02	4.28E-02	0
1640	(1)	252.00	-1.1'	0.40	0.30	/.IIE-02	1.8	1.1	0.11	1.05E - 01	3.03E - 02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	sition	Si	ize	Surface	Maximun	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	Ava	-	-	-	associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	D 1	252.00	1 17	0.07	0.20	2.705 02	1.0	1.1	0.11	(IIIII 00)	2.705 02	1
1641	P I	252.00	-1.1/	0.27	0.20	2./8E-02	1.8	1.1	0.11	4.6/E - 02	2.79E-02	1
1641	(0)	252.03	-9.//	0.27	0.20	3.18E-02	1.1	0.9	0.13	2.38E-02	2.0/E-02	1
1042	(0) D 1	253.10	-1.0/	2.10	2.07	9.51E-01	2.5	1.0	0.15	1.35E + 00	0.7/E = 01	2
		255.10	-1.07	0.15	0.15	1.44E - 02	2.5	1.0	0.13	3.04E - 02	1.99E - 02	5
		252.55	-1.65	0.17	0.10	1.44E = 02 1.67E 02	2.0	1.3	0.13	2.03E - 02	1.39E - 02 1 70E 02	0
		252.47	-1.37	0.20	0.10	1.07E = 02	2.0	1.5	0.15	2.96E - 02	1.79E = 02	0
	Г4 D5	255.55	-1.50	0.23	0.20	2.22E = 02	1.9	1.2	0.12	5.80E - 02	2.29E = 02	1
	r J D 6	252.15	-2.20	0.23	0.23	3.35E = 02	1.0	1.0	0.12	3.80E - 02	3.21E - 02	0
16/3	(0)	252.07	-1.70	0.13	0.13	1.44E = 02 5.11E = 02	1.7	0.7	0.11	2.29E = 02 5.66E = 02	1.24E = 02 3.10E = 02	0
1644	(0)	253.30	_9.15	0.23	0.40	5.11E - 02 5.70E - 02	1.2	0.7	0.20	4.66E - 02	3.10E - 02 3.56E - 02	1
1645	(0)	253.57	-7.90	0.30	0.27	3.70E 02 3.63E - 02	0.9	0.5	0.12	2.00L 02 2.97E -02	1.92E - 02	0
1646	(0)	253.57	-7.27	0.20	0.30	2.54E = 02	1.1	0.0	0.10	2.37E 02 2.35E_02	1.92E 02 1.49E - 02	0
1647	(0)	253.00	_8.90	0.20	0.20	2.54E = 02 2.60E -01	1.1	0.7	0.11	2.35E 02 2.30E_01	1.40E - 02 1.70E - 01	0
1648	(0)	255.00	-9.40	0.00	0.07	2.00E 01 2.08E - 02	0.8	0.5	0.12	1.60E - 02	1.70E 01 1.18E - 02	0
1649	(0)	254.07	-3 57	0.20	0.17	3.55E - 02	1.6	0.8	0.11	4.98E - 02	2.24E = 02	1
1650	(0) (1)	254 57	-9.67	1 13	0.27	2.97E-01	1.0	1.6	0.17	2.64E - 01	2.21E - 02 2.13E - 01	1
1000	P 1	254 57	-9.67	0.17	0.13	1.86E - 02	1.7	1.6	0.17	2.84E-02	2.13E - 01 2.51E - 02	1
1651	(0)	254 97	-10.43	0.20	0.17	2.08E - 02	0.7	0.6	0.11	1.38E-02	1.12E-02	0
1652	(0)	255 23	-10.13	0.20	0.23	2.30E-02	0.7	0.6	0.11	1.50E 02 1 54E-02	1.12E 02 1.25E-02	0
1653	(0)	255.33	-4.90	0.40	0.17	4.65E - 02	1.9	1.3	0.14	6.59E - 02	3.71E-02	0
1000	P 1	255.33	-4.90	0.17	0.10	1.33E - 02	1.9	1.3	0.14	2.27E-02	1.45E-02	2
1654	(1)	255.50	-4.20	0.60	0.67	1.68E - 01	1.9	1.1	0.13	2.45E-01	1.25E-01	1
1001	P 1	255.50	-4.20	0.23	0.30	4.32E - 02	1.9	1.1	0.13	7.38E-02	4.30E - 02	1
1655	(0)	255.73	-6.60	0.30	0.30	6.07E-02	1.4	1.0	0.12	6.77E-02	4.24E-02	1
1656	(8)	255.83	-2.73	6.20	3.03	6.53E + 00	3.2	2.3	0.22	1.29E+01	5.57E + 00	8
	P 1	255.83	-2.73	0.37	0.27	4.33E-02	3.2	2.3	0.22	1.21E-01	8.33E-02	1
	P 2	256.40	-2.23	0.17	0.17	2.11E-02	2.8	1.8	0.19	5.37E-02	3.32E-02	0
	P 3	257.30	-2.43	0.23	0.17	2.55E-02	2.7	1.6	0.18	6.17E-02	3.36E-02	3
	P 4	258.50	-2.90	0.80	0.73	2.09E-01	2.7	1.4	0.18	5.12E-01	2.50E-01	1
	P 5	259.20	-3.77	0.43	0.50	9.53E-02	2.6	1.4	0.17	2.20E-01	1.14E-01	3
	P 6	258.07	-1.90	0.23	0.23	3.11E-02	2.7	1.4	0.18	7.83E-02	3.60E-02	1
	P 7	259.93	-2.67	0.33	0.53	1.05E-01	2.8	1.3	0.18	2.75E-01	1.15E-01	2
	P 8	259.43	-3.03	0.50	0.70	1.33E-01	2.6	1.2	0.16	3.13E-01	1.32E-01	0
1657	(0)	256.07	-9.23	0.30	0.23	4.06E - 02	1.1	0.9	0.12	3.55E-02	2.78E-02	3
1658	(0)	256.20	-3.73	0.60	0.40	1.05E - 01	1.7	0.9	0.11	1.57E-01	6.87E-02	0
1659	(0)	256.23	-5.53	0.23	0.30	3.65E-02	1.3	0.8	0.11	4.23E-02	2.33E-02	0
1660	(0)	256.37	-10.03	0.17	0.17	2.08E - 02	1.0	0.8	0.12	1.57E - 02	1.31E-02	1
1661	(0)	256.47	-10.57	1.00	0.63	1.91E-01	0.9	0.8	0.12	1.37E - 01	1.16E-01	0
1662	(1)	256.93	-5.43	0.67	0.63	1.88E-01	2.0	1.5	0.15	2.50E-01	1.49E-01	0
	P 1	256.93	-5.43	0.13	0.23	2.65E - 02	2.0	1.5	0.15	4.83E-02	3.42E - 02	1
1663	(0)	257.00	-6.97	0.40	0.73	9.93E-02	1.0	0.7	0.10	8.98E-02	5.88E-02	0
1664	(1)	257.27	1.03	0.90	1.30	5.37E-01	1.8	1.1	0.12	7.44E-01	3.53E-01	0
	P 1	257.27	1.03	0.40	0.37	5.44E - 02	1.8	1.1	0.12	8.64E - 02	5.27E - 02	0
1665	(0)	257.53	-6.87	0.27	0.17	2.21E - 02	0.9	0.6	0.09	1.81E - 02	1.20E - 02	0
1666	(0)	258.60	7.87	0.17	0.30	2.86E-02	0.7	0.6	0.10	1.73E-02	1.57E-02	0
1667	(1)	259.27	-13.23	0.63	0.63	1.76E-01	1.5	1.5	0.19	1.53E-01	1.43E-01	2
	P 1	259.27	-13.23	0.23	0.20	2.81E-02	1.5	1.5	0.19	3.86E-02	3.70E-02	2
1668	(1)	259.27	3.33	1.17	0.90	2.94E-01	1.8	1.5	0.15	2.94E-01	2.34E-01	1
	P 1	259.27	3.33	0.40	0.27	4.21E-02	1.8	1.5	0.15	6.41E-02	5.47E-02	2
1669	(0)	260.07	2.80	0.17	0.20	2.22E - 02	1.3	0.7	0.11	2.63E - 02	1.29E - 02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	S	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
1670	(1)	260.60	-3.70	1.00	0.90	4.93E-01	3.2	2.0	0.22	9.49E-01	3.86E-01	0
	P 1	260.60	-3.70	0.13	0.17	1.77E-02	3.2	2.0	0.22	5.15E-02	3.00E-02	2
1671	(0)	260.63	-7.10	0.23	0.33	5.62E-02	1.1	0.8	0.09	4.71E-02	3.33E-02	0
1672	(1)	260.73	-5.50	0.53	0.67	1.68E-01	1.6	1.0	0.11	2.16E-01	1.13E-01	3
	P 1	260.73	-5.50	0.17	0.27	3.54E-02	1.6	1.0	0.11	5.22E-02	3.11E-02	0
1673	(14)	260.83	0.10	5.33	3.13	6.74E + 00	3.5	1.9	0.29	1.57E + 01	5.93E + 00	12
	P 1	260.83	0.10	0.27	0.27	4.78E-02	3.5	1.9	0.29	1.54E-01	7.41E-02	0
	P 2	258.63	0.77	0.33	0.30	5.22E-02	3.0	1.9	0.24	1.42E-01	8.35E-02	0
	P 3	261.17	0.90	0.73	0.53	1.53E-01	3.4	1.8	0.27	4.85E-01	2.41E-01	0
	P 4	261.93	1.07	0.27	0.20	3.44E-02	3.2	1.7	0.25	1.03E-01	4.87E-02	0
	P 5	259.20	1.00	0.37	0.37	7.11E-02	2.9	1.7	0.22	1.87E-01	9.97E-02	1
	P 6	259.50	1.27	0.50	0.27	8.00E - 02	2.8	1.6	0.22	2.06E-01	1.07E - 01	0
	P 7	261.33	0.20	0.17	0.10	1.33E-02	3.2	1.5	0.24	3.99E-02	1.77E-02	1
	P 8	259.03	0.27	0.20	0.17	2.56E - 02	2.9	1.5	0.22	6.84E-02	3.24E-02	0
	P 9	260.57	0.83	0.13	0.10	1.00E - 02	2.9	1.4	0.22	2.69E-02	1.19E-02	1
	P 10	262.27	0.50	0.20	0.10	1.56E - 02	3.0	1.3	0.21	4.36E-02	1.81E-02	0
	P 11	260.23	0.70	0.33	0.23	4.00E - 02	2.8	1.3	0.21	1.05E - 01	4.53E-02	1
	P 12	262.13	1.40	0.20	0.17	2.11E-02	2.7	1.2	0.20	5.37E-02	2.15E-02	1
	P 13	260.37	2.20	0.13	0.30	2.55E - 02	2.1	1.1	0.16	5.09E-02	2.36E-02	1
	P 14	262.47	-0.43	0.13	0.20	1.89E-02	2.8	1.1	0.18	5.02E-02	1.74E - 02	1
1674	(0)	261.07	-3.23	0.17	0.17	2.00E - 02	2.0	0.7	0.12	3.86E-02	1.17E - 02	0
1675	(0)	261.13	2.97	0.20	0.20	3.11E-02	1.5	0.7	0.12	4.37E-02	1.90E-02	0
1676	(0)	261.57	3.03	0.20	0.23	3.44E-02	1.5	0.7	0.12	4.79E-02	2.01E - 02	1
1677	(0)	261.73	-6.43	0.17	0.23	2.43E-02	1.1	0.6	0.09	2.45E - 02	1.36E-02	0
1678	(0)	261.73	1.97	0.13	0.23	2.55E - 02	2.2	0.7	0.16	5.15E-02	1.55E - 02	0
1679	(1)	261.77	-4.40	0.67	0.87	2.24E - 01	2.2	1.3	0.14	3.76E-01	1.68E-01	0
	P 1	261.77	-4.40	0.27	0.17	3.10E-02	2.2	1.3	0.14	6.39E-02	3.61E-02	1
1680	(0)	261.93	3.63	0.33	0.47	7.65E - 02	1.2	0.7	0.11	9.11E-02	4.37E - 02	0
1681	(1)	261.97	-2.57	2.93	2.40	2.25E + 00	2.9	1.5	0.17	4.45E + 00	1.66E + 00	1
	P 1	261.97	-2.57	0.20	0.17	2.66E - 02	2.9	1.5	0.17	7.18E-02	3.35E-02	0
1682	(1)	262.07	-1.70	0.70	0.77	2.99E-01	2.7	1.1	0.17	7.02E-01	2.15E-01	0
	P 1	262.07	-1.70	0.33	0.43	6.89E-02	2.7	1.1	0.17	1.74E - 01	6.16E-02	0
1683	(0)	262.20	-6.10	0.70	0.40	1.34E - 01	1.2	0.7	0.09	1.45E - 01	7.66E-02	0
1684	(1)	262.27	-12.47	0.67	0.37	1.31E - 01	1.4	1.3	0.16	1.07E - 01	9.97E-02	1
	P 1	262.27	-12.47	0.17	0.23	1.95E - 02	1.4	1.3	0.16	2.31E - 02	2.19E - 02	1
1685	(0)	262.40	3.17	0.43	0.30	9.21E - 02	1.8	1.0	0.14	1.42E - 01	6.59E - 02	1
1686	(0)	262.57	5.10	0.37	0.33	5.98E - 02	0.9	0.8	0.10	4.73E - 02	3.59E - 02	0
1687	(0)	263.43	4.67	0.40	0.57	1.22E - 01	1.1	0.8	0.10	1.11E - 01	7.99E - 02	0
1688	(0)	263.77	-6.47	0.33	0.37	5.96E - 02	1.3	0.8	0.10	6.74E - 02	3.59E - 02	0
1689	(0)	263.87	-0.67	0.33	0.20	2.22E - 02	2.3	0.6	0.14	4.87E - 02	1.18E - 02	0
1690	(0)	263.90	-0.93	0.20	0.17	2.33E - 02	2.3	0.7	0.14	5.19E - 02	1.32E - 02	0
1691	(1)	263.93	-3.50	0.97	0.77	3.53E - 01	2.2	1.3	0.13	5.97E-01	2.81E-01	0
	P 1	263.93	-3.50	0.43	0.20	5.10E - 02	2.2	1.3	0.13	1.04E - 01	5.79E - 02	2
1692	(1)	264.00	-11.53	0.23	0.33	4.14E-02	1.4	1.3	0.15	3.46E-02	3.14E-02	1
	P 1	264.00	-11.53	0.10	0.10	6.53E-03	1.4	1.3	0.15	7.88E-03	7.36E-03	1
1693	(0)	264.27	-11.97	0.23	0.13	2.50E-02	0.9	0.8	0.12	1.78E-02	1.59E-02	0
1694	(0)	264.30	-0.17	0.23	0.23	3.78E-02	2.3	0.7	0.15	8.29E-02	2.33E-02	0
1695	(0)	264.53	-6.40	0.50	0.20	4.53E-02	1.3	0.7	0.10	5.26E-02	2.72E-02	0
1696	(0)	264.67	-0.27	0.23	0.37	4.67E-02	2.2	0.7	0.14	9.70E-02	2.65E-02	0
1697	(0)	264.70	-0.60	0.20	0.27	3.22E-02	2.2	0.6	0.14	6./1E-02	1.80E - 02	0
1698	(1)	265.10	6.10	0.27	0.30	5.86E - 02	1.5	1.3	0.14	5.59E - 02	4.89E - 02	0

 Table 7. (Continued.)

										-		
Cloud	Clump	Pos	ition	Si	ize	Surface	Maximun	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	D 1	0(5.10	(10	0.12	0.17	(558)	1.5	1.2	0.14	0.115 00	1.025.02	0
1.000	P I	265.10	6.10	0.13	0.17	1.66E - 02	1.5	1.3	0.14	2.11E-02	1.92E - 02	0
1699	(0)	265.17	-0.63	0.30	0.17	3.00E-02	2.2	0.7	0.14	6.33E-02	1.86E - 02	1
1700	(0)	265.57	-9.83	0.23	0.23	4.38E-02	1.0	0.7	0.11	3.91E-02	2.58E-02	1
1701	(0)	265.73	-11.90	0.40	0.53	8.59E-02	0.9	0.8	0.12	6.26E - 02	5.17E - 02	0
1702	(0)	265.87	8.20	0.30	0.20	3.52E - 02	0.7	0.7	0.10	2.16E-02	2.01E - 02	0
1703	(2)	266.00	-7.43	1.57	2.77	1.62E + 00	3.1	2.5	0.27	2.29E+00	1.38E+00	3
	PI	266.00	-7.43	0.30	0.27	3.42E-02	3.1	2.5	0.27	9.18E-02	7.31E-02	4
1501	P 2	266.10	-6.50	0.50	0.53	1.30E-01	1.6	1.0	0.12	1.96E-01	1.15E-01	0
1704	(43)	266.07	1.17	10.60	7.53	2.17E+01	4.1	2.6	0.39	5.48E+01	2.10E+01	30
	P 1	266.07	1.17	0.27	0.43	5.89E-02	4.1	2.6	0.39	2.14E-01	1.30E-01	1
	P 2	270.13	-0.27	0.23	0.27	3.33E-02	4.5	2.5	0.59	1.38E-01	7.15E-02	1
	P 3	270.30	2.87	0.23	0.13	2.33E - 02	3.6	2.4	0.33	7.62E - 02	4.85E - 02	1
	P 4	270.40	-1.07	0.13	0.17	1.78E - 02	4.3	2.4	0.47	7.02E - 02	3.59E - 02	0
	P 5	270.30	-0.07	0.13	0.17	1.44E - 02	4.2	2.2	0.53	5.62E - 02	2.75E - 02	0
	P 6	270.90	-1.80	0.33	0.23	4.11E - 02	3.8	2.2	0.34	1.46E - 01	7.62E - 02	0
	P 7	266.33	-0.57	0.23	0.37	4.00E - 02	3.7	2.2	0.30	1.34E - 01	7.34E - 02	1
	P 8	264.37	2.03	0.47	0.67	1.32E - 01	3.5	2.1	0.29	4.02E - 01	2.29E - 01	0
	P 9	265.50	0.50	0.40	0.50	8.56E - 02	3.4	2.0	0.27	2.65E - 01	1.44E - 01	1
	P 10	270.30	-1.53	0.20	0.13	1.78E - 02	3.8	2.0	0.37	6.30E-02	3.03E-02	0
	P 11	267.70	-0.70	1.27	0.50	2.61E-01	3.6	1.9	0.28	8.68E-01	4.15E - 01	0
	P 12	271.13	0.23	0.77	0.47	1.24E - 01	3.8	1.8	0.28	4.25E-01	1.90E - 01	1
	P 13	263.33	1.67	0.20	0.17	2.00E - 02	3.3	1.8	0.27	6.14E-02	3.11E-02	2
	P 14	272.47	-3.90	0.20	0.13	1.77E - 02	2.2	1.7	0.13	3.54E-02	2.56E - 02	2
	P 15	272.23	1.30	0.27	0.33	4.78E - 02	3.1	1.6	0.21	1.36E-01	6.76E - 02	0
	P 16	270.93	-2.50	0.17	0.17	2.44E - 02	3.0	1.6	0.26	6.84E-02	3.40E-02	0
	P 17	269.83	-1.37	0.17	0.17	2.00E - 02	3.5	1.6	0.35	6.52E-02	2.71E-02	0
	P 18	271.73	1.83	0.33	0.27	4.44E - 02	2.9	1.6	0.21	1.20E - 01	5.90E-02	2
	P 19	268.97	0.33	0.37	0.20	3.78E-02	3.6	1.6	0.29	1.25E-01	5.04E - 02	1
	P 20	266.77	-0.87	0.20	0.10	1.44E - 02	3.1	1.5	0.22	4.12E-02	1.86E-02	0
	P 21	271.17	-2.13	0.37	0.60	8.33E-02	3.0	1.5	0.24	2.26E-01	1.03E-01	0
	P 22	272.00	-2.47	0.17	0.20	2.22E-02	2.7	1.5	0.22	5.50E-02	2.81E-02	0
	P 23	265.90	0.10	0.33	0.17	3.33E-02	2.9	1.5	0.21	8.97E-02	4.15E-02	0
	P 24	270.40	0.93	0.27	0.37	5.11E-02	3.4	1.5	0.26	1.61E-01	6.33E-02	0
	P 25	270.70	1.73	0.20	0.27	3.33E-02	3.1	1.4	0.23	9.42E-02	4.09E-02	0
	P 26	269.50	-0.93	0.43	0.27	5.78E-02	3.4	1.4	0.37	1.83E-01	7.03E-02	0
	P 27	271.77	1.40	0.37	0.27	5.44E-02	2.9	1.4	0.20	1.50E-01	6.52E-02	0
	P 28	269.57	0.17	0.13	0.37	2.89E-02	3.4	1.4	0.27	9.23E-02	3.47E-02	0
	P 29	271.60	2.23	0.23	0.20	3.89E-02	2.6	1.4	0.18	9.51E-02	4.65E-02	0
	P 30	272.47	-1.83	0.30	0.40	6.55E - 02	2.7	1.4	0.13	1.61E-01	7.57E-02	0
	P 31	267.90	0.60	0.23	0.23	2.89E-02	3.1	1.4	0.24	8.50E-02	3.37E-02	1
	P 32	268.47	0.13	0.20	0.23	3.22E - 02	3.2	1.3	0.25	9.82E-02	3.65E - 02	0
	P 33	266.90	-0.13	0.33	0.17	2.78E - 02	2.9	1.3	0.21	7.41E-02	3.01E - 02	Ő
	P 34	270.10	3.07	0.17	0.13	1.44E - 02	2.4	13	0.18	3.14E - 02	1.58E - 02	0
	P 35	271.37	2.57	0.17	0.20	2.11E-02	2.4	1.3	0.17	4.71E-02	2.24E - 02	Õ
	P 36	268.93	-1.27	0.23	0.23	2.55E-02	3.1	1.2	0.33	7.50E-02	2.69E - 02	2
	P 37	269.63	3.00	0.23	0.20	2.66E - 02	2.4	1.2	0.18	5.85E - 02	2.79E - 02	0
	P 38	269.50	_0.23	0.23	0.30	5.11E - 02	3.2	1.2	0.10	1.52E - 01	5.03E = 02	0
	P 30	270 77	-1.23	0.10	0.13	8 89E-03	3.0	1.2	0.33	2.56E - 02	9.05E - 02	0
	P 40	272.03	_0.17	0.10	0.17	2.07E - 03	2.0	1 1	0.18	$6.07E_{-02}$	2.07 ± 0.03 2.19 ± 0.03	1
	р /1	272.03	_1 /7	0.20	0.17	2.220 - 02 2.67E - 02	2.9	1.1	0.10	5.07E - 02 5.00F - 02	2.190 - 02 2.56E - 02	1
	р /1)	272.93	_3 50	0.17	0.23	2.07E = 02 2.33E = 02	1.9	1.1	0.12	3.82E = 02	2.00E = 02 2.08E = 02	0
	1 44	212.40	-5.50	0.20	0.17	2.3312-02	1.0	1.0	0.09	J.02E-02	2.001-02	0
Table 7. (Continued.)

Cloud	Clump	Pos	ition	S	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	•			associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 43	272.97	0.67	0.37	0.60	1.09E-01	2.4	1.0	0.14	2.43E-01	9.35E-02	0
1705	(0)	266.33	-4.90	0.87	0.53	1.61E-01	1.7	1.0	0.12	2.23E-01	1.04E-01	1
1706	(0)	266.53	-6.00	0.17	0.23	2.65E-02	1.3	0.6	0.10	3.23E-02	1.49E-02	0
1707	(0)	266.57	-9.83	0.90	0.63	1.83E-01	1.2	0.9	0.12	1.74E-01	1.13E-01	0
1708	(1)	266.90	-11.23	1.57	1.30	8.14E-01	1.2	1.1	0.14	6.68E-01	5.11E-01	0
	P 1	266.90	-11.23	0.20	0.10	1.74E - 02	1.2	1.1	0.14	1.86E-02	1.59E-02	0
1709	(0)	266.93	-5.57	0.37	0.43	5.53E-02	1.4	0.7	0.10	7.15E-02	3.30E-02	0
1710	(0)	267.03	-10.23	0.20	0.20	2.51E-02	1.0	0.7	0.12	2.11E-02	1.48E - 02	0
1711	(0)	267.57	-1.23	0.60	0.23	6.22E - 02	2.4	0.7	0.15	1.38E-01	3.78E-02	0
1712	(8)	267.60	4.27	4.03	1.90	2.87E + 00	3.0	2.5	0.28	4.12E + 00	2.44E + 00	3
	P 1	267.60	4.27	0.53	0.27	7.09E - 02	3.0	2.5	0.28	1.86E-01	1.45E - 01	1
	P 2	266.67	4.93	0.23	0.13	2.55E - 02	2.0	1.6	0.17	4.49E - 02	3.54E - 02	1
	P 3	270.07	4.17	0.17	0.17	1.66E - 02	2.2	1.6	0.17	3.31E-02	2.24E - 02	2
	P 4	268.47	3.97	0.33	0.33	6.76E - 02	2.0	1.3	0.16	1.20E - 01	7.35E-02	0
	P 5	269.50	3.93	0.20	0.17	2.44E - 02	2.0	1.2	0.16	4.35E - 02	2.55E - 02	1
	P 6	269.17	4.70	0.13	0.20	2.33E - 02	1.7	1.2	0.15	3.68E-02	2.48E - 02	0
	P 7	268.77	4.27	0.17	0.13	1.55E - 02	1.9	1.2	0.15	2.63E - 02	1.63E - 02	0
	P 8	266.73	4.20	0.37	0.33	6.54E - 02	1.6	1.0	0.13	9.64E - 02	5.71E - 02	0
1713	(3)	267.67	-7.37	1.50	1.67	1.02E + 00	2.1	1.5	0.17	1.35E + 00	7.77E-01	8
	P 1	267.67	-7.37	0.27	0.27	3.97E - 02	2.1	1.5	0.17	7.24E - 02	5.04E - 02	2
	P 2	268.10	-7.00	0.23	0.20	2.54E - 02	1.8	1.2	0.14	4.10E - 02	2.63E - 02	2
	P 3	268.57	-7.23	0.27	0.27	4.19E - 02	1.7	1.2	0.14	6.38E-02	4.18E - 02	0
1714	(1)	267.93	1.77	0.30	0.23	4.78E - 02	2.7	1.2	0.21	1.13E - 01	3.91E - 02	1
	P 1	267.93	1.77	0.20	0.13	2.11E - 02	2.7	1.2	0.21	5.42E - 02	2.17E - 02	1
1715	(1)	268.00	-3.67	1.87	1.90	1.25E + 00	2.2	1.3	0.13	2.06E + 00	9.68E-01	1
	P 1	268.00	-3.67	0.43	0.37	7.87E-02	2.2	1.3	0.13	1.54E - 01	8.39E-02	0
1716	(1)	268.20	2.00	0.10	0.13	1.33E-02	2.6	1.1	0.20	3.05E-02	1.01E-02	1
	PI	268.20	2.00	0.10	0.07	4.44E - 03	2.6	1.1	0.20	1.10E - 02	4.21E-03	0
1717	(0)	268.50	6.83	0.23	0.27	2.21E-02	0.8	0.6	0.10	1.69E-02	1.19E-02	0
1/18	(1)	268.73	-1.63	1.07	0.73	3.54E-01	3.1	1.3	0.32	8.21E-01	2.55E-01	2
1710	PI	268.73	-1.63	0.13	0.13	1.22E - 02	3.1	1.3	0.32	3.52E-02	1.3/E - 02	0
1/19	(0)	268.97	- 7.40	0.70	0.43	1.58E-01	1.4	1.0	0.12	1.72E-01	1.04E - 01	1
1720	(0)	269.03	- 7.03	0.27	0.27	5.0/E - 02	1.5	1.0	0.12	5.94E - 02	3.33E-02	0
1/21	(0)	269.27	5.43	0.30	0.20	3.10E - 02	1.1	0.7	0.11	2.92E - 02	1.88E - 02	0
1722	(0)	209.27	-4.43	0.37	0.27	4.21E - 02	1.0	0.7	0.18	0.10E - 02	2.48E - 02	0
1723	(0) (1)	209.00	3.57	0.20	0.20	5.21E - 02	1.2	0.9	0.11	3.22E - 02	2.12E - 02	0
1/24	(1) D 1	209.00	-11.10	0.40	0.17	4.47E = 02	1.1	1.1	0.13	3.02E - 02	5.50E - 02	0
1725	r 1 (0)	209.80	-11.10	0.27	0.10	1.04E - 02 2.18E 02	1.1	1.1	0.15	1.04E - 02 1.23E 02	1.34E - 02	1
1725	(0)	270.27	-10.93	0.23 0.47	0.23	2.18E - 02 6.87E - 02	0.0	0.0	0.10	1.23E = 02 0.58E = 02	1.13E = 02	1
1720	(0)	270.37	9.05	0.47	0.37	5.37E - 02	0.8	0.8	0.12	9.58E - 02 3.55E - 02	4.43E = 02	0
1727	(0) (1)	270.83	_4 57	1 23	0.27	6.18E - 01	1.8	1.1	0.11	8.93E-01	4.33E - 01	3
1720	(1) P 1	270.83	-4 57	0.47	0.30	6.10E - 01	1.0	1.1	0.20	0.93E 01 9.81E_02	5.45E - 02	0
1720	(1)	270.87	-8 53	0.47	1.03	2.30E - 01	13	13	0.120	$1.64E_{-01}$	$1.56E_{-01}$	0
1129	P 1	270.87	-8 53	0.00	0.27	2.301 01 2.42E - 02	13	1.3	0.12 0.12	$2.72E_{-02}$	$2.61E_{-02}$	2
1730	(1)	271 47	4 90	1.33	0.80	5.34E - 01	3.4	3.1	0.32	8.02E - 01	5.94E - 01	1
1750	P 1	271 47	4 90	0.33	0.17	3.54E - 02	3.4	3.1	0.32	1.07E - 01	$9.46E - 0^{2}$	2
1731	(0)	272.97	3.73	0.63	0.33	1.19E - 01	1.3	0.8	0.10	1.30E - 01	7.43E-02	- 1
1732	(0)	273.60	-1.83	0.57	0.33	9.33E - 02	1.9	0.8	0.09	1.63E - 01	5.72E-02	0
1733	(2)	273.67	2.57	0.60	0.37	9.55E-02	1.8	1.0	0.11	1.35E-01	6.77E - 02	0
	P 1	273.67	2.57	0.10	0.13	1.11E-02	1.8	1.0	0.11	1.84E-02	9.83E-03	0

 Table 7. (Continued.)

Cloud	Clump	Posi	ition	Si	ze	Surface	Maximun	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2}ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}				associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 2	274.07	2.67	0.37	0.13	2.44E-02	1.7	1.0	0.11	3.64E-02	2.04E-02	3
1734	(1)	273.73	3.03	0.57	0.47	1.22E-01	1.6	1.0	0.11	1.59E-01	8.51E-02	2
	P 1	273.73	3.03	0.30	0.27	3.33E-02	1.6	1.0	0.11	4.94E-02	2.94E-02	1
1735	(0)	273.77	-0.23	0.37	0.10	2.67E - 02	2.2	0.9	0.12	5.21E-02	1.75E-02	1
1736	(0)	273.97	5.60	0.23	0.17	2.21E-02	0.7	0.6	0.08	1.48E-02	1.24E-02	0
1737	(0)	274.30	3.37	0.60	0.40	4.66E-02	1.1	0.7	0.08	4.23E-02	2.59E-02	1
1738	(0)	274.77	-4.30	0.20	0.20	2.88E-02	1.0	0.7	0.07	2.57E-02	1.74E - 02	0
1739	(1)	274.87	0.17	1.60	0.83	6.51E-01	2.7	1.6	0.15	1.34E + 00	5.95E-01	3
1740	PI	274.87	0.17	0.47	0.50	1.08E-01	2.7	1.6	0.15	2.62E - 01	1.40E - 01	0
1740	(0)	2/4.8/	5.27	0.23	0.20	3.54E - 02	0.9	0.8	0.08	2.5/E - 02	2.16E - 02	0
1/41	(0)	275.10	0.90	0.33	0.20	4.22E - 02	1./	0.7	0.10	0.80E - 02	2.50E - 02	1
1742	(0)	275.23	5.40	0.20	0.17	2.54E - 02	0.8	0.7	0.08	1.73E - 02	1.48E - 02	0
1743	(0)	275.30	2.10	0.37	0.17	3.78E-02	1.5	0.8	0.09	4.95E - 02	2.32E - 02	0
1744	(0)	275.43	0.57	0.37	0.40	9.55E - 02	1.9	0.9	0.10	1.64E - 01	6.26E - 02	1
1745	(1) D 1	275.70	0.30	0.43	0.73	1.53E - 01	2.1	1.1	0.11	2.59E-01	9.66E - 02	0
1746	P I	275.70	0.30	0.17	0.17	2.11E - 02	2.1	1.1	0.11	4.19E - 02	1.92E - 02	1
1740	(0)	277.02	5.00	0.57	0.40	9.32E - 02	0.9	0.8	0.08	0.30E - 02	5.02E - 02	0
1747	(0)	277.05	4.97	0.20	0.17	2.44E - 02 1 47E + 00	0.7	0.7	0.08	1.00E - 02	1.40E - 02	0
1748	(1) D 1	277.80	1.10	2.00	1.75	1.4/E + 00	1.0	1.0	0.09	$2.40E \pm 00$	9.00E - 01	5
1740	F 1 (5)	277.00	3.40	3.00	3.00	7.07E - 02	1.0	1.0	0.09	1.30E = 01	0.81E - 02	07
1/49	(J) D 1	277.90	-5.40	5.90 0.57	5.90 1.07	$4.87E \pm 00$	1.9	1.5	0.10	$6.23E \pm 00$	$3.46E \pm 00$ 2.04E 01	0
		277.90	-3.40	0.37	1.07	2.70E = 01	1.9	1.5	0.10	4.32E - 01	2.94E = 01	0
	P 3	278.40	-0.97 -2.13	0.27	0.40	4.78E - 02 5.44E - 02	2.4	1.2	0.10	1.04E = 01 1.17E = 01	4.04E - 02 5 36E - 02	2
	Г <i>5</i> Р <i>4</i>	278.63	_0.93	0.27	0.77	3.44E = 02	2.3 2.4	1.1	0.02	$9.71E_{-02}$	4.13E_02	1
	P 5	278.67	-257	0.13	0.27	1.55E-02	2.7	1.1	0.09	3.13E - 02	1.13E 02 1.41E - 02	0
1750	(1)	278.53	2.90	0.15	0.20	2 50E-01	1.2	1.1	0.09	2.60E - 01	1.41E - 02 1.87E - 01	1
1750	P 1	278.53	2.90	0.50	0.23	9 10E-02	1.1	1.1	0.09	1.12E-01	8.60E - 02	1
1751	(0)	279.43	3.33	0.33	0.43	4.21E-02	0.8	0.6	0.07	3.09E-02	2.28E - 02	0
1752	(0)	279.57	-2.33	0.40	0.23	6.22E - 02	2.2	0.9	0.19	1.19E - 01	4.10E - 02	Ő
1753	(2)	280.03	1.87	1.10	0.57	3.39E-01	1.8	1.2	0.20	4.39E-01	2.65E - 01	1
	P 1	280.03	1.87	0.33	0.30	6.00E - 02	1.8	1.2	0.20	9.59E-02	6.43E - 02	0
	P 2	280.70	1.97	0.13	0.17	1.78E-02	1.6	1.1	0.19	2.54E-02	1.67E-02	0
1754	(0)	280.83	13.43	0.37	0.40	7.57E-02	0.8	0.7	0.13	4.55E-02	4.31E-02	0
1755	(0)	281.07	-2.73	0.47	0.43	1.02E-01	1.9	0.8	0.18	1.71E-01	6.02E-02	0
1756	(0)	281.43	-3.27	0.40	0.43	1.14E-01	1.6	0.8	0.17	1.66E-01	7.13E-02	0
1757	(0)	281.60	-4.37	0.27	0.23	4.54E-02	1.1	0.8	0.07	4.21E-02	2.95E-02	1
1758	(5)	281.67	-0.83	4.90	4.33	8.46E + 00	3.3	2.0	0.26	1.84E + 01	7.49E + 00	7
	P 1	281.67	-0.83	0.93	0.70	3.14E-01	3.3	2.0	0.26	9.34E-01	5.11E-01	1
	P 2	280.87	-0.43	0.43	0.37	7.67E-02	3.0	1.6	0.24	2.10E-01	1.04E - 01	0
	P 3	282.80	-1.13	0.27	0.33	5.00E-02	2.6	1.3	0.19	1.20E - 01	5.44E-02	0
	P 4	283.50	-2.30	0.30	0.23	4.22E - 02	2.2	1.1	0.19	8.81E-02	4.05E - 02	0
	P 5	283.93	1.33	0.17	0.17	2.33E-02	2.0	1.1	0.20	4.38E-02	2.09E-02	0
1759	(0)	281.83	7.63	0.30	0.17	2.97E-02	0.7	0.6	0.09	1.88E-02	1.61E-02	1
1760	(0)	282.77	1.10	0.27	0.17	3.11E-02	1.8	0.7	0.18	5.21E-02	1.78E-02	0
1761	(0)	282.77	-3.23	0.47	0.30	6.99E-02	1.6	1.0	0.17	8.89E-02	4.56E-02	2
1762	(0)	282.87	1.60	0.30	0.33	5.55E-02	1.5	0.7	0.18	7.73E-02	3.27E-02	0
1763	(0)	283.20	-9.80	0.13	0.30	2.19E-02	0.8	0.8	0.24	1.43E-02	1.30E-02	0
1764	(0)	283.23	-2.93	0.37	0.27	4.33E-02	1.4	0.6	0.15	5.59E-02	2.33E-02	0
	(0)	283 53	1.67	0 57	0.37	1.22E - 01	17	0.9	0.18	1.78E - 01	7.64E - 02	0
1765	(0)	205.55	1.07	0.07	0.07	1.220 01	1.7	0.9	0.10	1.701 01	7.0 HL 02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
1767	(0)	284.40	1.60	0.33	0.37	7.77E-02	1.6	0.7	0.17	1.12E-01	4.73E-02	0
1768	(1)	284.50	-2.57	0.80	0.67	2.55E-01	1.8	1.0	0.16	3.90E-01	1.76E-01	0
	P 1	284.50	-2.57	0.33	0.30	5.44E-02	1.8	1.0	0.16	9.40E-02	4.81E-02	1
1769	(0)	284.67	-0.80	0.30	0.13	2.56E-02	1.8	0.6	0.15	4.45E-02	1.44E-02	1
1770	(0)	284.87	-1.40	0.33	0.47	8.44E-02	1.9	0.8	0.15	1.47E-01	5.12E-02	1
1771	(0)	285.00	0.33	0.60	0.53	1.00E-01	1.9	0.7	0.17	1.67E-01	5.73E-02	1
1772	(0)	285.03	7.13	0.30	0.23	4.74E-02	0.9	0.8	0.10	3.61E-02	2.87E-02	0
1773	(0)	285.53	5.37	0.23	0.47	5.31E-02	0.9	0.7	0.19	4.47E-02	3.15E-02	1
1774	(0)	285.87	4.63	0.17	0.23	2.33E-02	0.9	0.6	0.18	1.99E-02	1.28E-02	1
1775	(0)	286.17	5.50	0.17	0.23	2.21E-02	1.1	0.8	0.20	1.95E-02	1.38E-02	1
1776	(0)	286.47	-3.03	0.50	0.33	8.65E-02	1.3	0.9	0.14	9.74E-02	5.78E-02	1
1777	(0)	286.87	2.97	0.27	0.23	3.33E-02	1.1	0.6	0.16	3.50E-02	1.82E-02	1
1778	(0)	287.13	1.13	0.50	0.47	1.00E-01	1.7	1.0	0.16	1.39E-01	6.51E-02	1
1779	(1)	287.13	-3.10	0.53	0.77	1.68E-01	1.5	1.1	0.16	1.91E-01	1.17E-01	1
	P 1	287.13	-3.10	0.30	0.27	4.44E-02	1.5	1.1	0.16	6.15E-02	4.20E-02	0
1780	(10)	287.27	0.10	3.70	2.63	3.89E + 00	2.7	2.0	0.21	6.50E + 00	3.40E + 00	7
	P 1	287.27	0.10	0.57	0.37	1.03E-01	2.7	2.0	0.21	2.47E-01	1.71E-01	1
	P 2	287.80	-0.53	0.23	0.23	4.33E-02	2.3	1.6	0.17	8.86E-02	5.84E-02	0
	P 3	287.13	-0.67	0.67	0.53	1.61E-01	2.3	1.5	0.17	3.28E-01	2.07E-01	0
	P 4	288.10	-1.17	0.33	0.17	4.55E-02	2.2	1.5	0.17	9.00E-02	5.92E-02	0
	P 5	288.63	-0.17	0.13	0.10	8.89E-03	2.2	1.5	0.17	1.78E-02	1.17E-02	1
	P 6	288.13	-0.17	0.57	0.20	7.89E-02	2.0	1.3	0.16	1.48E-01	9.24E-02	1
	Р7	286.10	-0.70	0.77	0.30	8.44E-02	2.2	1.2	0.17	1.71E-01	8.74E-02	1
	P 8	285.33	-0.77	0.13	0.20	1.67E-02	2.3	1.2	0.17	3.49E-02	1.66E-02	0
	P 9	286.33	0.43	0.63	0.93	2.17E-01	2.0	1.1	0.17	4.00E-01	1.99E-01	3
	P 10	288.70	0.17	0.23	0.23	4.11E-02	1.7	1.0	0.15	6.39E-02	3.70E-02	1
1781	(0)	287.60	8.00	0.13	0.23	2.20E-02	1.0	0.8	0.10	1.74E-02	1.41E-02	1
1782	(0)	288.03	2.07	0.53	0.77	1.61E-01	1.4	0.8	0.16	1.92E-01	9.80E-02	5
1783	(0)	288.10	-1.77	0.30	0.27	4.78E-02	1.4	0.8	0.13	6.14E-02	3.10E-02	0
1784	(0)	288.50	1.70	0.20	0.27	3.66E-02	1.4	0.8	0.15	4.46E-02	2.27E-02	0
1785	(0)	288.67	4.30	0.47	0.20	5.10E-02	1.2	0.9	0.18	5.12E-02	3.22E-02	0
1786	(2)	288.77	1.10	1.57	1.00	7.09E-01	2.3	1.7	0.20	1.06E + 00	6.38E-01	4
	P 1	288.77	1.10	0.30	0.33	5.11E-02	2.3	1.7	0.20	1.05E-01	7.40E-02	1
	P 2	289.13	1.57	0.33	0.50	9.44E-02	2.0	1.4	0.19	1.69E-01	1.15E-01	3
1787	(0)	289.03	-26.17	0.40	0.23	3.79E-02	0.8	0.7	0.22	2.15E-02	2.10E-02	0
1788	(2)	289.03	-5.77	1.50	0.80	5.32E-01	2.4	2.0	0.28	5.96E-01	4.21E-01	2
	P 1	289.03	-5.77	0.10	0.13	1.11E-02	2.4	2.0	0.28	2.35E-02	1.95E-02	1
	P 2	288.37	-5.83	0.53	0.20	5.86E-02	1.4	1.1	0.20	7.12E-02	5.57E-02	0
1789	(0)	289.30	4.73	0.60	0.50	1.57E-01	1.1	0.8	0.18	1.42E-01	9.32E-02	1
1790	(1)	289.40	0.13	0.13	0.30	3.11E-02	1.7	1.0	0.14	4.27E - 02	2.29E-02	0
	P 1	289.40	0.13	0.10	0.20	1.33E-02	1.7	1.0	0.14	2.03E-02	1.18E-02	1
1791	(0)	289.60	9.37	0.17	0.33	2.96E-02	0.8	0.7	0.23	2.13E-02	1.82E - 02	0
1792	(0)	289.77	-31.23	0.20	0.30	2.66E - 02	0.8	0.9	0.25	1.50E - 02	1.76E-02	0
1793	(1)	290.40	-3.07	0.60	0.40	1.33E-01	1.7	1.0	0.17	1.84E-01	8.82E-02	0
	P 1	290.40	-3.07	0.30	0.17	2.55E-02	1.7	1.0	0.17	3.97E-02	2.16E-02	0
1794	(0)	290.50	-5.37	0.33	0.37	6.08E-02	1.3	0.8	0.19	7.08E-02	4.03E-02	1
1795	(0)	290.67	-7.80	0.17	0.17	2.20E-02	0.8	0.7	0.06	1.53E-02	1.30E-02	0
1796	(1)	290.70	1.00	0.40	1.03	2.19E-01	1.6	1.0	0.15	2.64E-01	1.44E-01	0
	P 1	290.70	1.00	0.17	0.30	2.33E-02	1.6	1.0	0.15	3.27E-02	2.03E-02	1
1797	(0)	290.70	5.83	0.73	0.53	1.41E-01	1.1	0.8	0.19	1.22E-01	8.51E-02	1
1798	(0)	290.80	5.23	0.53	0.27	6.53E-02	1.1	0.8	0.19	5.96E-02	4.10E-02	1

 Table 7. (Continued.)

name									0117	Juvies	J v 2-0 ~	i vuinoer or
	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	•			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
1799	(0)	290.93	7.50	0.20	0.33	3.96E-02	0.9	0.7	0.21	3.13E-02	2.36E-02	0
1800	(1)	290.93	-3.50	0.30	0.37	7.98E-02	2.4	1.7	0.22	1.24E-01	6.85E-02	0
	P 1	290.93	-3.50	0.17	0.10	1.33E-02	2.4	1.7	0.22	2.84E-02	1.91E-02	2
1801	(0)	291.23	-7.23	0.80	0.70	2.79E-01	1.1	0.9	0.20	2.36E-01	1.78E-01	0
1802	(8)	291.37	-1.80	4.97	4.50	1.14E + 01	3.9	3.1	0.32	2.16E + 01	1.05E + 01	28
	P 1	291.37	-1.80	0.23	0.20	3.22E - 02	3.9	3.1	0.32	1.11E-01	8.44E-02	1
	P 2	292.40	-3.77	0.10	0.13	1.11E-02	3.6	2.7	0.34	3.57E-02	2.65E-02	1
	P 3	294.37	-3.10	0.20	0.37	4.22E-02	3.3	2.2	0.29	1.24E-01	7.76E-02	2
	P 4	293.13	-2.87	0.20	0.23	3.00E-02	2.9	1.9	0.25	8.02E-02	4.77E-02	0
	P 5	293.47	-2.97	0.13	0.17	1.78E-02	2.8	1.7	0.24	4.59E-02	2.64E-02	1
	P6 D7	292.27	-0.93	0.43	0.37	7.44E-02	2.5	1.6	0.18	1.65E-01	1.03E - 01	1
	P7	294.83	-2.60	0.50	0.73	1.98E-01	2.6	1.5	0.22	4.64E - 01	2.50E-01	3
1000	P 8	293.33	-4.43	0.40	0.27	5.32E-02	2.1	1.3	0.22	1.03E - 01	6.0/E - 02	2
1803	(1)	291.40	-0.23	0.67	0.57	1.56E-01	2.4	1.7	0.18	2.35E-01	1.32E - 01	1
1004	PI	291.40	-0.23	0.13	0.17	1.44E - 02	2.4	1.7	0.18	3.10E-02	2.15E-02	1
1804	(0)	291.47	-4.20	0.57	0.27	1.04E - 01	1.6	0.9	0.18	1.38E-01	6.79E-02	3
1805	(0)	291.83	-5.93	0.27	0.23	4.31E-02	1.3	0.8	0.19	4.79E-02	2.64E - 02	0
1806	(0)	291.93	-24.57	0.27	0.27	3.34E-02	0.7	0.7	0.20	2.12E-02	1.88E - 02	0
1807	(0)	292.27	-24.37	0.20	0.20	2.13E - 02	0.8	0.7	0.20	1.43E - 02	1.28E - 02	0
1808	(0)	292.67	-19.83	0.30	0.17	3.14E-02	0.8	0.8	0.17	1.98E-02	1.85E - 02	1
1809	(0)	292.73	2.40	0.37	0.27	5.33E-02	1.2	0.8	0.15	5.43E-02	3.2/E - 02	1
1810	(0)	292.97	-24.13	0.20	0.30	2.84E - 02	0.7	0.6	0.19	1.72E-02	1.56E - 02	0
1811	(0)	293.40	-24.20	0.50	0.57	1.08E - 01	0.8	0.8	0.20	7.11E-02	0.51E - 02	0
1812	(0)	295.57	-10.40	0.40	0.17	3.84E - 02	0.9	0.7	0.14	2.95E - 02	2.20E - 02	0
1813	(0)	293.11	-4.97	0.07	0.57	1.82E - 01	1.5	0.9	0.19	2.43E - 01	1.21E-01	1
1014	(0)	293.87	-10.45	0.20	0.27	2.77E = 02	1.0	0.8	0.13	2.26E - 02	1.08E - 02	0
1015	(0) (1)	294.07	-24.55	0.27	0.20	2.94E - 02	0.7	0.7	0.19	1.60E - 02	1.72E - 02 1.30E 01	2
1010	(1) P 1	294.10	6.23	0.37	0.05	2.04E = 01 2.43E = 02	1.4	1.2	0.09	1.08E - 01 2 00E - 02	1.39E = 01 2 55E = 02	1
1817	(0)	294.10	-17.40	0.23	0.20	2.43E = 02 2.76E = 01	1.4	1.2	0.09	2.90E = 02 2.32E = 01	2.53E = 02 1 74E = 01	1
1818	(0)	294.17	-17.40 -23.07	0.37	0.40	2.70E-01 3.55E-02	0.7	1.0	0.17	2.32E-01 2.12E-02	1.74E = 01 1.00E = 02	0
1810	(0)	294.23	-23.97	1.07	0.20	3.35E-02 3.21E-01	1.3	0.0	0.13	2.12E = 02 3.08E = 01	1.99E - 02 2 00E - 01	1
1820	(0)	294.33	_24.30	0.23	0.00	4.36E - 02	0.7	0.7	0.17	2.65E - 02	2.00E 01 2.48E - 02	0
1821	(0)	294.53	5.93	0.23	0.23	2.21E-02	0.7	0.7	0.17	1.58E - 02	1.23E - 02	0
1822	(0) (1)	294.97	3 37	0.23	0.25	1.28E - 01	17	14	0.20	1.30E - 02 1.27E - 01	8.45E - 02	0
1022	P 1	294.97	3.37	0.13	0.10	1.11E - 02	1.7	1.4	0.20	1.70E - 02	1.33E - 02	1
1823	(0)	295.07	-5.77	0.70	0.30	7.18E - 02	1.2	0.8	0.18	6.67E - 02	4.29E-02	0
1824	(0)	295.13	-17.53	0.33	0.23	5.19E - 02	1.1	0.9	0.16	4.68E - 02	3.43E - 02	Ő
1825	(0)	295.20	2.77	0.50	0.47	1.08E - 01	1.3	0.9	0.17	1.14E - 01	6.95E - 02	1
1826	(0)	295.20	-16.83	0.33	0.43	6.16E - 02	1.0	0.7	0.15	5.18E - 02	3.56E - 02	0
1827	(0)	295.33	-12.87	0.13	0.20	2.06E - 02	1.1	0.9	0.13	1.80E - 02	1.40E - 02	1
1828	(1)	295.73	-0.37	0.17	0.23	2.78E-02	1.9	1.0	0.16	4.66E-02	2.06E-02	0
	P 1	295.73	-0.37	0.13	0.13	1.33E-02	1.9	1.0	0.16	2.42E-02	1.17E-02	2
1829	(0)	295.97	-4.07	0.63	0.50	1.43E-01	1.5	0.7	0.17	1.90E-01	8.22E-02	0
1830	(0)	296.13	-7.87	0.60	0.23	6.16E-02	0.9	0.8	0.08	4.28E-02	3.76E-02	1
1831	(1)	296.63	-2.67	1.47	0.67	4.39E-01	2.1	1.1	0.18	6.92E-01	2.88E-01	3
	P 1	296.63	-2.67	0.13	0.17	2.00E-02	2.1	1.1	0.18	3.83E-02	1.95E-02	0
1832	(0)	296.77	3.90	0.33	0.43	3.99E-02	1.0	0.6	0.17	3.55E-02	2.16E-02	0
1833	(1)	296.87	-14.53	0.60	0.20	6.88E-02	1.5	1.2	0.17	7.15E-02	5.05E-02	1
1055						4 4 9 7 9 9	1 5	1.0	0.17	1.650 00	1.000	
1055	P 1	296.87	-14.53	0.17	0.10	1.18E - 02	1.5	1.2	0.17	1.03E - 02	1.29E - 02	1

 Table 7. (Continued.)

Cloud	Clump	Pos	sition	S	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	•			associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 1	297.03	2.27	0.23	0.23	3.55E-02	1.5	1.0	0.18	4.84E-02	3.04E-02	1
1835	(3)	297.13	-15.90	2.07	2.10	2.19E + 00	5.7	5.4	1.40 [†]	3.72E + 00	3.13E + 00	12
1000	P 1	297.13	-15.90	0.23	0.17	2.46E - 02	5.7	5.4	1.40†	1.19E-01	1.12E-01	0
	P 2	297.33	-15.67	0.23	0.13	2.25E-02	5.3	5.0	1.17^{\dagger}	1.03E-01	9.72E-02	1
	P 3	296.50	-15.77	0.17	0.23	2.46E-02	3.0	2.7	0.38	6.49E-02	5.81E-02	1
1836	(0)	297.23	-16.90	0.27	0.23	3.93E-02	1.1	0.9	0.15	3.38E-02	2.57E-02	0
1837	(0)	297.27	-1.37	0.20	0.13	2.00E-02	1.7	0.8	0.14	3.09E-02	1.26E-02	0
1838	(0)	297.47	-1.07	0.17	0.17	2.00E-02	1.5	0.6	0.13	2.90E-02	1.10E-02	0
1839	(0)	297.57	-5.00	0.27	0.23	3.54E-02	1.1	0.7	0.17	3.34E-02	2.17E-02	0
1840	(2)	297.77	-2.77	1.40	0.73	4.30E-01	3.6	2.8	0.31	7.19E-01	3.58E-01	2
	P 1	297.77	-2.77	0.13	0.10	9.99E-03	3.6	2.8	0.31	3.19E-02	2.37E-02	1
	P 2	298.37	-2.57	0.23	0.13	2.44E - 02	2.2	1.3	0.18	4.88E-02	2.81E-02	0
1841	(0)	297.87	-0.77	0.37	0.27	5.44E - 02	1.5	0.7	0.14	7.94E-02	3.06E-02	0
1842	(0)	297.90	-11.90	0.20	0.23	2.72E - 02	0.9	0.7	0.11	2.24E - 02	1.60E - 02	0
1843	(0)	298.17	-1.53	0.33	0.20	4.55E - 02	1.6	0.7	0.13	6.76E-02	2.60E - 02	0
1844	(0)	298.27	3.53	0.40	0.30	7.21E-02	1.3	0.9	0.20	7.49E-02	4.68E - 02	0
1845	(0)	298.27	-4.47	0.27	0.17	3.43E-02	1.3	0.9	0.17	3.59E-02	2.29E-02	1
1846	(2)	298.33	-13.63	0.73	1.10	2.84E - 01	1.8	1.5	0.19	3.03E-01	2.27E-01	2
	P 1	298.33	-13.63	0.30	0.13	2.48E - 02	1.8	1.5	0.19	3.97E-02	3.29E-02	0
	P 2	298.27	-13.07	0.13	0.20	1.62E - 02	1.5	1.2	0.15	2.18E-02	1.77E - 02	1
1847	(0)	298.50	-0.67	0.27	0.13	2.22E - 02	1.5	0.6	0.14	3.24E-02	1.22E - 02	0
1848	(0)	298.53	-1.53	1.17	0.87	3.90E-01	1.8	0.9	0.14	6.11E-01	2.49E-01	1
1849	(1)	298.73	3.73	0.23	0.23	3.77E-02	1.4	1.0	0.21	4.02E - 02	2.65E - 02	0
	P 1	298.73	3.73	0.13	0.13	1.44E - 02	1.4	1.0	0.21	1.80E - 02	1.28E-02	2
1850	(0)	299.30	0.43	0.67	0.40	1.62E - 01	1.8	0.9	0.18	2.54E-01	1.14E-01	1
1851	(2)	299.37	5.37	1.50	1.00	6.73E-01	1.3	1.1	0.09	6.40E-01	4.69E-01	3
	P 1	299.37	5.37	0.47	0.27	5.97E-02	1.3	1.1	0.09	6.86E-02	5.34E-02	1
	P 2	300.03	5.67	0.47	0.50	9.73E-02	1.3	1.1	0.09	1.11E-01	8.76E-02	0
1852	(2)	299.43	-8.93	0.70	0.60	1.70E - 01	1.2	1.1	0.26	1.41E - 01	1.17E-01	0
	P 1	299.43	-8.93	0.17	0.20	2.09E - 02	1.2	1.1	0.26	2.19E-02	1.89E-02	0
	P 2	299.57	-8.80	0.13	0.17	1.43E - 02	1.2	1.0	0.25	1.43E-02	1.23E-02	1
1853	(0)	299.43	-3.90	0.20	0.17	2.22E - 02	1.1	0.7	0.15	2.33E-02	1.30E-02	0
1854	(0)	299.57	-3.63	0.23	0.20	2.88E - 02	1.4	0.9	0.16	3.44E-02	1.94E - 02	0
1855	(0)	299.73	-3.83	0.23	0.20	2.99E-02	1.3	0.8	0.16	3.32E-02	1.92E - 02	0
1856	(0)	299.77	4.83	0.23	0.20	3.54E - 02	1.1	0.8	0.08	3.29E-02	2.25E - 02	0
1857	(1)	299.87	6.63	1.17	0.70	4.18E-01	1.3	1.2	0.10	3.47E-01	2.91E-01	0
	P 1	299.87	6.63	0.30	0.23	4.97E - 02	1.3	1.2	0.10	5.64E - 02	5.01E - 02	0
1858	(0)	300.00	-0.03	0.43	0.60	1.40E - 01	1.9	0.8	0.17	2.34E-01	8.73E-02	0
1859	(0)	300.13	-8.60	0.23	0.37	4.17E - 02	0.7	0.6	0.21	2.80E - 02	2.29E-02	0
1860	(1)	300.23	-16.90	0.67	0.73	2.49E-01	1.7	1.4	0.20	2.48E-01	1.89E-01	0
	P 1	300.23	-16.90	0.20	0.23	3.19E-02	1.7	1.4	0.20	4.70E - 02	3.94E-02	1
1861	(0)	300.27	-3.47	0.40	0.20	3.88E-02	1.5	1.0	0.16	4.75E - 02	2.71E-02	1
1862	(1)	300.43	0.43	0.23	0.23	3.44E-02	2.1	1.1	0.19	6.09E-02	2.57E - 02	0
	P 1	300.43	0.43	0.10	0.13	1.00E - 02	2.1	1.1	0.19	2.00E - 02	9.83E-03	0
1863	(0)	300.60	-10.53	0.20	0.13	2.08E-02	0.9	0.7	0.10	1.59E-02	1.21E-02	0
1864	(0)	300.67	5.17	0.17	0.27	3.65E-02	1.1	0.8	0.08	3.18E-02	2.26E-02	1
1865	(0)	300.70	3.67	0.33	0.40	6.21E-02	1.1	0.8	0.19	5.87E-02	3.61E-02	0
1866	(0)	300.73	-10.83	0.33	0.57	6.87E-02	0.8	0.6	0.10	5.11E-02	3.78E-02	0
1867	(21)	300.73	-0.97	6.73	5.30	1.54E + 01	6.3	5.1	0.71	3.40E + 01	1.92E + 01	34
	P 1	300.73	-0.97	0.13	0.17	1.89E-02	6.3	5.1	0.71	1.05E-01	8.38E-02	2
	P 2	303.60	1.37	0.53	0.30	1.01E-01	4.6	3.8	0.47	4.03E-01	3.28E-01	4

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	•			associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 3	303.60	0.87	0.10	0.13	1.11E-02	4.4	3.5	0.14	4.35E-02	3.31E-02	0
	P 4	303.27	-0.50	0.30	0.27	4.56E - 02	4.3	3.1	0.35	1.72E - 01	1.20E - 01	1
	P 5	302.77	1.17	0.27	0.30	3.67E - 02	4.0	3.1	0.39	1.29E - 01	9.52E - 02	1
	P 6	300.87	-2.50	0.13	0.33	3.11E - 02	3.8	3.0	0.34	1.04E - 01	7.91E-02	2
	P 7	304.53	-0.50	0.77	0.73	2.46E - 01	3.3	2.5	0.25	7.17E - 01	5.17E - 01	2
	P 8	301.77	-0.53	0.27	0.20	3.56E - 02	3.6	2.4	0.28	1.12E - 01	6.96E - 02	0
	P 9	301.97	0.77	0.20	0.23	2.78E - 02	3.4	2.3	0.30	8.59E-02	5.49E - 02	2
	P 10	302.83	-1.17	0.23	0.23	3.78E - 02	3.3	2.1	0.25	1.12E - 01	6.80E - 02	0
	P 11	304.00	-1.30	0.43	0.27	6.33E - 02	3.0	2.1	0.23	1.71E-01	1.14E - 01	1
	P 12	303.50	0.17	0.37	0.33	6.78E - 02	3.1	2.0	0.10	1.92E - 01	1.20E - 01	0
	P 13	303.40	-1.57	0.30	0.23	3.22E - 02	3.0	2.0	0.24	8.68E - 02	5.37E - 02	1
	P 14	301.23	-0.37	0.17	0.13	1.78E - 02	3.1	2.0	0.25	5.06E - 02	3.01E - 02	1
	P 15	301 50	-2.80	0.20	0.13	2.00E - 02	2.6	19	0.23	4.66E - 02	3.33E-02	1
	P 16	302.27	0.10	0.20	0.13	3.56E - 02	3.0	1.8	0.23	9.63E - 02	5.35E - 02	0
	P 17	301.63	-2 37	0.27	0.20	4.44E - 02	2.5	1.0	0.21	9.05E - 02	6.22E - 02	0
	P 18	305.17	1 23	0.23	0.17	2.55E = 02	2.0	1.7	0.21	4.57E - 02	3.00E - 02	1
	P 10	301 53	0.03	0.23	0.17	4.22E - 02	2.0	1.4	0.11	9.69E - 02	4.77E - 02	0
	P 20	200.83	-1.13	0.23	0.50	2.22E = 02	2.5	1.5	0.21	4.31E - 02	2.00E - 02	0
	P 21	299.63	_1.15	0.23	0.17	7.66E - 02	2.1	1.1	0.16	1.41E - 01	6.46E - 02	0
1868	(5)	277.05	_9.03	1.60	2.83	$1.63E \pm 00$	3.8	3.7	0.10	$2.04E \pm 00$	$1.84E \pm 00$	18
1000	(J) P 1	300.80	_9.03	0.13	0.33	$2.41E_{-02}$	3.8	3.7	0.05	2.04E+00 8.13E_02	7.86E - 02	2
	\mathbf{P}_{2}	300.60	-9.05	0.15	0.33	2.41E - 02 1.53E - 02	3.5	3.7	0.05	4.80E - 02	7.60E - 02	2
	1 2 D 3	301.27	-9.37	0.07	0.27	1.53E = 02 4.51E = 02	3.5	3.4	0.39	4.80E - 02	4.00E - 02	1
	$\mathbf{P}\mathbf{A}$	301.27	-0.27	0.40	0.30	4.31E - 02 2.85E - 02	1.2	1.1	0.48	1.21E = 01 2 87E = 02	1.10E = 01 2 56E = 02	4
	1 4 D 5	301.30	-9.00	0.20	0.27	2.05E - 02	1.2	1.1	0.25	2.07E - 02	2.50E - 02	0
1860	(0)	300.87	-9.30	0.33	0.17	9.71E - 02	1.1	0.8	0.20	3.03E - 02 7 12E - 02	2.08E - 02 5.84E - 02	0
1870	(0) (1)	301.23	-16.57	0.47	0.57	9.71E - 02 1.17E - 01	1.8	1.5	0.08	1.12E = 02	3.84E - 02 8 73E - 02	1
1070	(1) P 1	301.23	-16.57	0.37	0.57	1.17E = 01 1.06E = 02	1.0	1.5	0.21	1.20E - 01 1.70E - 02	1.40E - 02	0
1871	(0)	301.23	4.07	0.15	0.10	1.00E - 02 3.66E - 02	1.0	0.7	0.21	1.70L - 02 3.36E - 02	1.40E = 02 2.11E = 02	0
1872	(0)	301.33	-24.07	0.27	0.23	3.00E - 02	0.7	0.7	0.19	3.30E - 02 2 08E - 02	2.11E - 02 2.08E - 02	0
1872	(0)	301.55	7.60	0.30	0.33	4.90E - 02	1.0	0.7	0.10	2.98E-02	2.90E - 02	2
1873	(0) (1)	301.00	-16.57	0.50	0.20	3.41E - 02 8.63E - 02	1.0	1.5	0.09	1.00E - 01	2.19E - 02 7.65E - 02	0
10/4	(1) P 1	301.67	-16.57	0.30	0.30	$1.28E_{-02}$	1.0	1.5	0.21	1.00E = 01 2.08E = 02	1.03E - 02	2
1875	(0)	301.07	-10.37	0.17	0.15	1.23E - 02 2.43E - 02	1.0	0.8	0.21	2.08E - 02	1.75E - 02 1.52E - 02	2
1876	(0)	301.73	- 8 80	0.17	0.20	2.43E = 02 3.51E = 02	0.8	0.0	0.20	1.09E - 02 2.45E - 02	1.52E = 02 2 11E = 02	0
1870	(0)	301.75	-3.80	0.30	0.17	3.31E - 02 2.22E - 02	1.3	0.7	0.22	2.43E = 02 2.71E = 02	2.11E - 02 1 30E - 02	0
1878	(0)	302.07	-5.70	0.17	0.25	2.22E 02 2.99E_02	0.9	0.7	0.15	2.71E - 02 2.41E - 02	$1.30E \ 02$ 1.75E - 02	0
1870	(0) (1)	302.07	-3.70	0.15	0.27	2.99E - 02	0.9	1.2	0.17	2.41L-02	1.75E-02	1
10/9	(1) D 1	302.07	-7.07	0.20	0.55	3.07E - 02	1.4	1.2	0.23	4.00E - 02	3.89E - 02	1
1880	r 1 (0)	302.07	-7.07	0.10	0.15	9.92E = 03	1.4	1.2	0.25	1.24E - 02	1.08E - 02	0
1000	(0)	302.10	-5.40	0.13	0.33	2.43E = 02	1.0	0.7	0.10	1.90E - 02	1.40E - 02	0
1001	(0)	302.33	-18.03	0.23	0.17	2.03E = 02	1.0	0.8	0.10	2.09E - 02	1.00E - 02	0
1002	(0)	202.37	-3.03	0.37	0.20	4.10E - 02	1.1	0.7	0.15	4.00E - 02	2.33E - 02	1
1005	(0)	202.47	-2.23	0.30	0.17	5.22E = 02	1.0	0.7	0.15	4.73E - 02	1.96E - 02	1
1004	(0)	302.55	-4.75	0.43	0.37	7.42E = 02	1.1	0.8	0.10	0.03E - 02	4.30E - 02	1
1000	(0)	302.33	-5.05	0.21 277	3.00	3.33E - 02 2 07E + 00	1.4	0.0	0.13	+.04E-02	2.17E = 02 2.06E + 00	1 24
1000	(/) D 1	303.00	-10.03	2.11	0.27	2.0/E+00	3.0	2.0 2.9	0.38	2.32E+00	2.00E+00	24 0
		201.00	-10.63	0.13	0.37	3.19E-02	5.U 2.7	2.0 2.5	0.38	0.JOE-02	7.00E-02	2
	Г <u>/</u> D 2	302.60	17.07	0.27	0.37	1.38E 02	2.1	2.5	0.34	2 28E 02	2.06E 02	ے 1
	г Э р Л	302.00	-17.40	0.15	0.15	1.30E-02	2.1 2.7	2.4 2.4	0.33	3.20E-02	2.90E-02	1
	г4 D5	302.27	-1/./0	0.10	0.17	1.JOE-02	2.1	2.4 2 2	0.54	5.10E-02	2.00E-02	5 1
	гJ	505.10	-10.07	0.10	0.43	2.7712-02	2.3	2.3	0.29	0.02E - 02	J.74E-02	1

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 6	303.97	-17.83	0.17	0.33	3.38E-02	1.3	1.1	0.17	3.81E-02	3.18E-02	0
	P 7	303.93	-18.40	0.23	0.17	2.85E - 02	1.2	1.1	0.17	3.10E-02	2.62E - 02	0
1887	(0)	303.17	8.10	0.70	0.60	1.49E-01	1.0	0.9	0.09	1.08E-01	9.60E-02	1
1888	(5)	303.40	-14.37	2.20	2.30	1.78E + 00	5.1	4.9	0.92^{\dagger}	2.41E + 00	2.16E + 00	35
	P 1	303.40	-14.37	0.13	0.17	1.51E - 02	5.1	4.9	0.92^{\dagger}	6.61E-02	6.42E - 02	2
	P 2	303.03	-14.27	0.17	0.13	1.72E - 02	4.2	4.1	0.61	6.30E-02	6.06E - 02	1
	P 3	303.77	-14.90	0.13	0.37	2.47E - 02	3.1	3.0	0.36	6.47E-02	6.16E-02	2
	P 4	302.90	-14.03	0.17	0.10	1.29E-02	2.9	2.8	0.32	3.33E-02	3.16E-02	2
	P 5	303.30	-13.33	0.13	0.17	1.41E-02	1.3	1.2	0.13	1.56E-02	1.41E-02	0
1889	(1)	303.83	-14.17	0.27	0.20	3.23E-02	1.3	1.2	0.14	2.75E-02	2.46E - 02	0
	P 1	303.83	-14.17	0.10	0.07	6.46E-03	1.3	1.2	0.14	7.70E-03	7.14E-03	1
1890	(0)	303.83	-3.83	0.47	0.20	5.99E-02	1.4	1.0	0.17	6.34E-02	3.97E-02	1
1891	(0)	303.93	2.03	0.13	0.20	2.44E-02	1.4	0.8	0.06	2.90E-02	1.54E - 02	0
1892	(0)	304.07	-19.87	0.23	0.47	5.12E-02	0.8	0.6	0.14	3.61E-02	2.88E-02	0
1893	(1)	304.73	-18.73	0.60	0.40	1.25E-01	1.2	1.0	0.16	1.07E-01	8.86E-02	0
	P 1	304.73	-18.73	0.40	0.27	4.63E-02	1.2	1.0	0.16	4.67E-02	3.99E-02	0
1894	(0)	304.87	-19.40	0.27	0.40	4.09E-02	0.8	0.6	0.14	2.86E-02	2.25E-02	0
1895	(1)	304.97	-3.60	0.20	0.30	4.44E-02	1.7	1.2	0.19	5.43E-02	3.51E-02	0
	P 1	304.97	-3.60	0.10	0.17	1.11E-02	1.7	1.2	0.19	1.68E-02	1.20E-02	2
1896	(0)	305.03	9.30	0.30	0.23	3.18E-02	0.8	0.7	0.27	2.14E-02	1.83E-02	0
1897	(0)	305.27	-4.77	0.40	0.40	9.19E-02	1.3	1.0	0.18	9.12E-02	6.24E-02	0
1898	(0)	305.43	-6.13	0.17	0.17	2.21E-02	1.0	0.8	0.19	1.83E-02	1.37E-02	0
1899	(1)	305.70	-1.33	0.80	0.73	2.08E-01	1.7	1.0	0.15	2.67E-01	1.37E-01	2
	P 1	305.70	-1.33	0.20	0.13	1.89E-02	1.7	1.0	0.15	2.94E-02	1.71E-02	1
1900	(0)	305.77	9.27	0.37	0.37	7.02E-02	1.0	0.9	0.28	5.28E-02	4.57E-02	0
1901	(0)	305.93	-1.07	0.27	0.30	4.89E-02	1.4	0.8	0.13	6.19E-02	2.95E-02	0
1902	(1)	306.47	5.00	0.33	0.43	1.11E-01	1.9	1.6	0.10	1.18E-01	9.33E-02	0
	P 1	306.47	5.00	0.10	0.17	1.44E-02	1.9	1.6	0.10	2.37E-02	2.05E-02	1
1903	(0)	306.60	-8.53	0.20	0.17	2.09E-02	0.8	0.7	0.22	1.42E-02	1.28E-02	0
1904	(0)	306.67	-5.17	0.20	0.17	2.99E-02	1.0	0.8	0.17	2.59E-02	1.86E-02	0
1905	(1)	306.73	8.57	1.23	1.13	5.06E-01	1.1	1.0	0.28	3.70E-01	3.16E-01	1
	P 1	306.73	8.57	0.20	0.17	2.09E - 02	1.1	1.0	0.28	2.08E - 02	1.84E - 02	0
1906	(0)	306.83	-5.53	0.87	1.47	4.70E-01	1.1	0.9	0.19	3.82E-01	2.89E-01	1
1907	(0)	306.97	-5.27	0.33	0.23	3.76E-02	0.9	0.7	0.17	3.05E-02	2.14E - 02	0
1908	(0)	307.00	4.83	0.33	0.23	5.54E - 02	1.1	0.8	0.08	4.87E-02	3.48E-02	0
1909	(2)	307.40	6.33	1.10	1.03	5.53E-01	1.3	1.2	0.25	4.75E-01	3.77E-01	2
	P 1	307.40	6.33	0.20	0.23	2.65E - 02	1.3	1.2	0.25	3.14E-02	2.64E - 02	1
	P 2	307.07	6.23	0.27	0.50	5.85E - 02	1.3	1.1	0.24	6.50E - 02	5.45E - 02	2
1910	(1)	307.43	5.30	1.07	0.83	4.36E-01	1.4	1.1	0.23	3.92E-01	2.83E-01	0
	P 1	307.43	5.30	0.13	0.30	2.88E - 02	1.4	1.1	0.23	3.45E-02	2.78E - 02	1
1911	(0)	307.47	-3.30	0.20	0.37	3.44E - 02	1.1	0.6	0.15	3.41E-02	1.88E - 02	0
1912	(5)	308.40	-0.97	4.37	2.53	3.51E + 00	2.5	1.7	0.19	5.70E + 00	2.98E + 00	11
	P 1	308.40	-0.97	0.57	0.40	1.00E - 01	2.5	1.7	0.19	2.17E-01	1.41E-01	1
	P 2	307.97	-1.23	0.20	0.27	3.78E-02	2.1	1.5	0.17	7.46E-02	4.82E - 02	1
	P 3	306.13	-0.10	0.17	0.20	2.89E-02	1.9	1.2	0.08	4.97E-02	3.03E-02	0
	P 4	306.67	-0.17	0.83	0.30	1.00E - 01	1.9	1.2	0.08	1.73E-01	1.02E - 01	1
	P 5	309.73	-1.00	0.50	0.30	5.44E-02	2.1	1.2	0.07	1.02E-01	5.26E-02	1
1913	(1)	308.60	5.67	0.77	0.50	1.89E-01	1.5	1.2	0.25	1.84E-01	1.35E-01	2
	P 1	308.60	5.67	0.23	0.23	2.65E-02	1.5	1.2	0.25	3.41E-02	2.71E-02	0
1914	(0)	308.63	-19.70	0.33	0.10	2.20E-02	0.7	0.6	0.13	1.43E-02	1.18E-02	0
1915	(1)	309.03	2.87	0.87	1.20	5.52E-01	1.7	1.2	0.09	6.85E-01	3.87E-01	1

 Table 7. (Continued.)

Cloud	Clump	Pos	sition	Si	ize	Surface	Maximun	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2}ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-	, , , , , , , , , , , , , , , , , , ,		associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	D 1	200.02	2.07	0.22	0.22	4 4 4 E 02	17	1.0	0.00	(4.42E 02	1
1016	P 1 (0)	309.03	2.87	0.23	0.23	4.44E - 02	1./	1.2	0.09	0.02E - 02	4.43E - 02	1
1910	(0)	310.00	-19.87	0.25	0.30	3.02E - 02	0.8	0.7	0.14	3.33E - 02 1.82E 02	2.63E - 02 1 20E 02	0
1917	(0)	310.00	-5.80	0.27	0.27	2.32E = 02 2.54E = 02	0.9	0.7	0.25	1.02E = 02 2.35E = 02	1.29E = 02 1.43E = 02	0
1910	(0)	310.55	-5.60	0.30	0.23	2.34E = 02 6.63E = 02	1.0	0.7	0.18	2.35E = 02 5.95E = 02	1.43E = 02 4 11E = 02	1
1920	(0)	310.60	-2.37	0.27	0.30 0.47	8.55E-02	1.1	0.9	0.22	1.20E-01	4.11E 02 4.93E-02	1
1921	(0)	310.63	5.03	0.20	0.20	2.32E - 02	1.0	0.7	0.10	2.15E-02	1.93E - 02 1 42E-02	0
1922	(0)	310.00	-20.93	0.17	0.20	2.02E = 02 2.08E - 02	0.7	0.7	0.14	1.34E-02	1.12E 02 1.19E - 02	1
1923	(0)	310.70	-29.80	0.40	0.33	5.02E - 02	0.8	0.8	0.23	3.25E-02	2.98E - 02	0
1924	(0)	310.87	-7.83	0.37	0.23	4.40E - 02	0.9	0.6	0.20	3.64E - 02	2.47E - 02	0
1925	(0)	310.93	-1.90	0.20	0.17	2.00E-02	1.6	0.6	0.15	3.11E-02	1.12E-02	0
1926	(0)	311.13	-5.00	0.30	0.53	7.08E-02	1.1	0.7	0.17	7.30E-02	4.14E-02	0
1927	(1)	311.17	7.73	0.23	0.20	2.97E-02	1.3	1.0	0.27	2.83E-02	2.10E-02	0
	P 1	311.17	7.73	0.10	0.10	8.81E-03	1.3	1.0	0.27	1.03E-02	8.08E-03	0
1928	(0)	311.17	-1.87	0.37	0.20	3.89E-02	1.7	0.7	0.16	6.15E-02	2.22E-02	0
1929	(0)	311.20	-8.53	0.20	0.23	2.20E - 02	0.9	0.7	0.21	1.80E-02	1.30E-02	0
1930	(0)	311.20	6.00	0.57	0.23	8.51E-02	1.3	1.0	0.23	8.40E-02	5.98E-02	1
1931	(0)	311.20	8.00	0.33	0.33	4.29E - 02	1.0	0.7	0.25	3.61E-02	2.61E-02	0
1932	(1)	311.23	-6.77	1.73	1.47	6.58E-01	1.4	1.0	0.21	7.01E-01	4.35E-01	0
	P 1	311.23	-6.77	0.20	0.20	2.43E - 02	1.4	1.0	0.21	2.97E-02	2.13E - 02	0
1933	(0)	311.27	-7.87	0.57	0.97	2.32E - 01	1.2	0.9	0.22	2.16E-01	1.44E - 01	0
1934	(0)	311.40	-8.47	0.20	0.17	2.20E - 02	0.9	0.7	0.21	1.80E-02	1.28E-02	0
1935	(0)	311.47	8.13	0.23	0.20	2.86E - 02	0.9	0.7	0.24	2.35E-02	1.65E - 02	0
1936	(0)	311.53	-21.87	0.17	0.23	2.27E - 02	0.7	0.6	0.15	1.43E-02	1.30E-02	1
1937	(0)	311.63	-1.13	0.57	0.60	2.21E-01	2.0	0.9	0.07	3.78E-01	1.43E-01	1
1938	(0)	311.70	-0.33	0.37	0.43	8.6/E-02	2.1	0.9	0.09	1.55E-01	5.94E - 02	1
1939	(0)	311.83	-8.27	0.37	0.33	4.51E - 02	1.0	0.8	0.21	3.84E-02	2.61E - 02	1
1940	(0)	212.02	8.33 1.72	0.30	0.20	4.07E - 02	1.1	0.9	0.20	3.81E - 02	2.77E - 02	1
1941	(0) (1)	312.05	-1.75	0.25	0.27	2.22E = 02	1.7	0.0	0.13	3.49E - 02 8 11E 02	1.24E - 02 7.67E 02	0
1942	(1) D 1	312.55	-22.07	0.47	0.43	9.44E = 02	1.5	1.4	0.22	3.11E - 02	1.07E - 02	0
10/13	(0)	312.55	-22.07	0.17	0.13	1.44E = 02 5.56E = 02	1.5	0.6	0.22	1.85E = 02	1.79E = 02 3.09E = 02	0
1943	(0)	312.05	-0.10 -22.53	0.47	0.23	3.30E - 02 3.49E - 02	0.7	0.0	0.08	2.09E = 02 2.23E = 02	3.09E - 02 2.07E - 02	0
1945	(0)	313.10	-28.77	1.00	1 17	4.64E - 01	2.4	23	0.15	4.64E - 01	4.12E-01	2
1715	P 1	313.10	-28.77	0.20	0.13	1.01E - 01 1.27E - 02	2.4	2.3	0.17	2.60E - 02	2.46E - 02	0
	P 2	312.83	-28.87	0.20	0.17	1.75E-02	1.8	1.7	0.36	2.77E-02	2.58E - 02	0
	P 3	312.90	-28.37	0.17	0.17	1.56E - 02	1.2	1.1	0.26	1.67E - 02	1.50E - 02	0
1946	(0)	313.23	-28.17	0.33	0.47	4.02E-02	0.8	0.7	0.21	2.74E-02	2.31E-02	0
1947	(0)	313.37	-1.53	0.27	0.33	5.66E-02	1.8	0.8	0.07	9.25E-02	3.37E-02	0
1948	(1)	313.47	-0.33	1.43	2.03	1.06E + 00	2.2	1.1	0.10	1.80E + 00	6.71E-01	1
	P 1	313.47	-0.33	0.33	0.30	5.78E-02	2.2	1.1	0.10	1.19E-01	5.73E-02	2
1949	(0)	313.47	1.53	0.47	0.70	1.75E-01	1.9	0.8	0.09	2.87E-01	1.11E-01	0
1950	(1)	313.63	3.60	0.37	0.37	8.54E-02	2.0	1.3	0.11	1.26E-01	7.31E-02	2
	P 1	313.63	3.60	0.20	0.23	2.66E - 02	2.0	1.3	0.11	4.70E-02	3.05E - 02	1
1951	(0)	313.87	7.43	0.20	0.17	2.31E-02	1.0	0.7	0.07	2.10E - 02	1.39E-02	0
1952	(0)	313.93	-2.23	0.20	0.23	2.00E-02	1.6	0.6	0.06	3.11E-02	1.07E - 02	0
1953	(0)	313.97	0.27	0.33	0.33	7.67E-02	1.7	0.7	0.08	1.27E-01	4.54E-02	0
1954	(0)	314.00	-22.33	0.37	0.20	4.21E-02	0.9	0.8	0.16	2.94E-02	2.74E-02	2
1955	(0)	314.03	-2.87	0.50	0.20	3.77E-02	1.6	0.7	0.16	5.62E-02	2.10E-02	0
1956	(0)	314.10	-29.50	0.27	0.17	2.51E-02	0.7	0.6	0.21	1.70E-02	1.42E-02	0
1957	(0)	314.17	2.13	0.17	0.20	2.55E - 02	1.7	0.8	0.09	4.00E - 02	1.57E-02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ze	Surface	Maximun	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
1958	(0)	314.57	9.13	0.20	0.23	2.96E-02	1.1	0.8	0.09	2.61E-02	1.83E-02	0
1959	(1)	314.77	-5.13	1.27	0.93	6.15E-01	3.1	2.5	0.32	8.82E-01	5.13E-01	1
	P 1	314.77	-5.13	0.17	0.13	1.22E-02	3.1	2.5	0.32	3.42E-02	2.67E-02	1
1960	(1)	314.90	-22.20	0.30	0.63	9.16E-02	1.1	1.1	0.18	6.71E-02	6.32E-02	0
	P 1	314.90	-22.20	0.13	0.13	1.34E-02	1.1	1.1	0.18	1.34E-02	1.28E-02	0
1961	(2)	315.10	-28.97	0.83	1.23	3.22E-01	1.6	1.4	0.30	2.76E-01	2.44E-01	0
	P 1	315.10	-28.97	0.17	0.20	1.65E - 02	1.6	1.4	0.30	2.21E-02	2.03E-02	1
	P 2	314.93	-29.60	0.17	0.10	1.06E - 02	1.4	1.3	0.28	1.28E-02	1.17E-02	0
1962	(0)	315.50	-4.40	0.30	0.43	5.76E - 02	1.5	0.7	0.17	7.79E - 02	3.43E - 02	0
1963	(0)	315.70	3.13	0.83	0.43	2.31E - 01	1.8	0.9	0.09	3.35E - 01	1.44E - 01	0
1964	(0)	315.77	2.77	0.17	0.20	2.22E - 02	1.5	0.6	0.08	3.15E - 02	1.20E - 02	0
1965	(0)	315.87	-21.50	0.17	0.30	2.38E - 02	0.9	0.8	0.15	1.58E - 02	1.51E - 02	0
1966	(1)	315.93	-28 53	0.37	0.70	1.50E - 01	1.2	11	0.24	1.20E - 01	1.08E - 01	Ő
1700	P 1	315.93	-28.53	0.20	0.53	4.99E - 02	1.2	1.1	0.21	4.98E - 02	4.58E - 02	0
1967	(0)	316.00	5.87	0.20 0.47	0.33	7.74E = 02	1.2	0.8	0.08	4.90E 02 8 41E-02	4.30E 02 4.74E - 02	1
1968	(0)	316.17	0.43	0.47	0.27	$3.67E_{-02}$	1.5	0.0	0.08	$6.22E_{-02}$	$2.17E_{-02}$	0
1960	(0) (1)	316.17	5.03	0.27	0.23	$1.58E_{-01}$	1.0	1.3	0.00	$2.10E_{-01}$	$1.21E_{-01}$	4
1707	(1) P 1	316.17	5.03	0.55	0.37	1.33E 01 1.77E - 02	1.0	1.3	0.11	2.10E 01 2.88E_02	1.21E 01 1.90E - 02	1
1070	(1)	316.17	21.13	0.17	0.17	1.77E = 02 3.04E 02	1.0	1.5	0.11	2.68E - 02	1.90E - 02	1
1970	(1) D 1	216.47	21.13	0.20	0.30	5.94E = 02	1.1	1.1	0.17	2.08E - 02	2.77E = 02	2
1071	r 1 (0)	216.60	21.15	0.07	0.15	0.22E = 03	1.1	1.1	0.17	0.00E - 03	0.13E - 03	2
1971	(0)	216.60	-1.30	0.25	0.37	7.00E - 02	2.0	0.7	0.09	1.41E - 01	4.44E - 02	0
1972	(1) D 1	216.60	-22.00	0.85	0.85	2.00E - 01	1.0	1.5	0.22	1.03E - 01	1.33E - 01	0
1072	P I	310.00	-22.00	0.23	0.27	2.10E - 02	1.0	1.5	0.22	2.8/E - 02	2.78E - 02	1
1973	(0)	317.10	/.00	0.23	0.23	3.19E - 02	1.1	0.7	0.07	3.18E - 02	1.81E - 02	0
1974	(1) D 1	317.27	6.00	0.77	0.73	2.80E - 01	2.6	2.1	0.16	3.76E - 01	2.3/E - 01	0
1075		317.27	6.00	0.13	0.20	2.10E - 02	2.0	2.1	0.10	4.86E - 02	3.80E-02	1
1975	(1) D 1	317.30	3.17	0.63	0.40	1.36E - 01	2.0	1.2	0.10	2.11E-01	1.00E - 01	0
1076	P I	317.30	3.17	0.20	0.23	3.44E - 02	2.0	1.2	0.10	6.25E-02	3.48E-02	1
1976	(1)	317.90	7.10	0.47	0.37	1.25E-01	2.2	1./	0.13	1./IE-01	1.12E-01	0
1055	ΡI	317.90	/.10	0.17	0.13	1./6E-02	2.2	1./	0.13	3.45E-02	2.61E-02	1
1977	(0)	318.07	6.07	0.93	0.57	2.31E-01	1.4	0.8	0.09	2.66E-01	1.42E-01	0
1978	(13)	318.40	-4.20	4.60	3.30	6.4/E + 00	4.7	3.9	0.31	1.42E + 01	8.62E+00	20
	PI	318.40	-4.20	0.73	0.73	2.58E-01	4.7	3.9	0.31	1.06E + 00	8.49E-01	2
	P 2	316.87	-3.83	0.27	0.40	5.43E-02	4.7	3.8	0.49	2.24E-01	1.72E-01	1
	P 3	317.07	-5.30	0.40	0.30	3.21E-02	3.0	2.4	0.15	8.46E-02	6.54E-02	2
	P 4	316.03	-3.97	0.20	0.13	2.11E-02	2.6	1.7	0.24	5.04E-02	3.16E-02	2
	P 5	317.43	-2.97	0.27	0.33	3.77E-02	2.8	1.7	0.08	9.62E-02	5.26E-02	0
	P 6	315.70	-3.13	0.20	0.20	2.66E - 02	2.7	1.6	0.23	6.39E-02	3.60E-02	2
	P 7	316.30	-4.70	0.37	0.23	4.21E - 02	2.1	1.4	0.22	8.32E-02	5.20E - 02	0
	P 8	316.53	-5.23	0.10	0.17	1.44E - 02	2.0	1.3	0.08	2.59E - 02	1.66E - 02	1
	P 9	316.17	-3.53	0.20	0.27	3.77E - 02	2.3	1.3	0.20	8.08E - 02	4.33E - 02	0
	P 10	316.50	-5.00	0.17	0.10	1.22E - 02	1.9	1.2	0.06	2.13E - 02	1.29E - 02	0
	P 11	316.13	-3.17	0.20	0.27	3.66E - 02	2.3	1.2	0.07	7.92E - 02	3.97E - 02	1
	P 12	319.63	-4.37	0.17	0.10	1.33E-02	1.9	1.2	0.19	2.28E-02	1.37E-02	1
	P 13	317.10	-2.60	0.13	0.13	9.99E-03	2.3	1.1	0.08	2.15E-02	9.45E-03	0
1979	(0)	319.07	1.50	0.73	0.27	9.55E-02	2.3	0.8	0.11	1.96E-01	5.97E-02	1
1980	(1)	319.27	6.80	2.00	0.93	4.74E-01	1.7	1.2	0.09	5.60E-01	3.09E-01	0
	P 1	319.27	6.80	0.27	0.17	2.76E - 02	1.7	1.2	0.09	4.37E-02	2.93E-02	0
1981	(0)	319.33	2.20	0.33	0.27	3.11E-02	1.8	0.7	0.09	5.33E-02	1.82E-02	1
1982	(1)	319.67	1.57	0.87	0.40	1.88E-01	3.1	1.5	0.17	4.60E-01	1.50E-01	0
	P 1	319.67	1.57	0.30	0.20	3.44E-02	3.1	1.5	0.17	1.02E-01	4.53E-02	2

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ize	Surface	Maximun	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	1	h	Δl	Δh	area	Avi	Ava	_	0	5	associated
nume	nume	(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(magdeg^2)$	$(mag deg^2)$	clouds
1002	(0)	220 (7	(4.42	(405)	0.20	47(E 02	(inug)	1.0	0.17	(Integ ueg)	2.15E 02	1
1983	(0)	320.67	-4.43	0.27	0.30	4.76E - 02	1.0	1.0	0.17	5.93E - 02	3.15E-02	1
1984	(2) D 1	320.70	-3.03	0.47	0.40	7.10E-02	2.4	1.0	0.21	1.13E - 01 1.71E - 02	3.90E-02	0
		320.70	-5.05	0.10	0.10	7.70E-03	2.4	1.0	0.21	1.71E-02	1.10E - 02	1
1085	(0)	320.97	-3.60	0.10	0.10	$2.10E_{-02}$	1.9	1.2	0.18	1.34E = 02 2.32E = 02	9.00E = 03 1 21E = 02	1
1985	(0) (1)	321.10	1 23	0.25	0.15	2.10E - 02 2.52E - 01	3.0	1.1	0.15	2.32E = 02 6 47E = 01	1.21E - 02 1.76E - 01	0
1700	(1) P 1	321.20	1.23	0.27	0.75	2.32E = 01 3.33E = 02	3.0	1.1	0.15	9.47E - 01	3.26E - 02	1
1987	(0)	321.20	6.17	0.27 0.47	0.25	6.08E - 02	13	0.8	0.15	6.89E - 02	3.201 02 3.69E-02	0
1988	(0)	321.50	2.13	0.17	0.23	2.78E - 02	2.1	0.6	0.19	5.69E - 02	1.54E - 02	0
1989	(0)	321.80	-3.73	0.27	0.23	4.21E-02	1.4	0.8	0.15	5.39E-02	2.65E-02	1
1990	(0)	321.90	7.73	0.20	0.27	3.41E - 02	1.2	0.8	0.20	3.44E - 02	2.14E - 02	0
1991	(0)	321.90	7.13	1.30	0.87	3.91E-01	1.3	0.9	0.20	4.15E-01	2.39E-01	0
1992	(1)	322.10	5.77	0.57	0.53	1.89E - 01	2.0	1.4	0.23	2.44E-01	1.37E-01	0
	P 1	322.10	5.77	0.17	0.13	1.66E - 02	2.0	1.4	0.23	2.99E-02	2.06E - 02	1
1993	(1)	322.20	-4.50	1.80	0.73	5.77E-01	2.3	1.9	0.22	7.46E-01	4.88E-01	1
	P1	322.20	-4.50	0.33	0.27	4.32E-02	2.3	1.9	0.22	9.04E-02	7.11E-02	1
1994	(0)	322.37	-1.97	0.20	0.20	2.33E-02	2.2	0.8	0.17	4.75E-02	1.48E-02	0
1995	(0)	322.73	-6.83	0.20	0.23	2.98E-02	1.0	0.9	0.16	2.33E-02	1.95E-02	0
1996	(0)	323.07	-6.57	0.20	0.43	5.30E-02	0.9	0.8	0.15	3.90E-02	3.09E-02	0
1997	(1)	323.07	-2.97	0.57	0.77	2.60E-01	1.9	1.1	0.17	3.75E-01	1.81E-01	1
	P 1	323.07	-2.97	0.27	0.17	3.55E-02	1.9	1.1	0.17	6.08E-02	3.42E-02	0
1998	(0)	323.53	-2.73	0.30	0.20	4.55E-02	1.5	0.7	0.14	6.35E-02	2.73E-02	0
1999	(0)	323.53	-5.70	0.27	0.50	4.53E-02	0.8	0.6	0.14	3.43E-02	2.49E-02	0
2000	(1)	323.83	5.53	1.07	0.60	3.60E-01	2.3	1.8	0.26	5.30E-01	3.33E-01	0
	P 1	323.83	5.53	0.40	0.20	3.87E-02	2.3	1.8	0.26	8.09E-02	5.96E-02	2
2001	(0)	324.13	8.50	0.17	0.17	2.09E-02	0.9	0.7	0.19	1.69E-02	1.29E-02	1
2002	(0)	324.67	-1.97	0.40	0.40	9.11E-02	1.9	0.8	0.06	1.67E-01	5.38E-02	0
2003	(0)	324.93	3.57	0.20	0.23	3.11E-02	1.6	0.8	0.07	4.37E-02	1.90E-02	0
2004	(1)	325.53	5.90	1.00	0.90	3.78E-01	2.9	2.5	0.32	5.27E-01	3.57E-01	2
	P 1	325.53	5.90	0.17	0.30	3.32E-02	2.9	2.5	0.32	8.74E-02	7.23E-02	2
2005	(0)	326.17	-9.50	0.13	0.23	2.30E-02	0.7	0.7	0.18	1.42E-02	1.34E-02	0
2006	(31)	326.33	-0.67	11.67	3.87	1.83E+01	4.2	2.4	0.32	4.87E + 01	1.77E + 01	9
	P 1	326.33	-0.67	0.23	0.17	2.89E-02	4.2	2.4	0.32	1.09E-01	5.89E-02	0
	P 2	321.77	-0.73	0.47	0.33	9.22E-02	4.3	2.4	0.16	3.60E-01	1.87E-01	1
	P 3	318.27	-0.73	0.57	0.60	1.43E-01	3.9	2.4	0.14	5.08E-01	2.87E-01	2
	P 4	320.53	-0.10	0.53	0.30	8.00E-02	4.3	2.4	0.35	3.17E-01	1.66E-01	1
	P 5	318.03	-1.23	0.57	0.53	1.56E - 01	3.9	2.3	0.13	5.40E-01	3.07E-01	2
	P 6	325.80	-1.03	0.37	0.37	7.11E-02	4.0	2.3	0.30	2.58E-01	1.38E-01	1
	P 7	326.50	-0.23	0.23	0.27	3.11E-02	4.0	2.2	0.15	1.13E-01	5.80E-02	1
	P 8	321.07	-0.33	0.37	0.13	3.89E-02	4.0	2.1	0.31	1.43E-01	7.01E - 02	0
	P 9	319.70	-0.63	0.33	0.23	5.44E - 02	3.9	2.1	0.29	1.97E-01	9.73E-02	0
	P 10	319.90	-0.90	0.27	0.20	3.22E - 02	3.9	2.0	0.29	1.18E-01	5.74E - 02	0
	P 11	322.97	-1.10	0.63	0.33	1.13E-01	3.8	2.0	0.15	4.01E-01	1.98E - 01	2
	P 12	326.70	0.57	0.23	0.13	2.44E - 02	3.7	1.9	0.13	8.29E-02	3.93E-02	1
	P 13	322.40	-1.13	0.23	0.13	2.56E-02	3.5	1.7	0.11	8.36E-02	3.72E-02	0
	P 14	319.87	-1.77	0.10	0.20	1.78E-02	3.4	1.6	0.26	5.77E-02	2.50E-02	1
	P 15	321.63	-1.87	0.13	0.20	2.11E-02	3.2	1.6	0.24	6.34E-02	2.88E-02	1
	P 16	321.43	-1.23	0.20	0.17	2.00E-02	3.3	1.4	0.24	6.17E-02	2.40E-02	0
	P 17	318.00	1.47	0.17	0.20	2.44E-02	2.6	1.4	0.12	5.73E-02	2.91E-02	0
	P 18	325.30	-0.20	0.13	0.33	2.67E-02	3.1	1.4	0.14	7.83E-02	3.12E-02	2
	P 19	323.27	-0.20	0.40	0.23	5.78E-02	3.1	1.3	0.15	1.68E-01	6.40E-02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	S	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 20	325.93	0.33	0.13	0.17	1.89E-02	3.0	1.3	0.13	5.43E-02	2.10E-02	0
	P 21	323.60	-0.23	0.37	0.23	4.78E-02	3.0	1.2	0.14	1.37E-01	5.09E-02	0
	P 22	320.43	-0.80	0.47	0.27	6.78E-02	3.1	1.2	0.22	1.99E-01	6.94E-02	0
	P 23	327.43	0.23	0.50	0.30	7.11E-02	3.0	1.2	0.21	2.01E-01	7.17E-02	0
	P 24	319.53	0.27	0.33	0.23	4.56E-02	2.9	1.2	0.22	1.27E-01	4.74E - 02	0
	P 25	325.43	0.27	0.33	0.23	3.33E-02	2.9	1.2	0.13	9.15E-02	3.27E-02	1
	P 26	327.70	-0.23	0.17	0.37	3.11E-02	2.9	1.1	0.20	8.61E-02	2.97E - 02	0
	P 27	327.23	-0.20	0.17	0.17	1.89E - 02	2.9	1.1	0.20	5.17E-02	1.80E - 02	0
	P 28	324.67	-0.03	0.60	0.33	1.11E-01	2.9	1.1	0.13	3.06E-01	1.08E - 01	0
	P 29	327.03	1.20	0.37	0.27	3.55E-02	2.9	1.1	0.11	9.55E-02	3.12E-02	0
	P 30	324.33	-0.37	0.23	0.40	6.89E - 02	2.9	1.1	0.12	1.86E - 01	6.20E - 02	0
	P 31	328.13	-0.07	0.43	0.23	6.33E - 02	2.9	1.0	0.20	1.73E - 01	5.58E - 02	0
2007	(0)	326.43	6.10	0.17	0.23	2.87E - 02	1.4	0.9	0.19	3.32E - 02	1.97E - 02	1
2008	(0)	326.60	6.57	0.27	0.23	3.31E - 02	1.1	0.7	0.17	3.29E - 02	1.90E - 02	0
2009	(0)	326.67	5.67	0.33	0.33	4.75E - 02	1.5	1.0	0.19	5.82E - 02	3.32E - 02	2
2010	(1)	326.93	-1.60	0.20	0.43	6.22E - 02	2.2	1.0	0.16	1.19E - 01	4.59E - 02	0
	P 1	326.93	-1.60	0.13	0.27	2.78E - 02	2.2	1.0	0.16	5.78E - 02	2.48E-02	1
2011	(0)	327.00	6.07	0.23	0.33	4.09E - 02	1.4	0.9	0.18	4.56E - 02	2.54E - 02	0
2012	(0)	327.00	-3.73	0.17	0.20	2.33E - 02	1.0	0.7	0.13	2.01E - 02	1.36E - 02	0
2013	(0)	327.47	-4.13	0.17	0.17	2.22E-02	0.9	0.6	0.12	1.75E-02	1.24E - 02	0
2014	(0)	327.50	-4.37	0.40	0.23	5.87E-02	1.0	0.8	0.14	4.95E-02	3.71E-02	0
2015	(0)	327.93	-2.07	0.97	0.53	1.89E-01	1.6	0.9	0.14	2.23E-01	1.13E - 01	0
2016	(2) D 1	328.23	-1.07	0.93	0.80	2.80E - 01	2.5	1.0	0.18	5.56E - 01	2.08E-01	l
		328.23	-1.07	0.50	0.57	1.02E - 01	2.5	1.0	0.18	2.18E-01	9.05E-02	0
2017	P 2	328.70	-1.1/	0.17	0.13	2.11E - 02	2.2	1.0	0.10	4.44E - 02	1.85E - 02	0
2017	(0)	328.40	-0.80	0.23	0.33	4.44E = 02	2.0	0.9	0.16	1.04E - 01	2.93E - 02	0
2010	(0)	320.43	-1.50	0.25	0.35	4.11E-02 8.54E 02	1.7	0.7	0.14	3.80E - 02	2.37E - 02	1
2019	(0)	320.03	2.60	0.40	0.45	8.54E - 02	2.0	0.8	0.13	7.55E = 02 2 28E = 01	4.99E - 02 5 18E - 02	1
2020	(0)	329.13	-6.50	0.30	0.33	8.06E_02	0.9	0.8	0.22	6.00E - 02	4 90E_02	0
2021	(30)	329.15	0.23	9.40	7 17	1.59F + 01	43	23	0.15	$4.31E \pm 01$	1.34E + 01	8
2022	(30) P 1	329.37	0.23	0.60	0.37	1.35E + 01 1.17E - 01	43	2.3	0.31	4.51E + 01 4.64E - 01	2.30E - 01	0
	P 2	335.23	3.63	0.00	0.17	2.11E - 02	37	2.2	0.24	7.17E - 02	4.00E - 02	1
	P 3	328.80	-0.07	0.37	0.23	5.33E - 02	3.8	2.0	0.27	1.90E - 01	9.01E - 02	0
	P 4	331.93	1.70	0.23	0.17	2.22E - 02	4.1	1.9	0.32	8.62E-02	3.64E - 02	0
	P 5	336.80	5.10	0.30	0.23	3.10E-02	2.9	1.7	0.18	8.34E-02	4.60E-02	2
	P 6	331.93	2.87	0.67	0.40	1.03E-01	3.8	1.7	0.32	3.66E-01	1.43E-01	0
	P 7	328.87	1.20	0.37	0.43	7.55E-02	3.7	1.6	0.26	2.59E-01	1.02E-01	0
	P 8	328.63	1.37	0.17	0.20	2.11E-02	3.6	1.6	0.26	7.14E-02	2.82E-02	0
	P 9	333.47	2.40	1.17	0.60	2.50E-01	3.5	1.5	0.29	8.27E-01	3.23E-01	0
	P 10	332.07	4.13	0.23	0.23	3.66E-02	3.4	1.5	0.30	1.15E-01	4.69E-02	0
	P 11	328.93	0.80	0.37	0.30	3.33E-02	3.5	1.5	0.24	1.09E-01	4.11E-02	0
	P 12	332.47	4.90	0.20	0.30	3.54E-02	2.9	1.5	0.27	9.49E-02	4.43E-02	0
	P 13	333.77	5.87	0.13	0.23	2.21E-02	2.5	1.4	0.26	5.10E-02	2.72E-02	0
	P 14	334.30	2.77	0.27	0.23	4.11E-02	3.3	1.4	0.14	1.25E-01	4.81E-02	0
	P 15	334.63	2.67	0.37	0.20	5.11E-02	3.1	1.3	0.15	1.47E-01	5.67E-02	0
	P 16	330.57	-0.57	0.33	0.23	3.22E-02	2.8	1.3	0.19	8.62E-02	3.55E-02	0
	P 17	331.60	0.83	0.43	0.43	1.09E-01	3.5	1.3	0.24	3.57E-01	1.17E-01	1
	P 18	328.33	0.23	0.17	0.13	1.78E-02	3.2	1.3	0.22	5.42E-02	1.97E-02	0
	P 19	333.13	5.50	0.10	0.17	1.33E-02	2.5	1.2	0.24	3.00E-02	1.41E-02	1
	P 20	335.40	3.20	0.43	0.37	5.88E-02	2.7	1.2	0.14	1.47E-01	5.77E-02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ize	Surface	Maximun	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}		2	2	associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 21	332.80	3.63	0.33	0.47	7.65E-02	3.2	1.2	0.27	2.28E-01	8.02E-02	0
	P 22	330.97	0.77	0.43	0.23	4.89E-02	3.4	1.2	0.23	1.56E-01	4.81E-02	0
	P 23	330.83	1.60	0.43	0.17	4.33E-02	3.5	1.2	0.24	1.41E-01	4.26E-02	0
	P 24	329.93	0.73	0.27	0.17	3.33E-02	3.3	1.2	0.22	1.04E-01	3.32E-02	0
	P 25	329.03	2.00	0.23	0.20	3.11E-02	3.2	1.2	0.24	9.60E-02	3.09E-02	0
	P 26	333.43	4.97	0.33	0.53	7.31E-02	2.5	1.1	0.24	1.71E-01	6.83E-02	0
	P 27	333.27	4.90	0.30	0.30	4.98E-02	2.5	1.1	0.24	1.16E-01	4.67E-02	0
	P 28	330.77	2.20	0.33	0.17	2.89E-02	3.3	1.1	0.24	9.08E-02	2.53E - 02	0
	P 29	337.07	4.40	1.03	0.53	1.98E-01	2.3	1.0	0.12	4.15E-01	1.65E - 01	0
2022	P 30	334.20	5.40	0.13	0.33	3.21E - 02	2.3	1.0	0.23	6.88E-02	2.74E - 02	0
2023	(0)	329.57	-0.93	0.23	0.33	3.9/E - 02	0.8	0.7	0.15	2.7/E - 02	2.28E - 02	0
2024	(0)	329.77	-0.37	0.27	0.17	2.21E - 02	0.7	0.6	0.14	1.50E-02	1.20E - 02	0
2025	(0)	220.67	4.97	0.55	0.57	1.32E - 01	1.8	0.8	0.18	1.98E-01	1.73E - 02	0
2020	(0)	330.07	4.27	0.23	0.17	2.00E - 02	2.3	0.7	0.21	5.90E - 02	1.01E - 02	0
2027	(0)	221.07	-3.33	0.27	0.17	2.10E - 02	0.8	0.0	0.15	1.46E - 02	1.13E - 02	0
2028	(0)	221 10	4.07	0.27	0.27	4.21E - 02	2.0	0.9	0.25	1.0/E = 01	2.0/E = 02	0
2029	(0) (1)	331.10	-5.15	0.47	0.27	9.19E - 02	1.0	0.8	0.14	7.33E - 02	3.79E - 02 3.75E 02	0
2030	(1) D 1	331.73	7.07	0.25	0.55	4.03E - 02	1.9	1.3	0.22	0.30E - 02	3.73E - 02	1
2031	r 1 (1)	331.75	1.07	0.10	0.17 0.27	1.43E = 02 5.00E = 02	1.9	1.5	0.22	2.37E = 02 1 13E = 01	1.37E = 02 3.76E = 02	1
2031	(1) P 1	331.77	4.80	0.30	0.27	3.09E = 02 1 55E = 02	2.0	1.1	0.24	1.13E = 01 3.81E = 02	3.70E = 02 1.51E = 02	0
2032	(0)	332.40	4.60	0.15	0.15	1.33E = 02 2.89E = 02	2.0	1.1	0.24	$7.88E_{-02}$	1.51E - 02 1.74E - 02	0
2032	(0) (1)	333.67	0.00	0.20	0.23	2.89E - 02 3.22E - 02	2.9	0.7	0.19	7.88E-02 8.59E-02	1.74E = 02 2 30E $= 02$	0
2055	(1) P 1	333.67	0.53	0.23	0.23	3.22E = 02 1 11E = 02	3.0	1.1	0.21	3.39E - 02	2.39E - 02 1 07E - 02	1
2034	(0)	334.00	19.87	0.15	0.15 0.47	$6.17E_{-02}$	0.0	0.7	0.21	$3.20E \ 02$ 4.74E - 02	3.42E - 02	0
2034	(0)	334.00	19.07	0.23	0.47	5.03E - 02	0.9	0.7	0.14	4.74E 02 4.03E - 02	2.82E-02	0
2036	(3)	334 17	11 30	1 17	0.90	5.03E 02	2.3	2.1	0.11	5.77E - 01	453E-01	0
2000	P 1	334.17	11.30	0.17	0.10	1.31E - 02	2.3	2.1	0.36	2.72E-02	2.42E-02	1
	P 2	334.63	11.83	0.37	0.20	3.70E - 02	1.6	1.3	0.28	5.03E - 02	4.13E - 02	1
	P 3	334.17	11.73	0.17	0.20	1.96E - 02	1.5	1.3	0.27	2.62E - 02	2.21E-02	0
2037	(0)	334.37	20.30	0.60	1.07	2.82E-01	1.1	0.8	0.16	2.45E-01	1.72E-01	0
2038	(1)	334.43	18.10	1.03	1.03	5.48E-01	2.5	2.1	0.28	6.26E-01	4.27E-01	0
	P 1	334.43	18.10	0.13	0.17	1.37E-02	2.5	2.1	0.28	3.00E-02	2.51E-02	1
2039	(1)	334.43	4.00	0.37	0.30	5.99E-02	2.8	1.1	0.11	1.42E-01	4.45E-02	0
	P 1	334.43	4.00	0.17	0.17	1.88E-02	2.8	1.1	0.11	4.93E-02	1.85E-02	0
2040	(0)	334.53	6.00	0.23	0.27	4.20E - 02	1.7	0.7	0.20	6.67E-02	2.46E - 02	0
2041	(0)	334.53	-3.30	0.27	0.13	2.55E-02	1.3	0.9	0.13	2.78E-02	1.70E - 02	0
2042	(1)	334.57	4.63	0.20	0.13	1.88E-02	2.6	1.2	0.25	4.19E-02	1.50E - 02	0
	P 1	334.57	4.63	0.10	0.07	6.65E-03	2.6	1.2	0.25	1.66E - 02	7.16E-03	1
2043	(0)	334.70	14.20	0.30	0.17	2.58E-02	1.0	0.8	0.27	2.09E-02	1.59E-02	0
2044	(0)	334.93	-3.83	0.30	0.53	7.54E - 02	1.0	0.7	0.12	6.78E-02	4.30E-02	1
2045	(1)	335.03	0.17	0.27	0.40	7.00E - 02	3.0	1.2	0.21	1.75E - 01	5.28E-02	1
	P 1	335.03	0.17	0.13	0.13	1.33E-02	3.0	1.2	0.21	3.78E-02	1.44E - 02	1
2046	(1)	335.47	0.43	0.43	0.43	7.67E - 02	2.8	1.1	0.20	1.84E - 01	5.16E-02	0
	P 1	335.47	0.43	0.17	0.10	1.22E-02	2.8	1.1	0.20	3.22E-02	1.12E-02	0
2047	(0)	335.57	18.73	0.53	0.30	7.05E-02	1.1	0.6	0.15	6.85E-02	3.83E-02	0
2048	(0)	335.60	17.70	0.23	0.20	3.49E-02	1.2	0.7	0.15	3.87E-02	2.09E-02	0
2049	(0)	335.60	-3.83	0.23	0.17	2.66E-02	1.1	0.7	0.04	2.59E-02	1.51E-02	0
2050	(1)	335.63	16.20	0.47	0.63	1.95E-01	1.4	1.0	0.16	2.26E-01	1.37E-01	0
	P 1	335.63	16.20	0.37	0.40	6.61E-02	1.4	1.0	0.16	8.66E-02	5.62E-02	0
2051	(17)	335.83	-2.80	5.87	4.17	8.81E+00	4.4	3.5	0.38	2.21E + 01	1.12E + 01	22

 Table 7. (Continued.)

Cloud	Clump	Posi	ition	S	ize	Surface	Maximun	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 1	335.83	-2.80	0.83	0.70	2.14E-01	4.4	3.5	0.38	8.14E-01	6.15E-01	2
	P 2	334.70	-0.97	0.33	0.23	4.67E-02	4.2	2.7	0.33	1.77E-01	1.05E-01	2
	P 3	336.43	-1.83	0.67	0.67	2.15E-01	3.9	2.6	0.29	7.49E-01	4.70E-01	1
	P 4	334.17	-1.10	0.43	0.73	1.27E - 01	4.1	2.5	0.31	4.59E-01	2.68E-01	0
	P 5	338.27	-1.97	0.30	0.13	3.11E-02	3.8	2.4	0.16	1.07E - 01	6.40E - 02	1
	P 6	335.17	-1.97	0.23	0.30	3.11E-02	3.4	2.1	0.25	9.47E-02	5.53E-02	0
	P 7	334.63	-2.27	0.57	0.70	1.43E-01	3.1	2.0	0.23	3.97E-01	2.37E-01	0
	P 8	337.07	-0.40	0.40	0.67	9.89E-02	3.4	1.9	0.14	3.10E-01	1.60E - 01	2
	P 9	336.40	-3.33	0.17	0.20	2.55E - 02	2.6	1.8	0.08	5.91E - 02	3.97E - 02	0
	P 10	338.63	-1.90	0.20	0.13	1.78E - 02	3.1	1.7	0.13	5.10E - 02	2.60E - 02	1
	P 11	336.87	-3.10	0.30	0.20	3.55E - 02	2.6	1.7	0.10	8.45E-02	5.13E-02	1
	P 12	333.17	-1.37	0.13	0.13	1.33E - 02	2.9	1.6	0.21	3.54E - 02	1.78E-02	0
	P 13	333.73	-1.23	0.20	0.20	3.11E-02	3.0	1.6	0.22	8.76E-02	4.21E-02	0
	P 14	336.83	-1.50	0.10	0.10	8.89E-03	2.8	1.4	0.19	2.35E - 02	1.09E - 02	0
	P 15	336.57	0.13	0.17	0.17	1.56E - 02	2.8	1.2	0.09	4.13E-02	1.66E-02	1
	P 16	336.30	-0.33	0.20	0.27	3.33E-02	2.8	1.2	0.19	8.74E-02	3.48E-02	1
2052	P I /	337.80	-1.6/	0.17	0.13	1.55E - 02	2.5	1.1	0.08	3.72E - 02	1.51E - 02	1
2052	(1) D 1	335.93	7.00	0.17	0.23	2.65E - 02	2.2	1.4	0.26	4.42E - 02	2.28E-02	0
2052	P I	335.93	/.00	0.10	0.07	5.51E - 03	2.2	1.4	0.26	1.16E - 02	7.14E-03	1
2053	(0)	226.02	4.95	0.30	0.30	4.70E - 02	2.0	0.8	0.11	8.8/E - 02	3.13E - 02	1
2054	(0)	226.12	20.55	0.37	0.47	0.8/E - 02	1.1	0.8	0.17	0.55E - 02	4.24E - 02	0
2033	(0)	226.17	19.77	0.17	0.35	2.30E - 02	1.0	0.0	0.13	2.10E - 02	1.20E - 02	1
2050	(0)	336.17	-0.73	0.50	0.20	3.30E - 02 1.85E - 02	2.4	0.9	0.17	7.70E = 02 2.00E = 02	2.26E = 02 1 34E = 02	0
2057	(0) (2)	336.23	15.60	0.17	1 00	6.72E - 01	1.5	1.0	0.27	$7.81E_{-01}$	1.34E = 02 4.64E = 01	0
2050	(2) P 1	336.23	15.00	0.37	0.30	4.60E - 02	1.0	1.1	0.16	6.41E - 02	4.04E 01 4.26E - 02	0
	P 2	336.40	14 77	0.33	0.30	5.70E - 02	1.0	1.1	0.10	7.48E - 02	4.20E 02 4.99E - 02	1
2059	(1)	336 30	19.30	0.93	2.13	8 49E-01	2.1	1.0	0.15	1.06E + 00	6.66E - 01	1
2007	P 1	336.30	19.30	0.30	0.73	8.92E - 02	2.1	1.6	0.25	1.62E - 01	1.21E-01	1
2060	(0)	336.33	10.70	0.27	0.20	2.29E - 02	1.0	0.6	0.09	2.14E - 02	1.21E - 02	0
2061	(4)	336.50	11.20	1.67	1.27	5.10E-01	1.8	1.4	0.13	5.52E-01	3.77E-01	0
	P 1	336.50	11.20	0.20	0.13	1.85E-02	1.8	1.4	0.13	3.04E-02	2.32E-02	0
	P 2	335.93	11.33	0.27	0.13	2.18E-02	1.6	1.3	0.29	3.09E-02	2.34E-02	1
	P 3	335.20	11.77	0.13	0.13	1.41E-02	1.4	1.1	0.27	1.81E-02	1.40E-02	0
	P 4	336.67	11.47	0.10	0.10	9.80E-03	1.4	1.0	0.11	1.24E - 02	8.54E-03	0
2062	(1)	336.57	16.97	0.30	0.23	4.89E-02	1.6	1.0	0.18	6.44E - 02	3.61E-02	1
	P 1	336.57	16.97	0.20	0.13	1.81E - 02	1.6	1.0	0.18	2.73E-02	1.68E-02	0
2063	(4)	336.63	8.23	2.33	1.33	1.26E + 00	5.2	4.5	0.65	2.21E + 00	1.36E + 00	14
	P 1	336.63	8.23	0.13	0.13	1.43E - 02	5.2	4.5	0.65	6.61E-02	5.67E - 02	1
	P 2	337.67	7.50	0.10	0.10	8.81E-03	3.3	2.5	0.25	2.64E - 02	1.86E - 02	0
	P 3	335.60	8.20	0.30	0.23	2.42E - 02	2.9	2.3	0.17	6.28E - 02	4.83E - 02	2
	P 4	337.27	7.67	0.17	0.10	1.32E - 02	2.5	1.7	0.17	2.97E - 02	1.92E - 02	1
2064	(0)	336.90	0.83	0.13	0.20	2.00E - 02	2.2	0.7	0.10	4.25E - 02	1.18E - 02	0
2065	(1)	336.97	9.17	0.23	0.23	3.73E-02	1.8	1.2	0.12	5.07E - 02	2.81E-02	0
	P 1	336.97	9.17	0.10	0.13	9.87E-03	1.8	1.2	0.12	1.61E-02	1.01E-02	1
2066	(0)	337.10	11.30	0.23	0.47	4.69E-02	1.3	0.9	0.11	4.96E-02	2.97E-02	1
2067	(0)	357.13	2.30	0.33	0.17	3.00E-02	2.0	0.6	0.10	5.80E-02	1.06E - 02	0
2068	(0)	337.13	14.53	0.27	0.23	2.15E-02	1.1	0.0	0.12	2.29E-02	1.24E - 02	1
2009	(0)	331.33	2.17	1.13	0.33	1.08E-UI	2.0	0./	0.10	3.23E-01	9.09E-02	0
2070	(1) P 1	337.80	23.13	0.80	0.90	1.33E - 01 1.33E - 02	1.8	1.6	0.25	2.41E - 01 2.07E - 02	1.00E - 01 1.79E - 02	0

 Table 7. (Continued.)

Cloud	Clump	Posi	tion	S	ize	Surface	Maximur	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}				associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
2071	(0)	337.80	10.27	0.23	0.37	3.39E-02	1.2	0.7	0.10	3.78E-02	1.92E-02	0
2072	(1)	337.87	16.53	1.37	0.90	7.33E-01	3.2	2.6	0.37	1.21E + 00	7.99E-01	5
	P 1	337.87	16.53	0.37	0.37	5.33E-02	3.2	2.6	0.37	1.50E-01	1.20E-01	4
2073	(0)	337.97	17.90	0.43	0.43	7.72E-02	1.3	0.9	0.16	8.63E-02	4.85E-02	0
2074	(0)	338.27	15.10	0.23	0.13	2.25E - 02	1.1	0.6	0.12	2.39E-02	1.25E - 02	0
2075	(3)	338.50	9.67	1.03	0.90	3.75E-01	2.2	1.6	0.16	5.38E-01	2.91E-01	2
	P 1	338.50	9.67	0.30	0.20	2.96E-02	2.2	1.6	0.16	5.88E-02	3.86E-02	2
	P 2	338.90	9.47	0.13	0.10	8.77E-03	2.0	1.2	0.14	1.58E-02	9.54E-03	1
2076	P 3	338.17	10.00	0.23	0.20	2.52E - 02	1.7	1.1	0.12	3.87E-02	2.34E - 02	0
2076	(1)	338.57	2.03	0.37	0.60	7.66E - 02	2.8	1.4	0.14	1.63E - 01	6.10E-02	1
2077	P I	338.57	2.03	0.10	0.13	9.99E-03	2.8	1.4	0.14	2.59E - 02	1.25E-02	1
2077	(2) D 1	338.67	11.8/	0.90	0.57	1.82E - 01	2.6	2.1	0.22	2.51E-01	1.61E-01	3
	PI	338.67	11.87	0.20	0.13	1.52E - 02	2.6	2.1	0.22	3.52E - 02	2.76E-02	6
2079	P 2	338.47	12.07	0.10	0.13	9.78E-03	1.0	1.1	0.13	1.40E - 02	9.15E-03	1
2078	(0)	338.07	15.03	0.43	0.23	5.24E - 02	1.4	0.9	0.15	6.15E - 02	3.55E-02	10
2079	(5)	338.87	16.50	1.43	4.13	2.02E + 00	4.8	4.3	0.82	3.21E+00	2.30E+00	18
		338.87	16.50	0.13	0.13	1.1/E - 02	4.8	4.3	0.82	4.8/E-02	4.32E - 02	2
	P 2	338.70	17.57	0.10	0.27	1.91E - 02	4.5	3.9	0.68	7.33E-02	6.52E - 02	
		220.00	10.10	0.17	0.30	2.30E - 02	5.8 2.5	5.4 2.0	0.50	8.3/E - 02	7.43E - 02	3 1
	P 4 D 5	228 80	14.47	0.27	0.27	3.01E - 02	2.5	2.0	0.23	0.40E - 02	5.05E - 02	1
2000	P 3	220.00	14.95	0.40	0.05	8.20E - 02	2.5	1.0	0.22	1.03E - 01	1.2/E = 01	2
2080	(1) D 1	220.00	0.57	0.45	0.20	4.30E - 02	2.0	1.2	0.11	1.02E - 01	5.08E - 02	0
2081	F 1 (0)	339.00	3.07	0.20	0.15	1.30E - 02	2.0	1.2	0.11	3.80E - 02	1.36E = 02	1
2081	(0)	339.00	8.13	0.30	0.55	3.99E = 02 2.86E = 02	1.2	0.9	0.11	1.17E = 01 4.57E = 02	3.03E = 02 1.67E = 02	1
2082	(0) (1)	339.45	11 53	0.20	0.27	2.80E - 02	1.0	1.3	0.12	4.37E - 02 5.81E - 02	1.07E = 02 3.60E = 02	0
2005	(1) P 1	339 57	11.55	0.13	0.25	1.09E - 02	1.0	1.3	0.14	1.74E - 02	1.20E - 02	2
2084	(1)	339.70	9.20	1 37	0.10	5.62E - 01	47	3.8	0.11	1.712 + 02 1.27E + 00	7.67E - 01	11
2001	P 1	339 70	9.20	0.20	0.27	1.97E - 02	47	3.8	0.54	8.18E - 02	6.45E - 02	3
2085	(17)	340.03	6.03	5.63	2.67	4.46E + 00	4.9	3.6	0.64	1.03E + 01	4.51E + 00	11
	P 1	340.03	6.03	0.13	0.17	1.44E - 02	4.9	3.6	0.64	6.35E-02	4.43E-02	1
	P 2	341.27	6.30	0.30	0.37	5.08E-02	4.2	2.9	0.51	1.92E-01	1.24E-01	1
	P 3	338.07	7.13	0.13	0.13	1.10E-02	3.9	2.9	0.32	3.83E-02	2.72E-02	1
	P 4	340.77	6.43	0.30	0.27	3.64E-02	3.7	2.4	0.43	1.21E-01	7.26E-02	1
	P 5	339.70	6.07	0.47	0.33	8.40E-02	3.5	2.1	0.39	2.66E-01	1.55E-01	0
	P 6	342.13	5.90	0.20	0.17	2.87E-02	3.3	2.0	0.36	8.68E-02	4.96E-02	1
	P 7	342.77	6.47	0.17	0.13	1.21E - 02	3.0	1.7	0.33	3.29E-02	1.79E-02	0
	P 8	341.80	4.93	0.23	0.27	3.65E-02	2.8	1.5	0.28	9.62E-02	4.58E-02	0
	P 9	342.13	5.50	0.17	0.20	2.65E - 02	2.8	1.4	0.29	6.75E-02	3.24E-02	0
	P 10	342.70	5.77	0.23	0.23	4.20E - 02	2.6	1.4	0.28	1.02E - 01	4.91E-02	0
	P 11	339.63	5.63	0.30	0.30	2.99E-02	2.7	1.3	0.28	7.30E-02	3.22E-02	1
	P 12	340.27	5.53	0.13	0.20	1.66E - 02	2.6	1.3	0.28	4.04E - 02	1.77E-02	1
	P 13	342.50	6.40	0.13	0.13	1.44E - 02	2.5	1.2	0.28	3.32E-02	1.54E - 02	1
	P 14	338.67	6.50	0.40	0.30	4.97E-02	2.4	1.2	0.14	1.07E-01	4.86E-02	0
	P 15	341.00	5.87	0.13	0.10	1.11E-02	2.4	1.1	0.27	2.53E-02	1.06E-02	1
	P 16	340.63	5.80	0.17	0.33	3.21E-02	2.4	1.1	0.26	7.23E-02	2.91E-02	1
	P 17	343.20	6.63	0.23	0.17	1.55E-02	2.3	1.1	0.26	3.24E-02	1.37E-02	0
2086	(1)	340.07	7.83	0.23	0.50	8.04E-02	2.4	1.2	0.16	1.63E-01	6.55E-02	0
• • • • =	P 1	340.07	7.83	0.13	0.30	2.86E-02	2.4	1.2	0.16	6.55E-02	3.08E-02	1
2087	(0)	340.27	22.97	0.37	0.17	3.48E-02	1.0	0.8	0.17	2.73E-02	2.16E-02	0
2088	(0)	340.60	1.70	0.20	0.20	2.55E-02	2.0	0.7	0.09	4.90E-02	1.48E-02	0

 Table 7. (Continued.)

Cloud	Clump	Posi	ition	S	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
2089	(1)	340.63	8.97	0.50	0.33	9.00E-02	2.1	1.1	0.15	1.58E-01	6.44E-02	0
	P 1	340.63	8.97	0.23	0.13	1.65E-02	2.1	1.1	0.15	3.29E-02	1.57E-02	1
2090	(1)	340.67	15.03	1.23	0.83	4.71E-01	1.6	1.3	0.16	4.97E-01	3.31E-01	0
	P 1	340.67	15.03	0.23	0.27	3.11E-02	1.6	1.3	0.16	4.48E-02	3.43E-02	0
2091	(0)	340.97	8.67	0.33	0.27	5.49E-02	1.9	0.8	0.12	9.59E-02	3.53E-02	0
2092	(5)	341.63	2.27	3.43	3.53	4.15E + 00	4.0	2.5	0.15	1.02E + 01	4.38E + 00	7
	P 1	341.63	2.27	0.43	0.33	6.44E - 02	4.0	2.5	0.15	2.28E-01	1.35E-01	1
	P 2	340.13	4.43	0.20	0.23	2.99E-02	3.7	2.3	0.37	1.02E - 01	5.91E-02	1
	P 3	340.50	3.53	0.43	0.20	5.32E - 02	3.2	1.8	0.14	1.54E - 01	7.98E - 02	0
	P 4	340.27	4.00	0.30	0.23	2.88E - 02	3.2	1.7	0.13	8.26E-02	4.14E - 02	0
	P 5	341.37	3.87	0.13	0.13	1.44E - 02	2.5	1.0	0.23	3.33E-02	1.25E - 02	1
2093	(20)	341.73	-3.03	6.70	5.17	1.55E + 01	5.0	3.2	0.39	4.51E + 01	1.96E + 01	17
	P 1	341.73	-3.03	0.90	0.73	2.72E - 01	5.0	3.2	0.39	1.17E + 00	7.34E-01	1
	P 2	344.00	-2.47	0.80	0.50	2.52E - 01	5.5	3.2	0.44	1.29E + 00	7.06E-01	1
	P 3	339.97	-2.50	0.73	1.10	3.59E-01	4.3	2.9	0.25	1.34E + 00	8.42E-01	0
	P 4	344.43	-3.50	0.57	0.63	1.19E-01	4.3	2.6	0.32	4.63E-01	2.59E-01	0
	P 5	343.17	-2.97	0.20	0.30	4.44E - 02	4.5	2.6	0.33	1.85E - 01	9.87E-02	0
	P 6	344.37	-3.93	0.23	0.33	5.43E - 02	3.6	2.2	0.26	1.77E - 01	1.04E - 01	0
	P 7	341.53	-1.90	0.37	0.20	4.00E - 02	3.9	2.0	0.21	1.44E - 01	6.67E - 02	0
	P 8	341.77	-4.90	0.27	0.37	4.43E-02	2.5	1.8	0.19	9.53E-02	6.55E-02	0
	P 9	339.73	-0.83	0.23	0.30	4.11E-02	3.2	1.7	0.14	1.21E - 01	6.20E-02	0
	P 10	340.23	-4.03	0.23	0.27	3.66E - 02	2.7	1.7	0.10	8.88E-02	5.33E-02	1
	P 11	345.13	-2.80	0.33	0.33	7.32E - 02	3.8	1.6	0.25	2.56E - 01	9.74E - 02	2
	P 12	343.50	-3.70	0.17	0.17	1.77E - 02	3.1	1.5	0.21	5.05E - 02	2.26E - 02	1
	P 13	342.17	-5.13	0.17	0.17	2.21E - 02	2.1	1.4	0.17	4.15E - 02	2.77E - 02	0
	P 14	339.83	-0.47	0.23	0.20	2.33E - 02	2.9	1.4	0.13	6.22E - 02	2.83E-02	0
	P 15	341.47	-4.37	0.67	0.33	1.10E - 01	2.5	1.4	0.18	2.29E-01	1.23E - 01	0
	P 16	339.40	-3.03	0.17	0.17	2.33E - 02	2.6	1.3	0.11	5.52E - 02	2.57E - 02	0
	P 17	343.10	-3.87	0.13	0.10	1.11E - 02	2.8	1.3	0.19	2.90E - 02	1.22E - 02	0
	P 18	341.00	-4.20	0.27	0.23	3.99E - 02	2.3	1.3	0.17	8.65E - 02	4.32E - 02	0
	P 19	339.83	-3.47	0.23	0.27	3.33E - 02	2.4	1.2	0.11	7.53E - 02	3.54E - 02	1
	P 20	338.83	-3.03	0.17	0.13	1.66E - 02	2.3	1.0	0.09	3.51E - 02	1.45E - 02	1
2094	(0)	341.80	14.63	0.60	0.50	1.27E - 01	1.1	0.8	0.11	1.14E - 01	8.14E - 02	0
2095	(0)	341.97	0.23	0.10	0.23	2.11E - 02	2.9	0.9	0.12	5.49E - 02	1.46E - 02	2
2096	(1)	342.07	-7.10	0.70	0.63	2.45E-01	2.1	1.8	0.21	2.68E-01	2.06E-01	1
	P 1	342.07	-7.10	0.17	0.17	2.21E-02	2.1	1.8	0.21	4.11E-02	3.53E-02	2
2097	(0)	342.10	14.83	0.20	0.13	2.15E - 02	0.9	0.7	0.11	1.73E - 02	1.29E-02	0
2098	(0)	342.37	24.13	0.33	0.23	4.66E - 02	0.9	0.8	0.17	3.70E - 02	3.04E - 02	0
2099	(0)	342.40	1.33	0.23	0.17	2.00E - 02	2.4	0.7	0.08	4.62E - 02	1.17E - 02	0
2100	(1)	342.40	-8.30	0.27	0.47	6.93E-02	1.2	1.1	0.17	5.68E-02	4.66E - 02	1
	P 1	342.40	-8.30	0.17	0.17	1.43E - 02	1.2	1.1	0.17	1.54E - 02	1.32E - 02	0
2101	(0)	342.53	10.60	0.23	0.20	3.71E - 02	1.4	0.6	0.10	4.71E - 02	2.11E - 02	0
2102	(0)	342.67	3.23	0.23	0.27	3.55E - 02	2.3	0.7	0.19	7.56E - 02	2.08E-02	1
2103	(11)	342.73	8.70	3.23	3.23	4.25E + 00	4.7	3.6	0.48	9.30E+00	5.19E+00	12
	P 1	342.73	8.70	0.23	0.17	3.19E-02	4.7	3.6	0.48	1.33E-01	9.99E-02	1
	P 2	342.27	9.00	0.33	0.50	7.46E-02	3.9	2.9	0.31	2.61E-01	1.84E - 01	2
	P 3	342.00	9.40	0.17	0.27	2.41E - 02	3.7	2.8	0.31	1.92E-02	5.60E - 02	1
	Р4 Р7	342.23	9.60	0.30	0.47	0.02E-02	3.6	2.7	0.30	1.9/E - 01	1.42E - 01	1
	P 5	340.73	9.67	0.13	0.13	1.20E - 02	3.5	2.6	0.29	3.79E-02	2.76E - 02	1
	Р6 р7	542.47	9.87	0.20	0.10	1.64E - 02	2.9	2.1	0.22	4.36E-02	2.96E-02	1
	Ρ/	341.07	10.20	0.23	0.17	2.62E - 02	2.6	1.8	0.19	0.12E - 02	4.20E - 02	1

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ize	Surface	Maximun	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}				associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 8	341.63	9.60	0.30	0.30	5.48E-02	2.7	1.7	0.19	1.32E-01	8.23E-02	0
	P 9	340.90	9.27	0.13	0.10	1.10E-02	2.6	1.6	0.18	2.59E-02	1.53E-02	0
	P 10	342.53	7.43	0.13	0.13	1.43E-02	2.6	1.3	0.31	3.42E-02	1.68E-02	1
	P 11	340.70	10.00	0.10	0.13	1.31E-02	2.1	1.3	0.15	2.48E-02	1.48E-02	1
2104	(0)	342.77	24.50	0.20	0.30	2.53E-02	0.8	0.7	0.17	1.78E-02	1.43E-02	0
2105	(0)	342.93	24.10	0.23	0.53	4.6/E - 02	0.8	0.7	0.17	3.34E-02	2.68E-02	0
2106	(0)	343.20	0.87	0.67	0.80	1.8/E - 01	3.0	0.9	0.08	4.79E-01	1.09E-01	0
2107	(1) D 1	343.30	22.13	0.33	0.30	6.90E - 02	1.3	1.2	0.19	5.81E - 02	5.04E - 02	0
2108	P I (1)	343.50	22.13	0.17	0.15	1.03E - 02	1.5	1.2	0.19	1.03E - 02	1.03E - 02 1.10E 01	0
2100	(1) P 1	343.57	0.10	0.30	0.47	1.51E = 01 1.56E = 02	4.4	1.9	0.15	4.43E = 01 6.46E = 02	1.19E = 01 2 50E = 02	1
2109	(2)	343.63	10.83	0.20	2.00	5.23E - 01	2.0	1.9	0.13	$7.78E_{-01}$	2.39E - 02 4 07E - 01	1
2107	(2) P 1	343.63	10.83	0.40	0.53	9.61E - 02	2.0	1.4	0.14	1.70E - 01	1.07E - 01	1
	P 2	343.05	9 50	0.13	0.20	1.75E - 02	1.8	1.4	0.14	2.98E - 02	1.10E 01 1.51E - 02	0
2110	(0)	343.87	7.13	0.23	0.23	2.87E - 02	1.9	0.7	0.10	5.08E - 02	1.72E-02	0
2111	(0)	343.97	24.77	0.30	0.23	2.83E - 02	0.9	0.7	0.17	2.06E - 02	1.70E - 02	Ő
2112	(0)	344.00	1.23	0.20	0.13	2.55E-02	3.1	0.9	0.21	7.23E-02	1.77E-02	1
2113	(0)	344.60	11.00	0.30	0.23	4.36E-02	1.2	0.7	0.09	4.45E-02	2.57E-02	0
2114	(1)	344.80	23.90	1.07	0.73	2.31E-01	1.2	1.1	0.20	1.81E-01	1.50E-01	0
	P 1	344.80	23.90	0.17	0.20	2.44E-02	1.2	1.1	0.20	2.64E-02	2.31E-02	1
2115	(2)	344.93	10.33	0.97	0.93	3.63E-01	2.0	1.4	0.13	4.92E-01	2.87E-01	2
	P 1	344.93	10.33	0.37	0.17	4.04E - 02	2.0	1.4	0.13	7.20E - 02	5.04E - 02	2
	P 2	345.00	10.03	0.20	0.33	3.06E-02	1.8	1.2	0.12	4.89E-02	3.02E-02	1
2116	(0)	345.10	3.10	0.13	0.23	2.22E - 02	2.4	0.7	0.19	5.03E-02	1.30E - 02	1
2117	(1)	345.93	5.73	0.73	0.63	2.90E-01	2.9	1.8	0.29	5.80E-01	2.47E-01	0
	P 1	345.93	5.73	0.13	0.23	2.10E - 02	2.9	1.8	0.29	5.55E - 02	3.16E - 02	0
2118	(1)	346.33	-4.10	0.50	0.40	1.14E-01	4.0	2.8	0.30	2.68E-01	1.35E-01	0
	P 1	346.33	-4.10	0.13	0.10	1.11E-02	4.0	2.8	0.30	4.04E-02	2.75E-02	1
2119	(6)	346.37	-2.20	2.47	2.03	1.23E + 00	4.0	1.5	0.25	3.69E+00	9.53E-01	3
	PI	346.37	-2.20	0.17	0.13	1.33E-02	4.0	1.5	0.25	5.08E-02	1.78E-02	1
	P 2	347.20	-3.40	0.17	0.20	2.33E-02	3.1	1.5	0.21	6.75E - 02	3.11E-02	1
	P 3	345.87	-2.27	0.30	0.17	3.89E - 02	4.0	1.5	0.26	1.48E - 01	5.10E - 02	1
	P 4	347.57	-2.27	0.30	0.23	3.89E-02	3.0	1.3	0.22	1.30E-01	4.11E-02	1
	r J D 6	340.07	-1.03	0.50	0.15	4.00E - 02	5.0 2.8	1.2	0.25	1.71E - 01	4.81E - 02	1
2120	(22)	346.40	-3.20	6.07	5.20	1.89E - 02 8 04F \pm 00	2.0	1.1	0.18	3.02E = 02 2 85E ± 01	$7.57E \pm 00$	12
2120	(22) P 1	346.40	-0.60	0.13	0.17	2.00E - 02	7.0	4.8	0.79	1.38E - 01	8 19F_02	2
	P 2	345 10	0.83	0.15	0.17	2.00E 02 2.56E-02	7.0 5.2	2.6	0.40	1.30E 01 1.22E - 01	5.68E - 02	2
	P 3	346.70	-1.07	0.33	0.50	8.22E-02	5.2	2.4	0.34	4.01E - 01	1.70E-01	1
	P 4	344.27	-0.73	0.33	0.47	7.44E-02	4.8	2.1	0.17	3.34E-01	1.34E-01	1
	P 5	346.87	0.30	0.23	0.50	5.67E-02	4.7	1.9	0.30	2.49E-01	8.84E-02	3
	P 6	346.80	0.10	0.30	0.17	3.56E-02	4.7	1.8	0.29	1.57E-01	5.62E-02	0
	Р7	345.63	0.60	0.33	0.27	5.22E-02	4.5	1.8	0.30	2.19E-01	7.88E-02	0
	P 8	347.20	0.57	0.17	0.23	2.78E-02	4.6	1.8	0.30	1.21E-01	4.16E-02	0
	P 9	345.97	-0.97	0.10	0.17	1.33E-02	4.2	1.4	0.24	5.43E-02	1.70E-02	0
	P 10	346.43	0.23	0.27	0.37	3.78E-02	4.1	1.3	0.25	1.47E-01	4.11E-02	1
	P 11	342.97	-0.63	0.23	0.17	2.44E-02	3.8	1.3	0.19	8.76E-02	2.72E - 02	0
	P 12	345.87	2.40	0.53	0.43	8.33E-02	3.4	1.3	0.25	2.69E-01	9.07E-02	0
	P 13	345.77	2.73	0.17	0.23	2.55E-02	3.2	1.3	0.24	7.69E-02	2.77E-02	0
	P 14	347.73	0.17	0.27	0.23	3.00E-02	4.2	1.3	0.24	1.19E-01	3.15E-02	0
	P 15	346.07	1.10	0.43	0.30	5.89E-02	3.9	1.3	0.25	2.16E-01	6.11E-02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 16	345.87	3.27	0.13	0.17	1.66E-02	2.8	1.2	0.22	4.47E-02	1.67E-02	0
	P 17	345.10	1.97	0.17	0.27	2.89E-02	3.3	1.1	0.23	9.00E-02	2.72E-02	0
	P 18	344.33	0.67	0.20	0.13	2.11E-02	3.6	1.1	0.23	7.21E-02	2.02E-02	0
	P 19	346.93	-0.37	0.13	0.13	1.00E - 02	3.9	1.1	0.22	3.76E-02	9.20E-03	0
	P 20	342.73	-0.40	0.13	0.23	2.11E-02	3.4	1.1	0.16	6.96E-02	1.94E - 02	0
	P 21	346.03	3.63	0.17	0.27	2.55E-02	2.6	1.1	0.21	6.34E-02	2.31E-02	0
	P 22	345.17	-0.00	0.47	0.37	7.22E - 02	3.8	1.0	0.22	2.59E-01	6.32E-02	0
2121	(0)	346.43	2.77	0.13	0.40	4.22E - 02	2.8	0.8	0.20	1.15E-01	2.55E-02	0
2122	(0)	346.63	-6.43	0.37	0.23	5.19E-02	1.2	0.7	0.14	5.35E-02	3.08E-02	0
2123	(1)	346.70	-8.13	0.27	0.40	6.16E-02	1.6	1.3	0.18	6.33E-02	4.96E-02	0
	P 1	346.70	-8.13	0.17	0.17	1.65E - 02	1.6	1.3	0.18	2.25E-02	1.88E-02	2
2124	(1)	346.73	10.33	1.13	0.77	4.57E-01	1.9	1.5	0.13	5.17E-01	3.29E-01	0
	P 1	346.73	10.33	0.20	0.23	3.39E-02	1.9	1.5	0.13	5.87E-02	4.44E - 02	1
2125	(1)	346.90	-5.07	0.53	0.73	2.09E-01	1.8	1.1	0.15	2.90E-01	1.46E-01	0
	P 1	346.90	-5.07	0.33	0.23	4.10E - 02	1.8	1.1	0.15	6.74E-02	3.78E-02	1
2126	(0)	347.00	5.53	0.20	0.30	3.87E-02	2.0	0.8	0.20	7.10E-02	2.34E-02	0
2127	(0)	347.00	-6.37	0.30	0.30	4.42E - 02	1.1	0.7	0.13	4.31E-02	2.44E - 02	0
2128	(0)	347.10	-1.77	0.33	0.20	4.44E - 02	3.5	0.8	0.20	1.46E-01	2.95E-02	0
2129	(7)	347.20	6.77	2.83	2.57	2.75E + 00	4.5	3.5	0.53	5.22E + 00	2.48E + 00	6
	P 1	347.20	6.77	0.13	0.23	2.21E-02	4.5	3.5	0.53	8.79E-02	6.68E-02	1
	P 2	346.10	7.73	0.33	0.13	2.86E-02	3.0	2.1	0.19	7.92E-02	5.39E-02	3
	P 3	347.57	7.03	0.23	0.20	2.21E-02	2.9	2.0	0.31	5.84E-02	3.87E-02	1
	P 4	348.17	6.23	0.17	0.20	2.54E - 02	2.5	1.5	0.24	5.91E-02	3.17E-02	0
	P 5	346.57	7.37	0.20	0.20	2.09E - 02	2.2	1.3	0.11	4.23E-02	2.35E - 02	0
	P 6	346.03	7.03	0.20	0.20	2.43E-02	2.3	1.3	0.10	5.02E - 02	2.69E-02	0
	P 7	346.03	6.80	0.20	0.17	2.43E-02	2.3	1.3	0.25	5.14E-02	2.73E-02	0
2130	(0)	347.33	-5.83	0.43	0.40	8.62E-02	1.3	0.8	0.14	9.92E-02	5.23E-02	0
2131	(0)	347.50	14.97	0.17	0.20	2.25E - 02	0.9	0.6	0.10	1.85E - 02	1.28E - 02	0
2132	(1)	347.57	-8.00	0.43	0.83	2.01E-01	2.1	1.9	0.22	2.03E-01	1.64E - 01	1
	P 1	347.57	-8.00	0.10	0.17	1.21E - 02	2.1	1.9	0.22	2.25E - 02	1.99E-02	1
2133	(0)	347.60	-3.97	0.33	0.20	4.54E - 02	2.1	0.9	0.15	8.57E-02	3.23E-02	1
2134	(1)	347.77	4.63	0.33	0.57	9.97E - 02	2.6	1.1	0.22	2.18E - 01	7.25E - 02	0
	P 1	347.77	4.63	0.13	0.17	1.66E - 02	2.6	1.1	0.22	4.08E - 02	1.61E - 02	0
2135	(0)	347.80	-5.90	0.27	0.27	3.76E - 02	1.1	0.6	0.13	4.05E - 02	2.12E - 02	0
2136	(0)	347.83	3.77	0.30	0.30	5.65E - 02	2.6	0.9	0.20	1.34E - 01	3.61E - 02	0
2137	(0)	347.87	4.27	0.23	0.27	3.55E - 02	2.3	0.7	0.19	7.79E - 02	2.11E - 02	0
2138	(0)	348.20	-9.13	0.63	0.60	1.48E - 01	1.1	1.0	0.17	1.07E - 01	9.04E - 02	1
2139	(0)	348.23	-2.40	0.30	0.23	3.44E - 02	3.0	0.8	0.18	9.86E - 02	2.09E - 02	0
2140	(0)	348.30	8.87	0.47	0.43	9.55E - 02	1.3	0.8	0.07	1.08E - 01	5.81E - 02	0
2141	(0)	348.40	7.83	0.47	0.30	1.07E - 01	1.7	1.0	0.21	1.51E - 01	7.56E - 02	0
2142	(0)	348.77	5.37	0.17	0.20	2.54E - 02	2.1	0.8	0.19	4.86E - 02	1.63E - 02	0
2143	(0)	348.87	0.53	0.43	0.30	5.56E - 02	3.8	0.7	0.20	2.01E - 01	3.17E - 02	0
2144	(3)	349.00	3.37	1.83	1.17	7.10E - 01	4.3	2.3	0.32	2.14E + 00	7.10E - 01	5
	P 1	349.00	3.37	0.17	0.13	1.66E - 02	4.3	2.3	0.32	6.65E - 02	3.32E - 02	1
	P 2	347.97	3.37	0.17	0.40	3.11E-02	3.9	2.0	0.30	1.14E-01	5.15E-02	1
	P 3	348.77	3.60	0.37	0.23	4.44E-02	3.6	1.7	0.26	1.47E-01	6.46E-02	2
2145	(1)	349.10	7.20	1.23	1.07	5.52E-01	2.1	1.4	0.22	7.86E-01	3.95E-01	0
	P 1	349.10	7.20	0.33	0.27	4.30E-02	2.1	1.4	0.22	8.08E-02	4.89E-02	0
2146	(0)	349.23	4.30	0.40	0.60	9.08E-02	2.5	1.0	0.19	1.93E-01	6.15E-02	1
2147	(0)	349.40	8.13	0.97	0.60	2.36E-01	1.4	0.9	0.19	2.61E-01	1.42E-01	0
2148	(0)	349.67	-11.53	0.40	0.27	6.10E - 02	0.9	0.8	0.18	3.82E - 02	3.77E - 02	0

 Table 7. (Continued.)

Cloud	Clump	Pos	ition	Si	ize	Surface	Maximun	n extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
21/0	(2)	3/0.83	13.20	0.50	0.70	$1.40E_{-01}$	17	12	0.32	$1.68E_{-01}$	$1.00E_{-01}$	0
2149	(2) P 1	349.83	13.20	0.30	0.70	1.40E = 01 3.25E = 02	1.7	1.2	0.32	1.06E = 01 4.96E = 02	1.09E = 01 3.53E = 02	0
	P 2	349.90	12.20	0.27	0.20	8.67E-03	1.7	1.2	0.32	1.20E - 02	8.48E-03	0
2150	(0)	349 90	7 43	0.10	0.10	3.75E - 02	1.5	0.8	0.27	4.67E - 02	2.38E-02	0
2151	(0)	349.90	-1.53	0.53	0.27	7.11E - 02	3.7	1.0	0.21	2.37E-01	4.40E - 02	0
2152	(12)	350.13	-3.60	5.87	2.37	4.33E + 00	3.9	2.3	0.27	1.00E + 01	3.85E + 00	5
	P 1	350.13	-3.60	0.17	0.13	1.89E - 02	3.9	2.3	0.27	6.83E-02	3.78E - 02	2
	P 2	351.37	-3.57	0.77	0.50	1.64E-01	3.6	1.9	0.23	5.31E-01	2.67E-01	3
	P 3	349.00	-4.10	0.23	0.17	1.66E-02	2.9	1.8	0.20	4.45E-02	2.52E-02	1
	P 4	349.73	-3.93	0.53	0.27	5.21E-02	2.9	1.5	0.19	1.33E-01	6.62E-02	1
	P 5	352.93	-3.17	0.37	0.47	1.01E-01	3.4	1.5	0.20	3.19E-01	1.28E-01	0
	P 6	351.67	-4.33	0.47	0.53	7.98E-02	2.3	1.4	0.16	1.60E-01	9.82E-02	0
	P 7	348.33	-4.17	0.33	0.23	4.32E - 02	2.5	1.4	0.17	9.88E-02	5.10E-02	0
	P 8	352.30	-2.87	0.23	0.17	2.44E - 02	3.5	1.3	0.21	8.09E-02	2.74E - 02	0
	P 9	351.73	-2.80	0.17	0.17	1.89E - 02	3.5	1.3	0.21	6.27E - 02	2.11E - 02	0
	P 10	352.07	-4.80	0.47	0.33	5.65E - 02	1.7	1.3	0.13	8.55E-02	5.89E-02	1
	P 11	352.33	-3.73	0.47	0.47	6.54E - 02	2.6	1.1	0.16	1.44E-01	6.16E-02	0
	P 12	347.63	-4.33	0.17	0.10	9.97E-03	2.1	1.1	0.15	1.93E-02	9.51E-03	1
2153	(1)	350.37	4.43	0.30	0.23	4.98E - 02	3.8	2.5	0.28	1.28E-01	5.93E-02	0
	P 1	350.37	4.43	0.10	0.07	5.54E - 03	3.8	2.5	0.28	2.01E-02	1.24E - 02	1
2154	(1)	350.37	-0.77	0.47	0.73	2.03E-01	4.4	1.3	0.24	7.77E-01	1.47E-01	0
	P 1	350.37	-0.77	0.17	0.17	1.78E-02	4.4	1.3	0.24	7.47E-02	1.99E-02	0
2155	(1) D 1	350.67	13.73	0.43	0.37	9.28E-02	1.9	1.3	0.35	1.31E-01	7.70E - 02	0
0156		350.67	13.73	0.17	0.17	1.84E - 02	1.9	1.3	0.35	3.16E-02	2.08E - 02	0
2156	(1) D 1	350.70	14.33	0.80	0.53	2.18E - 01	1.8	1.1	0.13	2.93E-01	1.42E - 01	0
2157	P I (0)	250.70	14.55	0.10	0.13	1.08E - 02	1.8	1.1	0.15	1./3E - 02	1.01E - 02	0
2157	(0)	351.07	_0.20	0.17 0.47	0.17	2.00E = 02	1.2	0.8	0.24	2.12E = 02 4.20E = 02	1.31E - 02 3.00E - 02	0
2150	(0)	351.07	-9.20	1.53	1 77	0.09E = 02	1.8	0.7	0.14	4.20E = 02 $1.27E \pm 00$	3.99E = 02 8 10E = 01	0
2157	(2) P 1	351.10	7.87	0.43	0.43	9.03E - 02	1.0	1.4	0.19	1.272 ± 00 1.49E = 01	1.06E - 01	1
	P 2	350.47	8.00	0.45	0.43	2.05E - 02 2.31E - 02	1.0	1.4	0.19	3.26E = 02	2.17E - 02	0
2160	(1)	351.20	18.60	0.63	0.17	1.52E-01	1.0	1.1	0.10	1.73E-01	1.15E-01	1
2100	P 1	351.20	18.60	0.23	0.13	2.21E-02	1.7	1.4	0.19	3.36E - 02	2.56E - 02	0
2161	(2)	351.37	12.47	1.30	0.70	3.58E - 01	1.8	1.3	0.30	4.35E-01	2.78E - 01	0
	P 1	351.37	12.47	0.20	0.23	2.82E - 02	1.8	1.3	0.30	4.63E-02	3.36E-02	0
	P 2	351.70	12.43	0.17	0.20	2.06E-02	1.7	1.3	0.28	3.15E-02	2.21E-02	0
2162	(1)	351.47	4.43	0.43	0.43	1.11E-01	3.1	1.8	0.20	2.53E-01	1.07E-01	1
	P 1	351.47	4.43	0.13	0.10	1.22E-02	3.1	1.8	0.20	3.45E-02	1.86E-02	1
2163	(1)	352.20	-1.93	0.23	0.37	6.22E-02	4.0	1.2	0.22	2.23E-01	4.78E-02	0
	P 1	352.20	-1.93	0.10	0.20	1.67E - 02	4.0	1.2	0.22	6.37E-02	1.67E-02	0
2164	(40)	352.47	0.83	7.23	6.73	1.97E + 01	7.3	3.3	0.59	8.97E + 01	1.98E + 01	25
	P 1	352.47	0.83	0.23	0.23	3.89E-02	7.3	3.3	0.59	2.64E-01	1.10E - 01	2
	P 2	350.70	2.53	0.27	0.23	3.66E-02	5.7	2.7	0.42	1.90E-01	8.15E-02	1
	P 3	354.50	2.90	0.17	0.10	1.55E - 02	5.9	2.5	0.42	8.59E-02	3.36E-02	0
	P 4	351.93	1.83	0.20	0.37	3.66E - 02	6.1	2.4	0.43	2.12E-01	7.45E - 02	1
	P 5	354.73	3.63	0.20	0.23	3.22E-02	4.8	2.3	0.31	1.45E-01	6.39E-02	0
	P 6	351.77	1.40	0.23	0.40	4.44E-02	6.0	2.3	0.40	2.52E-01	8.58E-02	2
	P 7	355.00	1.37	0.30	0.53	8.00E-02	6.2	2.3	0.40	4.68E-01	1.51E-01	0
	P 8	355.27	1.87	0.33	0.53	9.22E-02	5.9	2.1	0.38	5.19E-01	1.68E-01	0
	P9	351.67	0.40	0.20	0.30	4.22E-02	5.8	2.1	0.36	2.28E-01	7.18E-02	1
	P 10	350.73	0.83	0.40	0.40	8.78E-02	5.3	1.9	0.33	4.39E-01	1.36E - 01	0

 Table 7. (Continued.)

Cloud	Clump	Posi	ition	Si	ze	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg ²)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 11	354.23	1.93	0.30	0.30	5.66E-02	5.8	1.9	0.37	3.11E-01	8.94E-02	0
	P 12	352.10	0.10	0.33	0.37	7.44E - 02	5.7	1.9	0.34	4.02E-01	1.18E - 01	0
	P 13	354.50	3.50	0.20	0.20	2.44E-02	4.4	1.8	0.27	1.00E-01	3.75E-02	0
	P 14	351.53	1.03	0.27	0.33	4.11E-02	5.5	1.8	0.33	2.13E-01	6.10E-02	0
	P 15	355.10	0.70	0.50	0.40	8.44E-02	5.8	1.7	0.32	4.64E-01	1.23E-01	0
	P 16	354.53	0.33	0.33	0.37	8.33E-02	5.7	1.7	0.31	4.56E-01	1.18E-01	0
	P 17	350.73	1.63	0.30	0.53	7.22E - 02	5.0	1.7	0.31	3.44E-01	1.01E - 01	0
	P 18	351.70	2.13	0.20	0.17	2.33E-02	5.3	1.7	0.33	1.17E-01	3.41E-02	0
	P 19	351.50	-0.10	0.37	0.27	3.78E-02	5.3	1.7	0.31	1.90E-01	5.13E-02	0
	P 20	353.23	-0.63	0.40	0.37	7.00E - 02	5.5	1.6	0.32	3.65E-01	9.65E-02	0
	P 21	351.37	-1.97	0.27	0.17	3.00E - 02	4.2	1.6	0.26	1.21E-01	4.17E - 02	0
	P 22	350.33	1.33	0.30	0.30	6.11E - 02	4.8	1.6	0.29	2.78E-01	8.00E - 02	1
	P 23	352.47	-1.23	0.30	0.27	5.33E-02	4.9	1.5	0.28	2.51E-01	7.15E - 02	0
	P 24	355.40	0.30	0.23	0.23	3.67E - 02	5.6	1.5	0.29	1.96E - 01	4.85E - 02	0
	P 25	355.70	2.47	0.23	0.23	2.44E - 02	5.0	1.5	0.30	1.18E-01	3.24E - 02	0
	P 26	352.63	-0.30	0.20	0.20	2.44E - 02	5.4	1.5	0.31	1.27E - 01	3.23E - 02	0
	P 27	354.90	0.13	0.20	0.13	2.11E - 02	5.5	1.5	0.29	1.13E-01	2.77E - 02	0
	P 28	356.30	3.57	0.17	0.23	2.55E - 02	4.3	1.4	0.25	1.03E - 01	3.01E - 02	1
	P 29	352.33	-0.60	0.30	0.40	6.22E - 02	5.0	1.3	0.28	3.02E - 01	6.86E - 02	0
	P 30	350.97	-1.17	0.23	0.43	6.55E - 02	4.3	1.3	0.25	2.67E - 01	7.30E - 02	1
	P 31	355.97	3.50	0.20	0.10	1.77E - 02	4.1	1.2	0.24	6.96E - 02	1.86E - 02	0
	P 32	355.67	4.07	0.10	0.10	7.76E - 03	3.6	1.2	0.21	2.68E - 02	8.25E-03	0
	P 33	350.53	0.17	0.40	0.17	4.00E - 02	4.5	1.2	0.24	1.73E-01	3.93E-02	0
	P 34	350.60	-0.17	0.10	0.20	1.56E - 02	4.5	1.2	0.24	6.72E - 02	1.53E - 02	0
	P 35	350.00	0.93	0.50	0.27	6.22E - 02	4.3	1.1	0.24	2.56E-01	5.87E-02	0
	P 36	349.63	1.33	0.50	0.33	7.66E - 02	4.2	1.1	0.24	3.10E-01	7.11E-02	0
	P 37	349.90	1.50	0.13	0.23	2.67E - 02	4.2	1.1	0.24	1.08E-01	2.51E-02	0
	P 38	349.40	1.73	0.13	0.13	1.33E-02	4.0	1.0	0.24	5.15E-02	1.18E-02	0
	P 39	354.17	1.10	0.43	0.37	6.11E-02	5.0	1.0	0.26	2.98E-01	5.18E-02	0
21.65	P 40	352.77	-1.30	0.20	0.23	3.22E-02	4.3	1.0	0.23	1.34E-01	2.81E-02	0
2165	(0)	352.47	11.80	0.23	0.43	4.35E-02	1.1	0.7	0.21	4.28E-02	2.66E - 02	0
2166	(0)	352.47	-2.30	0.20	0.30	4.00E - 02	3.4	0.8	0.19	1.31E-01	2.53E-02	0
2167	(0)	353.03	-4.17	0.17	0.20	2.44E - 02	1.7	1.0	0.12	3.55E-02	1.73E-02	l
2168	(1) D 1	353.27	-1.60	0.50	0.53	1.13E-01	4.4	1.2	0.24	4.45E-01	8.54E-02	0
2160	PI	252.27	-1.00	0.17	0.10	1.22E - 02	4.4	1.2	0.24	5.10E - 02	1.30E - 02	0
2109	(1) D 1	252.27	-5.70	0.35	0.50	9.03E - 02	2.4	1.0	0.15	1.93E - 01	0.73E - 02	0
2170	P I	252.27	-5.70	0.15	0.15	1.35E - 02	2.4	1.0	0.13	2.99E - 02	1.18E - 02	0
2170	(1) D 1	252.57	-3.00	0.50	0.57	9.99E - 02	3.2 2.2	1.2	0.18	2.85E - 01	7.30E-02	1
2171	r 1 (20)	254.07	-5.00	0.15	0.17	1.69E - 02	5.2 10.9	1.2	0.10	3.60E - 02	1.90E - 02	61
21/1	(39) D 1	254.07	15.57	15.00	9.50	$2.02E \pm 01$	10.8	9.9	14.1	4.36E + 01	$5.14E \pm 01$	01
		354.07	15.57	0.17	0.20	1.93E - 02	10.8	9.9	14.1	1.79E-01	1.02E - 01	2
	P 2 D 2	252.07	16.03	0.10	0.13	9.38E-03	10.7	9.7	14.1	9.01E - 02	8.00E - 02	0
	P 3	252.05	16.77	0.17	0.15	1.26E - 02	9.7	0.1 7.2	0.72' 4.21†	1.06E - 01	9.31E - 02	1
	P 4	255.17	10.50	0.15	0.23	1.81E - 02	8.3 7.9	7.5	4.21	1.30E - 01	1.12E - 01	0
	r J D C	353.23	14.03	0.17	0.20	1.83E-02	/.ð 7.0	/.1	3.14'	1.24E-UI	1.11E-UI	0
		352.97 252.67	17.73	0.13	0.20	1.50E - 02	/.0	0.U	2.40^{+}	1.10E-01	9.20E-02	0
	r /	332.07	17.03	0.25	0.17	2.33E-02	0.2	5.2	1.39	1.40E-01	1.13E-01	0
	Рð DO	552.87 256 12	18.1/	0.17	0.13	1.09E-02	5.9	5.0	1.42	8.01E-02	1.12E-02	0
	РУ D 10	330.13	15.90	0.33	0.13	3.02E-02	5.0	4.5	0.39	1.35E-01	1.1/E - 01	0
	P 10	354.03	10.10	0.37	0.15	2.78E - 02	5.2	4.5	0.94	1.20E-01	1.01E-01	2
	РП	354.20	16.30	0.17	0.17	1.60E - 02	5.0	4.1	0.871	1.03E - 02	5.51E - 02	1

 Table 7. (Continued.)

Cloud	Clump	Posi	ition	Si	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	•			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 12	356.47	13.50	0.20	0.37	3.89E-02	4.1	3.7	0.65	1.38E-01	1.20E-01	0
	P 13	357.20	13.10	0.37	0.27	4.33E-02	4.0	3.6	0.62	1.49E-01	1.33E-01	0
	P 14	353.53	18.50	0.17	0.23	2.63E-02	4.4	3.6	0.72^{\dagger}	1.02E-01	8.07E-02	0
	P 15	0.50	11.40	0.33	0.13	2.51E-02	3.6	3.3	0.48	7.59E-02	6.97E-02	1
	P 16	356.77	13.30	0.13	0.17	1.62E - 02	3.7	3.3	0.56	5.23E-02	4.56E-02	0
	P 17	352.00	17.30	0.40	0.30	5.52E-02	4.1	3.2	0.58	2.03E-01	1.50E-01	0
	P 18	352.20	16.27	0.30	0.30	5.12E-02	3.7	2.7	0.43	1.67E-01	1.16E-01	0
	P 19	358.00	13.13	0.17	0.13	1.73E-02	2.9	2.6	0.43	4.44E-02	3.82E-02	1
	P 20	349.37	15.30	0.10	0.37	2.57E-02	2.9	2.3	0.23	6.60E-02	5.12E-02	1
	P 21	353.77	17.63	0.17	0.20	2.22E-02	3.1	2.2	0.37	6.19E-02	4.10E-02	0
	P 22	0.53	10.37	0.27	0.17	2.51E-02	2.5	2.1	0.30	5.51E-02	4.53E-02	2
	P 23	354.40	17.40	0.37	0.17	3.71E-02	3.0	2.0	0.34	9.89E-02	6.50E-02	0
	P 24	350.60	17.13	0.37	0.27	5.10E-02	2.8	2.0	0.29	1.24E-01	8.78E-02	0
	P 25	355.27	15.73	0.17	0.13	1.28E-02	2.8	2.0	0.30	3.21E-02	2.18E-02	0
	P 26	359.53	12.03	0.17	0.13	1.85E-02	2.2	1.9	0.13	3.52E-02	3.08E-02	0
	P 27	357.70	13.20	0.20	0.10	1.62E-02	2.3	1.9	0.34	3.27E-02	2.66E-02	0
	P 28	354.73	16.50	0.37	0.13	3.41E-02	2.7	1.7	0.28	8.08E-02	4.95E-02	0
	P 29	349.90	16.80	0.67	0.63	1.39E-01	2.3	1.7	0.23	2.91E-01	2.06E-01	0
	P 30	359.30	11.87	0.27	0.17	2.28E-02	2.0	1.7	0.12	3.89E-02	3.31E-02	1
	P 31	351.50	17.83	0.13	0.10	1.16E-02	2.5	1.7	0.26	2.66E-02	1.72E-02	0
	P 32	357.03	13.73	0.50	0.50	7.56E-02	1.9	1.5	0.32	1.31E-01	9.76E-02	0
	P 33	357.37	14.00	0.13	0.10	9.70E-03	2.0	1.5	0.33	1.71E-02	1.27E-02	0
	P 34	351.23	17.47	0.37	0.30	7.31E-02	2.3	1.5	0.23	1.49E-01	9.12E-02	1
	P 35	1.23	9.90	0.30	0.37	2.96E-02	2.0	1.5	0.24	5.08E-02	3.60E-02	2
	P 36	348.67	17.03	0.20	0.20	2.66E-02	1.6	1.3	0.16	3.77E-02	3.01E-02	0
	P 37	357.50	13.73	0.13	0.13	1.08E - 02	1.7	1.3	0.29	1.65E-02	1.18E-02	0
	P 38	359.83	11.67	0.23	0.20	2.72E - 02	1.4	1.1	0.09	3.29E-02	2.63E-02	1
	P 39	349.57	14.10	0.13	0.10	1.08E - 02	1.6	1.1	0.34	1.59E-02	1.01E - 02	0
2172	(1)	354.37	-1.73	0.23	0.30	4.66E - 02	4.5	1.3	0.24	1.85E-01	4.05E - 02	1
	P 1	354.37	-1.73	0.13	0.20	1.78E - 02	4.5	1.3	0.24	7.55E-02	2.00E - 02	0
2173	(0)	354.37	-0.20	0.27	0.30	5.33E-02	4.9	0.9	0.24	2.50E-01	3.68E-02	0
2174	(4)	354.63	4.67	1.83	2.50	1.49E + 00	3.6	2.0	0.23	2.72E + 00	1.30E + 00	4
	P 1	354.63	4.67	0.13	0.23	2.21E - 02	3.6	2.0	0.23	7.32E - 02	3.92E - 02	1
	P 2	353.67	6.03	0.37	0.40	5.75E - 02	2.3	1.6	0.17	1.15E-01	7.57E - 02	0
	P 3	354.37	5.20	0.27	0.70	1.02E - 01	2.5	1.5	0.17	2.22E - 01	1.27E - 01	0
	P 4	353.37	6.50	0.13	0.23	2.10E - 02	1.8	1.3	0.15	3.42E - 02	2.22E - 02	0
2175	(1)	354.70	-1.50	0.40	0.30	7.22E - 02	4.6	1.2	0.23	2.94E - 01	5.33E-02	0
	P 1	354.70	-1.50	0.13	0.17	1.56E - 02	4.6	1.2	0.23	6.83E-02	1.58E - 02	0
2176	(0)	354.73	-5.67	0.20	0.30	4.53E - 02	0.9	0.8	0.10	3.31E-02	2.84E - 02	1
2177	(1)	354.97	6.10	0.43	0.27	8.29E-02	1.9	1.2	0.15	1.24E - 01	5.99E - 02	1
	P 1	354.97	6.10	0.13	0.13	1.44E - 02	1.9	1.2	0.15	2.55E - 02	1.46E - 02	0
2178	(3)	355.43	22.60	1.27	2.23	8.97E-01	2.0	1.9	0.29	7.77E-01	7.02E - 01	1
	P 1	355.43	22.60	0.20	0.17	2.05E - 02	2.0	1.9	0.29	3.59E - 02	3.44E - 02	1
	P 2	355.43	22.13	0.20	0.20	2.06E - 02	1.8	1.7	0.25	3.04E - 02	2.85E - 02	0
	P 3	355.43	23.27	0.17	0.33	2.65E - 02	1.4	1.4	0.22	3.28E - 02	3.08E - 02	0
2179	(0)	355.53	17.37	0.50	0.20	5.41E - 02	1.7	0.9	0.19	7.84E - 02	3.59E - 02	0
2180	(13)	355.63	20.67	5.07	3.00	4.59E + 00	4.8	4.5	1.01^{+}	$7.07\mathrm{E}\!+\!00$	5.19E + 00	4
	P 1	355.63	20.67	0.23	0.17	2.08E-02	4.8	4.5	1.01^{+}	8.50E-02	8.05E-02	2
	P 2	356.17	20.77	0.20	0.13	1.56E-02	4.0	3.8	0.72	5.50E-02	5.09E-02	2
	P 3	357.27	19.93	0.17	0.10	1.36E-02	3.7	3.2	0.60	4.46E-02	3.82E-02	0
	P 4	357.67	18.97	0.10	0.10	7.36E-03	3.7	3.1	0.57	2.42E-02	2.01E-02	1

 Table 7. (Continued.)

Cloud	Clump	Posi	ition	Si	ize	Surface	Maximum	extinction	δA_V	$\int A_{V1} ds$	$\int A_{V2} ds$	Number of
name	name	l	b	Δl	Δb	area	A_{V1}	A_{V2}	-			associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	(mag)	(mag)	(mag)	$(mag deg^2)$	$(mag deg^2)$	clouds
	P 5	356.80	20.20	0.23	0.23	3.13E-02	3.0	2.6	0.42	8.22E-02	6.96E-02	0
	P 6	355.47	21.13	0.10	0.17	1.24E-02	2.7	2.5	0.37	2.97E-02	2.75E-02	0
	Р7	358.17	19.07	0.27	0.17	2.63E-02	2.9	2.3	0.39	6.68E-02	5.19E-02	0
	P 8	355.80	19.23	0.20	0.17	1.78E-02	2.8	2.3	0.35	4.30E-02	3.47E-02	0
	P 9	356.43	19.27	0.23	0.20	2.62E - 02	2.6	2.1	0.33	6.18E-02	4.89E-02	0
	P 10	357.20	19.60	0.27	0.20	3.24E-02	2.5	2.0	0.33	7.28E-02	5.70E-02	0
	P 11	358.20	19.50	0.17	0.13	1.47E-02	2.5	1.9	0.32	3.25E-02	2.43E-02	0
	P 12	358.83	18.63	0.27	0.13	2.11E-02	2.1	1.5	0.25	3.85E-02	2.68E-02	0
	P 13	356.80	18.93	0.17	0.10	1.26E - 02	1.7	1.1	0.21	1.91E-02	1.21E-02	0
2181	(0)	355.80	7.83	0.97	0.30	1.49E-01	1.1	0.8	0.13	1.40E - 01	9.23E-02	0
2182	(0)	356.33	8.03	0.17	0.20	2.20E - 02	0.9	0.6	0.13	1.91E-02	1.27E - 02	0
2183	(0)	356.33	6.73	0.27	0.20	2.76E - 02	1.7	0.9	0.15	4.19E-02	1.97E-02	0
2184	(2)	356.43	16.67	0.73	0.83	2.52E-01	3.0	2.3	0.35	3.94E-01	2.29E-01	2
	P 1	356.43	16.67	0.17	0.13	1.38E-02	3.0	2.3	0.35	3.76E-02	2.80E-02	1
	P 2	356.83	16.30	0.20	0.20	2.35E-02	1.7	1.1	0.18	3.64E-02	2.18E-02	0
2185	(1)	356.53	-3.60	0.63	0.80	2.44E - 01	3.0	1.6	0.16	5.42E-01	2.10E-01	2
	P 1	356.53	-3.60	0.20	0.27	3.66E-02	3.0	1.6	0.16	1.03E-01	5.14E - 02	0
2186	(2)	357.07	4.33	0.70	0.70	2.65E-01	4.3	1.8	0.29	9.10E-01	2.47E-01	1
	P 1	357.07	4.33	0.10	0.17	1.11E - 02	4.3	1.8	0.29	4.54E - 02	1.73E-02	0
	P 2	357.30	4.43	0.13	0.23	2.44E - 02	4.1	1.6	0.27	9.31E-02	3.29E-02	0
2187	(0)	357.20	11.53	0.27	0.17	2.18E - 02	0.9	0.6	0.18	1.75E - 02	1.18E - 02	0
2188	(0)	357.70	16.33	0.40	0.27	5.44E - 02	1.4	0.9	0.16	6.31E-02	3.31E-02	0
2189	(0)	357.80	5.63	0.23	0.17	2.76E - 02	2.5	0.8	0.18	6.63E-02	1.71E-02	0
2190	(18)	357.87	-2.10	4.90	5.50	1.09E + 01	5.3	2.8	0.29	4.77E + 01	1.26E + 01	10
	P 1	357.87	-2.10	1.10	0.97	5.34E-01	5.3	2.8	0.29	2.61E + 00	1.29E + 00	1
	P 2	356.90	-2.20	0.27	0.30	4.77E - 02	5.4	2.8	0.32	2.41E-01	1.13E-01	0
	P 3	357.30	-1.10	0.47	0.50	1.19E-01	6.0	2.5	0.34	6.66E-01	2.49E-01	0
	P 4	358.37	-0.57	0.43	0.30	5.78E-02	5.8	2.3	0.31	3.10E-01	1.09E-01	0
	P 5	358.37	0.07	0.63	0.40	1.57E - 01	5.8	2.1	0.31	8.43E-01	2.85E-01	1
	P 6	356.00	-1.23	0.17	0.23	2.67E - 02	5.3	1.8	0.28	1.35E - 01	4.08E - 02	0
	P 7	359.13	-0.13	0.40	0.53	8.11E-02	5.1	1.7	0.25	3.95E-01	1.13E-01	0
	P 8	356.33	-0.57	0.37	0.33	5.56E - 02	5.4	1.6	0.27	2.85E - 01	7.52E - 02	1
	P 9	356.07	-0.77	0.23	0.33	4.11E - 02	5.3	1.5	0.26	2.07E - 01	5.46E - 02	0
	P 10	355.83	0.13	0.27	0.27	3.44E - 02	5.4	1.4	0.26	1.79E - 01	4.27E - 02	0
	P 11	356.90	0.10	0.30	0.33	5.67E - 02	5.1	1.3	0.24	2.82E - 01	6.48E - 02	0
	P 12	358.83	0.97	0.37	0.33	6.11E - 02	4.9	1.2	0.25	2.86E - 01	6.53E - 02	0
	P 13	356.53	0.87	0.13	0.17	1.78E - 02	5.1	1.2	0.25	8.76E-02	1.87E - 02	0
	P 14	359.50	1.43	0.20	0.23	2.55E - 02	4.8	1.2	0.27	1.17E - 01	2.59E - 02	0
	P 15	358.13	-3.63	0.27	0.23	3.66E - 02	2.7	1.2	0.13	9.05E - 02	3.73E - 02	1
	P 16	356.93	-2.87	0.17	0.17	1.78E - 02	3.1	1.1	0.15	5.22E - 02	1.70E - 02	1
	P 17	358.13	-3.10	0.40	0.23	3.77E - 02	2.8	1.1	0.13	1.02E - 01	3.43E - 02	0
	P 18	0.17	0.13	0.37	0.23	5.67E - 02	4.4	1.0	0.21	2.42E - 01	5.06E - 02	0
2191	(0)	357.87	5.00	0.40	0.23	4.65E - 02	3.1	0.9	0.21	1.34E - 01	3.21E - 02	0
2192	(0)	358.00	3.90	0.23	0.13	2.11E-02	3.8	0.9	0.23	7.69E-02	1.44E - 02	0
2193	(0)	358.03	20.33	0.33	0.27	4.69E - 02	1.3	0.8	0.19	5.49E-02	3.04E - 02	0
2194	(3)	358.37	15.43	3.17	1.33	1.29E + 00	5.0	4.5	0.88	2.28E + 00	1.69E + 00	5
	P 1	358.37	15.43	0.37	0.17	3.53E-02	5.0	4.5	0.88 [†]	1.52E-01	1.37E-01	0
	P 2	357.63	15.47	0.60	0.20	5.78E-02	3.0	2.5	0.33	1.51E-01	1.23E-01	1
0105	P 3	356.87	15.80	0.17	0.20	1.50E-02	3.0	2.4	0.34	3.99E-02	3.13E-02	0
2195	(0)	358.40	8.73	0.23	0.23	2.97E-02	1.2	0.8	0.16	3.14E-02	1.74E-02	0
2196	(0)	358.53	-5.27	0.33	0.30	6.09E - 02	1.2	0.8	0.09	6.16E-02	3.82E - 02	1

 Table 7. (Continued.)

name name l b Δl Δb area (deg) A_{V1} A_{V2} 2197 (1) 358.67 19.83 0.50 0.37 7.63E-02 1.6 1.0 0.21 9.60E-02 P1 358.67 19.83 0.40 0.27 2.82E-02 1.6 1.0 0.21 3.99E-02 2198 (1) 358.67 -4.83 0.37 0.30 6.98E-02 1.8 1.1 0.11 9.73E-02 P1 358.67 -4.83 0.20 0.13 1.88E-02 1.8 1.1 0.11 3.10E-02 P1 358.77 7.43 0.57 0.57 1.44E-01 2.1 1.2 0.19 2.37E-01 P1 358.77 7.43 0.20 0.27 2.97E-02 2.1 1.2 0.19 5.77E-02 2200 (1) 358.97 12.43 0.63 0.33 1.26E-01 2.2 2.0 0.14 1.49E-01 P1	(mag deg ²) 5.42E-02 2.44E-02 5.17E-02 1.88E-02 1.08E-01 3.08E-02 1.15E-01 2.18E-02 2.37E-01	associated clouds 0 0 1 1 1 0 1 1 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(mag deg ²) 5.42E-02 2.44E-02 5.17E-02 1.88E-02 1.08E-01 3.08E-02 1.15E-01 2.18E-02 2.37E-01	clouds 0 0 1 1 0 1 1 0 1 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.42E-02 2.44E-02 5.17E-02 1.88E-02 1.08E-01 3.08E-02 1.15E-01 2.18E-02 2.37E-01	0 0 1 1 0 1 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.44E-02 5.17E-02 1.88E-02 1.08E-01 3.08E-02 1.15E-01 2.18E-02 2.37E-01	0 0 1 1 0 1 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.17E-02 1.88E-02 1.08E-01 3.08E-02 1.15E-01 2.18E-02 2.37E-01	0 1 1 0 1 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.88E-02 1.08E-01 3.08E-02 1.15E-01 2.18E-02 2.37E-01	1 1 0 1 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.08E-01 3.08E-02 1.15E-01 2.18E-02 2.37E-01	1 0 1 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.08E-02 1.15E-01 2.18E-02 2.37E-01	0 1 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.15E-01 2.18E-02 2.37E-01	1 1
P 1 358.97 12.43 0.17 0.10 1.30E-02 2.2 2.0 0.14 2.52E-02 2201 (2) 359.07 -5.83 0.60 1.13 2.94E-01 1.6 1.4 0.11 3.09E-01	2.18E-02 2.37E-01	1
2201 (2) 359.07 -5.83 0.60 1.13 $2.94E-01$ 1.6 1.4 0.11 $3.09E-01$	2.37E-01	
	E (1E 00	0
P 1 359.07 -5.83 0.27 0.33 4.86E-02 1.6 1.4 0.11 6.64E-02	5.64E - 02	1
P 2 358.90 -5.30 0.13 0.10 1.22E-02 1.4 1.0 0.10 1.60E-02	1.09E - 02	1
2202 (1) 359.13 36.70 0.77 0.67 1.96E-01 2.5 2.4 0.63 2.18E-01	2.13E - 01	2
P 1 359.13 36.70 0.30 0.17 2.14E-02 2.5 2.4 0.63 4.62E-02	4.56E - 02	3
2203 (9) 359.13 21.63 2.63 2.73 2.10E + 00 2.4 1.9 0.34 2.54E + 00	1.76E + 00	3
P1 359.13 21.63 0.30 0.30 4.03E-02 2.4 1.9 0.34 8.34E-02	6.60E-02	0
P 2 0.07 21.87 0.37 0.27 4.23E-02 1.8 1.4 0.26 6.87E-02	5.14E-02	1
P 3 359.87 22.37 0.20 0.23 2.67E-02 1.7 1.3 0.25 3.94E-02	3.04E-02	0
P 4 0.57 22.33 0.33 0.53 9.14E-02 1.7 1.3 0.25 1.36E-01	1.03E - 01	0
P 5 0.20 22.40 0.27 0.20 3.39E-02 1.6 1.3 0.24 4.89E-02	3.72E-02	0
P 6 359.87 22.70 0.10 0.10 9.23E-03 1.6 1.3 0.24 1.27E-02	1.00E - 02	0
P 7 0.77 23.47 0.27 0.37 5.60E-02 1.5 1.2 0.23 7.19E-02	5.48E-02	0
P 8 0.77 22.97 0.23 0.37 3.27E-02 1.5 1.1 0.23 4.13E-02	3.06E - 02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.09E - 02	0
2204 (0) 359.23 -5.07 0.17 0.17 2.32E-02 1.3 0.7 0.09 2.71E-02	1.45E - 02	0
2205 (0) 359.33 -4.20 0.13 0.20 2.11E - 02 1.7 0.7 0.10 3.35E - 02	1.26E - 02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.39E-02	0
2207 (1) $339.50 - 20.43 - 0.43 - 0.00 - 1.40E - 01 - 1.4 - 1.4 - 0.16 - 1.13E - 01 - 0.16 - 1.70E - 02 - 1.4 - 0.16 - 1.70E - 02 - 0.16 - 1.70E - 02 - 0.16 - 0.16 - 1.70E - 02 - 0.16 - 0.$	1.0/E - 01	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.03E - 02	1
2208 (1) $539.55 - 19.00 \ 0.45 \ 0.90 \ 1.00E - 01$ 1.5 1.5 0.14 1.08E - 01 D1 250.52 10.60 0.10 0.10 7.22E 02 1.2 1.2 0.14 8.50E 02	1.02E - 01	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.20E - 03	0
2209 (1) 339.05 7.35 1.00 0.65 $3.66E-01$ 5.0 1.6 0.20 $6.03E-01D 1 250.62 7.22 0.22 0.42 5.62E 02 2.0 1.9 0.26 1.56E 01$	3.49E-01	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.33E - 02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.80E - 01	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.92E = 02	0
$P_{2} = 359.55 = 17.55 = 0.15 = 0.10 = 9.54E = 05 = 2.4 = 1.5 = 0.27 = 2.00E = 02$ $P_{3} = 359.27 = 17.13 = 0.20 = 0.20 = 2.02E = 02 = 2.2 = 1.7 = 0.24 = 3.03E = 02$	1.32E = 02 2.91E = 02	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.91E - 02 1 12E - 02	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.12E = 02 1.63E = 02	0
2212 (0) 359.80 -18.40 1.83 2.83 $1.85E\pm00$ 5.2 5.2 0.82^{\dagger} $2.64E\pm00$	$2.60E \pm 00$	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2.00E \pm 00$ 3.04E - 01	8
P 2 359.73 -17.53 0.12 0.05 0.77E 02 5.2 5.2 0.02 5.05E 01 P 2 359.73 -17.53 0.13 0.10 1.17E -02 4.1 4.1 0.77 [†] 4.15E -02	$4.14E_{-02}$	- -
$P_2 = 0.33 = 10.50 \ 0.13 \ 0.13 \ 1.7E = 02 \ 4.1 \ 4.1 \ 0.77 \ 4.15E = 02$ $P_3 = 0.33 = 10.50 \ 0.13 \ 0.13 \ 1.26E = 02 \ 3.0 \ 2.0 \ 0.33 \ 3.26E = 02$	4.14E = 02 3.10E = 02	1
PA = 0.27 = 18.80 = 0.17 = 0.13 = 1.20E = 02 = 5.0 = 2.9 = 0.35 = 5.20E = 02	3.19E = 02 2.24E = 02	1
2214 (0) 359.87 24.20 0.27 0.37 $3.45E_{-02}$ 1.7 1.0 0.8 0.20 $2.72E_{-02}$	2.240 = 02 2.11E = 02	1
2215 (0) 359.87 27.20 0.27 0.37 3.17E-01 3.1 1.2 0.13 7.75E-01	2.11E = 02 2.14E = 01	1
P1 359.87 -2.73 0.13 0.17 1.78E -02 3.1 1.2 0.13 5.12E -01	$1.88E_{02}$	0
2216 (3) 359.90 2.00 1.13 0.83 4.83E-01 4.9 1.2 0.13 9.12E 0.2	3.67E - 01	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.97E-03	0
$P_2 = 359.43 = 2.00 + 0.40 + 0.33 = 5.89E - 0.2 = 4.9 = 1.2 = 0.30 = 4.22E + 0.22E +$	6.10E - 02	Ő
P 3 359.67 2.37 0.13 0.20 1.78E-02 4.8 1.2 0.29 8.22E-02	1.81E - 02	Ő

[†] With a large uncertainty of δA_V due to a very small number of stars.

Table 8. List of associated clouds in the high-resolution A_V map.

<u>C1</u> 1	CI	
Cloud	Clump	Associated clouds
name	name	
2		(1) LDN 16, (2) LDN 24, (3) FeSt 2-310, (4) LDN 37: [FeSt 1-443]
2	P 1	(1) LDN 5
2	P 2	(1) LDN 28
5		(1) LDN 3, (2) LDN 26, (3) HMSTG 358.2–4.9, (4) LDN 1766, (5) FeSt 1-444
5	P 1	(1) B 295, FeSt 1-449
5	P 3	(1) HMSTG 357.7–4.7
5	P4	(1) FeSt 1-441
5	P 5	(1) B 292 HMSTG 358 $0-5 0$ C (2) LDN 1762 HMSTG 358 $1-5 2$
5	P7	(1) HMSTG 358 0–4 8
5	P 8	(1) HMSTG 358 $3-4$ 8
5	P 9	(1) I DN 29
0	D1	(1) $B_{2}^{(1)}$ (1) $B_{2}^$
12	1 1	(1) E_{505} (1) E_{8} \$t 1 453
12	 D 1	(1) $F_{25}(1) = 4.55$ (1) $F_{25}(1) = 4.55$
12		(1) $FeSt 2.511$, $FWS FO 0.9 - 20.2$, $COA 9$ (1) $FeSt 2.214$ LM 202 (2) LIMSTC 1.2, 20.5, $CeA 10$
12	P 2	(1) $FCS(2-5)4$, $LN(295)$, (2) $FLN(5)FC(1,5)=20.5$, $COA(10)$ (1) $FLN(5)FC(0,8)=22.0$, (2) $FLN(5)FC(1,2)=22.1$, $CoA(11)$
15	 D 1	(1) $HMS1G0.8-22.9$, (2) $HMS1G1.2-25.1$, COA 11 (1) D 200, $LDN 25$
15	ΡI	(1) B 289, LDN 35 (1) LDN 22
1/	•••	(1) LDN 33 (1) LDN 47
22	•••	(1) LDN 4/
23		(1) LM 189, LDN 43F
23	P1	(1) P 6, LM 190, LDN 43D, (2) MLB 57, LM 192, LDN 43E, (3) LDN 43, BDN 1.38+20.96, (4) MLB 55, LDN 43B
25		(1) FeSt 2-305 (2) B 267 I DN 36 CB 88 (3) I DN 42 FeSt 1-454 (4) I DN 45
25		(1) $\Gamma G I 2^{-5} G G I D 207, ED I 50, ED 00, (3) ED 142, \Gamma G I 1^{-1} 3^{-1}, (4) ED 143, (5) FeSt 1 455, (6) Pine Bowl B 78, (7) I DN 52, CB 80, P7$
		(3) Γ (3) Γ (4) Γ (4) Γ (5), (7) Γ
		(6) LDIN 56, (9) FEST 1-457, (10) ZWASS-DIN 1.7+5.0, (11) LDIN 01, (12) $D77$, LDN 26, (12) LDN 71, (14) LDN 74, D14, (15) LDN 72, (14) LDN 74
		LDN 09, (15) LDN 71, (14) LDN 74, P 14, (15) LDN 75, (10) LDN 70, (17) LDN 72, (10) D (21) LDN 70, (10) LDN 90, (20) LDN 94
		(17) LDN 77, (18) B 65, LDN 79, (19) LDN 80, (20) LDN 84,
		(21) LDN 85, (22) LDN 86, (23) LDN 88, (24) LDN 92, (25) LDN 94, (26) LDN 95,
		(27) LDN 99, (28) LDN 101, CB 80, (29) FeSt 1-460, (30) FeSt 2-318,
		(31) LDN 107, (32) B 75, LDN 112, (33) LDN 117, (34) B 269,
		(35) LDN 128, FeSt 1-464, (36) LDN 131, (37) LDN 179, (38) LDN 182,
		(39) LDN 185, (40) LDN 192, (41) FeSt 1-433, (42) LDN 1756,
		(43) FeSt 2-300, (44) B 66, LDN 1768, P 142, LM 232, (45) LDN 1767,
		(46) B 65, LDN 1772, CB 79, P 143, LM 231, (47) LDN 1774, CB 81,
		P 145, LM 234, (48) LDN 1794
25	P 5	(1) B 59, LDN 1746
25	P 6	(1) B 268, LDN 178
25	P 7	(1) P 12, (2) LDN 65, LDN 67
25	P 8	(1) LDN 25, P 4
25	P 11	(1) P 1, (2) LDN 7
25	P 13	(1) B 67, LDN 1773, P 144, LM 233
25	P 16	(1) B 270
25	P17	(1) LDN 19. (2) LDN 21
25	P 20	(1) $B67a$ LDN 102 P16
25	P 21	(1) $B 262$
25	P 27	(1) B 202 (1) B 62 LDN 100 BDN 3 06+9 92 (2) LDN 104 P 15 LM 229
25	P 29	(1) B 259 I DN 177
23 25	P 25	(1) B 267, EDI (177) (1) B 261, I DN 81
23 25	F 33 D 54	(1) D 201, ED1 01 (1) L DN 102 (1) L DN 10
23	r 34	(1) $I J I J I J I J I J I J I J I J I J I $
20	····	(1) LDIN 31, (2) FEGU2-317 (1) D_{2} 252 LDN 56 F. 501 456
26	P2	(1) B 253, LDN 56, FeSt 1-456
28	P 1	(1) HMS IG $1.4-21.6$

Ch. 1	Classic	A second should
Cloud	Clump	Associated clouds
name	name	
31		(1) LM 218, LDN 63-1, (2) LM 216, LDN 63-3, (3) LM 215, LDN 63-4
31	P 1	(1) LDN 62, (2) P 11, LM 217, LDN 63-2, (3) LDN 63
41	P 1	(1) LDN 83
44	P 1	(1) B 90, LDN 108, P 17, LM 249
53		(1) FeSt 2-319, (2) LDN 125, FeSt 1-466
53	P 1	(1) FeSt 1-463, (2) B 272
56	P 1	(1) CB 63
57		(1) LDN 115, (2) LM 221, LDN 129-2, (3) LDN 129, P 20, LM 222, LDN 129-1,
		(4) LDN 132, (5) LDN 137, (6) LDN 141, (7) LM 224, CB 68-3, (8) CB 68,
		LM 226, CB 68-1, (9) LM 225, CB 68-2, (10) LDN 148, (11) LDN 152,
		(12) P 21, LM 201, LDN 158-2, (13) LDN 158, (14) LM 211, LDN 158-3.
		(15) LDN 163
57	P 1	(1) $LM 219 LDN 141-2$ (2) $LM 220 LDN 141-3$
57	P 2	(1) $LN 162 P 22$ (2) $LM 213 LM 214 LDN 158-4 LDN 162-1$
57	P 5	(1) I DN 146
57	P6	(1) LDN 118 (2) LDN 122 $P10 LM 223$
58	P 1	(1) $B 277 I DN 144$
50 61	1 1	(1) $I DN 145$ (2) $I DN 156$
62	•••	(1) EDIV 145, (2) EDIV 150 (1) EaSt 1.461 (2) BDN 3.85 $_1$ 07 (3) I DN 135 EaSt 2.321 (4) EaSt 1.467
02	•••	(1) rest 1-401, (2) DDI 05.05–1.07, (3) DDI 155, rest 2-521, (4) rest 1-407, (5) I DN 147, (6) I DN 166
62	D 2	(1) I DN 123
62	Γ∠	(1) LDN 155 (1) LDN 175
05	 D 2	$\begin{array}{c} (1) \text{ LDN } 1/5 \\ (1) \text{ D} (4 \text{ LDN } 172 \text{ CD } 79 \text{ D} 22 \text{ LM } 220 \\ \end{array}$
03	P 2	(1) B 04, LDN 175, CB 78, P 25, LM 250 (1) B 270
04	•••	(1) $B 2/9$ (1) $E S(1, 470)$
00	•••	(1) FeSt I-4/U (1) $I = M 147 I = D N 124 A (2) I = D N 1(0 I = D N 124 N (4) M D N 27 (5) I = D N 192$
68	•••	(1) LM 147, LDN 134A, (2) IKEC 3, (3) LDN 169, LDN 134N, (4) MBM 37, (5) LDN 183,
(0	DO	LDN 184, (6) MLB 41, LM 148
68	P2	(1) LDN 134, MBM 36, MLB 40
70	•••	(1) G 0.2+24.5 (1) L DN 100 (2) L DN 101 (2) L M 205 L DN 101 1 (4) L M 202 L DN 204G 1
/1	•••	(1) LDN 190, (2) LDN 191, (3) LM 205, LDN 191-1, (4) LM 202, LDN 204C-1,
		(5) LM 204, LDN 204C-2, (6) LDN 234, (7) LM 209, LDN 234E2, (8) LM 210,
71	D 1	LDN 255-2
/1	PI	(1) LDN 204, P 24 (1) LDN 255, P 26, LN 2007, LDN 255, 1
71	P2	(1) LDN 255, P 36, LM 207, LDN 255-1
71	P3	(1) LDN 260, (2) MLB 59, P 37, LM 203
71	P4	(1) LM 208, LDN 234E1, (2) LM 212, LDN 234E3
71	P5	(1) LDN 244
71	P6	(1) LM 206, LDN 191-2
72	P 1	(1) FeSt 1-476
77	•••	(1) LDN 180, FeSt 1-472, (2) FeSt 2-324, (3) B 296, (4) LDN 194, (5) B 89,
		(6) LDN 197, (7) LDN 198, (8) FeSt 1-474, (9) LDN 200, (10) LDN 208,
		(11) LDN 212, (12) FeSt 1-477, (13) B 303, LDN 210, (14) LDN 211,
		(15) LDN 213, (16) B 302, (17) LDN 214, (18) FeSt 2-326, (19) LDN 221,
		BDN 7.02–2.26, (20) FeSt 1-479, (21) LDN 224, (22) LDN 230,
		(23) FeSt 2-329, (24) LDN 242, (25) LDN 243, (26) CB 116
77	P 2	(1) B 91, (2) LDN 227
77	P 6	(1) B 88
78		(1) LDN 209, (2) B 79, (3) CB 90, (4) LDN 216, P 25, (5) CB 91, (6) LDN 223,
		CB 93, P 28, (7) LDN 226, CB 92, P 29, (8) LDN 228, P 30, (9) LDN 231,
		P 32, (10) LDN 229, P 31
78	P 1	(1) LDN 219, P 26, (2) B 276
80		(1) B 280, LDN 207, (2) CB 98

Cloud	Clump	Associated clouds
name	name	
82		(1) B 84, (2) CB 99, (3) LDN 235, P 34, (4) CB 96
82	P 1	(1) CB 97
86	P1	(1) CB 113
87		(1) B 98, LDN 239, FeSt 2-328, CB 148, P 35, LM 277, (2) LDN 240, (3) LDN 248
91		(1) B 309, LDN 252, FeSt 2-330
108		(1) LDN 282
109		(1) FeSt 1-486
110		(1) LDN 278, (2) LDN 280
115		(1) LDN 299
116		(1) LDN 314, (2) LDN 315
116	P 1	(1) LDN 291
116	P6	(1) LDN 306, CB 135
120		(1) LDN 292
120	P 1	(1) B 84a, LDN 302
122		(1) B 85, (2) LDN 286, (3) LDN 285, (4) LDN 289, (5) B 297, (6) LDN 307,
		CB 110, P 39, (7) LDN 308, P 40, (8) LDN 310, CB 111, P 41
122	P9	(1) LDN 288
122	P12	(1) FeSt 1-478, (2) LDN 215
124		(1) FeSt 1-487, IREC 9
124	P 1	[FeSt 1-488]
124	P 2	(1) FeSt 1-489
126	P1	(1) MBM 39
130	•••	(1) LDN 317, IREC 10
135		(1) B 92, LDN 323, CB 125, P 42, LM 253
138	•••	(1) LDN 325
139		(1) LDN 326, (2) B 284
148	P 1	(1) LDN 338
153	•••	(1) LDN 340
158	P 1	(1) B 311, LDN 356, CB 143
160	•••	(1) LDN 349, (2) B 285, (3) LDN 355, (4) LDN 360, (5) LDN 361
162		(1) LDN 368
165	•••	(1) LDN 351, (2) LDN 354, (3) LDN 359, (4) LDN 380 (1) IDEC 10
170	•••	(1) IREC 19 (1) IREC 19
1/3	•••	(1) LDN 3/3 (1) LDN 267
1/4	•••	(1) LDN 30/
180	•••	(1) LDN 3/4, (2) B 312, (3) LDN 3/9, (4) LDN 3/8, (5) LDN 381 (1) LDN 292
180	•••	(1) LDN 382 $(1) LDN 287 (2) LDN 201 (2) IDEC 25$
198	 D0	(1) LDN 387, (2) LDN 391, (3) IREC 25 (1) CD 77
198	Ρð	(1) $UD / /$ (1) $UDN 202 CD 101 UM 242$
202	 D 1	(1) LDN 592, CD 101, LM 242 (1) LDN 400, CP 104
205	F I D 1	(1) LDIN 400, CD 104 (1) LDN 207
203	ΡI	(1) LDN 597 (1) $P_0 S_1 DN 406$
207	 D 1	(1) $IM 271$
207	ГІ	(1) $E_{11} = 271$ (1) $B_{21} = 277$
221	• • •	(1) $I DN 421 I M 243$
224 225	• • •	(1) LDN 425 $I M 240$ (2) $I DN 428$
223		(1) $B 97$
227	 Р?	(1) $I DN 423 I M 272$
230	1 4	(1) LDN 419 (2) LDN 424 (3) LDN 426 CB 115 (4) LDN 431 (5) LM 260
230	•••	LDN 429-1. (6) LM 264. LDN 429-4. (7) CB 120 P 51 LM 251 (8) LDN 438
		(9) CB 119, (10) CB 122, (11) CB 121

Cloud	Clump	Associated clouds
name	name	
230	P 1	(1) LDN 437
230	P 2	(1) LDN 429, (2) P 48, LM 261, LDN 429-2, (3) LM 262, LDN 429-3
230	P 3	(1) LDN 436, CB 123, P 50, LM 252
230	P7	(1) LDN 422, P 47, LM 250
230	P 10	(1) LDN 418
230	P11	(1) LDN 430, CB 117
231		(1) LDN 435, (2) CB 145, (3) B 101, CB 146, LM 275, (4) LDN 463, (5) LDN 473,
		(6) LDN 485, (7) LDN 495, P 59, (8) LDN 494, (9) P 60, LM 282,
		(10) B 103, (11) LDN 498
231	P4	(1) LDN 497
231	P5	(1) CB 147, LM 278, (2) LM 276, (3) B 100, LDN 443
231	P12	(1) B 314, LDN 445
234	•••	(1) LDN 452, LDN 458
236	 D 1	(1) LDN 451, LM 267 (1) CD 100
239	ΡI	(1) UB 100
242	•••	(1) LDN 442, (2) LDN 460, CB 105, P 52, LM 244 (1) LDN 422, D40, LM 245, (2) LDN 420, (2) LDN 441, (4) LDN 444, (5) LDN 4(1
243		(1) LDN 432, P 49, LM 245, (2) LDN 439, (3) LDN 441, (4) LDN 444, (5) LDN 461,
		(0) LMI 247, LDIN 402-1, (7) LDIN 402, P 55, (8) LMI 248, LDIN 402-2, (0) LDNI 468, CD 106, LM 246, (10) LDNI 496, (11) LDNI 400, CD 126
		(9) LDIN 406, CD 100, LIM 240, (10) LDIN 460, (11) LDIN 490, CD 120, D57, LM 254, (12) LDN 402, (12) CD 120, D58, LM 255, (14) LDN 402
		P = 57, LMI 234, (12) LDIN 492, (15) CD 129, P 36, LMI 233, (14) LDIN 493, (15) LDN 500, (16) LDN 502, CD 112, D 61, (17) LDN 507, CD 120,
		(13) LDN 500, (10) LDN 502, CD 112, P 01, (17) LDN 507, CD 150, LM 257, CD 120, 1, (18) LDN 508, (10) LM 256, CD 120, 2, (20) LDN 512
		LW1237, CD 150-1, (10) LDN 506, (19) LW1230, CD 150-2, (20) LDN 515, (21) LM 258, CD 120, 2, (22) LDN 510
242	D12	(21) LM 236, CB 150-5, (22) LDN 519 (1) D64
243	Г 15 D 1	(1) Γ 04 (1) Γ DN 466 CB 132 D54 Γ M 266
240	I I	(1) CB 103 (1)
240	 Р1	(1) $ED 105$ (1) $LDN 470 P 55$
255	1 1	(1) LDN 470, 1 55 (1) LDN 475 (2) LDN 476 (3) LDN 477 (4) LM 265 LDN 483-2
259	 Р1	(1) $LDN 483 P 56 I M 263 I DN 483-1$
259	P 3	(1) LDN 479 (2) LDN 482
268	P1	(1) LDN (1) , (2) LDN $(1)(1) LDN 520$
275	P1	(1) LDN 521
279		(1) LDN 503, P 62, LM 274, (2) LDN 504, (3) LDN 511, (4) BDN 27.09 + 3.40.
		(5) Serpens DN Complex. (6) LDN 536. (7) LDN 570. P 71. (8) LDN 573.
		(9) LDN 564. (10) LDN 576. (11) LM 279. LDN 588-2. (12) LDN 571.
		(13) LDN 572, (14) LM 280, LDN 588-3, (15) LDN 588, P 73, (16) LDN 586.
		(17) LDN 587: [LDN 575, LDN 578, LDN 593]
279	P 7	(1) BDN 28.65 + 3.66
279	P12	(1) BDN 31.57 + 5.37
279	P 24	(1) LDN 583
279	P 66	(1) LDN 592
282	P 1	(1) B 133, LDN 531, CB 180, P 66, LM 290
286		(1) B 119a
287		(1) LDN 538
292		(1) CB 172, (2) B 129, LDN 549, CB 175, MLB 85, LM 288: [LDN 544]
293	P 1	(1) B 126, CB 168, (2) LDN 556
294	P 1	(1) B 128, CB 171
295		(1) LDN 557, P 69
295	P 1	(1) LDN 563
296		(1) LDN 523, (2) B 107, MLB 82, LM 285, (3) B 111, (4) LDN 530 inc B 107,
		B 110, (5) LM 287, LDN 530D-2, (6) LDN 547, (7) LDN 548, (8) LDN 566,
		(9) LDN 582

Table 8. (Continued.)

Cloud	Clump	Associated clouds
name	name	
206	D 2	(1) P 110 P 65 MI P 82 I M 286
290	P 3	(1) B 113, MI B 84
296	P5	(1) $I DN 579$ (2) $I DN 584$
290	15	(1) LDN 579, (2) LDN 567 (1) LDN 550 (2) \mathbb{R} 132 LDN 567 \mathbb{R} 70 LM 280 (3) LDN 568 (4) \mathbb{R} 328 (5) LDN 574
299	•••	(1) EDIV 550, (2) D 152, EDIV 507, 1 70, EW 209, (3) EDIV 500, (4) D 520, (5) EDIV 574, (6) I DN 577, (7) B 136, I DN 580, (8) I DN 500
200	D 1	$(1) \mathbf{P} 125 \mathbf{I} \mathbf{DN} 581 \mathbf{MI} \mathbf{P} 86 \mathbf{P} 72 \mathbf{I} \mathbf{M} 201$
299	D6	(1) B 155, LDN 561, MLD 60, Γ /2, LN1 291 (1) B 222
299		(1) $J 525$ (1) $J DN 554$
299	го	(1) LDN 534 (1) LDN 506
217	•••	(1) LDN 530 (1) LDN 615
317	•••	(1) LDN 015 (1) LDN 617 (2) LDN 628 (2) LDN 625 (4) LDN 620 (5) LDN 640 (6) LDN 664
321	•••	(1) LDIN 017, (2) LDIN 026, (3) LDIN 055, (4) LDIN 059, (5) LDIN 049, (0) LDIN 004, (7) LM 200, LDN 672, 12, (8) LM 202, LDN 672, 12, (0) LM 204
		(7) LIVI 299, LDIN 075-12, (8) LIVI 303, LDIN 075-15, (9) LIVI 304, LDN 672-14, (10) LM 200, LDN 672, 0, (11) LM 207, LDN 672, 9, (12) LM 206
		LDIN 075-14, (10) LIVI 509, LDIN 075-9, (11) LIVI 507, LDIN 075-8, (12) LIVI 500, LDN 672-7 (12) L M 201 L DN 672-4 (14) CD 180 (15) L M 210
		LDN 075-7, (15) LM 501, LDN 075-4, (14) CD 169, (15) LM 510, LDN 672-10 (16) LDN 675-CD 102-D79 (17) CD 189-LM 207-LDN 672-1
		LDIN 075-10, (10) LDIN 075, CD 195, F 70, (17) CD 100, LIVI 297, LDIN 075-1, (18) L M 212, LDN 677, 2, (10) LDN 676, D 70, LM 202, LDN 672, 5
		(16) LIVI 515, LDIN 0//-5, (19) LDIN 0/0, P /9, LIVI 502, LDIN 0/5-5, (20) L M 214, LDN 677, $A_{1}(21)$ L M 205, LDN 672, $A_{2}(22)$ LDN 677, D 80
		(20) LM 514, LDN 077-4, (21) LM 503, LDN 075-0, (22) LDN 077, P 80, LM 211, LDN 677-1, (22) LDN 670, (24) CO Claud A, (25) LM 212
		LWI 511, LDIN 077-1, (25) LDIN 079, (24) CO CIOUU A, (25) LWI 512,
		LDIN 077-2, (20) LDIN 085, (27) LDIN 084, (26) LDIN 080, CD 192, (29) LDIN 092, (20) LDIN 092, (20) LDIN 201, (21) LDIN 716, (22) LDIN 721, (22) LDIN 721
		(30) LDN 098, P 82, LM 321, (31) LDN 710, (32) LDN 717, (33) LDN 721, (24) CO Cloud C (25) LDN 722, (26) LDN 725, (27) LM 208
		(34) CO CIOUU C, (35) LDN 722, (30) LDN 725, (37) LM 298, LDN 720 2, (20) LDN 722, (20) LDN 751, [LDN 607, LDN 610]
221	DЭ	$LDN 750-2, (58) LDN 752, (59) LDN 751; [LDN 007, LDN 010]$ (1) DDN 46 22 ± 1.24 (2) LDN 672 ± 0.77
321 221	P 2 D 2	(1) $BDN 40.22 - 1.34$, (2) $LDN 0/3$, P //
321 221	P 3	(1) $P 03$, (2) LDN /04 (1) $L M 209$
321 221	P 4	(1) LIVI 506 (1) LINI 621
221	P 10	(1) LDN 021 (1) LDN 727 DDN 52 54 \pm 0.04
321 221	P 24	$(1) LDN 727, DDN 35.54 \pm 0.04$ $(1) LDN 720, LM 205, LDN 720, 1$
321 221	P 30	(1) LDIN 750, LIVI 295, LDIN 750-1 (1) CD 104
321 221	P 33	(1) CD 194 (1) LDN 722
221	F J9	(1) LDN 725 (1) LDN 746
321 221	P 01 D 111	(1) LDN 740 (1) LDN 744
226	Г 111 D 1	(1) LDIN 744 (1) DDN 21 48 \pm 2.02
320 227	ΡI	(1) $DDN 51.46 \pm 5.02$ (1) $D 1.41$
227	 D 1	(1) D 141 (1) D 140 J DN 642
242		(1) D 140, LDN 042 (1) D 220, I DN 647
342 344	r I	(1) $B 330, LDN 047$ (1) $I DN 651$
344	•••	(1) LDN 651 (1) LDN 655 \perp M 206
340	•••	(1) LDN 653, LN 290 (1) LDN 657 (2) LDN 658
350	•••	(1) LDN 057, (2) LDN 056 (1) LM 283 LDN 648 1 (2) IREC 58 (3) LDN 650 (4) CR 151 (5) LDN 665
350	 Р1	(1) LIN 265, EDI 046-1, (2) INEC 56, (5) EDI 050, (4) ED 151, (5) EDI 005
350	D2	(1) LDN 600 (1) LDN 648 \mathbf{P} 75 (2) LM 284 LDN 648 2
351	ΓZ	(1) LDN 674 (1) LDN 674
352	•••	(1) $LDN 669$
353	•••	(1) LDN 672
358	•••	(1) $CB 154$
362	•••	(1) UD 154 (1) UDN 681
362	 Р1	(1) LDN 678 (2) LDN 680 CB 204
367	1 1	(1) $B 142$
368	•••	(1) $I M 327$ (2) $I M 329$
368	 Р1	(1) $B_{143} I DN 694 P 81 (2) I M 328$
372	р1	(1) I DN 703
514	1 1	

K. Dobashi et al.

Cloud	Clump	Associated alouds
Cloud	Clump	Associated ciouds
name	name	
380	P 1	(1) LDN 718
390	•••	(1) CB 203, SCHO 1091
393	P 1	(1) LDN 764, (2) LDN 763, P 85, LM 294
394		(1) LDN 767, (2) LDN 768, BDN 57.13 + 2.68, (3) LDN 772, (4) LDN 773, (5) LDN 774,
		LM 315, LDN 774-1
394	P 1	(1) LM 318, LDN 769-2, (2) LDN 769, P 86, (3) LM 317, LDN 769-1, (4) LM 320,
		LDN 769-4, (5) LM 319, LDN 769-3
398		(1) LDN 761, (2) LDN 770, (3) LDN 776, (4) LDN 796, (5) LDN 799, (6) LDN 800,
		(7) LDN 803, (8) LDN 804, (9) LDN 806, (10) LDN 807, (11) LDN 808
398	P 6	(1) LDN 791
398	P21	(1) LDN 792
399	P 1	(1) CB 207
400		(1) LDN 788, P 88, LM 323, LDN 778-2, (2) LDN 781, LM 324, LDN 778-3, (3) MLB 87,
		LM 322, LDN 778-1, (4) LM 325, LDN 778-4, (5) LDN 783
405	P 1	(1) LDN 797, CB 216
412	P 3	(1) LDN 801
416		(1) CB 214
416	P 1	(1) LDN 814, (2) CB 215
419		(1) LDN 824, (2) LDN 827
441		(1) LDN 834
442		(1) LDN 836, (2) LDN 840, (3) B 144, (4) LDN 848, (5) LDN 849
442	P 2	(1) LDN 847
444		(1) LDN 856
447		(1) LDN 858
452		(1) LDN 862
454		(1) B 145
469		(1) LDN 889, BDN 78.39 + 1.08, (2) B 347, (3) LDN 891, (4) LDN 895, (5) LDN 897
469	P 8	(1) BDN $80.00 + 2.69$
469	P14	(1) LDN 883
471		(1) LDN 890
482		(1) LDN 901, (2) LDN 902
488	•••	(1) LDN 909, (2) LDN 908
491	•••	(1) Cygnus Rift, (2) LDN 896, (3) LDN 898, (4) LM 342, LDN 896-2, (5) B 348,
		(6) Northern Coalsack, LDN 906, (7) B 346, (8) LDN 911, (9) LDN 915,
		P 92, LM 347, (10) LDN 918, P 94, LM 338, (11) LM 335, LDN 922-1,
		(12) LDN 922, P 95, (13) LM 336, LDN 922-2, (14) LDN 928,
		P 96
491	P 1	(1) LDN 917, P 93, LM 337
491	P 19	(1) LDN 841
497	•••	(1) LDN 914, (2) LDN 916, (3) LDN 927, (4) LDN 933, (5) LDN 935
515	•••	(1) LDN 944, P 97, LM 368, LDN 944-2
531	•••	(1) LDN 967
533	•••	(1) LDN 976
534		(1) LDN 973, (2) LDN 979 (1) D 159 (2) LDN 977
534	P1	(1) B 159, (2) LDN 977
534	P 2	(1) B 158, CB 232, LM 377
535		(1) LDN 965, (2) LDN 968, (3) LDN 972, (4) LDN 974, (5) LDN 989
535	P 1	(1) BDN 90.16-2.19
541		(1) LDN 962, (2) LDN 966, (3) LM 355, LDN 971-1, (4) LDN 982, (5) LDN 981,
		P 100, LM 354, LDN 981-2, (6) LM 353, LDN 981-1, (7) BDN 90.23+2.72,
		(8) LDN 984, (9) LDN 985, (10) LM 357, LDN 981-3, (11) BDN 90.41+2.45,
		(12) LDN 987, (13) LDN 991, (14) LDN 992, (15) LDN 999,

Cloud	Clump	Associated clouds
name	name	
		(16) LDN 1002 (17) LDN 1003 (18) LDN 1011 (19) LDN 1013 (20) LDN 1015
		(21) $Cvg OB 7 CO Complex. (22) LDN 1022. (23) LDN 1028.$
		(24) LDN 1034. (25) LDN 1050
541	P 1	(1) LDN 1004
541	P 7	(1) LDN 971, LM 356, LDN 971-2, (2) LDN 978
541	P8	(1) LDN 998
541	P 9	(1) LDN 996
541	P 12	(1) LDN 1027
541	P 18	(1) LDN 990
541	P 21	(1) LDN 1026
544		(1) LDN 1010
547	P 2	(1) B 362, LDN 1017, LM 374, LDN 1014-1
548		(1) LDN 1031
548	P 1	(1) MLB 89, LM 384, LDN 1031C
549		(1) LDN 1033, (2) LDN 1038, (3) LDN 1039, (4) LDN 1044, (5) LM 334, LDN 1041-2,
		(6) LM 339, LDN 1049-1
549	P 1	(1) LDN 1036
549	P 2	(1) LM 333, LDN 1041-1, (2) LDN 1041
549	P4	(1) LDN 1049, P 103, LM 341, LDN 1049-2
549	P 5	(1) CB 225
550		(1) LDN 1035, (2) LDN 1040, (3) LDN 1042, (4) LDN 1045, (5) LDN 1052
550	P 2	(1) MLB 90, LDN 1031B, (2) IC 5146 DN Complex
550	P 3	(1) B 168, LDN 1055, BDN 94.37–5.50
551		(1) LDN 1037
552	P 1	(1) LDN 1046
553		(1) B 357
553	P 1	(1) LDN 1053
557		(1) LDN 1059
558	P 2	(1) LDN 1058
561		(1) LDN 1063, LM 362
561	P 1	(1) B 151
568		(1) LDN 1065, (2) B 360
568	P 1	(1) LDN 1067
569	P 1	(1) B 354, (2) LDN 1071
570		(1) B 359, LDN 1068
571		(1) LDN 1066, (2) LDN 1073
571	P 1	(1) B 164, LDN 1070
575		(1) LDN 1075
576		(1) BDN 96.73–15.12
582	P 1	(1) LDN 1084
584	P 2	(1) LDN 1086
585		(1) LDN 1088
585	P 1	(1) B 160
587		(1) LDN 1093
588	P 1	(1) LDN 1091
590	P 1	(1) LDN 1102
594	•••	(1) LDN 1109, (2) LM 382, LDN 1113-2, (3) LM 383, LDN 1113-1, (4) B 367,
		LDN 1113, (5) LDN 1114, (6) LDN 1115, (7) LDN 1120, (8) LDN 1129
594	P 6	(1) LDN 1118
597	P 1	(1) LDN 1122
598	•••	(1) B 149, CB 227, (2) B 148, LDN 1076, CB 226, (3) LDN 1082, (4) MLB 66,
		LM 352, LDN 1082B, (5) IREC 125, (6) LDN 1119, (7) LM 366, LDN 1125-2

K. Dobashi et al.

Cloud	Clump	Associated clouds
name	name	
500	D 1	(1) D 152 J DN 1125 J M 265 J DN 1125 1
500		(1) D 132, LDN 1123, LW 303, LDN 1123-1 (1) MLD (5, LDN 1092)
598	P2	(1) MLB 05, LDN 1082A
598	P4	(1) LM 349, LDN 1082C-3, (2) LM 350, LDN 1082C-2, (3) B 150, (4) MLB 64,
		LM 351, LDN 1082C-1
599	•••	(1) LDN 1121, LM 379, (2) LDN 1127, (3) LDN 1128
604	P 1	(1) LDN 1130
609		(1) B 165, (2) LDN 1144, (3) B 166, (4) B 167
609	P 1	(1) B 366, LDN 1131
609	P 2	(1) LDN 1136
619		(1) LDN 1147 inc LDN 1148, LM 344, (2) LDN 1148, P 107, MLB 61, LM 340, (3) LM 344,
		(4) LDN 1155, P 108, MLB 63, LM 346, LDN 1155D, LDN 1155B,
		(5) LDN 1157. (6) LM 348. LDN 1155E. (7) LDN 1158
619	P 2	(1) MLB 62 L 1155H (2) L M 345 L DN 1155C
619	P 3	(1) MLB 60, LM 332, (2) LDN 1152, BDN 102 36 \pm 15 96
620	15	(1) MED 00, EM 352, (2) EDN 1152, BDN 102.30 \pm 15.70 (1) LM 285 LDN 1130 1 (2) LDN 1141 (2) LDN 1153 (4) B 171 (5) LDN 1150
020	• • •	(1) LNI 363, LDIN 1159-1, (2) LDIN 1141, (3) LDIN 1155, (4) $D 1/1$, (3) LDIN 1159, (6) LDIN 1160
(20)	D 2	(0) LDN 1100 (1) LDN 1100 (0) LM 20(LDN 1120 2
620	P 3	(1) LDN 1139, (2) LM 386, LDN 1139-2
620	P4	(1) B 174, LDN 1165, P 109, LM 389, (2) B 172, LDN 1164
621		(1) B 369, LDN 1150, (2) LDN 1154
622	•••	(1) LDN 1145, LDN 1146
629		(1) LDN 1170, (2) LDN 1173, LM 361, LDN 1172A-3, (3) BDN 103.96 + 14.11,
		IREC 133, (4) MLB 67, LM 358
629	P 1	(1) LDN 1174, (2) MLB 69, LDN 1172B
629	P 2	(1) LDN 1172, P 111, LM 359, LDN 1172A-2, (2) MLB 68, LM 360, LDN 1172A-1,
		LDN 1172D
641	P 1	(1) LDN 1177, CB 230
644	P 1	(1) LDN 1184
645		(1) LDN 1183
645	 Р2	(1) BDN 105 43 ± 9.87 (2) I DN 1181
652	1 2	(1) I DN 1188
652	•••	(1) LDN 1100 (1)
655	 D 1	(1) LDN 1199 $(1) LDN 1107 D 112 LM 206$
655		(1) LDN 1197, F 115, LN 590 (1) LDN 1105, LM 201, (2) LDN 1106, DDN 106 46 + 2.00
037	PI	(1) LDN 1195, LW 391, (2) LDN 1190, BDN 100.40 \pm 5.09
658		(1) LDN 1179, (2) LDN 1185, P 112, LM 394, (3) LDN 1190: [LDN 1192]
658	P 1	(1) LDN 1198
658	P 5	(1) LDN 1194
661		(1) IREC 141, (2) LDN 1201, (3) LDN 1202, (4) LDN 1203 $d = 0.9$, (5) LDN 1204 $d = 0.91$
665	P 1	(1) LDN 1200
673		(1) LDN 1206, (2) LDN 1207
680		(1) LDN 1209
686		(1) LDN 1213
686	P 1	(1) LDN 1214
693		(1) CB 234
696		(1) LDN 1217, BDN 110.40 + 11.54
699		(1) LDN 1210, (2) LDN 1212, (3) LDN 1215, (4) LDN 1216, BDN 109 62 + 2,50
.,,	•••	(5) BDN 110 28 + 2 52 (6) LDN 1218 (7) LDN 1220 (8) LDN 1222
		(a) $I DN 1226$ (10) $I DN 1227$ (11) $I DN 1220$ (12) $I DN 1220$ $I M 208$
		(12) $I DN 1222$, (17) $I DN 1222$, (11) $I DN 1222$, (12) $I DN 1223$, $I M 230$, (13) $I DN 1232$, (14) $I DN 1233$, $D 114$, (15) $I DN 1224$, $D 115$, $I M 200$
600	D.4	(15) LDN 1252, (14) LDN 1255, F 114, (15) LDN 1254, F 115, LW 599 (1) I DN 1911
099		(1) LUN 1211 (1) LDN 1225 (DD 242)
099	P 16	(1) LDN 1225, CB 242 (1) LDN 1221, LN 202
/02	P 1	(1) LDN 1221, LM 392 (1) DDN 111 20 - 0.44
711	P1	(1) BDN 111.29+9.41

Table 8.	(Continued.)
----------	--------------

Cloud	Clump	Associated clouds
name	name	
718		(1) LDN 1228. (2) BDN 111.72 + 20.13
725	P 1	(1) LDN 1235, P 116, LM 390
727		(1) LDN 1238
729	P 1	(1) LDN 1236
733		(1) LDN 1243
739		(1) LDN 1241
742		(1) LDN 1247
747		(1) LDN 1250
750		(1) LM 393, LDN 1251A-2, (2) LDN 1251
750	P 1	(1) LM 397
750	P 2	(1) LM 395, LDN 1251A-1
754		(1) LDN 1252
758		(1) IREC 154
759		(1) CB 245, SCHO 1448, (2) LDN 1254
759	P 1	(1) LDN 1805, (2) LDN 1253, CB 246, P 118, LM 402
763		(1) LDN 1255, (2) LDN 1256, (3) LDN 1257, (4) LDN 1258
772		(1) LDN 1259
772	P 1	(1) LDN 1261, MLB 70, LM 401, LDN 1262A, (2) LDN 1262, CB 244, P 119
774		(1) LDN 1260, (2) LDN 1263, CB 247, LM 403, (3) LDN 1266, (4) LDN 1267,
		(5) LDN 1268, (6) LM 404, LDN 1271-1, (7) LDN 1269, (8) LDN 1270,
		LM 405, LDN 1271-2, (9) LDN 1288
781	P 2	(1) LDN 1275
798		(1) LDN 1286
806	P 1	(1) LDN 1299
809		(1) LDN 1295, (2) LDN 1296
814		(1) IREC 163
818		(1) LDN 1293, (2) LDN 1294, (3) LDN 1291, LM 2, (4) LDN 1298, (5) LDN 1297,
		(6) LDN 1300, (7) LDN 1302, (8) LDN 1301, CB 5
819		(1) IREC 164
823		(1) LDN 1307
838		(1) LDN 1309, (2) LDN 1313, (3) LDN 1315, (4) LDN 1316, (5) LDN 1323, (6) LDN 1324
838	P 1	(1) BDN 126.63–0.77, (2) LDN 1317, LDN 1318
838	P 3	(1) LDN 1312
846	P 1	(1) CB 12
853	•••	(1) LDN 1333, P 120, LM 3
854	•••	(1) LDN 1335, (2) LDN 1336
855		(1) LDN 1332, (2) LDN 1334, (3) LDN 1337
867		(1) IREC 172, (2) LDN 1340, BDN 130.17 + 11.50
868	•••	(1) LDN 1343, LDN 1344, (2) LDN 1347
878	•••	(1) LDN 1353, (2) LDN 1357, P 121, (3) LDN 1355, LM 4,
		(4) LM 6, LDN 1358-2, (5) LM 5, LDN 1358-1
878	P 1	(1) IREC 177, (2) LDN 1358, P 122
879	•••	(1) LDN 1350, (2) LDN 1351, (3) LDN 1354, (4) LDN 1356, (5) LDN 1359, (6) LDN 1360,
		(7) LDN 1361, (8) LDN 1362, (9) LDN 1363, (10) LDN 1364,
050	Dô	(11) LDN 1365, (12) LDN 1368, (13) LDN 1369, (14) LDN 1370, (15) LDN 1375
879	P9	(1) LDN 1376
888		(1) LDN 1373
888	P 1	(1) LDN 1372 (1) LDN 1301 (0) LDN 1202
922	···	(1) LDN 1381, (2) LDN 1383
922	P1	(1) LDN 1380 (1) IDEC 102
937	•••	(1) IKEC 193 (1) INEC 201
951		(1) IKEU 201

K. Dobashi et al.

Cloud	Clump	Associated clouds
name	name	
974	P 1	(1) B 6, LDN 1387, CB 15
994		(1) LDN 1390, (2) LDN 1392, (3) LDN 1393, (4) B 8, LDN 1394, (5) B 11, LDN 1396,
		(6) LM 14, (7) MLB 72, (8) MLB 73, (9) MLB 74, LM 17, (10) LDN 1400,
		MLB 75, LM 19, (11) LDN 1402, (12) LDN 1403, (13) LDN 1404,
		(14) MLB 76, LM 23
994	P 1	(1) LDN 1399
994	P 3	(1) B 9, MLB 71, LDN 1400H
994	P4	(1) B 13, MLB 78, LM 30
994	P 6	(1) LDN 1397
1002		(1) B 21, LDN 1406
1003		(1) LDN 1408
1003	P 1	(1) B 12, LDN 1407, MLB 77, LM 25
1005	•••	(1) LDN 1414
1007	•••	(1) LDN 1415
1015	•••	(1) LDN 1420 (1) IDEC 217
1016	· · ·	(1) IREC 217 (1) IRN1426 IM 56
1025	ΡI	(1) LDN 1426, LM 56 (1) D 20
1036	 D 1	(1) B 20 (1) L DN 1424
1045	ΡI	(1) LDN 1454 (1) LDN 1420 (2) LDN 1422 (2) LDN 1425 (4) IDEC 222 (5) LDN 1426 (6) CD 24
1040	•••	(1) LDN 1430, (2) LDN 1433, (3) LDN 1433, (4) IKEC 223, (3) LDN 1430, (0) CB 24, (7) LDN 1427, CP 25, (9) LDN 1429
1046	P 5	(1) LDN 1437, CB 25, (6) LDN 1436 $(1) LDN 1430, CB 26$
1040	r J	(1) LDN 1443, CD 20 (1) LDN 1441 (2) LDN 1447
1054	 Рб	(1) LDN 1440. (2) LDN 1447
1054	10	(1) $B_{16}(2) B_{17}(2)$
1056	 Р1	(1) B 15, (2) B 17 (1) B 15 LM 34 (2) LDN 1445
1056	P 3	(1) $LDN 1444$
1058		(1) LDN 1446
1060	P 1	(1) $BDN 157.48 - 20.59$
1064	P 3	(1) LDN 1442, BDN 156.87–11.77
1083		(1) LDN 1461
1085		(1) MLB 4, LDN 1450E, (2) MLB 3, LDN 1450B, (3) MLB 1, (4) LDN 1450, MLB 2,
		LDN 1450A, (5) B 202, LDN 1451, (6) LDN 1452, BDN 158.55-21.16,
		(7) B 206, (8) B 1, (9) B 3, (10) IREC 231, (11) LDN 1468, (12) MLB 5,
		LM 7, (13) LDN 1470, BDN 160.56-18.19, (14) LDN 1472, (15) LM 8,
		(16) B 4
1085	P 7	(1) B 204, LDN 1455
1085	P 9	(1) LDN 1471, (2) B 5
1085	P 10	(1) B 205
1085	P15	(1) B 203, LDN 1448, BDN 158.04–21.45
1096	•••	(1) IREC 230, (2) LDN 1462, (3) LDN 1478, (4) BDN 164.61–8.58, IREC 243,
1000		(5) LDN 1485
1096	P 5	(1) LDN 1473
1105	· · ·	(1) LDN 1475, (2) LDN 1476, (3) LDN 1477, BDN 162.72 + 1.49
1116	ΡI	(1) LDN 1481 (1) LDN 1487
1130	•••	(1) LDN 1487 (1) LDN 1400
1143	•••	(1) LDN 1490 (1) LDN 1490
1144	 D 1	(1) LUN 1489 (1) D 207 J DN 1401 MI D 6
1144	ΓI	(1) $D 207$, LDN 1491, WLB 0 (1) LDN 1404
114ð 1150	 D 1	(1) LDIN 1494 (1) \mathbf{R} 21/
1150	1 1	(1) D 2 I T (1) I DN 1498
1100	• • •	

Table 8. (Continued.)

Cloud	Clump	Associated clouds
name	name	
1155	P 2	(1) B 208, MLB 7, LM 10
1157		(1) B 221, LDN 1496
1158		(1) B 219, LDN 1500
1169		(1) B 23, LDN 1503, CB 22, LM 50, (2) LDN 1504, (3) LM 53, (4) B 24, LDN 1507,
		(5) LM 54, (6) CB 23, LM 55, (7) LDN 1508, (8) LDN 1514
1171		(1) LDN 1510
1176	P 1	(1) LDN 1512, CB 27, MLB 33, P 125, LM 63, SCHO 93
1180		(1) LDN 1506, P 124, (2) B 215, LM 15, LDN 1506A
1180	P 3	(1) B 212, MLB 12, LM 13
1184	P 1	(1) CB 19
1187	•••	(1) LDN 1515, (2) LM 58, (3) LDN 1519
1187	P 1	(1) B 26, MLB 29, LM 57, LDN 1517C, (2) BDN 172.37-8.04, (3) MLB 31, LM 60,
		LDN 1517B, (4) LDN 1517, P 126, (5) B 27, MLB 30, LM 59, LDN 1517A,
		(6) B 28, MLB 32, LM 61
1187	P 2	(1) LDN 1513
1190	•••	(1) LDN 1520
1192	•••	(1) LDN 1509, (2) LDN 1518, (3) LDN 1525
1193	•••	(1) B 222, LDN 1522
1193	P 1	(1) B 29, LDN 1523, MLB 35, P 127, LM 66
1198	•••	(1) LDN 1524, (2) LM 31, LDN 1524-3, (3) LM 32, LDN 1524-4, (4) LM 35, TMC 2-2,
		(5) LDN 1531, (6) LM 44, B 18-3
1198	P 1	(1) LM 28, LDN 1524-1, (2) LM 26, LDN 1524-2
1198	P 3	(1) MLB 22, LM 37, TMC 2-A, (2) B 18, LDN 1529, BDN 174.05–15.89, (3) TMC-2,
		MLB 23, LM 39, (4) LM 41, TMC 2-3
1198	P 4	(1) LM 45, B 18-4, (2) LDN 1535, BDN 174.71–15.53, P 129, (3) LM 46, B 18-5
1198	P 5	(1) LM 38, B 18-2
1210	P 1	(1) LDN 1533, CB 20
1211	•••	(1) LDN 1486, (2) MLB 10, LDN 1495D, (3) BDN 168.25–16.25, (4) B 7, (5) LM 11,
		(6) LM 12, (7) B 10-Envelope, (8) B 10, (9) LDN 1495, BDN 168.58–16.10,
		(10) B 211, (11) MLB 13, LDN 1521C, (12) LM 22, B 217-2,
		(13) B 218, BDN 171.85–15.38, (14) Taurus DN Complex, Taurus CO Complex,
		(15) B 217, (16) MLB 17, LM 27, LDN 1521E, (17) B 19,
		LDN 1521, (18) LM 48, LDN 1527A-2, (19) LDN 1527, MLB 25, P 128,
		LM 47, TMC-1B, LDN 1527A-1, (20) B 22, LDN 1528, (21) B 220, MLB 27,
		LM 52, TMC I-C, (22) LDN 1532, MLB 26, TMC I-A, (23) B 14, LM 49,
		(24) Heiles 2, BDN 1/4.21 -13.79 , (25) Taurus DN Complex Nucleus,
1011	D 2	IREC 260, (26) LDN 1534, (27) IMC-1, MLB 28, LM 51, IMC 1-1, (28) LDN 1538
1211	P 3	(1) B 209, MLB 8, LDN 1495C, (2) MLB 9 (1) MLD 11, LDN 1405D
1211	PII D12	(1) MLB 11, LDN 1495B (1) D 212
1211	P12	(1) D 213 (1) LM16 LDN1521D 2 (2) D 216 MLD 14 LM 19
1211	P 14	(1) LM 10, LDN 1521B-2, (2) B 210, MLB 14, LW 18 (1) LM 24, LDN 1521-1, LDN 1521F
1211	P 10 D 17	(1) LM 24, LDN 1521-1, LDN 1521F (1) MLD 15 (2) DDN 171 74 15 62
1211	P1/	(1) MLB 15, (2) BDN $1/1.74 - 15.02$
1211	P 18	(1) LIVI $2U$, D $213-7$ (1) L M 20, L DN 1521, 2
1211	r 21	(1) LIVI 27, LDIN 1521-2 (1) MID 16, LM 21, LDN 1521D, D 217, 1
1211	Р 22	(1) IVILD 10, LIVI 21, LDIN 1521D, B 21/-1 (1) LM 42 (2) LDN 1526 DDN 175 47 16 61 (2) MLD 24 LM 42
1227	 D 2	(1) LIVI 42, (2) LDIN 1330, DDIN 173.47 – 10.01, (3) IVILD 24, LIVI 43 (1) L M 40
1227	r Z	(1) LIVI 40 (1) LIVI 1520
1228	•••	(1) אועם 1557 (1) DDN 176 29 20 90
1234	 D Э	(1) DDN 1/0.20 -20.09 (1) P 24
1233	r Z	(1) D J^{+} (1) L DN 1542 (2) MLR 18 L M 22 L DN 15518 2 L DN 15514 (2) DDN 178 88 20.00
1240	• • •	(1) LUN 13, (2) THED 10, LIVE 33, LUN 13318-2, LUN 1331A, (3) DUN 170.00 -20.09 ,

C1. 1	Classic	A second started started
Cloud	Clump	Associated clouds
name	name	
		(4) MLB 19, LDN 1551C, (5) LDN 1551, P 131, (6) MLB 21, LM 36,
		LDN 1551B, LDN 1551S-1
1246	P 2	(1) MLB 20
1247		(1) LDN 1542, (2) LM 65, LDN 1544-2
1247	P 1	(1) LM 62, LDN 1544-3, (2) LDN 1544, (3) P 130, MLB 34, LM 64, LDN 1544-1
1253		(1) LDN 1545, (2) LDN 1547, (3) LDN 1548, (4) LDN 1549, (5) IREC 268, (6) LDN 1552,
		P 132. LM 68. (7) LDN 1553. (8) LDN 1554
1260		(1) LDN 1550. (2) LDN 1555
1260	P 1	(1) $CB 37. LM 75$
1277	• •	(1) LDN 1556
1278	•••	(1) LDN 1557 (2) LDN 1560
1270	•••	(1) IBEC 271
1275	•••	(1) I DN 1558
1225	•••	(1) CB 33
1331	•••	(1) CD 55 (1) L DN 1564 (2) L DN 1565 (2) L DN 1566 (4) L DN 1568
1242	 D 1	(1) LDN 1567 (1) LDN 1567
1343	ΡΙ	(1) LDN 1507 (1) D 227
1347	 D 2	(1) $D 227$ (1) $L DN 1570 CD 44$
1347	P 2	(1) LDN 1570, CB 44 (1) LDN 1576, LM 78, LDN 1578, 2, (2) LDN 1578, (2) LM 80, (4) CD 45, (5) CD 42
1364	•••	(1) LDN 1576, LM 78, LDN 1578-2, (2) LDN 1578, (3) LM 80, (4) CB 45, (5) CB 42,
10(4	D 1	(6) LDN 1586, LDN 1587, (7) LDN 1591, LDN 1592, LDN 1593
1364	PI	(1) MLB /9, LM /9, LDN 15/8H, LDN 15/8-1 (1) DDN 101 52 0 70 (2) LDN 1574 LDN 1575 LN 76
1364	P2	(1) BDN 191.53–0.78, (2) LDN 1574, LDN 1575, LM 76
1365	•••	(1) LDN 1577, (2) B 30, BDN 192.14–11.52, (3) MLB 37, (4) B 31, (5) LDN 1581,
		(6) LDN 1580, (7) LDN 1583, (8) B 32, LDN 1582, MLB 36, LM 69,
		(9) LDN 1584
1368	•••	(1) LDN 1579
1370	•••	(1) B 224
1377	•••	(1) B 223, (2) IREC 283, (3) LDN 1589, (4) LDN 1590
1377	P 5	(1) LDN 1588
1384	P 1	(1) LM 70, B 35A, (2) LDN 1594, (3) BDN 197.01–10.32
1387	P 1	(1) CB 30
1391	P 1	(1) LDN 1598
1399	•••	(1) LDN 1602, LDN 1603
1410		(1) LDN 1601, (2) B 38, LDN 1605, (3) B 37, BDN 201.40+1.00, (4) LDN 1607,
		(5) BDN 201.64 + 0.03, (6) LDN 1609
1410	P4	(1) LDN 1608
1416		(1) LDN 1611
1417		(1) BDN 202.92+2.28
1417	P 3	(1) Cone Dark Nebula, LDN 1613
1420		(1) LDN 1612
1422		(1) LDN 1618, (2) LDN 1619
1427		(1) LDN 1617, (2) LDN 1621, LM 74, LDN 1621-1, (3) LM 73, LDN 1621-2, (4) LM 71,
-		LDN 1622A, (5) LM 72, LDN 1622B, (6) LDN 1624
1427	P 1	(1) LDN 1622, BDN 204.70–11.82, (2) P 133
1436		(1) LDN 1629
1440		(1) CB 29
1444	•••	(1) P_{134} (2) LDN 1627 (3) LDN 1630 BDN 206 15-15 08
1446	•••	(1) LDN 1633 (2) CB 49 LM 81
1452	•••	(1) Rosette DN Complex
1462	•••	(1) I DN 1639
1400	•••	(1) OMC_{-3} (2) LDN 1640 (3) Orion A DN Complex IREC 300 (4) LDN 1641
1770	•••	BDN 210 76–19 61 (5) LDN 1647 (6) LDN 1648

S179

Cloud	Clump	Associated clouds
name	name	
1493		(1) LDN 1644, LM 77, (2) LDN 1645, (3) LDN 1646, (4) MonR 2 DN Complex,
		MonR 2 CO Complex
1535		(1) LDN 1650
1539		(1) LDN 1651
1544		(1) LDN 1652, (2) IREC 317, (3) Crossbones DN Complex
1554		(1) LDN 1653
1554	P 1	(1) LDN 1654
1558		(1) LDN 1655
1558	P 1	(1) LDN 1656
1570		(1) BDN 224.46-2.45, MLB 80, LDN 1657B, (2) BDN 225.43-2.65, MLB 81, LDN 1657A
1570	P 1	(1) LDN 1657
1574		(1) LDN 1658
1609		(1) FeSt 2-2
1609	P 1	(1) LDN 1660, FeSt 1-4
1611		(1) FeSt 2-3
1611	P 1	(1) LDN 1664, FeSt 1-6
1612		(1) FeSt 1-3, (2) LDN 1663, (3) FeSt 1-5, (4) LDN 1666, (5) FeSt 2-5
1612	P 1	(1) LDN 1665, FeSt 1-7
1613		(1) FeSt 2-4
1613	P 1	(1) LDN 1667, FeSt 1-9
1615	P 1	(1) LDN 1668
1626		(1) FeSt 1-12
1628		(1) HMSTG 247.0–5.7
1630	P 1	(1) HMSTG 247.5–12.3, IREC 365
1638		(1) FeSt 1-18
1638	P 2	(1) FeSt 1-17
1639		(1) FeSt 1-15, (2) HMSTG 249.4-5.1, (3) FeSt 1-21, (4) FeSt 2-10, (5) FeSt 1-22,
		(6) HMSTG 252.1-3.6, (7) HMSTG 252.3-3.2, (8) HMSTG 253.4-4.0
1639	P 2	(1) HMSTG 249.0–3.2
1639	P 6	(1) FeSt 1-24, (2) FeSt 2-13, (3) HMSTG 253.2-4.2
1639	P7	(1) FeSt 1-16
1640	P 1	(1) HMSTG 252.1–1.3
1641		(1) FeSt 1-23
1642		(1) HMSTG 252.9-1.6, (2) HMSTG 253.1-2.1, (3) CG 31C DN, BHR 10, (4) CG 31A DN,
		BHR 8, LM 87 in HMSTG 253.1-1.7, (5) HMSTG 253.9-0.6
1642	P 1	(1) HMSTG 253.0-1.7C, (2) CG 31 Head DN, LM 86, (3) CG 31 DN, FeSt 2-15,
		HMSTG 253.1–1.7, VMF 13, V 13
1642	P4	(1) HMSTG 253.6–1.3
1644		(1) FeSt 1-27
1649		(1) HMSTG 254.1–3.6
1650		(1) HMSTG 254.5–9.6-East
1650	P 1	(1) HMSTG 254.5–9.6
1653	P 1	(1) FeSt 1-30, HMSTG 255.3-4.9, (2) FeSt 2-20
1654		(1) FeSt 2-21, HMSTG 255.4–3.9, LM 84, BHR 16
1654	P 1	(1) FeSt 1-31
1655		(1) FeSt 1-33
1656		(1) HMSTG 255.6–2.9, (2) FeSt 2-22, HMSTG 255.9–2.6, (3) HMSTG 255.9–2.6C,
		(4) HMSTG 256.1-2.1, (5) FeSt 1-36, (6) HMSTG 258.6-3.4, (7) HMSTG 258.7-2.8,
		(8) HMSTG 258.9-4.1
1656	P 1	(1) FeSt 1-32
1656	P 3	(1) HMSTG 257.3–2.5-2, LM 90, (2) FeSt 2-25, HMSTG 257.3–2.5, (3) HMSTG 257.3–2.5-1,
		LM 89

S180

K. Dobashi et al.

<u> </u>	CI	
Cloud	Clump	Associated clouds
name	name	
1656	P4	(1) FeSt 1-38
1656	P 5	(1) HMSTG 259.1-3.8, (2) FeSt 2-28, HMSTG 259.1-4.0, (3) HMSTG 259.1-4.0C
1656	P 6	(1) FeSt 2-26, HMSTG 258.1–1.9
1656	P 7	(1) FeSt 2-31, (2) FeSt 1-46
1657		(1) FeSt 2-23, (2) HMSTG 256.1 -9.2 C, (3) HMSTG 256.1 -9.3
1660		(1) HMSTG 256.4 -10.0
1662	Р1	(1) HMSTG 256.9 -5.4
1667	• •	(1) FeSt 2-29 (2) HMSTG 259 $2-13$ 2-2 LM 83
1667	Р1	(1) FeSt 1-42, (2) SDN 101, HMSTG 259 $2-13$ 2
1668		(1) FeSt 1-39
1668	Р1	(1) HMSTG 259 $0+3.6$ Butterfly (2) FeSt 1-41
1670	P1	(1) FeSt 1-49 HMSTG 260 $6-3.7$ (2) FeSt 1-50
1672	1 1	(1) HMSTG 260 5 -5 2 (2) FeSt 2-34 (3) FeSt 1-48
1673	•••	(1) Fast 1 43 HMSTG 250 0 ± 0.8 (2) Fast 1 40 (3) HMSTG 250 2 ± 0.3 (4) BDN 250 04 ± 0.04
1075	•••	(1) rest 1-45, mis ro 259.0 + 0.00, (2) rest 1-40, (5) mis ro 259.2 + 0.5, (4) BDR 259.9 + 0.04, HMSTG 250 0_0 0 BHP 23 (5) HMSTG 260 1 + 1.6
		(6) HMSTG 260 4 ± 0.4 C (7) SLDN 1. EaSt 2.33 (8) HMSTG 260 8 ± 0.2
		(0) $\operatorname{HWS10}_{200.4 \pm 0.4C}$, (7) $\operatorname{SLDN1}$, $\operatorname{HCS12-35}$, (6) $\operatorname{HWS10}_{200.6 \pm 0.2}$, (0) $\operatorname{SLDN2}_{200.4 \pm 0.4C}$, (10) $\operatorname{HWS1C}_{200.2}$, (2) $\operatorname{HWS1C}_{200.6 \pm 0.2}$, (2) $\operatorname{HWS1C}_{200.4 \pm 0.4C}$, (10) $\operatorname{HWS1C}_{200.4 \pm 0.4C}$, (11) $\operatorname{E}_{200.4 \pm 0.4C}$, (12) $\operatorname{HWS1C}_{200.4 \pm 0.4C}$, (12) $\operatorname{HWS1C}_{200.4 \pm 0.4C}$, (13) $\operatorname{HWS1C}_{200.4 \pm 0.4C}$, (14) $\operatorname{HWS1C}_{200.4 \pm 0.4C}$, (15) $\operatorname{HWS1C}_{200.4 \pm 0.4C}$, (17) $\operatorname{HWS1C}_{200.4 \pm 0.4C}$, (10) $\operatorname{HWS1C}_{200.4 \pm 0.4C}$, (10) $\operatorname{HWS1C}_{200.4 \pm 0.4C}$, (10) $\operatorname{HWS1C}_{200.4 \pm 0.4C}$, (11) $\operatorname{E}_{200.4 \pm 0.4C}$, (12) $\operatorname{HWS1C}_{200.4 \pm 0.4C}$, (12) $\operatorname{HWS1C}_{200.4 \pm 0.4C}$, (13) $\operatorname{HWS1C}_{200.4 \pm 0.4C}$, (14) $\operatorname{HWS1C}_{200.4 \pm 0.4C}$, (15) $\operatorname{HWS1C}_{200.4 \pm 0.4C}$, (15) $\operatorname{HWS1C}_{200.4 \pm 0.4C}$, (16) $\operatorname{HWS1C}_{200.4 \pm 0.4C}$, (17) $\operatorname{HWS1C}_{200.4 \pm 0.4C}$, (18) $\operatorname{HWS1C}_{200.4 \pm 0.4C}$, (19) $\operatorname{HWS1C}_{200.4 \pm 0.4C}$, (10) $\operatorname{HWS1C}_{200.$
1672	D 5	(3) SEDIV2, $165(2-50, (10))$ HWIS10 201.3 $\pm 0.9, (11)$ rest 1-52, (12) HWIS10 202.2 ± 0.4 (1) HWSTC 250.2 ± 0.0
1672		(1) $HMSTG 261.2 \pm 0.2$
1672		(1) HMSTG 260.6 \pm 0.9
1672	P 9	(1) $\Pi NSTC 260.0 \pm 0.7$
1672	P 11 D 12	(1) $HMSTG 260.2 \pm 0.7$
10/3	P12	(1) HMS1G202.2 + 1.4 (1) HMSTG200.4 + 2.2
16/3	P13	(1) HMS1G 260.4 + 2.2 (1) HMSTG 262.5 - 0.4
10/3	P 14	(1) HMSTG 262.5 -0.4
16/6	· · ·	(1) HMS1G 261.0 \pm 3.0 (1) E 0:1.52 JD 40000 261.7 \pm 4.4
16/9	ΡI	(1) FeSt 1-53, HMS IG 201.7 -4.4
1681	•••	(1) FeSt 1-54 (1) IDEC 200
1684	· · ·	(1) IREC 390 (1) IREC 390
1684	ΡI	(1) SDN 104, FeSt 1-55, HMSTG 262.2 -12.3
1685	· · ·	(1) Fest 1-50
1691	ΡI	(1) HMSTG $263.9-3.5$, (2) FeSt 1-61
1692	· · ·	(1) SDN 108, FeSt 2-40
1692	ΡI	(1) HMSTG 264.0 -11.6
1699	•••	(1) HMSTG 265.2 -0.6
1700	•••	(1) HMSTG 265.5–0.0
1703		(1) HMSTG 265.7–7.7, BHR 31, (2) FeSt 1-72, (3) HMSTG 266.1–7.7
1703	ΡI	(1) SDN 109, HMSTG 265.8–7.3, (2) FeSt 1-71, HMSTG 265.8–7.4C, (3) LM 91,
		(4) FeSt 2-44, HMSTG 266.0–7.5, LM 92
1704	•••	(1) HMSTG 263.4 + 2.0, (2) FeSt 2-42, (3) FeSt 1-64, (4) FeSt 2-43, (5) FeSt 1-67,
		(6) HMSTG 265.4+0.2, (7) FeSt 1-69, (8) HMSTG 266.4–0.1C,
		(9) FeSt 2-46, (10) FeSt 2-47, (11) HMSTG 267.1–0.7, (12) HMSTG 267.4–0.9,
		BHR 35, (13) FeSt 1-96, (14) FeSt 1-99, HMSTG 270.2–1.0,
		(15) FeSt 1-101, (16) FeSt 2-57, (17) FeSt 1-102, HMSTG 270.7+0.5C,
		(18) FeSt 1-105, (19) HMSTG 270.9–1.6, (20) FeSt 2-60,
		(21) FeSt 1-110, (22) HMSTG 271.6+1.7, (23) HMSTG 271.6+1.6, (24) HMSTG 271.8-1.3,
		(25) HMSTG 272.0+1.7, (26) HMSTG 272.1+1.8, (27) HMSTG 272.1-3.4,
		(28) HMSTG 272.2 + 1.9, (29) FeSt 2-61, (30) FeSt 2-62
1704	P 1	(1) HMSTG 266.1 + 1.1
1704	P 2	(1) FeSt 1-98
1704	P 3	(1) HMSTG 270.3 + 2.9
1704	P 7	(1) HMSTG 266.3-0.7
1704	P 9	(1) HMSTG 265.3+0.6
Table 8.	(Continued.)	
----------	--------------	

Cloud	Clump	Associated clouds
name	name	
1704	P12	(1) FeSt 1-108
1704	P 13	(1) HMSTG 263.2 + 1.6C, (2) SLDN 4. FeSt 1-58
1704	P14	(1) HMSTG 272.5 -3.9 . (2) FeSt 1-111
1704	P 18	(1) HMSTG $271.7 + 1.8$, (2) HMSTG $271.9 + 1.7C$
1704	P 19	(1) HMSTG 268.9 \pm 0.3
1704	P 31	(1) HMSTG 267.9 ± 0.6
1704	P 36	(1) HMSTG 268.9 -1.2 , (2) FeSt 2-55
1704	P40	(1) HMSTG $272.0-0.2$
1705	1 10	(1) FeSt 1-74
1712		(1) FeSt 1-92. (2) FeSt 1-93. (3) FeSt 2-56
1712	P 1	(1) FeSt 1-81, HMSTG 267.6 ± 4.3
1712	P2	(1) FeSt 1-75 HMSTG 266 6 \pm 5 0
1712	P 3	(1) HMSTG 270.1 + 4.2 , (2) SDN 117
1712	P 5	(1) SDN 116 HMSTG 269 5+4 0 BHR 44 LM 99
1713	1.5	(1) SDN 112, GDC 2, HMSTG 267 5 -7.4 , BHR 37, LM 95, V 29, (2) V 32, (3) GDC 6
1710		HMSTG 267 6–64 BHR 40 (4) FeSt 1-82 HMSTG 267 6–7 4C (5) V 33
		(6) V 28 (7) V 34 (8) V 35
1713	P 1	(1) V 31 (2) RDN 267 66 -7 37 GDC 5 FeSt 2-51 HMSTG 267 7 -7 4 BHR 41
1/15	11	V 30
1713	P2	(1) V 36 (2) $\text{FeSt } 1-84$
1714	1 2	(1) HMSTG 268 $0+1.8$
1714	 Р1	(1) $BDN 267.91 \pm 1.80$
1715	1 1	(1) $HMSTG 268 3_3 2$
1716	•••	(1) SDN 114 (1) SDN 114
1718	•••	(1) $HMSTG 268.3 \pm 1.0$ (2) $E_{0}St 1.87$
1710	•••	(1) Fast 1 01 HMSTG 260 5 -7.6
1724	 Р1	(1) FeSt 1 94, HMSTG 260.9 -11.0
1724	1 1	(1) FeSt 1-100 (1) FeSt 1-100
1725	•••	(1) FeSt 2-58
1720	•••	(1) FeSt 1-103 (2) CG 17 DN HMSTG 270 $6-47$ (3) CG 17 Head DN BHR 46
1720	•••	VMF25 V 25
1729	P 1	(1) FeSt 1-106 HMSTG 270 $8-85$ (2) FeSt 2-59
1730	11	(1) SDN 118
1730	 Р1	(1) HMSTG 271 4 ± 4.8 (2) SLDN 5 FeSt 1-109
1731	1 1	(1) HMSTG 273.0 \pm 3.7
1733	 Р2	(1) HMSTG 273.8+2.7 (2) FeSt 2-67 (3) HMSTG 274.1+2.7 BHR 52
1734	1 2	(1) HMSTG 273 $3+31$ (2) HMSTG 273 $8+32$ BHR 50
1734	 Р1	(1) HMSTG 273.6+3.0
1735	11	(1) SDN 119 FeSt 2-65
1737	•••	(1) HMSTG $2743 + 34$ BHR 54
1739	•••	(1) HMSTG 274.0+0.1 (2) FeSt 1-114 HMSTG 274.7+0.0 (3) HMSTG 275.4+0.0
1741	•••	(1) HMSTG 274.9 ± 0.0
1744	•••	(1) FeSt 2-60 HMSTG 275 3 ± 0.8
1745	 Р1	(1) HMSTG 275.7 ± 0.3
1748	1 1	(1) FeSt 1-117 (2) HMSTG 276 4+0.0 (3) FeSt 1-125 HMSTG 278 1+0.9
1740	•••	(1) FeSt 1-118 HMSTG 276 3-0.6 (2) HMSTG 277 $0-24$ (3) FeSt 1-122
1/42	•••	(4) HMSTG 277 7 -25 (5) FeSt 1.128 (6) HMSTG 270 1 -0.6 (7) FeSt 1.120
		HMSTG 270 $2_{-2.3}$ (3) 1 (3
1740	рз	(1) HMSTG 278 2–2.1 (2) FeSt 2-73
17/0	г <i>э</i> Р/	(1) $FeSt 1_{127}$ HMSTG 278 6_0 0
1750	14	(1) FeSt 1.124
1750	 Р1	(1) FeSt 1-126 HMSTG 278 $6+2.9$
1,50	1 I	(1) 1 00 1 120, 1110 1 0 270.0 1 2.7

S182

K. Dobashi et al.

C1 1	Classic	A second should
Cloud	Ciump	Associated clouds
name	name	
1753		(1) FeSt 1-132, HMSTG 280.4+1.9
1757		(1) HMSTG 281.7–4.4
1758		(1) HMSTG 280.5-2.1, (2) FeSt 2-75, (3) HMSTG 282.4+0.5C, (4) HMSTG 282.7-2.5,
		(5) FeSt 2-78, (6) FeSt 2-79, (7) FeSt 1-136
1758	P 1	(1) FeSt 1-134
1759		(1) FeSt 1-135
1761		(1) FeSt 2-76, (2) HMSTG 282.8–3.2
1768	P1	(1) FeSt 1-139, HMSTG 284.4–2.5
1769		(1) HMSTG $284.5-0.8$
1770		(1) FeSt 1-140. HMSTG 284.8–1.6
1771		(1) HMSTG 285.3 ± 0.3
1773		(1) HMSTG 285 $6+54$
1774		(1) HMSTG $285.9+4.5$
1775		(1) HMSTG 286.2 ± 5.5
1776	•••	(1) HMSTG $2865-31$
1777	•••	(1) HMSTG 287.0 \pm 2.9
1778		(1) HMSTG 287.2 \pm 1.2
1770	•••	(1) HMSTG 207.2 \pm 1.2 (1) HMSTG 207.2 \pm 2.3 (E ₂ St 1.149)
179	•••	(1) HMSTG 285.7 0.6 (2) HMSTG 286.4 0.4 (2) HMSTG 286.5 0.7 (4) Carina DN Complex
1780	•••	(1) HIVE TO $205.7 - 0.0$, (2) HIVE TO $200.4 - 0.4$, (3) HIVE TO $200.5 + 0.7$, (4) Califia DIV Complex, (5) LIMETC 207.1 + 0.5. (6) E ₂ St 1.140. (7) LIMETC 207.4 + 0.6
1700	D 1	(3) $\text{HMS1G} 287.1 \pm 0.3$, (0) $\text{FeSt} 1-149$, (7) $\text{HMS1G} 287.4 \pm 0.0$
1/80		(1) $HMS1G287.2\pm0.1$ (1) $E_{-}S_{+}2_{-}02_{-}JMSTC288_{-}(-0.1)$
1700	P S	(1) $Fest 2-95$, $HMS 1G 288.0-0.1$
1/80	P6	(1) HMS1G 288.2–0.2 (1) HMSTG 286.2–0.7
1/80	P/	(1) HMS1G 286.2 -0.7
1780	P9	(1) HMSTG 286.2+0.4, (2) FeSt 1-145, (3) HMSTG 286.5+0.4 (1) HMSTG 200.7 \pm 0.2
1780	P 10	(1) HMSTG 288.7+0.3
1781	•••	(1) HMSTG 287.6+8.0
1782	•••	(1) HMSTG $287.8 + 2.0$, (2) HMSTG $287.9 + 2.3$, (3) FeSt 1-153, (4) HMSTG $288.0 + 2.0$,
1=0.6		(5) FeSt 2-92
1786	•••	(1) HMSTG 288.1+0.9, (2) HMSTG 288.3+1.2, (3) HMSTG 288.3+1.1, (4) HMSTG 288.9+1.6
1786	P 1	(1) HMSTG 288.8+1.0
1786	P 2	(1) FeSt 1-156, (2) HMSTG 289.0+1.3, (3) HMSTG 289.1+1.6
1788		(1) FeSt 2-94, (2) FeSt 1-157
1788	P 1	(1) HMSTG 289.0–5.8
1789		(1) FeSt 1-158
1790	P 1	(1) HMSTG 289.4+0.1
1794		(1) FeSt 2-98
1796	P 1	(1) HMSTG 290.7+1.1
1797		(1) FeSt 1-162
1798		(1) FeSt 1-161
1800	P 1	(1) SDN 124, FeSt 2-100, LM 103, (2) HMSTG 291.0-3.5
1802		(1) HMSTG 290.9-2.1, (2) SDN 125, FeSt 2-102, HMSTG 291.1-1.7, BHR 59,
		(3) HMSTG 291.1-2.9, (4) HMSTG 291.4-0.9, (5) HMSTG 291.9-0.9, (6) HMSTG 292.0-2.0,
		(7) HMSTG 292.3-0.4, (8) SDN 128, HMSTG 292.3-3.7,
		(9) FeSt 1-165, (10) HMSTG 292.7-3.3, (11) HMSTG 293.0-4.4,
		(12) FeSt 1-167, (13) HMSTG 293.2–2.8, (14) HMSTG 293.3–0.6, (15) HMSTG 293.3–0.9.
		BHR 64, (16) SDN 129, FeSt 2-112, (17) HMSTG 293.5–0.8C.
		(18) FeSt 2-113, (19) HMSTG 293.6 -2.0 , (20) FeSt 2-117.
		(21) FeSt 1-171, (22) HMSTG 294, $3-2.0$ -Globule, (23) HMSTG 294 $3-0.8$
		(24) HMSTG 294 3–2.0 (25) HMSTG 294 4–0.9 (26) FeSt 2-118
		(27) HMSTG 294 6–2.9C (28) SDN 130 HMSTG 294 8–2.9
1802	P 1	(1) SDN 126 HMSTG 291 $3-1.8$
1002	T T	(1) 521, 120, 1111010 271.5 1.0

Table 8.	(Continued.)

Cloud	Clump	Associated clouds
name	name	
1802	P 2	(1) FeSt 2-106 Car 1
1802	P3	(1) HMSTG 294.4 -3.1 , (2) HMSTG 294.5 -2.8
1802	P 5	(1) FeSt 2-111, HMSTG 293.5 -3.0
1802	P6	(1) HMSTG 292.1 -0.9
1802	P7	(1) HMSTG 294.7–2.1, (2) HMSTG 294.9–2.6, (3) HMSTG 295.1–2.0
1802	P 8	(1) HMSTG 293.3–4.4, (2) FeSt 1-169
1803		(1) HMSTG 291.6+0.0
1803	P 1	(1) SDN 127, FeSt 2-103, HMSTG 291.4–0.2, BHR 60
1804		(1) FeSt 1-164, (2) HMSTG 291.4-4.2, (3) FeSt 2-104
1808		(1) KM 292.7–19.8
1809		(1) FeSt 1-166
1813		(1) FeSt 1-170
1816		(1) FeSt 1-172, (2) HMSTG 294.2+6.1
1816	P 1	(1) HMSTG 294.0+6.3
1819		(1) FeSt 1-173
1822	P 1	(1) SDN 131, FeSt 2-119, HMSTG 295.0+3.4
1825		(1) FeSt 1-175
1827		(1) KM 295.3–13.0
1828	P 1	(1) FeSt 2-122, (2) HMSTG 295.8–0.3
1830		(1) FeSt 1-177, HMSTG 296.2-7.9
1831		(1) HMSTG 296.1-2.5, (2) FeSt 2-124, (3) HMSTG 296.4-2.9
1833		(1) FeSt 2-126
1833	P 1	(1) HMSTG 296.8–14.5
1834		(1) FeSt 1-182
1834	P 1	(1) FeSt 2-127, HMSTG 297.0+2.3
1835		(1) SDN 132, HMSTG 296.2-15.8, LM 101, (2) FeSt 2-125, LM 102, (3) Chamaeleon I,
		IREC 432, (4) SDN 134, (5) FeSt 1-181, (6) HMSTG 297.1-16.1,
		(7) LM 104, (8) HMSTG 297.2–15.1, (9) BDN 297.28–15.53, FeSt 1-179,
		HMSTG 297.2-15.6C, (10) LM 105, (11) SDN 135, FeSt 1-183,
		(12) LM 106
1835	P 2	(1) HMSTG 297.3–15.6, HMSTG 297.2–15.6
1835	P 3	(1) SDN 133, HMSTG 296.5–15.7
1840	•••	(1) SDN 137, HMSTG 298.1–2.8, (2) HMSTG 298.3–2.7C
1840	P 1	(1) SDN 136, FeSt 2-128, HMSTG 297.7–2.8, BHR 71, LM 108
1845	•••	(1) HMSTG 298.3–4.5
1846		(1) FeSt 1-188, (2) LM 107
1846	P 2	(1) SDN 138, FeSt 2-129, HMSTG 298.3–13.1
1848	•••	(1) FeSt 1-187
1849	P 1	(1) FeSt 2-130, (2) HMSTG 298.7 + 3.8
1850	•••	(1) HMSTG 299.3+0.5
1851	•••	(1) FeSt 2-131, (2) HMSTG 299.6+5.6, BHR 73, (3) HMSTG 300.2+5.0
1851	P 1	(1) HMSTG 299.4+5.4
1852	P 2	(1) FeSt 1-193
1860	P 1	(1) FeSt 1-195, HMSTG 300.2–16.9
1861	•••	(1) SDN 139, HMSTG 300.2–3.5, BHR 75, LM 110
1864	•••	(1) HMSTG 300.7 + 5.2
1867	•••	(1) FeSt 1-194, (2) SDN 140, HMSTG 300.6–3.1, BHR 76, (3) HMSTG 300.6–3.0,
		(4) HMSTG 300.7–1.5, (5) FeSt 1-203, HMSTG 300.9–1.0, (6) VMF 46,
		Cos 3, (7) VMF47, Cos 4, (8) HMSTG 301.6–1.4, (9) FeSt 2-139,
		(10) FeSt 1-205, HMSTG $301.7-2.6$ C, (11) SDN 148, HMSTG $301.7-2.6$,
		BHR 81, (12) FeSt 2-144, (13) HMSTG 302.4 + 1.4, (14) FeSt 2-147,
		(15) Coalsack, Coalsack CO Complex, (16) FeSt 1-215, HMSTG 302.9+0.2,

	~	
Cloud	Clump	Associated clouds
name	name	
		(17) FeSt 2-152, HMSTG 303.2–1.2, (18) SDN 155, HMSTG 303.3+1.3,
		BHR 85, (19) FeSt 1-220, (20) FeSt 1-222, (21) FeSt 2-154,
		(22) SDN 157, HMSTG 303.6+0.9, (23) FeSt 1-226, (24) HMSTG 303.8+1.5.
		VMF 50. $Cos 7$, (25) HMSTG 304.1–1.5, (26) HMSTG 304.1–1.1.
		(27) SDN 162, FeSt 2-158, HMSTG 304.2 + 1.7, (28) SDN 161, HMSTG 304.3 + 1.2,
		(29) FeSt 1-230. HMSTG 304.4 ± 0.2 . (30) FeSt 1-229. (31) HMSTG 304.8 ± 1.5 .
		(22) HMSTG 304.9 + 0.6, (33) FeSt 2-160, (34) FeSt 2-163
1867	P 1	(1) HMSTG 300.7–1.0. (2) SDN 142. FeSt 2-134. Tapia 2. BHR 77. LM 114. VMF 45.
1007		C_0S_2
1867	P 2	(1) HMSTG 303 6+1 4 (2) FeSt 1-225 (3) HMSTG 303 8+1 3C (4) HMSTG 303 8+1 4
1867	P4	(1) HMSTG 303 $3-0.5$
1867	P 5	(1) HMSTG 302.8 ± 1.3
1867	P 6	(1) First 2-135 (2) Fest 1-198 HMSTG 300 $9-2.6$
1867	P 7	(1) HMSTG 304 $2-0.7$ (2) HMSTG 304 $7-0.3$ C
1867	P 9	(1) SDN 150 HMSTG 302 $0+0.8$ (2) FeSt 2-142 VMF48 CoS 5
1867	P11	(1) HMSTG 303 $9-1$ 3
1867	P13	(1) HMSTG $303.4 - 1.6$
1867	P 14	(1) SDN 144 FeSt 2-136 HMSTG 301 $2-0.4$ BHR 78
1867	P15	(1) HMSTG 301 $5-2.8$
1867	P 18	(1) HMSTG 305.2 ± 1.2
1868	1 10	(1) $VMF 29 Mu 2$ (2) $SDN 141 VMF 28 Mu 1$ (3) $FeSt 1-199$ (4) $IM 109$
1000	•••	VMF 31 Mu 4 rel SDN 143 (5) FeSt 1-200 (6) VMF 33 Mu 6 (7) Musca DN Complex
		(8) HMSTG 301 $0-8$ 6C (9) IREC 438 (10) I M 111
		VMF 35 Mu 8 (11) FeSt 1-202 (12) VMF 36 Mu 9 (13) HMSTG 301 $4-7.9$
		VMF 39, Mu 12, (14) FeSt 1-204, (15) HMSTG 301 $6-7.8$, (16) SDN 146
		FeSt 2-138 VMF40 Mu 13 (17) VMF42 Mu 15 (18) VMF43
		Mu 16
1868	P 1	(1) $SDN 143$ (2) $SDN 143$ VMF 32 Mu 5
1868	P2	(1) $VMF 30 Mn 3$
1868	P 3	(1) VMF 34, Mu 7, (2) LM 112, VMF 37, Mu 10, (3) SDN 145, (4) VMF 38, Mu 11
1870	15	(1) FeSt 2-137
1873	•••	(1) HMSTG 301 6+7.6 (2) FeSt 1-206 HMSTG 301 7+7.7
1874	Р1	(1) FeSt 2-140 VMF 86 Cha 29 (2) HMSTG 301 7-16 6
1875		(1) $CG 21 DN SDN 149 HMSTG 301 7-7 2 BHR 80$
1879	•••	(1) CG 20 DN SDN 151 HMSTG 302 $0-7.0$ BHR 82
1883	•••	(1) HMSTG 302 6–2 2
1885	•••	(1) HMSTG $302.7 - 2.9$
1886		(1) $I M 113$ (2) $VMF 88$ Cha 31 (3) $FeSt 2-143$ (4) $FeSt 1-213$ (5) $HMSTG 3025 - 175$
1000	•••	LM 117 (6) VMF 90 Cha 33 (7) Chamaeleon III IREC 442
		(8) VMF91 Cha 34 (9) VMF93 Cha 36 (10) HMSTG $302 8 - 16.8$
		(1) HMSTG 302 9 -16.8 (12) FeSt 1-216 (13) HMSTG 303 0 -17.5
		(14) VMF 94 Cha 37 (15) VMF 95 Cha 38 (16) VMF 96 Cha 39 (17) FeSt 2-150
		(14) VMF 97, Cha 40, (19) VMF 98, Cha 41, (20) HMSTG 303 $2-173$
		(10) VMF 100 Cha 43 (22) VMF 101 Cha 44 (23) VMF 99
		Cha 42_{c} (24) HMSTG 303.3–16.3
1886	P 1	(1) HMSTG $303.0-16.6C$. (2) FeSt 1-218
1886	P 2	(1) VMF 87 Cha 30 (2) HMSTG $302.0-17.7$
1886	P 3	(1) VMF 92. Cha 35
1886	P4	(1) HMSTG 302 3–17.7 LM 115 VMF 89 Cha 32 (2) FeSt 1-212 HMSTG 302 3–17.7C
1000	ът	(3) LM 116 HMSTG 302 0–17 7-2
1886	P 5	(1) HMSTG $303.1 - 16.1$
1887		(1) HMSTG $303.1 + 8.1$

Hame name 1888 (1) FeSt 1-21, (2) VMF 58, Cha 1, (3) VMF 59, Cha 2, (4) VMF 60, Cha 3, (5) VMF 61, Cha 4, (6) VMF 63, Cha 6, (7) SDN 154, HMSTG 303.0-14.3, LM 120, (8) VMF 65, Cha 8, (9) FeSt 2-151, (10) VMF 66, Cha 9, (11) VMF 67, Cha 10, (12) VMF 68, Cha 11, (13) HMSTG 303.2-183, (14) VMF 69, Cha 12, (15) VMF 70, Cha 13, (16) VMF 71, Cha 14, (17) VMF 72, Cha 15, (18) FeSt 1-221, (19) SDN 156, LM 121, (20) VMF 73, Cha 16, (21) VMF 75, Cha 18, (22) LM 122, (23) FeSt 1-223, REC 445, LM 124, VMF 70, Cha 20, (28) VMF 76, Cha 12, (27) VMF 73, Cha 16, (21) VMF 75, Cha 18, (20) LM 122, (23) FeSt 1-223, REC 445, LM 127, (23) SDN 159, HMSTG 303,7-15, Cha 14, (27) VMF 74, Cha 22, (30) VMF 80, Cha 23, (31) SDN 158, FeSt 2-155, HMSTG 303,7-14,5, LM 127, (23) SDN 159, HMSTG 303,3-14,3,C, (2) VMF 74, Cha 17 1888 P1 (1) Chamacleon 11, HMSTG 303,3-14,3,C, (2) VMF 74, Cha 17 1888 P3 (1) FeSt 2-156, HMSTG 303,7-15,0, LM 128, VMF 81, Cha 24, (2) VMF 84, Cha 27 1888 P3 (1) FeSt 2-156, HMSTG 303,8-14,2, BHR 86, LM 129, VMF 83, Cha 26 1889 P1 (1) SDN 160, HMSTG 303,8-14,2, BHR 86, LM 129, VMF 83, Cha 26 1889 P1 (1) SDN 163, FEST 2-16, (2) FEST 2-161 1899 P1 (1) SDN 163, FEST 2-176, (2) FEST 2-161 1899 P1 (1) BDN 163, FEST 2-174, (9) FEST 2-164, (9) FEST 2-165, (10) HMSTG 306,2-0.3, (3) HMSTG 306,3+0.2C, (4) FEST 1-240 1900 (1) HMSTG 300,4-1.4, (2) FEST 1-243, (10) FEST 1-243, (10) FEST 1	Cloud	Clump	Associated clouds
 1888 (1) FeSt 1-211, (2) VMF 58, Cha 1, (3) VMF 59, Cha 2, (4) VMF 60, Cha 3, (5) VMF 61, Cha 4, (6) VMF 65, Cha 6, (7) SDN 154, HMSTG 303.0-14.3, (1) VMF 67, Cha 10, (12) VMF 68, Cha 11, (13) HMSTG 503.2-13.8, (14) VMF 69, Cha 12, (12) VMF 76, Cha 11, (13) HMSTG 503.2-13.8, (14) VMF 69, Cha 12, (15) VMF 70, Cha 13, (16) VMF 71, Cha 14, (17) VMF 72, Cha 15, (18) FeSt 1-221, (19) SDN 156, LM 121, (20) VMF 73, Cha 16, (21) VMF 73, Cha 18, (22) LM 122, (23) FeSt 1-223, REC 445, (24) HMSTG 303.5-14.4, (25) LM 122, (26) VMF 76, Cha 19, (27) HMSTG 303.6-14.5, LM 124, (24) HMSTG 303.7, Cha 23, (31) SDN 158, FeSt 2-155, HMSTG 303.7, -14.5, LM 125, (32) SDN 159, HMSTG 303.7, -14.8, LM 126, (33) HMSTG 303.7, -14.8, LM 125, (32) SDN 159, HMSTG 303.7, -14.8, LM 126, (33) HMSTG 303.7, -15.2, LM 127, (34) VMF 82, Cha 23, (31) SDN 158, FeSt 2-155, HMSTG 303.7, -14.5, LM 127, (34) VMF 82, Cha 23, (31) SDN 158, FeSt 2-155, HMSTG 303.7, -14.5, LM 127, (34) VMF 83, Cha 23, (31) SDN 158, FeSt 2-155, HMSTG 303.7, -14.5, LM 127, (34) VMF 83, Cha 23, (31) SDN 158, FeSt 2-155, HMSTG 303.7, -15.2, LM 127, (34) VMF 83, Cha 24, (2) VMF 74, Cha 17 1888 P1 (1) Chamaeleon II, HMSTG 303.7, -15.0, LM 128, VMF 74, Cha 17 1888 P2 (1) VMF 64, Cha 7 1888 P3 (1) FEST 2-156, HMSTG 303.7, -15.0, LM 128, VMF 74, Cha 17 1888 P4 (1) SDN 153, HMSTG 302.9, -14.1, LM 119, (2) VMF 62, Cha 5 190 (1) FEST 1-256, HMSTG 305.9, -1.9, VMF 54, CuS 11, (2) DBDN 305.95, -1.66 1899 P1 (1) HMSTG 305.9, -1.3 101 CH LST 27, HMSTG 303.7, -15.0, LM 128, VMF 73, Cha 24, LM 129, UMF 73, Cha 24, LM 129, UMF 73, Cha 24, LM 129, UMF 73, Cha 26, LM 129, UMF 73, Cha 24, LM 129, UMF 73, Cha 26, LM 129, UMF 73, Cha	name	name	
 (5) VMF 61, Cha 4, (6) VMF 63, Cha 6, (7) SDN 154, HMSTG 303,0–14.3, LM 120, (8) VMF 65, Cha 11, (13) HMSTG 303,2–138, (14) VMF 69, Cha 12, (15) VMF 70, Cha 13, (16) VMF 71, Cha 14, (17) VMF 72, Cha 15, (18) FeSt 1-21, (19) SDN 156, LM 121, (20) VMF 73, Cha 16, (21) VMF 75, Cha 18, (22) LM 122, (23) FeSt 1-233, REC 445, (24) HMSTG 303,5–14,4, (25) LM 123, (20) VMF 76, Cha 19, (27) HMSTG 303,6–14,5, LM 124, VMF 77, Cha 20, (28) VMF 78, Cha 21, (29) VMF 79, Cha 22, (30) VMF 80, Cha 23, (31) SDN 158, FeSt 2-155, HMSTG 303,7–14,5, LM 127, (32) SDN 159, HMSTG 303,3–14,3C, (2) VMF 74, Cha 17 [1888 P1 (1) Chamaeleon II, HMSTG 303,7–14,5, LM 126, (33) HMSTG 303,7–15,2, LM 127, (34) VMF 82, Cha 25, (35) VMF 85, Cha 28 [1988 P2 (1) VMF 64, Cha 7 [1988 P3 (1) FeSt 2-156, HMSTG 303,3–14,3C, (2) VMF 74, Cha 17 [1888 P3 (1) SDN 160, HMSTG 303,3–14,3C, (2) VMF 81, Cha 24, (2) VMF 84, Cha 27 [1889 P4 (1) SDN 160, HMSTG 303,3–14,3C, (2) VMF 81, Cha 24, (2) VMF 84, Cha 27 [1980 (1) FeSt 2-156, HMSTG 303,3–14,3C, (2) FMF 81, Cha 24, (2) VMF 84, Cha 27 [1980 (1) FeSt 2-156, HMSTG 303,8–38 [190 (1) FeSt 2-27, HMSTG 303,8–38 [191 (1) SDN 160, HMSTG 303,8–13, [192 P1 (1) HMSTG 305,8–1.3 [193 (1) HEST 305,8–1.3 [194 (1) FESt 2-165, HMSTG 307,4+6.6 [199 (1) FESt 2-171, (2) HMSTG 307,4+6.6 [190 91 (1) HMSTG 307,4+6.5 [190 92 (1) HMSTG 307,4+6.5 [190 91 (1) HMSTG 308,0–1.2, (2) FEST 1-243 [191 92 91 (1) HMSTG 308,0–1.5, (11) HMSTG 308,2–0.3, (3) HMSTG 306,3+0.2C, (4) FEST 1-254, (5) FEST 1-274, (9) HMSTG 308,4–0.2, (10) FEST 1-254, (5) FEST 1-274, (9) HMSTG 308,4–0.2, (10) FEST 1-254, (2) FEST 1-249, (15) FEST 1-240, (15) FEST 1-240,	1888		(1) FeSt 1-211, (2) VMF 58, Cha 1, (3) VMF 59, Cha 2, (4) VMF 60, Cha 3,
LM 120, (8) VMF 65, Cha 8, (9) FeSt-2-151, (10) VMF 66, Cha 9, (11) VMF 67, Cha 10, (12) VMF 68, Cha 11, (13) HMSTG 303,2–13.8, (14) VMF 69, Cha 12, (15) VMF 70, Cha 13, (16) VMF 71, Cha 14, (17) VMF 72, Cha 15, (18) FeSt 1-221, (19) SDN 156, LM 121, (20) VMF 73, Cha 16, (21) VMF 75, Cha 18, (22) LM 122, (23) FeSt 1-233, REC 445, (24) HMSTG 303,5–1-44, (25) LM 123, (26) VMF 76, Cha 19, (27) HMSTG 303,6–14.5, LM 124, VMF 77, Cha 20, (28) VMF 78, Cha 21, (29) VMF 79, Cha 22, (30) VMF 80, Cha 23, (31) SDN 158, FeSt 2-155, HMSTG 303,7–14.5, LM 127, (34) VMF 82, Cha 25, (35) VMF 85, Cha 28 (14) Chamaeleon II, HMSTG 303,3–14.3C, (2) VMF 74, Cha 17 (15) Cha 22, (31) VMF 60, Cha 7 (14) Chamaeleon II, HMSTG 303,3–14.3C, (2) VMF 74, Cha 17 (15) SDN 153, HMSTG 302,9–14.1, LM 119, (2) VMF 62, Cha 5 (19) VMF 64, Cha 7 (1) FeSt 2-156, HMSTG 303,3–14.3C, (2) VMF 74, Cha 17 (15) SDN 153, HMSTG 302,9–14.1, LM 119, (2) VMF 62, Cha 5 (19) OF 11) JSN 153, HMSTG 303,3–14.3C, (2) VMF 81, Cha 24, (2) VMF 84, Cha 27 (15) SDN 153, HMSTG 303,3–14.3C, (2) VMF 83, Cha 26 (16) FeSt 2-156, HMSTG 303,3–14.3C, HM 129, VMF 83, Cha 26 (17) OF 10, JSN 153, G30,3–14.2, BH 86, LM 129, VMF 83, Cha 26 (18) (1) FeSt 2-165, HMSTG 303,3–14.2, BH 86, LM 129, VMF 83, Cha 26 (18) (1) FeSt 2-165, HMSTG 303,3–14.2, BH 86, LM 129, VMF 83, Cha 26 (18) (1) FeSt 2-165, HMSTG 305,9–1,9, VMF 54, CoS 11, (2) DBDN 305,95–1.66 (18) (1) HMSTG 305,4–1,0, VMF 53, CoS 10, (2) HMSTG 306,2–0,3, (3) HMSTG 306,3+0,2, (4) FeSt 2-171, (2) HMSTG 307,4+6,6 (19) (1) HMSTG 307,4+6,5, (2) FeSt 1-243 (1) OF FESt 1-251, HMSTG 306,5+5,0 (1) FESt 1-251, HMSTG 308,4–0,2, (10) FESt 1-251, HMSTG 308,4–1,5, (11) HMSTG 306,4–0,2, (10) FEST 1-251, HMSTG 308,4–1,5, (12) HMSTG 306,5–0,9 (12) CH 11, HMSTG 308,3–0,8 (13) CH 11, HMSTG 308,3–0,8 (14) FEST 2-35, HMSTG 309,3+2,2 (15) HMSTG 308,3–0,0,1 (15) HMSTG 308,3–0,0,1 (16) HMSTG 311,3+6,1 (17) HMSTG 311,3+6,1 (17) HMSTG 311,3+6,1 (17) HMSTG 311,3+6,1 (17) HMSTG 311,3-21,0 (17) HMSTG 311,3-21,0 (17) HMSTG 311,3-0,1 (17) HMSTG 311,3-0,1 (17) H			(5) VMF 61, Cha 4, (6) VMF 63, Cha 6, (7) SDN 154, HMSTG 303.0-14.3,
Cha 10, (12) VMF 68, Cha 11, (13) HMSTG 303.2–13.8, (14) VMF 69, Cha 12, (15) VMF 70, Cha 13, (16) VMF 71, Cha 14, (17) VMF 72, Cha 15, (18) FeSt 1-221, (19) SDN 156, LM 121, (20) VMF 73, Cha 16, (21) VMF 75, Cha 18, (22) LM 122, (23) FeSt 1-223, IREC 445, (24) HMSTG 303.5–14.4, (25) LM 123, (26) VMF 76, Cha 19, (27) HMSTG 303.6–14.5, LM 124, VMF 77, Cha 20, (28) VMF 78, Cha 21, (29) VMF 79, Cha 22, (30) VMF 80, Cha 23, (31) SDN 158, FeSt 2-155, HMSTG 303.7–14.5, LM 125, (32) SDN 159, HMSTG 303.7–14.8, LM 126, (33) HMSTG 303.7–15.2, LM 127, (34) VMF 82, Cha 25, (35) VMF 85, Cha 28 1888 P1 (1) Chamaelcon 11, HMSTG 303.7–14.8, LM 126, (33) HMSTG 303.7–15.2, LM 127, (34) VMF 82, Cha 25, (35) VMF 85, Cha 28 1888 P2 (1) VMF 64, Cha 7 1888 P3 (1) FeSt 2-156, HMSTG 303.7–15.0, LM 128, VMF 74, Cha 17 1888 P3 (1) SDN 160, HMSTG 303.8–14.2, BHR 86, LM 129, VMF 84, Cha 27 1889 P1 (1) SDN 160, HMSTG 303.8–14.2, BHR 86, LM 129, VMF 83, Cha 26 1890 (1) FeSt 1-277, HMSTG 303.8–14.2, BHR 86, LM 129, VMF 83, Cha 26 1890 (1) FeSt 1-277, HMSTG 303.8–14.2, BHR 86, LM 129, VMF 83, Cha 26 1890 (1) FeSt 2-165, HMSTG 305.6–1.5, 0 1990 (1) FeSt 2-165, HMSTG 305.6–1.5, 0 1990 P1 (1) HMSTG 305.8–1.3 1902 P1 (1) SDN 163, FeSt 2-167, HMSTG 306.5+5.0 1905 (1) FESt 1-240 1909 (1) FESt 1-240 1909 (1) FESt 1-240 1909 P2 (1) HMSTG 307.4+6.4 1909 P2 (1) HMSTG 307.4+6.5, (2) FeSt 1-243 1910 P1 (1) HMSTG 307.4+6.5, (2) FeSt 1-243 1910 P1 (1) HMSTG 306.7-4+5.3 1912 (1) HMSTG 308.0–0.2, (8) FESt 2-174, (9) HMSTG 306.2–0.3, (3) HMSTG 306.3+0.2C, (4) FESt 1-251, HMSTG 308.6–1.5, (11) HMSTG 306.5–0.9 1912 P1 (1) HMSTG 308.0–0.2 1914 P1 (1) HMSTG 308.0–0.2 1915 P1 (1) HMSTG 308.0–0.2 1915 P1 (1) HMSTG 308.0–0.2 1916 P1 (1) HMSTG 308.0–0.2 1917 P1 (1) HMSTG 308.0–0.2 1918 P1 (1) HMSTG 300.0+2.9 1919 P1 (1) HMSTG 300.0+2.9 1919 P1 (1) HMSTG 300.0+2.9 1919 P1 (1) HMSTG 300.0+2.9 1919 P1 (1) HMSTG 301.0-2+5.8 1920 (1) HMSTG 311.3+6.1 1930 (1) HMSTG 311.3+6.1 1930 (1) HMS			LM 120, (8) VMF 65, Cha 8, (9) FeSt 2-151, (10) VMF 66, Cha 9, (11) VMF 67,
$ \begin{array}{c} {\rm Cha} 12, (15) {\rm VMP} 70, {\rm Cha} 13, (16) {\rm VMP71}, {\rm Cha} 14, (17) {\rm VMP72}, {\rm Cha} 16, (21) {\rm VMF75}, {\rm Cha} 18, (22) {\rm LM} 122, (23) {\rm Fest} 1-223, {\rm IREC} 445, (24) {\rm HMSTG} 303.5-14.4, (25) {\rm LM} 123, (26) {\rm VMF76}, {\rm Cha} 19, (27) {\rm HMSTG} 303.6-14.5, {\rm LM} 124, {\rm VMF77}, {\rm Cha} 20, (28) {\rm VMF78}, {\rm Cha} 21, (29) {\rm VMF73}, {\rm Cha} 23, (20) {\rm VMF73}, {\rm Cha} 22, (30) {\rm VMF80}, {\rm Cha} 23, (31) {\rm SDN} 158, {\rm Fest} 2-155, {\rm HMSTG} 303.7-14.5, {\rm LM} 127, (34) {\rm VMF82}, {\rm Cha} 25, (30) {\rm SDN} 158, {\rm Fest} 2-155, {\rm HMSTG} 303.7-15.2, {\rm LM} 127, (34) {\rm VMF82}, {\rm Cha} 25, (30) {\rm VMF73}, {\rm Cha} 24, (2) {\rm VMF74}, {\rm Cha} 17 {\rm IMSTG} 303.3-14.3C, (2) {\rm VMF74}, {\rm Cha} 17 {\rm IMSTG} 303.7-15.0, {\rm LM} 128, {\rm VMF81}, {\rm Cha} 24, (2) {\rm VMF84}, {\rm Cha} 27 {\rm IMSTG} 303.3-14.3C, (2) {\rm VMF74}, {\rm Cha} 17 {\rm IMSTG} 303.7-15.0, {\rm LM} 128, {\rm VMF74}, {\rm Cha} 17 {\rm IMSTG} 303.7-15.0, {\rm LM} 128, {\rm VMF74}, {\rm Cha} 17 {\rm IMSTG} 303.7-15.0, {\rm LM} 128, {\rm VMF74}, {\rm Cha} 17 {\rm IMSTG} 303.7-15.0, {\rm LM} 128, {\rm VMF74}, {\rm Cha} 17 {\rm IMSTG} 303.7-15.0, {\rm LM} 128, {\rm VMF74}, {\rm Cha} 17 {\rm IMSTG} 303.7-15.0, {\rm LM} 128, {\rm VMF74}, {\rm Cha} 17 {\rm IMSTG} 305.7-15.0, {\rm LM} 128, {\rm VMF74}, {\rm Cha} 120 {\rm VMF74}, {\rm Cha} 17 {\rm IMSTG} 305.5-10 {\rm IMSTG} 305.5-1.60 {\rm IMSTG} 305.5-1.60 {\rm IMSTG} 306.5+5.0 {\rm IMSTG} 306.5+5.0 {\rm IMSTG} 306.5+5.0 {\rm IMSTG} 306.5+5.0 {\rm IMSTG} 306.2-0.3, (3) {\rm HMSTG} 306.3+0.2C, {\rm Ch} {\rm IMSTG} 306.3-0.2, {\rm IMSTG} 306.4-0.2, {\rm IMSTG} 306.3-0.02, {\rm IMSTG} 306.3-0.02, {\rm IMSTG} 306.3-0.02, {\rm IMSTG} 306.3-0.02, {\rm I$			Cha 10, (12) VMF 68, Cha 11, (13) HMSTG 303.2-13.8, (14) VMF 69,
Cha 15, (18) FeSt 1-221, (19) SDN 156, LM 121, (20) VMF 73, Cha 16, (21) VMF 75, Cha 18, (22) LM 122, (23) FeSt 1-232, IREC 445, (24) HMSTG 303.5-14.4, (25) LM 123, (26) VMF 76, Cha 19, (27) HMSTG 303.6-14.5, LM 124, VMF 77, Cha 20, (28) VMF 78, Cha 21, (29) VMF 79, Cha 22, (30) VMF 80, Cha 23, (31) SDN 158, FeSt 2-155, HMSTG 303.7-14.5, LM 125, (32) SDN 159, HMSTG 303.7-14.8, LM 126, (33) HMSTG 303.7-15.2, LM 127, (34) VMF 82, Cha 25, (35) VMF 85, Cha 28 P1 (1) Chamaeleon II, HMSTG 303.3-14.3C, (2) VMF 74, Cha 17 [888 P2 (1) VMF 64, Cha 7 [888 P3 (1) FeSt 2-156, HMSTG 303.3-14.2, BHR 86, LM 129, VMF 84, Cha 27 [888 P4 (1) SDN 153, HMSTG 303.8-14.2, BHR 86, LM 129, VMF 83, Cha 26 [890 (1) FeSt 1-27, HMSTG 303.8-14.2, BHR 86, LM 129, VMF 83, Cha 26 [890 (1) FeSt 1-27, HMSTG 303.8-14.2, BHR 86, LM 129, VMF 83, Cha 26 [890 (1) FeSt 1-27, HMSTG 305.9-1.9, VMF 54, CoS 11, (2) DBDN 305.95-1.66 [899 P1 (1) HMSTG 305.8-1.3 [900 (1) FeSt 1-240 [900 (1) HMSTG 307.1+6.5, (2) FESt 1-243 [910 (1) HMSTG 307.1+6.5, (2) FESt 1-243 [910 (1) HMSTG 308.0-0.2, (8) FEST 2-174, (9) HMSTG 306.2-0.3, (3) HMSTG 306.3+0.2C, (4) FEST 1-251, HMSTG 308.6-1.5, (11) HMSTG 308.4-0.2, (10) FEST 1-251, HMSTG 300.3+5.8, (2) FEST 1-249 [913 (1) HMSTG 306.9-0.1 [914 P1 (1) HMSTG 306.9-0.1 [915 P1 (1) HMSTG 306.9-0.2 [917 P1 (1) HMSTG 306.9-1.2 [918 P1 (1) HMSTG 306.9-1.2 [919 (1) HMSTG 30.6-2.4 [920 (1) HMSTG 30.6-2.4 [921 (1) HMSTG 30.6-2.4 [922 (1) HMSTG 30.6-2.4 [922 (1) HMSTG			Cha 12, (15) VMF 70, Cha 13, (16) VMF 71, Cha 14, (17) VMF 72,
 (21) VMF 75, Cha 18, (22) LM 122, (23) FeSt 1-223, IREC 445, (24) HMSTG 303.5-14.4, (25) LM 123, (26) VMF 76, Cha 19, (27) HMSTG 303.6-14.5, LM 124, VMF 77, Cha 20, (28) VMF 78, Cha 21, (29) VMF 79, Cha 22, (30) VMF 80, Cha 23, (31) SDN 158, FeSt 2-155, HMSTG 303.7-14.5, LM 125, (32) SDN 159, HMSTG 303.7-14.8, LM 126, (33) HMSTG 303.7-15.2, LM 127, (34) VMF 82, Cha 25, (35) VMF 85, Cha 28 P1 (1) Chamaeleon II, HMSTG 303.3-14.3C, (2) VMF 74, Cha 17 P2 (1) VMF 64, Cha 7 P3 (1) FeSt 2-156, HMSTG 303.7-15.0, LM 128, VMF 81, Cha 24, (2) VMF 84, Cha 27 P4 (1) SDN 153, HMSTG 302.9-14.1, LM 119, (2) VMF 62, Cha 5 P4 (1) SDN 160, HMSTG 305.8-14.2, BHR 86, LM 129, VMF 83, Cha 26 P1 (1) FeSt 1-257, HMSTG 305.8-13, P1 (1) FeSt 1-257, HMSTG 305.8-13, P1 (1) FeSt 1-255, HMSTG 305.9-1.9, VMF 54, CoS 11, (2) DBDN 305.95-1.66 P3 (1) FeSt 1-254, HMSTG 305.4-13, P4 (1) SDN 163, FeSt 2-167, HMSTG 306.5+5.0 (1) FeSt 1-271, (2) HMSTG 307.4+6.6 P3 (1) IFEC 451 (1) FeSt 1-271, (2) HMSTG 307.4+6.6 P3 (1) HMSTG 307.4+6.5, (2) FeSt 1-243 P4 (1) HMSTG 306.1+0.0, VMF 53, CoS 10, (2) HMSTG 306.2-0.3, (3) HMSTG 306.3+0.2C, (4) FeSt 1-239, (5) FeSt 2-169, (6) HMSTG 307.9-0.8, (7) FeSt 1-248, HMSTG 308.0-0.2, (8) FeSt 2-174, (9) HMSTG 308.4-0.2, (10) FeSt 1-251, HMSTG 308.6-1.5, (11) HMSTG 309.5-0.9 P4 (1) HMSTG 308.3+5.8, (2) FeSt 1-249 P4 (1) HMSTG 306.9-0.1 P5 (1) HMSTG 306.9-0.1 P5 (1) HMSTG 308.3+5.8, (2) FeSt 1-249 (1) FeSt 1-252, HMSTG 306.3+2.2 P4 (1) HMSTG 306.5+5.8 P4 (1) HMSTG 301.6-2.4 P5 (1) HMSTG 301.6-2.4 P5 (1) HMSTG 301.6-2.4 P5 (1) HMSTG 301.6-2.4 P5 (1) HMSTG 301.6-2.4 P6 (1) HMSTG 301.6-2.4 P1 (1) HMSTG 301.6-2.4 P1 (2) HMSTG 301.6-2.4 P1 (2) HMSTG 301.6-2.4 P1 (3) HMSTG 301.6-2.4 P2 (3) HMSTG 301.6-2.4 P3 (4) HMST			Cha 15, (18) FeSt 1-221, (19) SDN 156, LM 121, (20) VMF 73, Cha 16,
$ \begin{array}{c} (24) HMSTG 303.5-14.4, (25) LM 123, (26) VMF 76, Cha 19, (27) HMSTG 303.6-14.5, \\ LM 124, VMF 77, Cha 20, (28) VMF 78, Cha 21, (29) VMF 79, \\ Cha 22, (30) VMF 80, Cha 23, (31) SDN 158, FeSt 2-155, HMSTG 303.7-14.5, \\ LM 127, (23) VMF 82, Cha 25, (35) VMF 85, Cha 28 \\ \end{array} \right. \\ \begin{array}{c} 1M 125, (22) SDN 159, HMSTG 303.7-14.8, LM 126, (23) HMSTG 303.7-15.2, \\ LM 127, (23) VMF 82, Cha 25, (35) VMF 85, Cha 28 \\ \end{array} \right. \\ \begin{array}{c} 1M 125, (22) SDN 152, HMSTG 303.7-15.0, LM 128, VMF 81, Cha 24, (2) VMF 84, Cha 27 \\ \hline 1888 P3 & (1) Fest 2-156, HMSTG 303.7-15.0, LM 128, VMF 81, Cha 24, (2) VMF 84, Cha 27 \\ \hline 1888 P4 & (1) SDN 153, HMSTG 302.9-14.1, LM 119, (2) VMF 62, Cha 5 \\ \hline 1890 & & (1) Fest 1-27, HMSTG 303.8-1.3, LB 186, LM 129, VMF 83, Cha 26 \\ \hline 1890 & & (1) Fest 1-27, HMSTG 303.8-3.8 \\ \hline 1990 & & (1) Fest 1-27, HMSTG 305.8-1.3, LB 186, LM 129, VMF 83, Cha 26 \\ \hline 1890 & & (1) Fest 1-27, HMSTG 305.8-1.3, LB 186, LM 129, VMF 83, Cha 26 \\ \hline 1899 & P1 & (1) HMSTG 305.8-1.3 \\ \hline 1900 & & (1) Fest 2-165, HMSTG 305.9-1.9, VMF 54, CoS 11, (2) DBDN 305.95-1.66 \\ \hline 1990 & P1 & (1) HMSTG 307.1+6.5, (2) Fest 1-243 \\ \hline 1900 & & (1) Fest 1-271, (2) HMSTG 307.4+6.6 \\ \hline 1909 & P2 & (1) HMSTG 307.1+6.5, (2) Fest 1-243 \\ \hline 1900 & & (1) HMSTG 307.1+6.5, (2) Fest 1-243 \\ \hline 1910 & P1 & (1) HMSTG 308.1-4.2, (3) Fest 1-243 \\ \hline 1910 & P1 & (1) HMSTG 308.1-4.2, (9) Fest 1-243 \\ \hline 1910 & P1 & (1) HMSTG 308.0-1.2, (10) Fest 1-231, HMSTG 308.6-0.2, (10) Fest 1-324, (10) HMSTG 308.4-0.2, (10) Fest 1-321, HMSTG 308.6-0.2, (10) Fest 1-321, HMSTG 308.6-0.2, (10) Fest 1-321, HMSTG 308.6-0.2, (10) Fest 1-325, HMSTG 308.6-0.2, (10) Fest 1-326, HMSTG 308.6-0.2$			(21) VMF 75, Cha 18, (22) LM 122, (23) FeSt 1-223, IREC 445,
LM 124, VMF 77, Cha 20, (28) VMF 78, Cha 21, (29) VMF 79, Cha 22, (30) VMF 80, Cha 23, (31) SDN 158, FeSt2-155, HMSTG 303.7-14.5, LM 127, (34) VMF 82, Cha 25, (35) VMF 85, Cha 28 10 (1) Chamaeleon II, HMSTG 303.3-14.3C, (2) VMF 74, Cha 17 1888 P2 (1) VMF 64, Cha 7 10 (1) FeSt2-156, HMSTG 302.9-14.1, LM 119, (2) VMF 74, Cha 17 1888 P3 (1) FeSt2-156, HMSTG 302.9-14.1, LM 119, (2) VMF 74, Cha 24, (2) VMF 84, Cha 27 1889 P1 (1) SDN 153, HMSTG 302.9-14.1, LM 119, (2) VMF 63, Cha 26 1890 (1) FeSt1-227, HMSTG 303.8-14.2, BHR 86, LM 129, VMF 83, Cha 26 1890 (1) FeSt1-277, HMSTG 303.8-14.2, BHR 86, LM 129, VMF 83, Cha 26 1890 (1) FeSt2-156, HMSTG 303.8-14.2, BHR 86, LM 129, VMF 83, Cha 26 1890 (1) FeSt2-165, HMSTG 303.8-13, 10 (1) HMSTG 305.0-3.6, (2) FeSt2-161 1899 (1) FeSt2-165, HMSTG 305.9-1.9, VMF 54, CoS 11, (2) DBDN 305.95-1.66 1899 P1 (1) HMSTG 305.8-1.3 1902 P1 (1) SDN 163, FeSt2-167, HMSTG 306.5+5.0 1905 (1) IREC 451 1906 (1) FeSt2-171, (2) HMSTG 307.4+6.6 1909 P1 (1) HMSTG 307.4+6.4 1909 P1 (1) HMSTG 307.4+6.4 1909 P1 (1) HMSTG 307.4+6.5 1910 P1 (1) HMSTG 307.4+6.5 1910 P1 (1) HMSTG 307.4+5.3 1912 (1) HMSTG 306.4+0.0, VMF 53, CoS 10, (2) HMSTG 306.2-0.3, (3) HMSTG 306.3+0.2C, (4) FeSt1-239, (5) FeSt2-169, (6) HMSTG 307.9-0.8, (7) FeSt1-248, HMSTG 308.0-0.2, (8) FeSt2-174, (9) HMSTG 308.4-0.2, (10) FeSt1-239, LMSTG 308.6-1.5, (11) HMSTG 309.5-0.9 1912 P1 (1) HMSTG 308.0-1.2 1912 P2 (1) HMSTG 308.0-1.2 1912 P4 (1) HMSTG 308.3+5.8, (2) FeSt1-249 1913 (1) HMSTG 300.3+5.8 1914 (1) HMSTG 300.5+5.8 1915 P1 (1) HMSTG 310.5+5.8 1915 P1 (1) HMSTG 310.5+5.8 1916 P1 (1) HMSTG 310.5+5.8 1917 P1 (1) HMSTG 310.5+5.8 1920 (1) HMSTG 310.5+2.4 1921 P3 (1) HMSTG 310.5+2.8 1920 (1) HMSTG 310.5+2.8 1920 (1) HMSTG 311.5-0.18 1930 (1) HMSTG 311.5-0.18 1930 (1) HMSTG 311.5-0.18 1930 (1) HMSTG 311.7-0.3 1930 (1			(24) HMSTG 303.5–14.4, (25) LM 123, (26) VMF 76, Cha 19, (27) HMSTG 303.6–14.5,
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			LM 124, VMF77, Cha 20, (28) VMF78, Cha 21, (29) VMF79,
LM 123, (32) SDN 139, HM31G 303, -14.3 C, LM 120, (33) HM51G 305, $7-13.2$, LM 127, (34) VMF 82, Cha 23, SD VMF 85, Cha 28 1888 P1 (1) Chamaeleon II, HMSTG 303, $3-14.3$ C, (2) VMF 74, Cha 17 1888 P2 (1) VMF 64, Cha 7 1888 P4 (1) SDN 153, HMSTG 303, $7-15.0$, LM 128, VMF 81, Cha 24, (2) VMF 84, Cha 27 1889 P1 (1) SDN 160, HMSTG 303, $8-14.2$, BHR 86, LM 129, VMF 83, Cha 26 1890 (1) FeSt 1-227, HMSTG 303, $8-14.2$, BHR 86, LM 129, VMF 83, Cha 26 1890 (1) FeSt 1-27, HMSTG 303, $8-14.2$, BHR 86, LM 129, VMF 83, Cha 26 1899 P1 (1) HMSTG 305, $0-3.6$, (2) FeSt 2-161 1899 (1) FeSt 1-27, HMSTG 305, $9-1.9$, VMF 54, CoS 11, (2) DBDN 305.95-1.66 1999 P1 (1) HMSTG 305, $8-1.3$ 1902 P1 (1) HMSTG 305, $8-1.3$ 1902 P1 (1) SDN 163, FeSt 2-167, HMSTG 306, $5+5.0$ (1) FeSt 1-240 1905 (1) FeSt 1-240 1906 (1) FeSt 2-171, (2) HMSTG 307, $4+6.6$ 1909 P1 (1) HMSTG 307, $4+6.4$ 1909 P2 (1) HMSTG 307, $4+6.5$ 1910 P1 (1) HMSTG 307, $4+5.3$ 1910 P1 (1) HMSTG 307, $4+5.3$ 1910 P1 (1) HMSTG 307, $4+5.3$ 1910 P1 (1) HMSTG 307, $4+5.3$ 1911 P1 (1) HMSTG 307, $4+5.3$ 1912 P2 (1) HMSTG 307, $4+5.3$ 1912 P3 (1) HMSTG 306, $1-1.0$, (3) HMSTG 306, $2-0.3$, (3) HMSTG 306, $3+0.2C$, (4) FeSt 1-239, (5) FeSt 2-169, (6) HMSTG 307, $9-0.8$, (7) FeSt 1-248, HMSTG 308, $0-0.2$, (8) FeSt 2-169, (6) HMSTG 309, $5-0.9$ 1912 P1 (1) HMSTG 308, $0-1.2$ 1912 P1 (1) HMSTG 308, $2-0.8$ 1912 P2 (1) HMSTG 308, $2-0.8$ 1912 P3 (1) HMSTG 308, $2-0.8$ 1913 P4 (1) HMSTG 308, $3-5.8$, (2) FeSt 1-249 1915 P1 (1) HMSTG 308, $3-5.8$, (2) FeSt 1-249 1915 P1 (1) HMSTG 300, $9-2.9$ 1915 P1 (1) HMSTG 310, $5+5.8$ 1920 (1) HMSTG 310, $5+5.8$ 1920 (1) HMSTG 310, $5+5.8$ 1920 (1) HMSTG 310, $5-2.4$ 1922 (1) HMSTG 310, $5-2.4$ 1923 (1) HMSTG 311, $5-1.8$ 1924 (1) HMSTG 311, $5-21.8$ 1935 (1) FeSt 1-262 1938 (1) HMSTG 311, $7-0.3$			Cha 22, (30) VMF 80, Cha 23, (31) SDN 158, FeSt 2-155, HMSTG 303.7–14.5,
$\begin{array}{llllllllllllllllllllllllllllllllllll$			LM 125, (32) SDN 159, HMS IG 303.7–14.8, LM 126, (33) HMS IG 303.7–15.2,
 (1) Characteon II, HWSTG 303.3–18.2C, (2) VMF 47, Char 17 (1) VMF 64, Cha 7 (1) FeSt 2-156, HMSTG 303.7–15.0, LM 128, VMF 81, Cha 24, (2) VMF 84, Cha 27 (1) SDN 153, HMSTG 302.9–14.1, LM 119, (2) VMF 62, Cha 5 (1) SDN 160, HMSTG 303.8–13. (1) FeSt 1-227, HMSTG 303.8–14.2, BHR 86, LM 129, VMF 83, Cha 26 (1) FeSt 1-227, HMSTG 303.8–14.2, BHR 86, LM 129, VMF 84, Cha 27 (1) FeSt 1-227, HMSTG 303.8–3.8 (1) FeSt 1-227, HMSTG 305.9–1.9, VMF 54, CoS 11, (2) DBDN 305.95–1.66 (1) FeSt 2-165, HMSTG 305.9–1.9, VMF 54, CoS 11, (2) DBDN 305.95–1.66 (1) FESt 2-167, HMSTG 306.5+5.0 (1) IREC 451 (1) FESt 2-167, HMSTG 307.4+6.6 (1) FESt 2-171, (2) HMSTG 307.4+6.6 (1) FESt 2-171, (2) HMSTG 307.4+6.6 (2) (1) HMSTG 307.4+6.4, (2) FESt 1-243 (3) (1) HMSTG 307.4+6.4, (2) FESt 1-243 (4) FESt 1-239, (5) FESt 2-169, (6) HMSTG 306.2–0.3, (3) HMSTG 306.3+0.2C, (4) FESt 1-239, (5) FESt 2-169, (6) HMSTG 308.4–0.2, (10) FESt 1-251, HMSTG 308.6–1.5, (11) HMSTG 309.5–0.9 (1) HMSTG 306.9–0.1 (2) (1) HMSTG 308.0–1.2 (3) (1) HMSTG 308.0–1.2 (4) FEST 1-251, HMSTG 309.3+2.2 (5) FEST 1-249 (1) HMSTG 309.7–0.0 (1) HMSTG 300.0+2.9 (1) HMSTG 300.0+2.9 (1) HMSTG 300.0+2.9 (1) HMSTG 301.6–2.4 (2) (1) HMSTG 310.6–2.4 (3) (1) HMSTG 311.5–6.1 (3) (1) HMSTG 311.7–0.3 	1000	D 1	LWI 127, (54) VMF 52, Cla 25, (55) VMF 55, Cla 28 (1) Chamaeleon II, HMSTG 303.3 \cdot 14.3C (2) VME 74. Cha 17
11388 P1 (1) FMS 03.2-15.0, LM 128, VMF 81, Cha 24, (2) VMF 84, Cha 27 1888 P4 (1) SDN 153, HMSTG 302.9-14.1, LM 119, (2) VMF 62, Cha 5 1889 P1 (1) SDN 160, HMSTG 302.9-14.1, LM 119, (2) VMF 83, Cha 26 1890 (1) FeSt1-215, HMSTG 303.8-3.8 1895 P1 (1) HMSTG 305.0-3.6, (2) FeSt2-161 1899 (1) HMSTG 305.8-1.3 1902 P1 (1) SDN 163, FeSt2-167, HMSTG 306.5+5.0 1905 (1) FeSt1-217, HMSTG 307.4+6.6 1909 P1 (1) HMSTG 307.4+6.4 1909 P2 (1) HMSTG 306.1+6.5, (2) FeSt 1-243 1910 P1 (1) HMSTG 306.1+6.5, (2) FeSt 1-243 1911 (1) HMSTG 306.1+6.5, (2) FeSt 1-243 1912 (1) HMSTG 308.2-174, (9) HMSTG 306.2-0.3, (3) HMSTG 306.3+0.2C, (4) FeSt 1-251, HMSTG 308.6-1.5, (11) HMSTG 309.5-0.9 1912 P1 (1) HMSTG 308.2-0.12 1912 P1 (1) HMSTG 308.2-0.12 1912 P2 (1) HMSTG 308.2-0.2 <	1000		(1) Unaniaeteoli II, HWIS10 505.5–14.5C, (2) \sqrt{WF} /4, Clia 17 (1) VME 64. Cho 7
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1888	P 2	(1) FeSt 2-156 HMSTG 303 7-150 LM 128 VME81 Cba 24 (2) VME84 Cba 27
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1888	P4	(1) $SDN 153$ HMSTG 302 9–14.1 LM 119 (2) VMF 62 Cha 5
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1889	P1	(1) SDN 160, HMSTG 303.8 -14.2 , BHR 86, LM 129, VMF 83, Cha 26
1895 P1 (1) HMSTG 305.0-3.6, (2) FeSt2-161 1899 (1) FeSt2-165, HMSTG 305.9-1.9, VMF 54, CoS 11, (2) DBDN 305.95-1.66 1899 P1 (1) HMSTG 305.8-1.3 1902 P1 (1) SDN 163, FeSt2-167, HMSTG 306.5 + 5.0 1905 (1) REC 451 1906 (1) FeSt 1-240 1909 (1) FeSt 2-171, (2) HMSTG 307.4 + 6.6 1909 P1 (1) HMSTG 307.4 + 6.4 1909 P2 (1) HMSTG 307.4 + 5.3 1910 P1 (1) HMSTG 307.4 + 5.3 1912 (1) HMSTG 306.1 + 0.0, VMF 53, CoS 10, (2) HMSTG 306.2 - 0.3, (3) HMSTG 306.3 + 0.2C, (4) FeSt 1-239, (5) FeSt 2-169, (6) HMSTG 308.4 - 0.2, (10) FeSt 1-251, HMSTG 308.6 - 1.5, (11) HMSTG 309.5 - 0.9 1912 P1 (1) HMSTG 308.0 - 1.2 1912 P2 (1) HMSTG 306.9 - 0.1 1912 P2 (1) HMSTG 308.0 - 1.2 1912 P4 (1) HMSTG 300.3 + 5.8, (2) FeSt 1-249 1913 (1) HMSTG 310.5 + 5.8 1920 (1) HMSTG 310.5 + 5.8 1920 (1) HMSTG 310.7 - 21.0	1890		(1) FeSt 1-227. HMSTG 303.8–3.8
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1895	P 1	(1) HMSTG $305.0-3.6$, (2) FeSt 2-161
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1899		(1) FeSt 2-165, HMSTG 305.9–1.9, VMF 54, CoS 11, (2) DBDN 305.95–1.66
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1899	P 1	(1) HMSTG 305.8–1.3
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1902	P 1	(1) SDN 163, FeSt 2-167, HMSTG 306.5 + 5.0
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1905		(1) IREC 451
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1906		(1) FeSt 1-240
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1909	•••	(1) FeSt 2-171, (2) HMSTG 307.4+6.6
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1909	P 1	(1) HMSTG 307.4+6.4
1910P1(1) HMSTG 307.4 + 5.31912(1) HMSTG 306.1 + 0.0, VMF 53, CoS 10, (2) HMSTG 306.2 - 0.3, (3) HMSTG 306.3 + 0.2C, (4) Fest 1-239, (5) Fest 2-169, (6) HMSTG 307.9 - 0.8, (7) Fest 1-248, HMSTG 308.0 - 0.2, (8) Fest 2-174, (9) HMSTG 308.4 - 0.2, (10) Fest 1-251, HMSTG 308.6 - 1.5, (11) HMSTG 309.5 - 0.91912P1(1) HMSTG 308.2 - 0.81912P2(1) HMSTG 308.0 - 1.21912P4(1) HMSTG 308.0 - 1.21912P5(1) HMSTG 308.3 + 5.8, (2) FeSt 1-2491913(1) HMSTG 309.7 - 0.01913(1) HMSTG 309.3 + 2.21915P1(1) HMSTG 309.0 + 2.91919(1) HMSTG 310.5 + 5.81920(1) HMSTG 310.6 - 2.41922(1) HMSTG 311.7 - 0.31930(1) HMSTG 311.7 - 0.31930(1) HMSTG 311.7 - 0.3	1909	P 2	(1) HMSTG 307.1+6.5, (2) FeSt 1-243
1912 (1) HMSTG 306.1 + 0.0, VMF 53, CoS 10, (2) HMSTG 306.2 - 0.3, (3) HMSTG 306.3 + 0.2C, (4) Fest 1-239, (5) Fest 2-169, (6) HMSTG 307.9 - 0.8, (7) Fest 1-248, HMSTG 308.0 - 0.2, (8) Fest 2-174, (9) HMSTG 308.4 - 0.2, (10) Fest 1-251, HMSTG 308.6 - 1.5, (11) HMSTG 309.5 - 0.9 1912 P1 (1) HMSTG 308.0 - 0.2, (8) Fest 2-174, (9) HMSTG 309.5 - 0.9 1912 P1 (1) HMSTG 308.2 - 0.8 1912 P2 (1) HMSTG 306.9 - 0.1 1912 P5 (1) HMSTG 300.7 - 0.0 1913 (1) HMSTG 309.7 - 0.0 1915 (1) Fest 1-252, HMSTG 309.3 + 2.2 1915 (1) Fest 1-252, HMSTG 309.3 + 2.2 1915 P1 10 HMSTG 310.5 + 5.8 1920 (1) HMSTG 310.6 - 2.4 1922 (1) HMSTG 311.3 + 6.1 1930 (1) HMSTG 311.3 + 6.1 1936 (1) HMSTG 311.6 - 21.8 1937 (1) HMSTG 311.7 - 0.3 1938 (1) HMSTG 311.7 - 0.3	1910	P 1	(1) HMSTG 307.4+5.3
 (4) FeSt 1-239, (5) FeSt 2-169, (6) HMSTG 307.9-0.8, (7) FeSt 1-248, HMSTG 308.0-0.2, (8) FeSt 2-174, (9) HMSTG 308.4-0.2, (10) FeSt 1-251, HMSTG 308.6-1.5, (11) HMSTG 309.5-0.9 1912 P1 (1) HMSTG 308.0-1.2 1912 P4 (1) HMSTG 306.9-0.1 1912 P5 (1) HMSTG 309.7-0.0 1913 (1) HMSTG 308.3+5.8, (2) FeSt 1-249 1915 (1) FeSt 1-252, HMSTG 309.3+2.2 1915 P1 (1) HMSTG 310.5+5.8 1920 (1) HMSTG 310.6-2.4 1922 (1) HMSTG 310.6-2.4 1920 (1) HMSTG 310.7-21.0 1930 (1) HMSTG 311.3+6.1 1936 (1) HMSTG 311.3-6.1 1937 (1) FeSt 1-262 1938 (1) HMSTG 311.7-0.3 1930 (1) FeSt 1-263 	1912		(1) HMSTG 306.1+0.0, VMF 53, CoS 10, (2) HMSTG 306.2–0.3, (3) HMSTG 306.3+0.2C,
HMS IG $308.0-0.2$, (8) FeSt 2-174, (9) HMS IG $308.4-0.2$, (10) FeSt 1-251, HMSTG $308.6-1.5$, (11) HMSTG $309.5-0.9$ 1912 P1 (1) HMSTG $308.0-1.2$ 1912 P4 (1) HMSTG $306.9-0.1$ 1912 P5 (1) HMSTG $309.7-0.0$ 1913 (1) HMSTG $309.7-0.0$ 1913 (1) HMSTG $308.3+5.8$, (2) FeSt 1-249 1915 (1) FeSt 1-252, HMSTG $309.3+2.2$ 1915 P1 (1) HMSTG $309.0+2.9$ 1919 (1) HMSTG $310.5+5.8$ 1920 (1) HMSTG $310.6-2.4$ 1922 (1) HMSTG $310.7-21.0$ 1930 (1) HMSTG $311.3+6.1$ 1936 (1) HMSTG $311.3+6.1$ 1937 (1) FeSt 1-262 1938 (1) HMSTG $311.7-0.3$ 1939 (1) FeSt 1-263			(4) FeSt 1-239, (5) FeSt 2-169, (6) HMSTG $307.9-0.8$, (7) FeSt 1-248,
1912 P1 (1) HMSTG 308.2–0.8 1912 P2 (1) HMSTG 308.0–1.2 1912 P4 (1) HMSTG 306.9–0.1 1912 P5 (1) HMSTG 309.7–0.0 1913 (1) HMSTG 308.3+5.8, (2) FeSt 1-249 1915 (1) FeSt 1-252, HMSTG 309.3+2.2 1915 P1 (1) HMSTG 310.5+5.8 1920 (1) HMSTG 310.6–2.4 1922 (1) HMSTG 310.7–21.0 1936 (1) HMSTG 311.6–21.8 1937 (1) FeSt 1-262 1938 (1) HMSTG 311.7–0.3			HMS1G $308.0-0.2$, (8) FeSt 2-1/4, (9) HMS1G $308.4-0.2$, (10) E ₂ St 1 251 HMSTC 208.6 15 (11) HMSTC 200.5 0.0
1912 P1 (1) HMSTG 308.2=0.6 1912 P2 (1) HMSTG 308.0=1.2 1912 P4 (1) HMSTG 306.9=0.1 1912 P5 (1) HMSTG 309.7=0.0 1913 (1) HMSTG 309.7=0.0 1913 (1) HMSTG 309.7=0.0 1915 (1) HMSTG 309.3=2.2 1915 P1 (1) HMSTG 309.0=2.9 1919 (1) HMSTG 310.5=5.8 1920 (1) HMSTG 310.6=2.4 1922 (1) HMSTG 310.7=21.0 1930 (1) HMSTG 311.3=6.1 1936 (1) HMSTG 311.6=21.8 1937 (1) FeSt 1=262 1938 (1) HMSTG 311.7=0.3 1939 (1) HMSTG 311.7=0.3	1012	D 1	(10) FeSt 1-251, HMS1G 508.0 -1.3 , (11) HMS1G 509.3 -0.9 (1) HMSTG 208.2 -0.8
1912 12 (1) HMSTG 306.9-0.1 1912 $P5$ (1) HMSTG 309.7-0.0 1913 (1) HMSTG 308.3 + 5.8, (2) FeSt 1-249 1915 (1) FeSt 1-252, HMSTG 309.3 + 2.2 1915 P1 (1) HMSTG 309.0 + 2.9 1919 (1) HMSTG 310.5 + 5.8 1920 (1) HMSTG 310.6-2.4 1922 (1) HMSTG 310.7-21.0 1930 (1) HMSTG 311.3 + 6.1 1936 (1) HMSTG 311.6-21.8 1937 (1) HMSTG 311.7-0.3 1938 (1) HMSTG 311.7-0.3	1912	\mathbf{P}_{2}	(1) HMSTG $308.0-1.2$
1912 P 5 (1) HMSTG 309.7 - 0.0 1913 (1) HMSTG 308.3 + 5.8, (2) FeSt 1-249 1915 (1) FeSt 1-252, HMSTG 309.3 + 2.2 1915 P1 (1) HMSTG 309.0 + 2.9 1919 (1) HMSTG 310.5 + 5.8 1920 (1) HMSTG 310.6 - 2.4 1922 (1) HMSTG 310.7 - 21.0 1930 (1) HMSTG 311.3 + 6.1 1936 (1) HMSTG 311.6 - 21.8 1937 (1) FeSt 1-262 1938 (1) HMSTG 311.7 - 0.3 1939 (1) FeSt 1-263	1912	Г <u>2</u> Р <u>4</u>	(1) HMSTG $306.0-1.2$ (1) HMSTG $306.0-0.1$
1912 1 0 (1) HMSTG 308.3 + 5.8, (2) FeSt 1-249 1913 (1) FeSt 1-252, HMSTG 309.3 + 2.2 1915 (1) FeSt 1-252, HMSTG 309.3 + 2.2 1915 P1 1917 (1) HMSTG 310.5 + 5.8 1920 (1) HMSTG 310.6 - 2.4 1922 (1) HMSTG 310.7 - 21.0 1930 (1) HMSTG 311.3 + 6.1 1936 (1) HMSTG 311.6 - 21.8 1937 (1) FeSt 1-262 1938 (1) HMSTG 311.7 - 0.3 1939 (1) FeSt 1-263	1912	P 5	(1) HMSTG $309.7-0.0$
1915 (1) FeSt 1-252, HMSTG 309.3 + 2.2 1915 P1 (1) HMSTG 309.0 + 2.9 1919 (1) HMSTG 310.5 + 5.8 1920 (1) HMSTG 310.6 - 2.4 1922 (1) HMSTG 310.7 - 21.0 1930 (1) HMSTG 311.3 + 6.1 1936 (1) HMSTG 311.6 - 21.8 1937 (1) FeSt 1-262 1938 (1) HMSTG 311.7 - 0.3 1939 (1) FeSt 1-263	1912		(1) HMSTG $308.3 + 5.8$, (2) FeSt 1-249
1915 P1 (1) HMSTG $309.0 + 2.9$ 1919 (1) HMSTG $310.5 + 5.8$ 1920 (1) HMSTG $310.6 - 2.4$ 1922 (1) HMSTG $310.7 - 21.0$ 1930 (1) HMSTG $311.3 + 6.1$ 1936 (1) HMSTG $311.6 - 21.8$ 1937 (1) Fest 1-262 1938 (1) HMSTG $311.7 - 0.3$	1915		(1) FeSt 1-252, HMSTG 309.3 + 2.2
1919 (1) HMSTG 310.5 + 5.8 1920 (1) HMSTG 310.6 - 2.4 1922 (1) HMSTG 310.7 - 21.0 1930 (1) HMSTG 311.3 + 6.1 1936 (1) HMSTG 311.6 - 21.8 1937 (1) Fest 1-262 1938 (1) HMSTG 311.7 - 0.3 1939 (1) Fest 1-263	1915	P 1	(1) HMSTG 309.0+2.9
1920 (1) HMSTG 310.6-2.4 1922 (1) HMSTG 310.7-21.0 1930 (1) HMSTG 311.3 + 6.1 1936 (1) HMSTG 311.6-21.8 1937 (1) Fest 1-262 1938 (1) HMSTG 311.7-0.3 1939 (1) Fest 1-263	1919		(1) HMSTG 310.5 + 5.8
1922 (1) HMSTG 310.7-21.0 1930 (1) HMSTG 311.3+6.1 1936 (1) HMSTG 311.6-21.8 1937 (1) FeSt 1-262 1938 (1) HMSTG 311.7-0.3 1939 (1) FeSt 1-263	1920		(1) HMSTG 310.6–2.4
1930 (1) HMSTG 311.3 + 6.1 1936 (1) HMSTG 311.6 - 21.8 1937 (1) FeSt 1-262 1938 (1) HMSTG 311.7 - 0.3 1939 (1) FeSt 1-263	1922		(1) HMSTG 310.7–21.0
1936 (1) HMSTG 311.6-21.8 1937 (1) FeSt 1-262 1938 (1) HMSTG 311.7-0.3 1939 (1) FeSt 1-263	1930	•••	(1) HMSTG 311.3+6.1
1937 (1) FeSt 1-262 1938 (1) HMSTG 311.7-0.3 1939 (1) FeSt 1-263	1936	•••	(1) HMSTG 311.6–21.8
$\begin{array}{cccc} 1938 & \dots & (1) \text{ HMSTG } 311.7 - 0.3 \\ 1939 & & (1) \text{ FeSt } 1_263 \end{array}$	1937		(1) FeSt 1-262
1039 (1) FeNt L-263	1938	•••	(1) HMSTG 311.7–0.3 (1) F 3: 1 262
1337 (1) 103(1-203	1939	•••	(1) FeSt 1-263
1940 (1) HMSTG 311.9+8.4	1940	· · ·	(1) HMSTG 311.9+8.4 (1) HMSTG 312.5 - 22.6
$1942 P I \qquad (1) HMS1G 312.5 - 22.0$ $1045 \qquad (1) IDEC 456 DID 212 29 (2) HMSTC 212 1 - 29.7$	1942 1045	РI	(1) HMS1G 512.5–22.0 (1) IDEC 456 DID 212 28 (2) HMSTC 212 1 28 7
1945 (1) IKEU 430, DIK 313-28, (2) HIVIS IU 315.1 -28.7 1048 (1) EaSt 1.260	1945 1049	•••	(1) IKEC 430, DIK 513-28, (2) HIVIS IG 515.1 -28.7 (1) EaSt 1 260
1948 P1 (1) HMSTG 313 $3-0.3$ (2) FeSt 2-179	1948	 Р1	(1) HMSTG 313 $3-0.3$ (2) FeSt 2-179

Cloud	Clump	Associated clouds
name	name	
1950		(1) HMSTG 313.6+3.7, (2) SDN 164, FeSt 2-180, HMSTG 313.7+3.5
1950	P 1	(1) HMSTG 313.6+3.6C
1954		(1) HMSTG 314.0-22.3, (2) HMSTG 314.0-22.3C
1959		(1) FeSt 1-273
1959	P 1	(1) SDN 165, BDN 314.79–5.12, FeSt 2-181, HMSTG 314.8–5.1, BHR 88, LM 131 rel RN
1961	P 1	(1) HMSTG 315.1–29.0
1967	•••	(1) FeSt 1-277
1969	•••	(1) HMSTG 316.0+4.9, (2) HMSTG 316.1+4.7, (3) FeSt 1-278, (4) HMSTG 316.3+4.9, BHR 91
1969	P 1	(1) SDN 167, HMSTG 316.2+5.1, FeSt 2-185, LM 130
1970	P 1	(1) CG 12 DN, BDN 316.46+21.13, HMSTG 316.5+21.2, KM 316.5+21.0 rel RN,
		(2) CG 12 Head DN, BHR 92
1972	P 1	(1) SDN 168
1974	P 1	(1) HMSTG 317.2+6.1
1975	P 1	(1) HMSTG 317.3 + 3.1
1976	P 1	(1) HMSTG 317.9+7.1
1978		(1) FeSt 1-279, (2) HMSTG 316.5-4.0, BHR 93, (3) HMSTG 316.7-4.7, (4) HMSTG 316.8-3.6,
		(5) HMSTG 316.9-4.5, (6) HMSTG 316.9-4.9, BHR 94,
		(7) FeSt 1-282, HMSTG 316.9-5.4, (8) HMSTG 317.0-4.6, BHR 96, (9) SDN 171,
		FeSt 2-187, HMSTG 317.0-4.1, (10) HMSTG 317.1-4.3, (11) HMSTG 317.1-2.6,
		(12) HMSTG 317.2–5.1, (13) FeSt 2-188, (14) FeSt 1-284,
		(15) HMSTG 317.3-4.8, (16) G 317-4 CO Complex, Circinus DN Complex,
		(17) FeSt 1-286, (18) HMSTG 318.8-4.4, (19) FeSt 1-289,
		(20) HMSTG 319.3–3.5
1978	P 1	(1) HMSTG 318.2–4.3C, (2) SDN 172, FeSt 1-288
1978	P 2	(1) SDN 169, HMSTG 316.9–3.8
1978	P 3	(1) FeSt 2-186, (2) SDN 170
1978	P4	(1) SDN 166, FeSt 2-184, (2) HMSTG 316.0–4.0
1978	P 6	(1) FeSt 2-182, (2) HMSTG 315.7–3.1
1978	P 8	(1) HMSTG 316.6–5.2
1978	P11	(1) HMSTG 316.1–3.1
1978	P12	(1) HMSTG 319.6–4.4
1979		(1) HMSTG 319.2+1.6
1981		(1) FeSt 1-292, HMSTG 319.4+2.2
1982	P 1	(1) FeSt 2-191, (2) FeSt 1-293, HMSTG 319.8+1.6
1983		(1) HMSTG 320.7–4.4
1984	P 1	(1) SDN 173, HMSTG 320.7–3.6
1984	P 2	(1) HMSTG 321.0–3.8
1985		(1) HMSTG 321.0–4.7
1986	ΡI	(1) HMSTG $321.1 + 1.3$
1989		(1) HMSTG $321.9-3.7$
1992	ΡI	(1) FeSt 1-301
1993	· · ·	(1) HMS1G 321.9–4.6 (1) HMSTEG 222.2 4.5
1993	ΡI	(1) HMS1G 322.2–4.5 (1) HMSTG 222.0–2.7
1997	· · ·	(1) HMS1G 323.0–2.7 (1) E $S(1, 200)$ E $S(1, 200)$ HMCTC 2022 F $(2, 6)$ E $S(2, 100)$
2000	P 1	(1) FEST 1-300, FEST 1-303, HMS 1 \cup 323./+3.0, (2) FEST 2-198 (1) East 1-207, HMSTC 224.1 + 8.5
2001	•••	(1) FEST 1-3U/, HNISTG 324.1+8.3 (1) HIMSTG 225.2 + 5.9 DHD 107 (2) HIMSTG 225.0 + 5.0 DHD 100
2004	 П 1	(1) HNIS I U 323.2 ± 3.8 , BHK $10/$, (2) HNIS I U 323.9 ± 3.9 , BHK 108 (1) SDN 175, LIMSTC 225, 5 + 5 9, (2) E-S+2, 201
2004	ΡI	(1) SUN 1/3, HMS1G 323.3 + 3.8, (2) FeSt 2-201 (1) UMSTC 210.0 -2.2 (2) E-S+2.102 (2) UMSTC 220.1 -1.5 (4) UMSTC 220.2 $+0.4$
2006	•••	(1) INIT US19.9–2.2, (2) FERT 2-192, (3) HIME IU 520.1–1.5, (4) HIME IU 520.2+0.4, (5) SDN 174 East 2-106 HIMSTC 221.6 \pm 1.0 (6) HIMSTC 221.8 \pm 1.0
		(3) $5U$ 1/4, $FCSL 2-190$, $\Pi VIS 1G 521.0 - 1.9$, (0) $\Pi VIS 1G 521.0 - 1.9$, (7) $E_2St 1.200$, (8) $E_2St 1.208$, (0) $E_2St 1.211$
		(1) FEBI 1-300, (0) FEBI 1-300, (9) FEBI 1-311

Table 8.	(Continued.)

Cloud	Clump	Associated clouds
name	name	
2006	P 2	(1) HMSTG 321.8–0.7
2006	P 3	(1) HMSTG 318.2-0.6, (2) HMSTG 318.3-0.7
2006	P4	(1) HMSTG 320.40
2006	P 5	(1) HMSTG 317.8-1.1, (2) HMSTG 317.9-1.3
2006	P 6	(1) HMSTG 326.0-0.9
2006	P7	(1) HMSTG 326.4–0.1
2006	P11	(1) HMSTG 323.1–1.0, (2) FeSt 1-302
2006	P12	(1) FeSt 2-203, HMSTG 326.7+0.6
2006	P 14	(1) HMSTG 319.9–1.8
2006	P 15	(1) FeSt 1-299
2006	P 18	(1) HMSTG 325.3-0.3, (2) FeSt 2-199
2006	P 25	(1) FeSt 2-200, HMSTG 325.4+0.2
2007		(1) FeSt 2-202, HMSTG 326.5+6.0
2009		(1) HMSTG 326.8+5.6, BHR 109, (2) SDN 176, HMSTG 326.9+5.5, BHR 110
2010	P 1	(1) HMSTG 326.9–1.6
2016		(1) HMSTG 328.3–0.0
2019		(1) FeSt 1-314
2022		(1) HMSTG 329.6–0.5, (2) HMSTG 330.0+0.2, (3) HMSTG 330.5–0.4, (4) HMSTG 331.7+1.7,
		(5) FeSt 1-316, (6) FeSt 2-212, (7) FeSt 1-327, (8) FeSt 1-333
2022	P 2	(1) SDN 180, HMSTG 335.3+3.7
2022	P 5	(1) FeSt 2-218, LM 168, (2) SLDN 8, FeSt 1-339, HMSTG 336.9+5.1
2022	P17	(1) HMSTG 331.7+0.7
2022	P 19	(1) HMSTG 333.1+5.5
2030	P 1	(1) HMSTG 331.7+7.0
2033	P 1	(1) HMSTG $333.7 + 0.5$
2036	P 1	(1) HMSTG 334.2+11.3
2036	P 2	(1) HMSTG 334.7 + 11.9
2038	P 1	(1) FeSt 1-321, HMSTG 334.4 + 18.1
2042	P 1	(1) SDN 179, FeSt 2-213, HMSTG 334.6+4.6, BHR 117, LM 158
2044		(1) FeSt 1-324
2045		(1) FeSt 1-326
2045	P 1	(1) HMSTG 335.1+0.2
2051		(1) FeSt 1-320, (2) HMSTG 334.6–1.4, BHR 118, (3) HMSTG 334.7–1.6, (4) HMSTG 335.0–2.1C,
		(5) HMSTG 335.0–1.5, (6) HMSTG 335.1–2.8, (7) HMSTG 335.2–1.0,
		(8) FeSt 1-332, (9) SDN 183, HMSTG 336.2–3.6, (10) HMSTG 336.2–1.0,
		(11) SDN 182, HMSTG 336.3–1.2, (12) HMSTG 336.4–1.5,
		(13) FeSt 1-335, (14) SDN 184, (15) HMSTG 336.6-0.6, (16) HMSTG 336.7-2.3,
		(17) FeSt 1-337, (18) HMSTG 336.9-1.7, (19) HMSTG 337.3-2.0,
		(20) HMSTG 337.6-1.9, (21) HMSTG 338.0-1.7, (22) HMSTG 338.0-2.0C
2051	P 1	(1) HMSTG 335.7–2.7, (2) HMSTG 336.0–3.1
2051	P 2	(1) FeSt 2-214, (2) HMSTG 334.7-1.0
2051	P 3	(1) HMSTG 336.5–1.9C
2051	P 5	(1) HMSTG 338.3–2.0
2051	P 8	(1) HMSTG 337.1-0.8, (2) HMSTG 337.1-0.4
2051	P 10	(1) HMSTG 338.6–1.9
2051	P 11	(1) HMSTG 336.8-3.1
2051	P 15	(1) HMSTG 336.6+0.2
2051	P 16	(1) HMSTG 336.3–0.3
2051	P 17	(1) HMSTG 337.8–1.6, BHR 123
2052	P 1	(1) SDN 181, FeSt 2-216, HMSTG 335.9+7.0, BHR 119
2053		(1) HMSTG 336.0+4.9
2055		(1) HMSTG 336.1+19.6C

K. Dobashi et al.

Table 8.	(Continued.)
----------	--------------

Cloud	Clump	Associated clouds
name	name	
2058	P 2	(1) HMSTG 336.4 + 14.8
2059		(1) HMSTG 336.6+19.8
2059	P 1	(1) FeSt 1-336
2061	P 2	(1) HMSTG 335.9+11.3
2062		(1) HMSTG 336.7 + 16.9
2063		(1) HMSTG 335.9 + 7.9. (2) HMSTG 336.0 + 8.1. Lu 22. (3) Lu 24. (4) HMSTG 336.4 + 8.2.
		LM 154, Lu 23, (5) HMSTG 336.6+7.8, (6) HMSTG 336.7+7.8.
		BHR 120. (7) Lupus IV. (8) HMSTG 336.9+8.3. LM 156. Lu 25. (9) Lu 26.
		(10) HMSTG 336.9 + 7.8. (11) FeSt 2-221. (12) L_{μ} 27. (13) SLDN 9.
		HMSTG 337 $6 + 7.6$ (14) LM 160 Lu 28
2063	P1	(1) SLDN 7 HMSTG 336 $7 + 8.2$ LM 155
2063	P 3	(1) SLDN 6, HMSTG 335 $6+82$ (2) LM 151
2003	P4	(1) HMSTG $3373 + 77$
2005	Р1	(1) FeSt 2-217 HMSTG 337 0 ± 9 2
2005	1 1	(1) $FeSt = 2.217$, $FeSt = 3.40$,
2000	•••	(1) $HMSTC 227.0 \pm 14.5$
2008	•••	(1) HIVE I U 57.0 ± 14.5 (1) EaSt 1 241 (2) HMSTC 227.6 ± 16.4 (2) EaSt 2 224 (4) LM 124 Ly 4
2072	•••	(1) $Fest F-541$, (2) $FHMSTO 557.0 \pm 10.4$, (5) $Fest 2-224$, (4) $EW F54$, $Eu 4$, (5) $HMSTG 338.2 \pm 16.4$
2072	P 1	(1) HMSTG 337.9 + 16.4 (2) FeSt 1-342 HMSTG 337.9 + 16.4C (3) I M 133 I μ 1
2072	1 1	(1) Π (1) Π (2) Π (2) Π (2) Π (2) Π (3)
2075		(1) FeSt 2-227 J μ 29 (2) FeSt 1-348
2075	 Р1	(1) HMSTG 338 5+9 7 (2) HMSTG 338 6+9 5 BHR 126 $I M 157$
2075	P2	(1) HMSTG 338 0 ± 0.5
2075	1 2	(1) $SDN 188 HMSTG 3387 \pm 1.8 I M 186$
2070	 Р1	(1) SDN 187, HMSTG 338, 6 ± 2.0 , N 11
2070	1 1	(1) HMSTG 330 1 \pm 11 7 Δ BHR 128 I M 152 I μ 10 (2) HMSTG 330 1 \pm 11 7
2077	•••	(1) HMSTG 339.1 \pm 11.7A, BHR 120, EW 152, Eu 19, (2) HWSTG 359.1 \pm 11.7, (3) HMSTG 339.1 \pm 11.7B, BHR 120, HMSTG 339.1 \pm 11.7.2 I M 153 in HMSTG 339.1 \pm 11.7 I unus II
2077	P 1	(1) I_{11} 16 (2) HMSTG 338 6±11 0-1 I_{11} M 1/0 (3) I_{11} 17 (4) SI DN 11 HMSTG 338 6±11 0
2011	1 1	RHR 127 I M 150 (5) Lunus II (6) Lu 18
2077	P7	(1) HMSTG 338 5 ± 12.1 J μ 15
2077	1 2	(1) HMSTG 338 7 \pm 15 6 J μ 11
2078	•••	(1) HIVISTO 556.7 \pm 15.0, Eu 11 (1) Lupus L (2) LM 1/45 Lu 12 (3) Lu 7 (4) HMSTG 338 8 \pm 16 5 (5) B 228
2017	•••	$(1) Eupus 1, (2) EW 145, EU 15, (3) EU 7, (4) HWSTO 550.0 + 10.5, (5) E 220, \\HMSTG 338 8 + 16 5 C (6) HMSTG 338 0 + 15 1 (7) Lu 3 (8) HMSTG 338 8 + 16 5 6$
		I M 13 10 330.0 + 10.5C, (0) II M 5 10 330.5 + 15.1, (7) Ed 3, (0) II M 5 10 330.0 + 10.5-0, I M 140 I H 0 (0) I H 6 (10) I H 5 (11) HMSTG 338 8 + 16 5 2
		$LM 126$ (12) $LMSTG 230.0 \pm 15.8$ L $_{11}$ (12) $EaSt 1.240$ (14) $EaSt 2.228$
		(15) HMSTG 338 8+16 5 3 L $_{12}$ 8 L M 137 (16) L M 1/3
		(17) $RDN 320 15 \pm 15.05$ HMSTG 320 2 ± 16.1 (18) HMSTG 320 2 ± 16.1 2
		(17) DD1 (35) .15 + 15.55, 110 5 10 (35) .2 + 10.1, (10) 110 5 10 (35) .2 + 10.1-2,
2070	D 1	(1) SUDN 12 I M 138 (2) HMSTG 338 8 ± 1655 I M 130
2079	\mathbf{p}_{2}	(1) SEDIV 12, EW 156, (2) THV510 556.6 \pm 10.5-5, EW 159 (1) HMSTG 338 7 \pm 17 5
2079	Г 2 D 3	(1) HMSTG 330.7 + 17.3 (1) HMSTG 320.2 + 16.1.1 LM 1/1 L $_{12}$ 10. (2) SLDN 13. (2) HMSTG 320.2 + 16.1.4
2019	15	(1) This is 353.2 ± 10.1^{-1} , EW 141, Eu 10, (2) SEDIN 15, (5) This is 353.2 ± 10.1^{-4} ,
2070	D /	(1) $HMSTC 230.1 + 14.5$
2079	Г 4 D 5	(1) HMSTG 220.0 \pm 15.0 J M 146 J \pm 14. (2) HMSTG 220.1 \pm 15.4
2079		(1) Π M 5 1 G 559.0 + 15.0, Π M 140, Π M 14, (2) Π M 5 1 G 559.1 + 15.4 (1) Π M 180, Π M 87 C 220.0 + 0.4
2080	ΡI	(1) $SDN 109$, $\Pi N 5 10 539.0 \pm 0.4$ (1) $ID ASTC 220.0 \pm 2.1$
2081	 D 1	(1) $\Pi N 0 1 0 339.0 + 3.1$ (1) $\Pi N 0 (2) \Pi M STG 220.6 + 11.5$
2085	ΡI	(1) Lu 20, (2) Π M 150 Lu 20, (2) Π M STC 220 4 + 0.5 (4) Lu 21 (5) LM 161
2084	•••	(1) Lu 32, (2) LW 139, LU 30, (3) HW 51G 339.4+9.3, (4) LU 31, (5) LW 161, (6) LW 162, (7) LW 162, Lu 22, (9) LW 165, Lu 24, (0) LW 167, Lu 25,
		(0) LIVI 105, (7) LIVI 102, LU 55, (8) LIVI 105, LU 54, (9) LIVI 107, LU 55, (10) LIVI 107, LU 55, (11) LIVI 107, LU 55, (240.2) \cdot 0.0
2094	D 1	(10) LIVI 100, LU 30, (11) HIVISTG 340.2 ± 9.0 (1) DDN 220 (2 + 0.25 (2) Lemma III (2) SLDN 14 JDASTEC 220 7 + 0.2
2084	P 1	(1) БЛИ 559.02 + 9.25, (2) LUPUS III, (3) SLDN 14, HMS1G 359.7 + 9.2 (1) БЛИ 2 220, (2) LDASTG 240 4 - (1, (2) LDASTG 240 4 - (5, 5, 5) LD 122, (4) Б. 8+2, 222
2085	•••	(1) FeSt 2-230, (2) HMS 1G 340.4 + 0.1, (3) HMS TG 340.4 + 5.5, BHR 132, (4) FeSt 2-233,

junit name (5) HMSTG 340.6+6.6, (6) HMSTG 340.6+6.4, (7) FeSt 2-236, (8) FeSt 1-357, (9) SLDN 16, HMSTG 341.2+6.5, LM 170, (10) FeSt 1-361, (11) FeSt 2-247 (10) HMSTG 340.0+6.0 (11) HMSTG 341.1+6.2 2085 P2 (1) HMSTG 341.1+6.2 2085 P3 (1) HMSTG 340.1+6.6 2085 P4 (1) HMSTG 340.7+6.6 2085 P11 (1) HMSTG 342.1+5.9C 2085 P13 (1) HMSTG 342.5+6.4 2085 P14 (1) HMSTG 340.5+5.6 2085 P15 (1) HMSTG 340.5+5.6 2085 P16 (1) HMSTG 340.6+9.0 2092 P1 (1) FeSt1-351 2092 P1 (1) FeSt1-360, HMSTG 340.5+2.3 2092 P1 (1) HMSTG 340.6+9.0 2092 P1 (1) HMSTG 340.2+4.3 2092 P2 (1) HMSTG 341.1+3.1, (0) FeSt2-237, (1) HMSTG 340.5+2.3 2092 P1 (1) HMSTG 340.2+4.3 2092 P5 (1) HMSTG 341.3+3.9 2093 P1 (1) HMSTG 341.3+3.9 2093 P1 (1) HMSTG 342.2+5.7	Cloud	Clump	Associated clouds
$ \begin{array}{c} (5) \mbox{HMSTG} 340.6+6.6, (6) \mbox{HMSTG} 340.6+6.4, (7) \mbox{FG} 12-236, (8) \mbox{FG} 1-361, (11) \mbox{FG} 132.247 \mbox{FG} 14, 11) \mbox{FG} 1341.1+6.2 \mbox{HMSTG} 341.1+6.2 \mbox{HMSTG} 341.1+6.2 \mbox{HMSTG} 341.1+6.2 \mbox{HMSTG} 342.1+7.1, \mbox{LM} 164 \mbox{HMSTG} 340.7+7.5, \mbox{HMSTG} 340.7+7.4, \mbox{HMSTG} 340.7+2.2, \mbox{HMSTG} 340.7+2.3, \mbo$	name	name	
(a) FeSt1-357, (b) SLDN 16, HMSTG 341.2+6.5, LM 170, (10) FeSt 1-361, (11) FeSt2-247 (1) HMSTG 341.1+6.2 (2085 P2 (1) HMSTG 341.1+6.2 (2085 P4 (1) HMSTG 340.1+6.0 (2085 P4 (1) HMSTG 342.1+5.9C (2085 P1 (1) HMSTG 342.5+5.6 (2085 P1 (1) HMSTG 340.5+5.6 (2086 P1 (1) FeSt1-351 (1) HMSTG 340.6+5.6 (2092 P1 (1) FeSt1-351 (2092 P1 (1) FeSt1-351 (2092 P2 (1) HMSTG 340.5+5.6 (2092 P1 (1) FeSt1-351 (2092 P2 (1) HMSTG 340.5+5.6 (2092 P1 (1) FeSt1-351 (2092 P2 (1) HMSTG 340.5+2.237, (7) HMSTG 340.8+3.3, (4) FeSt1-356, (5) HMSTG 341.0+3.1, (6) FeSt2-237, (6) FeSt1-364, (4) FeSt1-356, (5) HMSTG 341.0+3.1, (6) FeSt2-237, (7) HMSTG 340.8+3.3, (4) FeSt1-356, (7) (1) FeSt1-360, HMSTG 340.5-0.8, (2) HMSTG 330.5-2.8, (3) FeSt1-352, (4) FeSt1-359, HMSTG 341.0+3.1, (6) FeSt2-237, (10) FMSTG 343.3-3.8, (1) FeSt2-248, (12) FeSt2-250, (13) FeSt1-373, (14) FeSt1-354, (4) FeSt1-359, HMSTG 344.6-4.3, BHR 137, Sec2 (2003 P1 (1) HMSTG 343.2-2.3, (2003 P1 (1) HMSTG 343.2-2.3, (2004 P1 (1) HMSTG 342.2-4.1, (2005 P1 (1) HMSTG 342.2-4.1, (2005 P1 (1) HMSTG 342.2-4.3, (2005 P1 (1) HMSTG 342.2-4.3, (2005 P1 (1) HMSTG 342.2-4.3, (2005 P1 (1) HMSTG 342.2-4.3, (2005 P1 (1) HMSTG 342.2-4.3, (2007 P1 (1) HMSTG 342.4-4.3, (2007 P1 (1			(5) HMSTG 340 6+66 (6) HMSTG 340 6+64 (7) FeSt 2-236
$ \begin{array}{c} (1) \ [\mbox{FS}12,247 \\ (1) \ [\mbox{HMSTG}340,0+6.0 \\ (2) \ [\mbox{HMSTG}341,1+6.2 \\ (2) \ [\mbox{HMSTG}341,1+6.2 \\ (2) \ [\mbox{HMSTG}341,1+6.2 \\ (2) \ [\mbox{HMSTG}341,1+5.0 \\ (2) \ [\mbox{HMSTG}342,1+5.9 \\ (2) \ [\mbox{HMSTG}342,1+5.9 \\ (2) \ [\mbox{HMSTG}341,1+5.9 \\ (2) \ [\mbox{HMSTG}341,1+5.3 \\ (2) \ [\mbox{HMSTG}342,2-5.0 \\ (3) \ [\mbox{HMSTG}342,2-5.0 \\ (4) \ [\mbox{HMSTG}342,2-5.0 \\ (5) \ [\mbox{HMSTG}342,2-5.0 $			(8) FeSt 1-357, (9) SLDN 16, HMSTG 341.2 ± 6.5 , LM 170, (10) FeSt 1-361.
2085 P1 (1) FINSTG 340.0+6.0 2085 P2 (1) HMSTG 341.1+6.2 2085 P3 (1) SLDN 10, HMSTG 338.1+7.1, LM 164 2085 P4 (1) HMSTG 342.1+5.9C 2085 P1 (1) HMSTG 340.3+5.5 2085 P12 (1) HMSTG 340.3+5.5 2085 P13 (1) HMSTG 340.3+5.6 2085 P14 (1) HMSTG 340.5+5.6 2086 P1 (1) FeSt1-351 2087 P14 (1) FeSt1 230.6+5.6 2088 P11 (1) HMSTG 340.6+9.0 2092 (1) FeSt1 230.6+5.6 2092 P1 (1) FeSt1 361 2092 P1 (1) HMSTG 340.2+4.5 2092 P2 (1) HMSTG 340.2+4.5 2092 P3 (1) HMSTG 340.7-24.7, (2) FeSt1-376, (1) HMSTG 343.3-3.8, (1) FeSt1-356, (8) HMSTG 343.0-7-2.4, (2) FeSt1-376, (1) FeSt1-365, (8) HMSTG 340.7-2.4, (2) FeSt2-250, (3) FeSt1-376, (4) FeSt1-355, (4) FeSt 1-359, HMSTG 340.7-2.4, (2) FeSt2-250, (3) FeSt1-376, (4) FeSt 1-356, (8) HMSTG 342.2+8, (2) FeSt2-250, (3) FeSt1-376, (4) FeSt 1-356, (8) HMSTG 343.2-7.3, (1) FMSTG 343.2-7.3, (1) FMSTG 343.2-7.3, (1) FMSTG 343.2-7.3, (1) FMSTG 343.2-7.3, (2) FESt2-257, (3) HMSTG 342.2+8, (2) FESt2-257, (3) FMSTG 341.7+8, (4) FESt 1-366, (1) HMSTG 342.2+9.0, (2) FESt2-245, (2) FESt2-245, (2) HMS			(1)) FeSt 2-247
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2085	P1	(1) HMSTG $340.0 + 6.0$
2085 P3 (1) SLDN 10, HMSTG 338, 1+7.1, LM 164 2085 P4 (1) HMSTG 340, 7+66 2085 P11 (1) HMSTG 342, 1+5.9C 2085 P12 (1) HMSTG 340, 3+5.5 2085 P13 (1) HMSTG 340, 3+5.5 2085 P14 (1) HMSTG 340, 5+5.6 2086 P16 (1) HMSTG 340, 5+5.6 2087 P16 (1) HMSTG 340, 6+9.0 2098 P11 (1) FeSt1-351 2092 (1) FeSt2-232, (2) HMSTG 340, 5+3.4, (3) HMSTG 340, 8+3.3, (4) FeSt1-356, (5) HMSTG 341, 1+3.1, (6) FeSt2-237, (7) HMSTG 340, 8+3.3, (4) FeSt1-356, (5) HMSTG 341, 1+3.2, 9 2092 P2 (1) HMSTG 340, 2+4.5 2092 P2 (1) HMSTG 340, 2+4.5 2092 P2 (1) HMSTG 341, 3+3.9 2093 (1) SDN 192, HMSTG 342, 1-5.3 2093 (1) SDN 192, HMSTG 342, 1-5.3 2093 (1) BMSTG 342, 1-4.3, 9 2093 (1) BMSTG 340, 7-2.4 2093 P1 (1) HMSTG 343, 7-2.3 2093 P1 (1) HMSTG 343, 5-3.7 2093 P12 (1) HMSTG 343,	2085	P 2	(1) HMSTG $341.1 + 6.2$
2085 P4 (1) HMSTG 340, 7+ 6.6 2085 P1 (1) HMSTG 342, 1+ 5.9C 2085 P11 (1) HMSTG 339, 6+ 5.6 2085 P13 (1) HMSTG 342, 5+ 6.4 2085 P15 (1) HMSTG 340, 5+ 5.6 2086 P1 (1) FRSTG 340, 5+ 5.6 2087 P13 (1) HMSTG 340, 5+ 5.6 2088 P14 (1) FRSTG 340, 5+ 5.6 2080 P1 (1) FRSTG 340, 5+ 5.6 2081 (1) RSTG 340, 34, 5+ 5.6 2082 (1) HSTG 340, 2+ 4.5 2092 P2 (1) HMSTG 340, 2+ 4.5 2092 P2 (1) HMSTG 340, 2+ 4.5 2093 (1) SDN 192, HMSTG 339, 5-0.8, (2) HMSTG 339, 5-2.8, (3) Fest 1-352, (4) Fest 1-359, HMSTG 340, 7-2.4C, (5) Fest 2-238, (6) Fest 1-364, (7) Fest 1-354, (10) Fest 1-374, (15) Fest 2-255, (10) HMSTG 342, 1-3.8, (10) Fest 1-374, (15) Fest 2-255, (10) HMSTG 344, 6-3, 7, (17) BDN 344, 64-4.27, HMSTG 344, 0-4.27, HMSTG 343, 7-2.3 2093 P1 (1) HMSTG 343, 7-2.3 2093 P12 (1) HMSTG 342, 2-4.8, (0) Fest 2-259 2093 P12 (1) HMSTG 342, 2-4.9, (2) Fest 2-241 2093 P12 (1) HMSTG 342, 2-4.9, (2) Fest 2-241 2093 <	2085	P3	(1) SLDN 10, HMSTG 338.1 + 7.1, LM 164
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2085	P4	(1) HMSTG 340.7 + 6.6
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2085	P6	(1) HMSTG $342.1 + 5.9C$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2085	P11	(1) HMSTG $339.6 + 5.6$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2085	P12	(1) HMSTG 340.3 ± 5.5
2085P15(1) HMSTG 341, 1 + 5.92086P16(1) HMSTG 340, 5 + 5.62087P1(1) FeSt 1-3512088P1(1) HMSTG 340, 6 + 9.02092(1) FeSt 1-351, (1) FEST 2-232, (2) HMSTG 340, 5 + 3.4, (3) HMSTG 340, 8 + 3.3, (4) FeST 1-356, (5) HMSTG 341, 0 + 3.1, (6) FeST 2-237, (7) HMSTG 341, 6 + 3.12092P1(1) FeST 1-360, HMSTG 341, 5 + 2.32092P2(1) HMSTG 340, 7 + 4.52092P5(1) HMSTG 340, 7 + 4.5, (2) FeST 2-328, (6) FeST 1-365, (3) FeST 1-352, (4) FeST 1-359, HMSTG 340, 7 - 4.2, (5) FeST 2-328, (6) FeST 1-364, (7) FeST 1-365, (8) HMSTG 342, 1 - 3.8, (9) FeST 1-367, (10) HMSTG 343, 3 - 3.8, (11) FeST 2-248, (12) FeST 2-250, (13) FeST 1-373, (14) FeST 1-374, (15) FeST 2-258, (16) HMSTG 344, 6 - 3.7, (17) BDN 344, 64 - 4.27, HMSTG 344, 0 - 4.3, BHR 137, Sc 222093P1(1) HMSTG 340, 2 - 4.12093P10(1) HMSTG 343, 2 - 2.9, (2) FeST 2-2592093P11(1) HMSTG 343, 2 - 3.72093P12(1) HMSTG 342, 0 - 0.3, (2) SLDN 17, FeST 2-2412093P10(1) HMSTG 342, 0 + 0.3, (2) SLDN 17, FeST 2-2412094(1) FeST 1-3662095(1) HMSTG 342, 0 + 0.3, (2) SLDN 17, FeST 2-245, (3) HMSTG 341, 7 + 8.5, (4) FeST 1-362, (5) LM 169, (6) HMSTG 342, 2 + 8.1, (7) HMSTG 342, 7 + 9.7, (11) HMSTG 342, 8 + 9.3, (12) HMSTG 342, 0 + 9.02103P1(1) HMSTG 342, 0 + 9.2, BHR 134, (2) FeST 2-235, (3) HMSTG 341, 7 + 8.5, (4) FeST 1-362, (5) LM 169, (6) HMSTG 342, 2 + 8.1, (7) HMSTG 342, 7 + 9.7, (11) HMSTG 342, 8 + 9.3, (12) HMSTG 342, 0 + 9.02103P1(1) HMSTG 342, 0 + 9.42103P1<	2085	P 13	(1) HMSTG $342.5 + 6.4$
2085P16(1) HMSTG 340.5 + 5.62086P1(1) FeSt 1-3512089P1(1) HMSTG 340.6 + 9.02092(1) FeSt 2-232, (2) HMSTG 340.5 + 3.4, (3) HMSTG 340.8 + 3.3, (4) FeSt 1-356, (5) HMSTG 341.0 + 3.1, (6) FeSt 2-237, (7) HMSTG 341.6 + 3.12092P1(1) FeSt 1-360, HMSTG 341.5 + 2.32092P2(1) HMSTG 340.2 + 4.52093(1) SDN 192, HMSTG 330.5 - 0.8, (2) HMSTG 339.5 - 2.8, (3) FeSt 1-352, (4) FeSt 1-359, HMSTG 340.7 - 2.4C, (5) FeSt 1-364, (7) FeSt 1-365, (8) HMSTG 342.1 - 3.8, (9) FeSt 1-367, (10) HMSTG 343.3 - 3.8, (11) FeSt 2-248, (12) FeSt 2-250, (13) FeSt 1-373, (14) FeSt 1-374, (15) FeSt 2-255, (16) HMSTG 344.6 - 3.7, (17) BDN 344.64 - 4.27, HMSTG 344.0 - 3.02093P1(1) HMSTG 343.7 - 2.32093P1(1) HMSTG 343.7 - 2.32093P1(1) HMSTG 343.5 - 3.72093P11(1) HMSTG 342.0 - 0.1, (2) SLDN 17, FeSt 2-2412093P12(1) HMSTG 342.0 - 0.3, (2) SLDN 17, FeSt 2-2412093P10(1) HMSTG 342.0 - 0.3, (2) SLDN 17, FeSt 2-2412094(1) FeSt 1-3662095(1) FeSt 2-242, (2) HMSTG 342.6 + 3.32103(1) HMSTG 342.0 + 0.3, (2) SLDN 17, FeSt 2-2412104(1) FeSt 1-369, HMSTG 342.2 + 8.1, (7) HMSTG 342.7 + 9.7, (11) HMSTG 342.8 + 9.3, (12) FEST 2-245, (10) HMSTG 342.2 + 8.1, (2) FEST 2-235, (3) HMSTG 341.7 + 8.5, (4) FeSt 1-362, (5) LM 169, (6) HMSTG 342.2 + 8.1, (7) HMSTG 342.7 + 9.7, (11) HMSTG 342.8 + 9.3, (12) HMSTG 342.0 + 9.42103P1(1) HMSTG 342.0 + 9.42103P1(1) HMSTG 342.0 + 9.4	2085	P 15	(1) HMSTG $341.1 + 5.9$
2086P1(1) Fest1-3512089P1(1) HMSTG 340.6+9.02092(1) Fest1-232, (2) HMSTG 340.5+3.4, (3) HMSTG 340.8+3.3, (4) FeSt 1-356, (5) HMSTG 341.0+3.1, (6) FeSt 2-237, (7) HMSTG 341.6+3.12092P2(1) HMSTG 340.2+4.52092P5(1) HMSTG 340.2+4.52093P3(1) SDN 192, HMSTG 339.5-0.8, (2) HMSTG 339.5-2.8, (3) FeSt 1-352, (4) FeSt 1-359, HMSTG 340.7-2.4C, (5) FeSt 2-238, (6) FeSt 1-364, (7) FeSt 1-365, (8) HMSTG 340.7-2.4C, (5) FeSt 2-238, (6) FeSt 1-364, (7) FeSt 1-365, (8) HMSTG 344.0-4.3, BHR 137, Sc 222093P1(1) HMSTG 341.7, Sc 222093P1(1) HMSTG 341.7, Sc 222093P2(1) HMSTG 343.7-2.32093P10(1) HMSTG 343.7-2.32093P11(1) HMSTG 343.5-3.72093P12(1) HMSTG 343.5-3.72093P12(1) HMSTG 342.0+0.3, (2) SLDN 17, FeSt 2-2412094(1) FeSt 2-245, (2) HMSTG 342.1-7.12095(1) HMSTG 342.0+0.3, (2) SLDN 17, FeSt 2-2412096P1(1) FeSt 2-245, (2) HMSTG 342.2+8.1, (7) HMSTG 342.7+8.5, (4) FeSt 1-362, (5) LM 169, (6) HMSTG 342.2+8.1, (7) HMSTG 342.7+9.7, (11) HMSTG 342.8+9.3, (12) HMSTG 342.9+9.02103P1(1) HMSTG 342.0+9.42103P1(1) HMSTG 342.0+9.42103P1(1) HMSTG 342.2+9.42104(1) FeSt 2-2452105(1) HMSTG 342.0+9.42106(1) HMSTG 342.2+9.42107(1) FeSt 2-2452108P1(1) HMSTG 342.2+8.4 <td>2085</td> <td>P 16</td> <td>(1) HMSTG 340.5 ± 5.6</td>	2085	P 16	(1) HMSTG 340.5 ± 5.6
 10) Find the set of the set of	2086	P1	(1) FeSt 1-351
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2089	P1	(1) HMSTG 340 $6+9.0$
 101 Contract, Charles 199, 201 Contract 199, 201 Contract 199, 201 Contract 199, 201 Contract, Contract 201, 201 Contract 201 Contract 201 Contract 201, 201 Contract 201, 201 Contract 201, 201 Contract 201 Contract 201, 201 Contract 201,	2002	11	(1) FeSt 2-232 (2) HMSTG 340 5+3.4 (3) HMSTG 340 8+3.3 (4) FeSt 1-356
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2072	•••	(5) HMSTG 341 0+3 1 (6) FeSt 2-237 (7) HMSTG 341 6+3 1
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2092	P1	(1) FeSt 1.360 HMSTG $3415+23$
2092 P5 (1) HMSTG 341.3+3.9 2093 (1) SDN 192, HMSTG 339.5-0.8, (2) HMSTG 339.5-2.8, (3) FeSt 1-352, (4) FeSt 1-359, HMSTG 342.1-3.8, (9) FeSt 1-366, (7) FeSt 1-365, (8) HMSTG 342.1-3.8, (9) FeSt 1-367, (10) HMSTG 343.3-3.8, (11) FeSt 2-248, (12) FeSt 2-250, (13) FeSt 1-373, (14) FeSt 1-374, (15) FeSt 2-255, (16) HMSTG 344.6-3.7, (17) BDN 344.64-4.27, HMSTG 344.6-4.3, BHR 137, Sc 22 2093 P1 (1) HMSTG 341.9-3.0 2093 P2 (1) HMSTG 343.7-2.3 2093 P11 (1) HMSTG 343.2-2.4, (2) FeSt 2-259 2093 P12 (1) HMSTG 343.5-3.7 2093 P12 (1) HMSTG 343.2-4.1 2093 P12 (1) HMSTG 342.0+0.3, (2) SLDN 17, FeSt 2-241 2093 P10 (1) HMSTG 342.0+0.3, (2) SLDN 17, FeSt 2-241 2096 (1) FeSt 1-366 2095 (1) HMSTG 342.0+0.3, (2) SLDN 17, FeSt 2-241 2096 (1) FeSt 1-364 2096 P1 (1) FeSt 2-242, (2) HMSTG 342.1-7.1 2100 (1) HMSTG 340.9+9.2, BHR 134, (2) FeSt 2-235, (3) HMSTG 341.7+8.5, (4) FeSt 1-362, (5) LM 169, (6) HMSTG 342.2+8.1, (7) HMSTG 342.7+9.7, (11) HMSTG 342.8+9.3, (12) HMSTG 342.9+9.0 2103 (1) HMSTG 342.2+8.9, (2) FeSt 2-244 2103 <td< td=""><td>2092</td><td>P2</td><td>(1) HMSTG 340 2 ± 4.5</td></td<>	2092	P2	(1) HMSTG 340 2 ± 4.5
 2093 (1) ISDN 192, IMSTG 339.5–0.8, (2) HMSTG 339.5–2.8, (3) FeSt 1-352, (4) FeSt 1-359, HMSTG 340.7–2.4C, (5) FeSt 2-238, (6) FeSt 1-364, (7) FeSt 1-365, (8) HMSTG 342.1–3.8, (9) FeSt 2-367, (10) HMSTG 343.3–3.8, (11) FeSt 2-248, (12) FeSt 2-250, (13) FeSt 1-373, (14) FeSt 1-374, (15) FeSt 2-255, (16) HMSTG 344.6–3.7, (17) BDN 344.64–4.27, HMSTG 344.6–4.3, BHR 137, Sc 22 2093 P1 (1) HMSTG 341.9–3.0 2093 P1 (1) HMSTG 343.7–2.3 2093 P1 (1) HMSTG 345.5–3.7 2093 P1 (1) HMSTG 343.7–2.3 2093 P1 (1) HMSTG 345.5–3.7 2093 P1 (1) HMSTG 345.5–3.7 2093 P1 (1) HMSTG 343.2–2.9, (2) FeSt 2-259 2093 P1 (1) HMSTG 338.8–3.0 2095 (1) HMSTG 338.8–3.0 2095 (1) HMSTG 342.0+0.3, (2) SLDN 17, FeSt 2-241 2096 P1 (1) FeSt 1-366 2096 P1 (1) FeSt 1-366 2096 P1 (1) FeSt 1-369, HMSTG 342.1–7.1 2100 (1) FeSt 1-369, HMSTG 342.2+8.1, (7) HMSTG 342.7+8.5, (4) FeSt 1-362, (5) LM 169, (6) HMSTG 342.2+8.1, (7) HMSTG 342.7+9.7, (11) HMSTG 342.8+9.3, (12) HMSTG 342.9+9.0 2103 P1 (1) HMSTG 342.9+9.0 2103 P1 (1) HMSTG 342.9+9.0 2103 P1 (1) HMSTG 342.1+9.7 2103 P2 (1) HMSTG 342.1+9.7 2103 P3 (1) HMSTG 342.1+9.7 2103 P4 (1) HMSTG 342.1+9.7 2103 P4 (1) HMSTG 342.1+9.7 2103 P5 (1) HMSTG 342.2+9.9 2103 P1 (1) HMSTG 342.2+9.9 2103 P1 (1) HMSTG 342.5+9.9 2103 P1 (1) HMSTG 342.5+7.4 2103 P1 (1) HMSTG 343.6+0.1 FeSt 2-251 	2092	P 5	(1) HMSTG 3413 ± 30
 HMSTG 340.7–2.4C, (5) FeSt 2-338, (6) FeSt 1-364, (7) FeSt 1-365, (8) HMSTG 342.1–3.8, (9) FeSt 1-367, (10) HMSTG 343.3–3.8, (11) FeSt 2-248, (12) FeSt 2-238, (6) FeSt 1-373, (14) FeSt 1-374, (15) FeSt 2-255, (16) HMSTG 344.6–3.7, (17) BDN 344.64–4.27, HMSTG 344.6–4.3, BHR 137, Sc 22 P03 P1 (1) HMSTG 340.2–4.1 P03 P11 (1) HMSTG 340.2–4.1 P03 P11 (1) HMSTG 340.2–4.1 P03 P12 (1) HMSTG 345.2–2.9, (2) FeSt 2-259 P03 P12 (1) HMSTG 345.2–2.9, (2) FeSt 2-259 P03 P12 (1) HMSTG 343.5–3.7 P03 P20 (1) HMSTG 342.0+0.3, (2) SLDN 17, FeSt 2-241 P06 (1) FeSt 1-366 P06 P1 (1) FeSt 2-245 P10 (1) FeSt 1-366, HMSTG 342.1–7.1 P10 (1) FeSt 1-369, HMSTG 342.6+3.3 P10 (1) HMSTG 340.9+9.2, BHR 134, (2) FeSt 2-235, (3) HMSTG 341.7+8.5, (4) FeSt 1-362, (5) LM 169, (6) HMSTG 342.2+8.1, (7) HMSTG 342.7+9.7, (11) HMSTG 342.8+9.3, (12) HMSTG 342.9+9.0 P11 (1) HMSTG 342.8+8.7 P13 P1 (1) HMSTG 342.1+9.7 P14 (1) HMSTG 342.1+9.7 P13 P1 (1) HMSTG 342.1+9.7 P13 P1 (1) HMSTG 342.1+9.7 P14 (1) HMSTG 342.5+9.9 P10 (1) HMSTG 342.5+7.4 P10 (1) HMSTG 342.5+7.4 P11 (1) HMSTG 340.7+0.0 P10 P1 (1) HMSTG 343.6+0.1, FeSt 2-251 	2092	15	(1) SDN 102 HMSTG 339 5 -0.8 (2) HMSTG 339 5 -2.8 (3) FeSt 1 $_{-352}$ (4) FeSt 1 $_{-359}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2075	•••	HMSTG 340 7 -2 4C (5) FeSt 2-238 (6) FeSt 1-364 (7) FeSt 1-365
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(8) HMSTG $342.1-3.8$ (9) FeSt 1-367 (10) HMSTG $343.3-3.8$
$ \begin{array}{c} (1) \ \mbox{Figs} 1 \ $			(1) Fest 2-248 (12) Fest 2-250 (13) Fest 1-373 (14) Fest 1-374
$\begin{array}{llllllllllllllllllllllllllllllllllll$			(15) FeSt 2-255, (16) HMSTG 344 6-37, (17) BDN 344 64-4 27
2093 P1 (1) HMSTG 341.9-3.0 2093 P2 (1) HMSTG 343.7-2.3 2093 P10 (1) HMSTG 340.2-4.1 2093 P11 (1) HMSTG 343.5-2.9, (2) FeSt 2-259 2093 P12 (1) HMSTG 343.5-3.7 2093 P12 (1) HMSTG 343.5-3.7 2093 P120 (1) HMSTG 342.0+0.3, (2) SLDN 17, FeSt 2-241 2095 (1) FeSt 1-366 2096 (1) FeSt 2-242, (2) HMSTG 342.1-7.1 2100 (1) FeSt 2-245 2101 (1) FeSt 2-245 2102 (1) FeSt 1-369, HMSTG 342.6+3.3 2103 (1) HMSTG 340.9+9.2, BHR 134, (2) FeSt 2-235, (3) HMSTG 341.7+8.5, (4) FeSt 1-362, (5) LM 169, (6) HMSTG 342.2+8.1, (7) HMSTG 342.7+9.7, (11) HMSTG 342.8+9.3, (12) HMSTG 342.4+9.6, (9) Lupus V, (10) HMSTG 342.7+9.7, (11) HMSTG 342.8+9.3, (12) HMSTG 342.4+9.6, (9) Lupus V, (10) HMSTG 342.7+9.7, (11) HMSTG 342.8+9.3, (12) HMSTG 342.4+9.6, (9) Lupus V, (10) HMSTG 342.7+9.7, (11) HMSTG 342.8+9.3, (12) HMSTG 342.6+9.4 2103 P1 (1) HMSTG 342.5+9.9 2103 P2 (1) HMSTG 342.5+9.9 2103 P3 (1) HMSTG 342.5+7.4 2103 P4 (1) HMSTG 342.5+7.4 <tr< td=""><td></td><td></td><td>HMSTG $344.6 - 4.3$ BHR 137 Sc 22</td></tr<>			HMSTG $344.6 - 4.3$ BHR 137 Sc 22
2033 P1 (1) HMSTG 343.7-2.3 2093 P10 (1) HMSTG 343.7-2.3 2093 P11 (1) HMSTG 345.2-2.9, (2) FeSt 2-259 2093 P12 (1) HMSTG 343.5-3.7 2093 P12 (1) HMSTG 339.9-3.4 2093 P20 (1) HMSTG 338.8-3.0 2095 (1) HMSTG 342.0+0.3, (2) SLDN 17, FeSt 2-241 2096 (1) FeSt 1-366 2096 (1) FeSt 2-242, (2) HMSTG 342.1-7.1 2100 (1) FeSt 2-245 2101 (1) FeSt 1-369, HMSTG 342.6+3.3 2102 (1) FeSt 1-369, HMSTG 342.6+3.3 2103 (1) HMSTG 340.9+9.2, BHR 134, (2) FeSt 2-235, (3) HMSTG 341.7+8.5, (4) FeSt 1-362, (5) LM 169, (6) HMSTG 342.2+8.1, (7) HMSTG 342.4+8.1, (8) HMSTG 342.4+9.6, (9) Lupus V, (10) HMSTG 342.7+9.7, (11) HMSTG 342.8+9.3, (12) HMSTG 342.4+9.6, (9) Lupus V, (10) HMSTG 342.7+9.7, (11) HMSTG 342.8+9.3, (12) HMSTG 342.3+8.9, (2) FeSt 2-244 2103 P1 (1) HMSTG 342.3+8.9, (2) FeSt 2-244 2103 P2 (1) HMSTG 342.1+9.7 2103 P3 (1) HMSTG 342.1+9.7 2103 P4 (1) HMSTG 342.5+9.9 2103 P4 (1)	2003	P 1	(1) HMSTG $341.9 - 3.0$
20312(1) HMSTG 340.2-4.12093P10(1) HMSTG 340.2-4.12093P12(1) HMSTG 343.5-3.72093P12(1) HMSTG 343.5-3.72093P20(1) HMSTG 338.8-3.02095(1) HMSTG 342.0+0.3, (2) SLDN 17, FeSt 2-2412096P1(1) FeSt 1-3662096P1(1) FeSt 2-242, (2) HMSTG 342.1-7.12100(1) FeSt 2-2452102(1) FeSt 1-369, HMSTG 342.6+3.32103(1) HMSTG 340.9+9.2, BHR 134, (2) FeSt 2-235, (3) HMSTG 341.7+8.5, (4) FeSt 1-362, (5) LM 169, (6) HMSTG 342.2+8.1, (7) HMSTG 342.4+8.1, (8) HMSTG 342.4+9.6, (9) Lupus V, (10) HMSTG 342.7+9.7, (11) HMSTG 342.8+9.3, (12) HMSTG 342.9+9.02103P1(1) HMSTG 342.0+9.42103P2(1) HMSTG 342.0+9.42103P3(1) HMSTG 342.1+9.72103P4(1) HMSTG 342.5+9.92103P5(1) HMSTG 342.5+7.42103P1(1) HMSTG 342.5+7.42103P1(1) HMSTG 342.5+7.42103P1(1) HMSTG 340.7+0.02103P1(1) HMSTG 340.7+0.02103P1(1) HMSTG 340.7+0.02103P1(1) HMSTG 342.5+7.42103P1(1) HMSTG 340.7+0.02103P1(1) HMSTG 340.7+0.02103P1(1) HMSTG 340.7+0.02104P1(1) HMSTG 340.7+0.02105P1(1) SLDN 19, HMSTG 343.6+0.1, FeSt 2-251	2093	P2	(1) HMSTG 343 7 -2 3
2093 P11 (1) HMSTG 345.2–2.9, (2) FeSt 2-259 2093 P12 (1) HMSTG 345.2–2.9, (2) FeSt 2-259 2093 P12 (1) HMSTG 345.2–2.9, (2) FeSt 2-259 2093 P12 (1) HMSTG 345.2–2.9, (2) FeSt 2-259 2093 P20 (1) HMSTG 345.2–2.9, (2) FeSt 2-241 2096 (1) FeSt 1-366 2096 (1) FeSt 2-242, (2) HMSTG 342.1–7.1 2100 (1) FeSt 2-245 2101 (1) FeSt 1-366, HMSTG 342.6+3.3 2102 (1) FeSt 1-369, HMSTG 342.6+3.3 2103 (1) HMSTG 340.9+9.2, BHR 134, (2) FeSt 2-235, (3) HMSTG 341.7+8.5, (4) FeSt 1-362, (5) LM 169, (6) HMSTG 342.2+8.1, (7) HMSTG 342.4+8.1, (8) HMSTG 342.4+9.6, (9) Lupus V, (10) HMSTG 342.7+9.7, (11) HMSTG 342.8+9.3, (12) HMSTG 342.4+9.6, (9) Lupus V, (10) HMSTG 342.7+9.7, (11) HMSTG 342.8+9.3, (12) HMSTG 342.9+9.0 2103 P1 (1) HMSTG 342.3+8.9, (2) FeSt 2-244 2103 P2 (1) HMSTG 342.4+9.7 2103 P3 (1) HMSTG 342.1+9.7 2103 P4 (1) HMSTG 342.5+9.9 2103 P5 (1) HMSTG 342.5+7.4 2103 P6 (1) HMSTG 342.5+7.4 2103 <td< td=""><td>2003</td><td>P 10</td><td>(1) HMSTG $340.2-4.1$</td></td<>	2003	P 10	(1) HMSTG $340.2-4.1$
203 P11 (1) HMSTG 343.5 - 3.7 2093 P12 (1) HMSTG 339.9 - 3.4 2093 P20 (1) HMSTG 339.9 - 3.4 2095 (1) HMSTG 342.0 + 0.3, (2) SLDN 17, FeSt 2-241 2096 (1) FeSt 1-366 2096 P1 (1) FeSt 2-242, (2) HMSTG 342.1 - 7.1 2100 (1) FeSt 1-369, HMSTG 342.6 + 3.3 2101 (1) FeSt 1-369, HMSTG 342.6 + 3.3 2102 (1) FeSt 1-369, HMSTG 342.2 + 8.1, (7) HMSTG 342.4 + 8.1, (8) HMSTG 342.4 + 9.6, (9) Lupus V, (10) HMSTG 342.7 + 9.7, (11) HMSTG 342.8 + 9.3, (12) HMSTG 342.9 + 9.0 2103 P1 (1) HMSTG 342.8 + 8.7 2103 P2 (1) HMSTG 342.4 + 9.6, (2) FeSt 2-244 2103 P3 (1) HMSTG 342.3 + 8.9, (2) FeSt 2-244 2103 P4 (1) HMSTG 342.4 + 9.7 2103 P4 (1) HMSTG 342.5 + 9.9 2103 P5 (1) HMSTG 342.5 + 7.4 2103 P1 (1) HMSTG 342.5 + 7.4 2103 P1 (1) HMSTG 342	2003	P11	(1) HMSTG 345 2 -2 9 (2) FeSt 2-259
2093 P 19 (1) HMSTG 339.9–3.4 2093 P 20 (1) HMSTG 338.8–3.0 2095 (1) HMSTG 342.0+0.3, (2) SLDN 17, FeSt 2-241 2096 (1) FeSt 1-366 2096 P1 (1) FeSt 2-242, (2) HMSTG 342.1–7.1 2100 (1) FeSt 2-245 2102 (1) FeSt 1-369, HMSTG 342.6+3.3 2103 (1) HMSTG 340.9+9.2, BHR 134, (2) FeSt 2-235, (3) HMSTG 341.7+8.5, (4) FeSt 1-362, (5) LM 169, (6) HMSTG 342.2+8.1, (7) HMSTG 342.4+8.1, (8) HMSTG 342.2+9.6, (9) Lupus V, (10) HMSTG 342.7+9.7, (11) HMSTG 342.8+9.3, (12) HMSTG 342.9+9.0 2103 P1 (1) HMSTG 342.9+9.0 2103 P1 (1) HMSTG 342.3+8.9, (2) FeSt 2-244 2103 P2 (1) HMSTG 342.3+8.9, (2) FeSt 2-244 2103 P3 (1) HMSTG 342.1+9.7 2103 P4 (1) HMSTG 342.5+9.9 2103 P4 (1) HMSTG 342.5+9.9 2103 P7 (1) HMSTG 342.5+7.4 2103 P1 (1) HMSTG 342.5+7.4 2103 P10 (1) HMSTG 342.6+0.1, FeSt 2-251	2003	P12	(1) HMSTG $343.5-3.7$
2093 P20 (1) HMSTG 338.8-3.0 2095 (1) HMSTG 338.8-3.0 2096 (1) FeSt 1-366 2096 P1 (1) FeSt 2-242, (2) HMSTG 342.1-7.1 2100 (1) FeSt 2-245 2102 (1) HMSTG 340.9 + 9.2, BHR 134, (2) FeSt 2-235, (3) HMSTG 341.7 + 8.5, (4) FeSt 1-362, (5) LM 169, (6) HMSTG 342.2 + 8.1, (7) HMSTG 342.4 + 8.1, (8) HMSTG 342.4 + 9.6, (9) Lupus V, (10) HMSTG 342.4 + 8.1, (12) HMSTG 342.4 + 9.6, (9) Lupus V, (10) HMSTG 342.7 + 9.7, (11) HMSTG 342.8 + 9.3, (12) HMSTG 342.9 + 9.0 2103 P1 (1) HMSTG 342.3 + 8.9, (2) FeSt 2-244 2103 P2 (1) HMSTG 342.0 + 9.4 2103 P2 (1) HMSTG 342.1 + 9.7 2103 P3 (1) HMSTG 342.5 + 9.9 2103 P4 (1) HMSTG 342.5 + 9.9 2103 P6 (1) HMSTG 342.5 + 7.4 2103 P7 (1) HMSTG 342.5 + 7.4 2103 P10 (1) HMSTG 342.5 + 7.4 2103 P11 (1) HMSTG 343.6 + 0.1, FeSt 2-251	2093	P 19	(1) HMSTG 339 $9-34$
2095 (1) HMSTG 342.0 + 0.3, (2) SLDN 17, FeSt 2-241 2096 (1) FeSt 1-366 2096 P1 (1) FeSt 2-242, (2) HMSTG 342.1 - 7.1 2100 (1) FeSt 2-245 2102 (1) FeSt 1-369, HMSTG 342.6 + 3.3 2103 (1) HMSTG 340.9 + 9.2, BHR 134, (2) FeSt 2-235, (3) HMSTG 341.7 + 8.5, (4) FeSt 1-362, (5) LM 169, (6) HMSTG 342.2 + 8.1, (7) HMSTG 342.4 + 8.1, (8) HMSTG 342.4 + 9.6, (9) Lupus V, (10) HMSTG 342.7 + 9.7, (11) HMSTG 342.8 + 9.3, (12) HMSTG 342.9 + 9.0 2103 P1 (1) HMSTG 342.9 + 9.0 2103 P1 (1) HMSTG 342.4 + 9.6, (9) Lupus V, (10) HMSTG 342.7 + 9.7, (11) HMSTG 342.8 + 9.3, (12) HMSTG 342.4 + 8.7 2103 P2 (1) HMSTG 342.0 + 9.4 2103 P3 (1) HMSTG 342.0 + 9.4 2103 P3 (1) HMSTG 342.1 + 9.7 2103 P4 (1) HMSTG 342.5 + 9.9 2103 P4 (1) HMSTG 342.5 + 9.9 2103 P6 (1) HMSTG 342.5 + 7.4 2103 P10 (1) HMSTG 342.5 + 7.4 2103 P10 (1) HMSTG 342.5 + 7.4 2103 P11 (1) HMSTG 340.7 + 0.0 2104 P10 (1) HMSTG 340.7	2093	P 20	(1) HMSTG 338 $8-3$ 0
 2035 (1) HMSTG 342.0 + 0.5, (2) SEDATA, FOST 2-241 2096 (1) FeSt 1-366 2096 P1 (1) FeSt 2-242, (2) HMSTG 342.1 - 7.1 2100 (1) FeSt 2-245 2102 (1) FeSt 1-369, HMSTG 342.6 + 3.3 2103 (1) HMSTG 340.9 + 9.2, BHR 134, (2) FeSt 2-235, (3) HMSTG 341.7 + 8.5, (4) FeSt 1-362, (5) LM 169, (6) HMSTG 342.2 + 8.1, (7) HMSTG 342.4 + 8.1, (8) HMSTG 342.4 + 9.6, (9) Lupus V, (10) HMSTG 342.7 + 9.7, (11) HMSTG 342.8 + 9.3, (12) HMSTG 342.9 + 9.0 2103 P1 (1) HMSTG 342.8 + 8.7 2103 P2 (1) HMSTG 342.3 + 8.9, (2) FeSt 2-244 2103 P3 (1) HMSTG 342.0 + 9.4 2103 P4 (1) HMSTG 342.1 + 9.7 2103 P5 (1) HMSTG 342.5 + 9.9 2103 P6 (1) HMSTG 342.5 + 9.9 2103 P1 (1) HMSTG 342.5 + 7.4 2103 P1 (1) HMSTG 340.7 + 0.0 2108 P1 (1) HMSTG 340.7 + 0.0 2108 P1 (1) HMSTG 340.7 + 0.0 	2095	1 20	(1) HMSTG 342 0 \pm 0 3 (2) SI DN 17 EeSt 2-241
2096 P1 (1) FeSt 1-360 2096 P1 (1) FeSt 2-242, (2) HMSTG 342.1-7.1 2100 (1) FeSt 1-369, HMSTG 342.6+3.3 2103 (1) HMSTG 340.9+9.2, BHR 134, (2) FeSt 2-235, (3) HMSTG 341.7+8.5, (4) FeSt 1-362, (5) LM 169, (6) HMSTG 342.2+8.1, (7) HMSTG 342.4+8.1, (8) HMSTG 342.4+9.6, (9) Lupus V, (10) HMSTG 342.7+9.7, (11) HMSTG 342.8+9.3, (12) HMSTG 342.9+9.0 2103 P1 (1) HMSTG 342.8+8.7 2103 P2 (1) HMSTG 342.0+9.4 2103 P2 (1) HMSTG 342.0+9.4 2103 P3 (1) HMSTG 342.0+9.4 2103 P3 (1) HMSTG 342.0+9.4 2103 P4 (1) HMSTG 342.1+9.7 2103 P5 (1) HMSTG 342.5+9.9 2103 P6 (1) HMSTG 342.5+9.9 2103 P7 (1) HMSTG 342.5+7.4 2103 P10 (1) HMSTG 342.5+7.4 2103 P11 (1) HMSTG 342.5+7.4 2103 P11 (1) HMSTG 342.5+7.4 2103 P11 (1) HMSTG 342.5+7.4	2095	•••	(1) FeSt 1-366
 2100 (1) Fest 2-245 2102 (1) Fest 1-369, HMSTG 342.6 + 3.3 2103 (1) HMSTG 340.9 + 9.2, BHR 134, (2) Fest 2-235, (3) HMSTG 341.7 + 8.5, (4) Fest 1-362, (5) LM 169, (6) HMSTG 342.2 + 8.1, (7) HMSTG 342.4 + 8.1, (8) HMSTG 342.4 + 9.6, (9) Lupus V, (10) HMSTG 342.7 + 9.7, (11) HMSTG 342.8 + 9.3, (12) HMSTG 342.9 + 9.0 2103 P1 (1) HMSTG 342.9 + 9.0 2103 P2 (1) HMSTG 342.3 + 8.9, (2) Fest 2-244 2103 P3 (1) HMSTG 342.0 + 9.4 2103 P4 (1) HMSTG 342.1 + 9.7 2103 P5 (1) HMSTG 342.5 + 9.9 2103 P7 (1) HMSTG 342.5 + 9.9 2103 P10 (1) HMSTG 342.5 + 7.4 2103 P11 (1) HMSTG 340.7 + 0.0 2108 P1 (1) SLDN 19, HMSTG 343.6 + 0.1, FeSt 2-251 	2090	 Р1	(1) FeSt 2-242 (2) HMSTG 342 $1-71$
 2103 (1) FORD 213 2102 (1) FeSt 1-369, HMSTG 342.6+3.3 2103 (1) HMSTG 340.9+9.2, BHR 134, (2) FeSt 2-235, (3) HMSTG 341.7+8.5, (4) FeSt 1-362, (5) LM 169, (6) HMSTG 342.2+8.1, (7) HMSTG 342.4+8.1, (8) HMSTG 342.4+9.6, (9) Lupus V, (10) HMSTG 342.7+9.7, (11) HMSTG 342.8+9.3, (12) HMSTG 342.9+9.0 2103 P1 (1) HMSTG 342.8+8.7 2103 P2 (1) HMSTG 342.3+8.9, (2) FeSt 2-244 2103 P3 (1) HMSTG 342.0+9.4 2103 P4 (1) HMSTG 342.1+9.7 2103 P5 (1) HMSTG 340.7+9.7 2103 P6 (1) HMSTG 342.5+9.9 2103 P1 (1) HMSTG 342.5+7.4 2103 P1 (1) HMSTG 342.5+7.4 2103 P1 (1) SLDN 19, HMSTG 343.6+0.1, FeSt 2-251 	2100	1 1	(1) FeSt 2-245
 2102 (1) Febri 309, Inibite 342.0 (2), FeSt 2-235, (3) HMSTG 341.7+8.5, (4) FeSt 1-362, (5) LM 169, (6) HMSTG 342.2+8.1, (7) HMSTG 342.4+8.1, (8) HMSTG 342.4+9.6, (9) Lupus V, (10) HMSTG 342.7+9.7, (11) HMSTG 342.8+9.3, (12) HMSTG 342.9+9.0 2103 P1 (1) HMSTG 342.9+9.0 2103 P2 (1) HMSTG 342.3+8.9, (2) FeSt 2-244 2103 P3 (1) HMSTG 342.0+9.4 2103 P4 (1) HMSTG 342.1+9.7 2103 P5 (1) HMSTG 342.5+9.9 2103 P6 (1) HMSTG 342.5+9.9 2103 P1 (1) HMSTG 342.5+7.4 2103 P1 (1) HMSTG 340.7+0.0 2108 P1 (1) SLDN 19, HMSTG 343.6+0.1, FeSt 2-251 	2100	•••	(1) FeSt 1-369 HMSTG 342 $6+3$ 3
 (1) Initial Control (2) (1) (2) (2) (2) (2) (2) (2) (2) (3) (1) (1) (3) (1) (1) (3) (1) (1) (3) (1) (1) (3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	2102	•••	(1) HMSTG 340 9+9 2 BHR 134 (2) FeSt 2-235 (3) HMSTG 341 7+8 5 (4) FeSt 1-362
 (b) EM 105, (c) HMB1C 542.2 + 0.1, (r) HMB1C 542.4 + 0.1, (8) HMSTG 342.4 + 9.6, (9) Lupus V, (10) HMSTG 342.7 + 9.7, (11) HMSTG 342.8 + 9.3, (12) HMSTG 342.9 + 9.0 2103 P1 (1) HMSTG 342.3 + 8.9, (2) FeSt 2-244 2103 P2 (1) HMSTG 342.0 + 9.4 2103 P4 (1) HMSTG 342.1 + 9.7 2103 P5 (1) HMSTG 342.5 + 9.9 2103 P6 (1) HMSTG 342.5 + 9.9 2103 P7 (1) HMSTG 342.5 + 7.4 2103 P10 (1) HMSTG 340.7 + 0.0 2108 P1 (1) SLDN 19, HMSTG 343.6 + 0.1, FeSt 2-251 	2105	•••	(1) $IMJ10 540.979.22, DIR(154, (2)) COL2 255, (3) IMJ510 541.770.53, (4) COL1 502,(5) IM169 (6) HMSTG 342 2+81 (7) HMSTG 342 4+81$
 (12) HMSTG 342.9+9.0 (12) HMSTG 342.8+8.7 (13) P2 (1) HMSTG 342.3+8.9, (2) FeSt 2-244 (13) P3 (1) HMSTG 342.0+9.4 (10) P4 (1) HMSTG 342.1+9.7 (10) P5 (1) HMSTG 342.5+9.9 (10) P6 (1) HMSTG 342.5+9.9 (10) P7 (1) HMSTG 342.5+7.4 (10) P1 (1) HMSTG 340.7+0.0 (10) P1 (1) SLDN 19, HMSTG 343.6+0.1, FeSt 2-251 			(8) HMSTG $342.4+9.6$ (9) Lupus V (10) HMSTG $342.7+9.7$ (11) HMSTG $342.8+9.3$
2103 P1 (1) HMSTG 342.8 + 8.7 2103 P2 (1) HMSTG 342.3 + 8.9, (2) FeSt 2-244 2103 P3 (1) HMSTG 342.0 + 9.4 2103 P4 (1) HMSTG 342.1 + 9.7 2103 P5 (1) HMSTG 342.5 + 9.9 2103 P6 (1) HMSTG 342.5 + 9.9 2103 P6 (1) HMSTG 341.1 + 10.2 2103 P7 (1) HMSTG 342.5 + 7.4 2103 P10 (1) HMSTG 340.7 + 0.0 2103 P11 (1) HMSTG 340.7 + 0.0 2103 P11 (1) SLDN 19, HMSTG 343.6 + 0.1, FeSt 2-251			(12) HMSTG 342.9 ± 9.0
2103 P2 (1) HMSTG 342.3 + 8.9, (2) FeSt 2-244 2103 P3 (1) HMSTG 342.0 + 9.4 2103 P4 (1) HMSTG 342.1 + 9.7 2103 P5 (1) HMSTG 340.7 + 9.7 2103 P6 (1) HMSTG 342.5 + 9.9 2103 P7 (1) HMSTG 342.5 + 7.4 2103 P10 (1) HMSTG 342.5 + 7.4 2103 P11 (1) HMSTG 340.7 + 0.0 2103 P11 (1) SLDN 19, HMSTG 343.6 + 0.1, FeSt 2-251	2103	P1	(1) HMSTG $342.8 + 8.7$
2103 P3 (1) HMSTG 342.0+9.4 2103 P4 (1) HMSTG 342.1+9.7 2103 P5 (1) HMSTG 340.7+9.7 2103 P6 (1) HMSTG 342.5+9.9 2103 P7 (1) HMSTG 342.5+7.4 2103 P10 (1) HMSTG 340.7+0.0 2103 P11 (1) HMSTG 340.7+0.0 2108 P1 (1) SLDN 19, HMSTG 343.6+0.1, FeSt 2-251	2103	P2	(1) HMSTG 342 3+8 9 (2) FeSt 2-244
2103 P4 (1) HMSTG 342.1 + 9.7 2103 P5 (1) HMSTG 340.7 + 9.7 2103 P6 (1) HMSTG 342.5 + 9.9 2103 P7 (1) HMSTG 341.1 + 10.2 2103 P10 (1) HMSTG 342.5 + 7.4 2103 P11 (1) HMSTG 340.7 + 0.0 2108 P1 (1) SLDN 19, HMSTG 343.6 + 0.1, FeSt 2-251	2103	P 3	(1) HMSTG $342.0+9.4$
2103 P 5 (1) HMSTG 340.7 + 9.7 2103 P 6 (1) HMSTG 342.5 + 9.9 2103 P 7 (1) HMSTG 341.1 + 10.2 2103 P 10 (1) HMSTG 342.5 + 7.4 2103 P 10 (1) HMSTG 340.7 + 0.0 2108 P 1 (1) SLDN 19, HMSTG 343.6 + 0.1, FeSt 2-251	2103	P4	(1) HMSTG 342.1 ± 9.7
2103 P6 (1) HMSTG 342.5 + 9.9 2103 P7 (1) HMSTG 341.1 + 10.2 2103 P10 (1) HMSTG 342.5 + 7.4 2103 P11 (1) HMSTG 340.7 + 0.0 2108 P1 (1) SLDN 19, HMSTG 343.6 + 0.1, FeSt 2-251	2103	P 5	(1) HMSTG 340 7 + 9 7
2103 P7 (1) HMSTG 341.1 + 10.2 2103 P10 (1) HMSTG 342.5 + 7.4 2103 P11 (1) HMSTG 340.7 + 0.0 2108 P1 (1) SLDN 19, HMSTG 343.6 + 0.1, FeSt 2-251	2103	P6	(1) HMSTG $3425+99$
2103 P10 (1) HMSTG 342.5+7.4 2103 P11 (1) HMSTG 340.7+0.0 2108 P1 (1) SLDN 19, HMSTG 343.6+0.1, FeSt 2-251	2103	P7	(1) HMSTG 341 1 + 10 2
2103 P 11 (1) HMSTG 340.7 + 0.0 2108 P 1 (1) SLDN 19, HMSTG 343.6 + 0.1, FeSt 2-251	2103	P 10	(1) HMSTG 342 5+7 4
2108 P1 (1) SLDN 19. HMSTG 343.6+0.1. FeSt 2-251	2103	P11	(1) HMSTG 340 7+0 0
	2103	P1	(1) SLDN 19, HMSTG 343.6 ± 0.1 , FeSt 2-251

Table 8.	(Continued.)
----------	--------------

Cloud	Clump	Associated clouds
name	name	1 issociated ciouds
	name	
2109		(1) FeSt 1-371
2109	ΡI	(1) HMSTG $343.7 + 10.6$
2112	· · ·	(1) HMSTG 344.0 ± 1.2
2114	ΡI	(1) $G 344.8 + 24.0$ (1) $H 4577G 244.7 + 10.5 (2) H 4577G 244.0 + 10.4G$
2115	· · ·	(1) HMS1G 344.7 + 10.5, (2) HMS1G 344.9 + 10.4C (1) HMSTG 244.9 + 10.4, (2) HMSTG 244.9 + 10.2
2115		(1) HMS1G 344.8 + 10.4, (2) HMS1G 344.9 + 10.3
2115	P 2	(1) HMS1G 345.0 \pm 10.1 (1) HMSTG 345.1 \pm 2.2
2116	· · ·	(1) HMS1G 345.1+3.2 (1) P_{2} (2) P_{2} (1) P_{2} (2) P_{2} (1) P_{2} (2) P_{2} (1) P_{2} (2) P_{2
2118	ΡI	(1) B 203, SLDN 22, FeSt 2-204, HMSTG 340.3 -4.1 , LM 238 (1) E St 1 281, (2) E St 2 2(2, (2) HMSTG 247.0 -2.0
2119	 D 1	(1) Fest 1-381, (2) Fest 2-262, (3) HMS 1G $347.9-3.0$
2119		(1) HMS1G 346.4 -2.2
2119	P2	(1) HMS1G $347.2-3.4$ (1) HMSTG $245.9-2.2$
2119	P 3	(1) HMS1G 345.8 -2.3
2119	P4	(1) HMS1G $347.5 - 2.3$ (1) HMSTG $247.5 - 2.2$
2119	P 6	(1) HMS1G 347.5 -3.2 (1) HMSTG 242.4 -0.00 (2) E. St 2.252 (2) HMSTG 244.2 -1.1 (4) HMSTG 244.4 $+0.00$
2120	•••	(1) HMS1G 343.4 -0.00 , (2) FeSt 2-253, (3) HMS1G 344.5 -1.1 , (4) HMS1G 344.4 $+0.0$, (5) Leaves Coordina DN Converses E-St 1 278, (6) E-St 2 257
		(5) Lower Scorplus DN Complex, FeSt 1-578, (6) FeSt 2-257, (7) $E_{2}S(1, 270, (8))$ LIMSTC 245.8 + 2.0 (0) LIMSTC 246.4 - 0.5
		(7) FeSt I-579, (8) HMS I G 345.8 + 3.0, (9) HMS I G 340.4 – 0.5, So 11 (10) D 58 JIMSTC 246 5 (0.5C) (11) JIMSTC 246 8 (0.4 So 12 (12) E-St 1 286
2120	D 1	Sc 11, (10) B 38, HMS1G 340.5 $-$ 0.5C, (11) HMS1G 340.8 $-$ 0.4, Sc 15, (12) FeSt 1-380 (1) SL DN 22, HMSTG 246.4, 0.6, (2) E-St 2, 215, S-12
2120		(1) SLDN 25, HMS 1G 540.4 -0.0 , (2) FeSt 2-215, SC 12 (1) D 48, SLDN 20, HMSTC 245, 1 + 0.8, (2) E-St 2, 258
2120	P 2 D 2	(1) B 48, SLDN 20, HMS I G 345.1 \pm 0.8, (2) FeSt 2-258 (1) EaSt 1, 284
2120	P 3	(1) $FeSt 1-364$ (1) $FeSt 1-272$
2120	P 4	(1) FCS1 $I - 5/2$ (1) LIMSTC 246 0 + 0.2 (2) East 2 266 (2) East 1 288
2120	Г J D 10	(1) HMSTG 246.5 \pm 0.1
2120	P 10 D 1	(1) Π M S 1 G 540.3 + 0.1 (1) S DN 104 $E_0S_{t,2}$ 265 Π M STG 246.7 $R_{t,2}$ S $_{t,2}$ 21 (2) $E_0S_{t,1}$ 285
2125		(1) SDN 194, FeSt 2-203, HMS 10 540.7 $-$ 6.2, SC 51, (2) FeSt 1-365 (1) HMSTC 246.8 \pm 10.4
2124	Г 1 D 1	(1) HMSTG 346.0 ± 10.4
2123	I I	(1) HMSTG 345.8 ± 7.6 BUD 1.41 (2) HMSTG $3.46.1 \pm 7.3$ (3) HMSTG $3.46.1 \pm 7.8$
2129	•••	(1) This for 545.6 \pm 7.0, DTR 141, (2) This for 540.1 \pm 7.5, (3) This for 540.1 \pm 7.8, (4) FeSt 1_382 (5) HMSTG 346.5 \pm 7.8 (6) FeSt 1_303
2120	P 1	(1) B 233 SI DN 25 FeSt 2-267 HMSTG 347.2 ± 6.8
2129	P2	(1) SLDN 21 HMSTG 346 $0+7.8 \pm M$ 193 (2) R 231 HMSTG 346 $2+7.7C$ (3) HMSTG 346 $3+7.8$
212)	1 2	(1) SEDIV21, HIVIS 10 540.0 + 7.0, EWI 155, (2) B 251, HIVIS 10 540.2 + 7.7C, (5) HIVIS 10 540.5 + 7.0, I M 195
2129	РЗ	(1) HMSTG $347.6+7.0$
2122	15	(1) FeSt 1-390
2132	 Р1	(1) SDN 195 FeSt 2-268 HMSTG 347 5 -80 BHR 145 LM 241 Sc 32
2132	1 1	(1) HMSTG 347 4–4 0
2133		(1) FeSt 1-394
2130		(1) FeSt 1-392, (2) HMSTG 348.9 + 2.9, (3) FeSt 2-271, (4) HMSTG 349.0 + 3.0.
		BHR 148, (5) HMSTG 349.2+3.1, HMSTG 349.2+3.1A, BHR 149, Sc 4
2144	P 1	(1) SLDN 27. HMSTG $349.0 + 3.4$
2144	P 2	(1) HMSTG 348.0+3.4
2144	P 3	(1) HMSTG $348.6 + 3.6$, (2) FeSt 1-395
2146		(1) B 240, FeSt 2-273, HMSTG 349.2+4.3
2152	• • •	(1) HMSTG 347.9-4.4, BHR 146, LM 239, (2) BDN 349.84-3.57, FeSt 2-274,
		HMSTG 349.8–3.5. (3) HMSTG 350.3–3.5. (4) HMSTG 350.9–4.0. (5) HMSTG 351.8–3.6
2152	P 1	(1) SLDN 28, (2) SLDN 29, HMSTG 350.2–3.7
2152	P 2	(1) HMSTG 351.0-3.7, Sc 29, (2) HMSTG 351.3-3.4, (3) HMSTG 351.6-3.7
2152	P 3	(1) SLDN 26, HMSTG 349.0–4.1
2152	P 4	(1) HMSTG 349.7–3.9
2152	P 10	(1) FeSt 1-405, HMSTG 352.2–4.7
2152	P12	(1) HMSTG 347.7–4.3

Table 8.	(Continued.)

Cloud	Clump	Associated clouds
name	name	
2153	P 1	(1) B 50, SLDN 30, HMSTG 350.4+4.4, LM 227
2159	P 1	(1) FeSt 1-401
2160		(1) LDN 1678
2162		(1) HMSTG 351.3+4.3
2162	P 1	(1) B 53, SLDN 32, HMSTG 351.5+4.4
2164	•••	(1) HMSTG $349.2 + 1.8$, (2) FeSt 1-400, (3) HMSTG $351.2 + 0.0$, (4) FeSt 2-278,
		(5) FeSt 2-280, (6) HMS1G 351.6 -1.0 , Sc 26, (7) HMS1G 351.6 -0.6 ,
		Sc 25, (8) HMS1G 351.9 + 2.5, (9) HMS1G 352.5 + 1.2, (10) FeSt 1-400, (11) $E_2St = 1.407$, (12) $E_2St = 2.282$, (12) HMSTG 252.8 + 1.2, (14) HMSTG 252.0 + 1.4
		(11) FeSt 1-407, (12) FeSt 2-265, (13) HIVIS $10.532.6 \pm 1.2$, (14) HIVIS $10.535.0 \pm 1.4$, (15) FeSt 2.286, HMSTG 253 1 \pm 2.3 RHR 150, Sc 18
		(16) HMSTG 353 3+2.4 BHR 160 Sc 17 (17) HMSTG 353 3+1.9 Sc 21
		(18) HMSTG 353.3 ± 0.4 , (19) HMSTG 354.1 ± 2.9 A, BHR 162, (20) HMSTG 354.1 ± 2.9 .
		(21) HMSTG 354.1 + 2.9D, BHR 165, (22) LDN 1705, (23) LDN 1710,
		(24) FeSt 1-421, (25) LDN 1725
2164	P 1	(1) HMSTG 352.5+0.9, (2) B 258
2164	P 2	(1) FeSt 1-398, HMSTG 350.6+2.6
2164	P4	(1) SLDN 35, HMSTG 352.0+1.8
2164	P 6	(1) HMSTG 351.8+1.6, (2) SLDN 34, FeSt 2-281
2164	P9	(1) B 257, SLDN 33, BDN 351.72+0.57, HMSTG 351.7+0.5, BHR 155
2164	P 22	(1) HMS1G $350.4 + 1.4$ (1) LDN 1741
2104 2164	P 28 P 30	(1) LDN 1/41 (1) HMSTG $350.9 - 1.4$
2167	1 50	(1) HMSTG 353 $0-4$ 2
2107	•••	(1) HMSTG $353.6-2.7$
2171		(1) LDN 1800, (2) LDN 1802, (3) LDN 4, CB 70, (4) LDN 13, (5) LDN 18, (6) LDN 17,
		(7) FeSt 1-452, (8) B 52, FeSt 2-308, CB 71, (9) FeSt 2-307,
		(10) B 246, LDN 32, (11) B 229, (12) LDN 1675, (13) FeSt 2-276,
		(14) FeSt 1-403, (15) FeSt 1-404, (16) FeSt 2-284, (17) LDN 1681,
		(18) FeSt 1-409, (19) LDN 1683, (20) MLB 46, LDN 1681A, (21) MLB 47,
		LDN 1681B, (22) LDN 1684, (23) BDN 352.97 + 16.95, (24) LDN 1680,
		FeSt 1-408, (25) LM 171, LDN 1681A, (26) LDN 1686, MLB 45, (27) LDN 1688,
		rho Oph Dark Nebula, (28) FeSt 2-288, MLB 48, LM 172,
		LDN 1090B-1, (29) LDN 1090, (30) LDN 1092, (31) LDN 1089, P 130, MLP 52, LM 180, LDN 1680A, (22) LDN 1606, D 127, MLP 40, LM 172, LDN 1606A
		(33) MI B 50, (34) EeSt 1.411, (35) I M 174, I DN 1696R-2, (36) I M 184
		LDN 1689B 3 (37) B 42 LDN 1687 FeSt 1-413 (38) LM 181
		in LDN 1689B 2, (39) MLB 56, LDN 1689B, LM 191, LDN 1689B 1, (40) FeSt 2-290,
		(41) rho Ophiuchus DN Complex, IREC 500, (42) MLB 51,
		P 138, LM 175, (43) LM 176, (44) LDN 1704, CB 65 inc MLB 51, LM 176,
		(45) LM 182, P 183, (46) MLB 54, LM 187, (47) B 44, LDN 1712, FeSt 1-418,
		IREC 506, (48) FeSt 1-419, (49) LDN 1729, (50) FeSt 1-423,
		(51) LDN 1745, (52) FeSt 1-428, (53) LDN 1747, (54) LDN 1748,
		(55) LDN 1750, (56) Ophiuchus CO Complex, (57) FeSt 1-438, (58) LDN 1779,
2171	D 1	(39) LUN 1/87, (00) B 47, LUN 1/91, LUN 1/92, (01) FeSt 2-304: [LUN 1/63] (1) LM 188 LDN 1680B 5 (2) LM 185 LDN 1680D 4
$\frac{21}{1}$		(1) LIVE 100, LDTN 1009D J, (2) LIVE 10J, LDTN 1009D 4 (1) $P 135$
2171 2171	P 10	(1) LDN 1709. FeSt 1-414. The Streamers. (2) LM 183
2171	P11	(1) MLB 52, LM 177
2171	P 15	(1) B 51, LDN 15, P 3
2171	P 19	(1) B 238, LDN 1759, FeSt 2-298, P 141
2171	P 20	(1) LDN 1672
2171	P 22	(1) B 57, LDN 11, CB 72, P 2, (2) LDN 20

Table 8. (C	ontinued.)
-------------	------------

Claud	Clurer	Associated alouds
Cloud	Ciump	Associated ciouds
name	name	
2171	P 30	(1) LDN 1784, LDN 1785
2171	P 34	(1) FeSt 2-277
2171	P 35	(1) LDN 39, (2) B 60, LDN 38, CB 74
2171	P 38	(1) LDN 1797
2172		(1) FeSt 1-415, HMSTG 354.4–1.8
2174		(1) LDN 1695, (2) LDN 1708, (3) LDN 1711, (4) LDN 1713
2174	P 1	(1) FeSt 1-416
2176		(1) FeSt 1-417, HMSTG 354.8–5.7
2177		(1) B 243, LDN 1716, FeSt 1-420
2178		(1) B 40, LDN 1721
2178	P 1	(1) MLB 42
2180		(1) LDN 1717, (2) B 43, LDN 1752, (3) LM 179, LDN 1757-2, (4) LM 178, LDN 1757-1
2180	P 1	(1) LDN 1719, BDN 355.67 + 20.60, (2) MLB 43
2180	P 2	(1) MLB 44, (2) B 41
2180	P4	(1) LDN 1757, P 140
2184		(1) FeSt 1-425, (2) FeSt 1-426
2184	P 1	(1) LDN 1740
2185		(1) HMSTG 356.3-4.0, (2) B 283, HMSTG 356.4-3.4
2186		(1) B 256, LDN 1749, FeSt 1-429
2190		(1) HMSTG 355.7-2.1, (2) SLDN 36, (3) HMSTG 356.1-1.6, (4) HMSTG 356.7-2.7,
		(5) SLDN 38, (6) B 278, (7) LDN 1758, HMSTG 357.9-3.6, (8) DBIRDN 3,
		(9) DBIRDN 4, (10) DBIRDN 5
2190	P 1	(1) FeSt 1-435
2190	P 5	(1) LDN 1769
2190	P 8	(1) B 275
2190	P 15	(1) FeSt 2-299
2190	P 16	(1) HMSTG 356.9–2.9
2194		(1) LDN 1744, FeSt 1-427, (2) FeSt 1-437, (3) B 45, (4) LDN 1765, (5) FeSt 1-439
2194	P 2	(1) LDN 1755
2196		(1) FeSt 2-301, HMSTG 358.4–5.3
2198	P 1	(1) HMSTG 358.6-4.8
2199		(1) FeSt 1-440
2200		(1) B 46, LDN 1777, FeSt 2-302
2200	P 1	(1) LDN 1775, P 146
2201	P 1	(1) B 300, HMSTG 359.1–5.8
2201	P 2	(1) Parrot's Head, B 87, LDN 1771, HMSTG 358.9–5.3
2202		(1) MLB 38, LDN 1778A, (2) LDN 1780
2202	P 1	(1) LDN 1788, MBM 33, (2) IREC 515, (3) MLB 39, LDN 1778B
2203		(1) LDN 27, (2) Upper Scorpius-Ophiuchus DN Complex, (3) B 230, LDN 1781
2203	P 2	(1) LDN 1
2207		(1) HMSTG 359.7–20.3
2207	P 1	(1) HMSTG 359.5–20.4, CoA 8
2208		(1) HMSTG 359.4–19.6
2210	P 3	(1) LDN 1782, P 147, (2) LM 197, LDN 1782-1, (3) LM 198, LDN 1782-2
2213		(1) HMSTG 0.0-18.9, CoA 6, (2) FeSt 1-445, (3) HMSTG 359.6-18.0, CoA 3,
		(4) HMSTG 359.6-18.4, CoA 5, (5) SLDN 39, HMSTG 359.7-18.2, CoA 4,
		(6) HMSTG 359.8-17.6, CoA 1, (7) HMSTG 359.9-17.9, CoA 2, (8) SLDN 41
2213	P 1	(1) FeSt 1-446, (2) BDN 359.84-18.10, FeSt 1-447, (3) R CrA DN Complex,
		HMSTG 359.8-17.9C, IREC 516, (4) SLDN 40
2213	P 3	(1) SLDN 42, FeSt 2-306, HMSTG 0.4–19.5, CoA 7
2213	P4	(1) FeSt 1-450, HMSTG 0.3–18.8
2215		(1) LDN 1795

Table 9. Dark clouds and clumps identified in the low-resolution A_V map.

Cloud	Clump	Posi	ition	S	Size	Surface	Maximum	$\int A_V ds$	Number of
name	name	l	b	Δl	Δb	area	extinction		associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	$A_V(mag)$	$(mag deg^2)$	clouds
1†	(0)	1.30	39.70	3.20	1.40	1.75E + 00	0.4	5.99E-01	0
2	(0)	1.40	25.90	0.90	0.60	3.33E-01	0.5	1.24E-01	1
3	(0)	3.70	-24.90	0.90	1.10	4.45E-01	0.4	1.50E-01	0
4	(0)	6.80	-5.50	1.80	0.70	2.59E-01	0.5	9.73E-02	0
5	(0)	9.20	25.50	0.90	1.40	7.56E-01	0.5	2.87E-01	0
6^{\dagger}	(0)	13.30	38.90	3.60	2.00	3.34E + 00	0.7	1.52E + 00	1
7	(0)	20.40	39.40	1.20	2.20	9.62E-01	0.5	3.30E-01	0
8	(0)	22.40	36.00	0.70	0.60	2.43E-01	0.5	9.10E-02	0
9	(0)	22.50	37.20	2.40	1.30	9.83E-01	0.4	3.32E-01	0
10^{\dagger}	(0)	23.70	-40.00	6.30	2.70	5.80E + 00	0.5	2.05E + 00	0
11	(0)	24.50	-36.00	0.90	0.70	3.15E-01	0.4	1.05E-01	0
12	(0)	28.30	25.60	0.70	0.80	2.26E-01	0.3	7.32E-02	0
13†	(0)	29.40	39.50	9.40	5.80	2.09E + 01	0.8	8.95E + 00	1
14	(0)	30.90	-11.40	0.60	0.40	2.06E-01	0.3	6.63E-02	0
15	(0)	31.30	-38.10	1.00	0.70	2.52E-01	0.3	8.11E-02	0
16	(0)	32.10	20.90	2.10	1.40	1.67E + 00	0.4	6.00E-01	1
17	(0)	33.10	-39.40	0.90	0.90	2.78E-01	0.4	9.39E-02	0
18	(0)	34.10	-14.30	1.50	1.00	9.68E-01	0.5	3.54E-01	0
19	(0)	34.30	13.40	5.00	4.40	8.73E + 00	0.5	3.25E + 00	2
20	(0)	35.50	15.50	0.50	0.50	2.02E - 01	0.4	6.59E-02	0
21	(0)	36.00	-12.80	0.70	0.60	2.73E-01	0.4	9.45E - 02	0
22	(0)	37.20	-11.70	1.10	0.60	4.41E - 01	0.4	1.57E - 01	0
23†	(0)	37.60	35.70	5.60	5.50	1.09E + 01	0.7	4.37E + 00	0
24	(0)	40.00	36.20	0.70	0.60	2.18E - 01	0.4	7.52E - 02	0
25	(0)	40.40	32.20	2.10	2.20	1.93E + 00	0.5	7.10E - 01	0
26†	(0)	40.60	40.00	2.90	1.40	1.44E + 00	0.5	5.37E-01	0
27	(0)	41.50	38.40	1.50	1.50	7.42E - 01	0.4	2.57E - 01	0
28	(0)	45.90	12.20	0.80	0.60	3.22E - 01	0.3	1.02E - 01	0
29	(0)	47.00	16.90	1.50	1.20	8.81E-01	0.4	2.91E - 01	0
30	(0)	49.60	6.10	0.50	0.60	2.68E-01	0.5	1.04E - 01	0
31	(0)	52.80	20.00	1.20	0.80	4.79E-01	0.4	1.55E-01	0
32	(0)	58.60	6.60	1.20	0.40	3.28E-01	0.4	1.16E-01	1
331	(0)	62.20	-36.90	5.40	5.50	1.50E + 01	0.7	6.79E+00	0
34	(0)	65.00	-14.10	1.50	1.10	7.65E-01	0.4	2.48E-01	0
35	(0)	68.50	-35.60	0.60	0.60	2.04E - 01	0.5	7.38E-02	0
36	(0)	69.90	10.00	0.90	0.50	2.66E - 01	0.4	8.58E-02	0
37	(0)	70.30	-38.30	1.00	0.90	2.9/E - 01	0.4	9.99E-02	0
38	(0)	/0./0	-3/.10	0.60	0.90	2.23E - 01	0.5	7.90E-02	0
39	(0)	/1./0	-29.50	1.00	0.70	4.18E - 01	0.5	1.49E - 01	0
40	(0)	/1./0	9.90	1.70	1.90	$1.38E \pm 00$	0.4	4.58E - 01	0
41 42 [†]	(0)	72.00	-12.70	1.30	1.10	$1.03E \pm 00$	0.4	5.34E = 01	0
42'	(0)	75.90	39.90 25.70	4.10	2.10	$3.04E \pm 00$	0.7	$1.32E \pm 00$	0
43	(0)	74.00	55.70 25.40	1.50	0.90	3.49E - 01	0.4	1.22E = 01	0
44	(0)	75.20	34.10	3.40	0.80	2.53E = 01	0.4	0.50E - 01	0
43	(0)	76.40		5.40 1.30	2.20	$2.03E \pm 00$	0.5	9.30E = 01 1.64E = 01	0
+0 47	(0)	77 50	30.20	0.60	0.80	-1.00E = 01	0.5	$9.17F_02$	0
-+ / 48	(0)	81 70	39.00	0.00	1.20	3.04F = 01	0.4	1.06E - 01	0
40†	(0)	82 10	_39.00	14 60	4.00	2.04E - 01	0.5	$8.87F \pm 00$	1
50	(0)	82.10	-31.10	1 10	0.00	3.95E - 01	0.7	1.31E = 0.01	0
50 51†	(0)	83 50	39.50	0.80	1.00	4.62E - 01	0.5	$1.88E_{-01}$	0
52	(0)	84.10	-36.80	0.60	0.80	2.24E-01	0.4	7.89E-02	Ő

Table 9. (Continued.)

Cloud	Clump	Pos	ition	5	Size	Surface	Maximum	[Auds	Number of
nomo	nama	105	h		$\frac{\Lambda h}{\Lambda h}$. araa	avtinction	Juvus	associated
name	name	(dag)	(dag)	Δl	(dag)	(daa^2)		$(max dax^2)$	alanda
		(deg)	(deg)	(deg)	(deg)	(deg)	$A_V(\text{Inag})$	(magueg)	ciouds
53	(0)	84.50	38.60	1.60	1.30	6.89E-01	0.5	2.47E - 01	0
54 [†]	(0)	84.90	39.50	0.80	0.80	2.61E-01	0.4	9.62E-02	0
55	(0)	85.10	-33.10	1.90	1.90	1.26E + 00	0.4	4.30E-01	0
56	(0)	86.00	38.20	0.80	1.10	2.82E-01	0.4	9.65E - 02	0
5/	(0)	86.70	38.40	0.90	0.60	3.06E - 01	0.4	1.04E - 01	0
38 50	(0)	87.20	-38.40	0.00	0.70	2.03E - 01	0.4	7.15E-02	0
59 60	(0)	89.00 02.20	-39.00	0.70	0.50	2.23E = 01 2.60E = 01	0.4	8.13E - 02 1.04E - 01	0
61 [†]	(0)	92.20	-2.80	0.00	6.40	$1.31E \pm 01$	0.5	1.04L = 01 5.83E ± 00	1
62	(0)	92.00	-30.30 -8.40	0.80	0.40	$3.86E_{-01}$	0.8	1.30E - 01	0
63	(0)	96 70	-17.10	0.00	0.50	2.29E-01	0.4	7.53E - 02	0
64	(0)	98.30	-9.50	1.80	2.40	2.27E + 00	0.5	8.08E-01	0
65	(0)	98.60	18.10	0.80	1.10	5.05E - 01	0.4	1.73E - 01	Ő
66	(0)	98.90	-32.90	1.50	1.30	7.24E-01	0.4	2.57E-01	0
67	(0)	99.00	-10.10	1.00	0.80	2.75E-01	0.4	8.85E-02	0
68	(0)	99.70	-11.30	0.70	0.40	2.16E-01	0.4	7.25E-02	0
69	(0)	100.60	35.00	1.10	0.60	2.21E-01	0.5	7.61E-02	0
70^{\dagger}	(0)	100.90	40.00	0.90	0.90	3.54E-01	0.4	1.30E-01	0
71	(0)	101.50	37.50	1.80	1.50	7.71E-01	0.5	2.76E-01	0
72	(0)	104.20	-20.90	1.90	0.90	7.28E-01	0.4	2.37E-01	0
73	(0)	104.50	-38.40	0.70	0.90	2.66E-01	0.5	1.01E-01	0
74	(0)	105.10	-6.40	0.60	1.00	2.29E-01	0.3	7.14E-02	0
75	(0)	105.90	-38.50	1.30	0.90	4.71E-01	0.5	1.76E-01	0
76	(0)	105.90	-8.00	0.70	0.70	2.48E-01	0.3	7.78E-02	0
77†	(0)	106.40	-39.60	0.70	0.90	3.08E-01	0.5	1.11E-01	0
78	(0)	107.70	34.70	1.30	1.00	4.03E-01	0.4	1.34E - 01	0
79†	(0)	109.70	-38.40	5.40	2.80	4.15E + 00	0.6	1.63E + 00	1
80	(0)	109.90	-34.60	1.30	0.70	3.54E - 01	0.6	1.35E-01	0
81	(0)	110.00	35.20	1.10	0.60	2.77E - 01	0.4	9.58E-02	0
82†	(0)	117.30	39.70	0.70	0.70	2.08E - 01	0.4	7.02E - 02	0
83	(0)	119.70	22.20	1.20	1.10	5.56E - 01	0.5	1.98E - 01	0
84	(0)	121.70	24.10	1.10	1.70	8.87E-01	0.6	3.59E - 01	0
85	(0)	123.60	24.90	2.60	2.00	1.11E + 00	0.6	4.08E-01	0
86	(0)	123.60	30.20	1.90	2.10	1.41E + 00	0.7	5.61E-01	1
87	(0)	123.90	-18.40	0.60	0.70	2.09E-01	0.4	6.86E-02	0
88	(0)	124.70	-11.00	0.70	0.40	2.06E - 01	0.4	6.73E-02	0
89	(0)	124.90	30.40	1.10	1.00	5.25E - 01	0.6	2.11E-01	0
90	(0)	125.00	27.10	0.60	0.80	2.32E - 01	0.4	8.05E-02	0
91	(0)	125.70	12.40	0.80	0.40	2.44E - 01	0.4	8.45E-02	0
92	(0)	128.00	20.40	0.80	0.00	2.35E - 01	0.4	8.10E - 02	0
93	(0)	120.50	- 30.40	1.40	0.00	5.03E = 01	0.4	1.0/E = 01	0
94	(0)	129.30	22.90	0.00	0.70	4.03E = 01 3 50E = 01	0.3	1.31E-01 1 10E-01	0
95	(0)	130.40	-36.70	1.20	0.50	2.09E - 01	0.4	7.06E - 02	0
97	(0)	131 10	25.60	0.90	0.50 0.40	2.07E - 01	0.4	6.72E - 02	0
98	(0)	131.10	-840	2.50	2.30	2.92E + 00	0.5	1.07E + 00	0
99	(0)	132.20	24 30	0.70	0.60	2.19E - 01	0.5	7.78E - 02	Õ
100	(0)	132.40	25.30	2.40	1.90	2.11E + 00	0.5	7.87E - 01	Ő
101 [†]	(0)	132.60	39.20	10.40	4.30	1.71E + 01	1.0	8.46E + 00	1
102	(0)	133.30	-23.00	4.60	1.70	3.16E + 00	0.5	1.11E + 00	0
103	(0)	136.30	-34.90	0.60	1.00	2.95E-01	0.4	1.09E-01	0
104	(0)	140.10	24.30	7.40	5.30	1.66E+01	0.8	7.30E + 00	2

Cloud	Clump	Posi	ition	5	Size	Surface	Maximum	$\int A_V ds$	Number of
name	name	l	b	Δl	Δb	area	extinction		associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	$A_V(mag)$	$(mag deg^2)$	clouds
105	(0)	141.10	-27.50	0.80	1.20	4.25E-01	0.5	1.64E-01	0
106	(0)	142.10	26.80	1.10	0.80	3.84E-01	0.5	1.38E-01	0
107	(0)	142.10	38.20	0.70	0.60	2.20E-01	0.7	9.54E-02	0
108	(0)	143.30	38.40	0.70	0.80	3.21E-01	0.6	1.37E-01	0
109	(0)	143.50	-12.40	0.90	1.10	5.09E-01	0.4	1.65E-01	0
110	(0)	143.80	-20.40	0.60	0.70	2.06E-01	0.4	6.62E - 02	0
111	(0)	145.00	-12.10	0.70	0.70	3.81E-01	0.4	1.33E-01	0
112	(0)	145.10	-19.60	1.30	1.70	9.12E-01	0.4	3.10E-01	0
113	(0)	145.20	12.30	1.10	0.60	4.49E-01	0.6	1.85E-01	0
114^{+}	(0)	146.50	39.50	0.70	0.90	2.62E-01	0.5	1.08E-01	1
115	(0)	146.60	-11.70	0.90	0.50	3.62E-01	0.4	1.32E-01	0
116	(0)	147.40	37.70	1.00	0.40	2.14E - 01	0.4	7.08E-02	0
117	(0)	147.70	28.20	0.40	0.80	2.12E-01	0.4	7.19E-02	0
118	(0)	148.30	38.40	1.90	2.20	1.31E + 00	0.6	5.29E-01	1
119	(0)	150.80	-38.30	3.00	2.00	1.39E + 00	0.7	5.53E-01	2
120	(0)	152.40	36.30	1.00	1.00	3.87E-01	0.4	1.33E-01	0
121	(0)	152.70	20.20	0.60	1.10	3.66E-01	0.4	1.29E-01	0
122^{\dagger}	(0)	154.10	-40.00	0.80	0.80	2.69E-01	0.5	1.03E-01	0
123	(0)	154.10	-16.30	0.50	0.60	2.31E-01	0.4	8.10E-02	0
124	(0)	154.90	-27.60	0.60	1.00	2.48E-01	0.4	8.73E-02	0
125	(0)	155.90	32.70	0.90	1.40	4.53E-01	0.5	1.63E-01	0
126	(0)	158.00	35.50	0.50	0.80	2.04E-01	0.4	7.30E-02	0
127	(0)	158.10	-26.30	4.60	3.60	3.32E + 00	0.7	1.27E + 00	1
128	(0)	158.30	19.60	0.90	0.60	3.11E-01	0.4	1.01E-01	0
129	(0)	158.50	-6.30	0.60	0.80	2.49E-01	0.4	8.45E-02	0
130	(2)	158.80	-33.40	2.10	2.20	1.76E + 00	1.5	1.16E + 00	4
	P 1	158.80	-33.40	0.30	0.40	7.52E - 02	1.5	1.02E-01	0
	P 2	159.10	-34.40	0.40	0.30	7.43E-02	1.4	8.88E-02	1
131	(0)	161.80	-31.50	1.40	1.30	6.40E-01	0.4	2.19E-01	0
132	(0)	161.80	4.80	1.20	0.60	4.09E-01	0.5	1.49E-01	0
133	(0)	162.90	-29.50	0.70	1.20	3.56E-01	0.4	1.25E-01	0
134	(0)	163.20	-26.40	1.60	1.10	3.76E-01	0.5	1.34E-01	0
135	(0)	165.60	0.90	0.60	0.60	2.30E-01	0.4	7.84E-02	0
136	(0)	166.10	-36.30	0.90	1.10	2.64E-01	0.4	9.10E-02	0
137	(0)	166.60	-28.10	1.00	0.80	2.81E-01	0.5	1.00E-01	0
138	(0)	167.50	-26.60	1.50	1.90	1.14E + 00	0.7	4.81E-01	2
139	(0)	168.90	-27.70	2.00	2.30	9.99E-01	0.6	3.70E-01	0
140	(0)	169.70	8.90	0.70	0.90	4.05E-01	0.4	1.38E-01	0
141	(0)	169.80	29.70	0.60	0.70	2.60E-01	0.4	8.91E-02	0
142^{+}	(9)	170.60	-37.90	7.40	5.70	1.76E + 01	1.3	9.11E+00	1
	P 1	170.60	-37.90	0.70	1.10	4.27E-01	1.3	4.78E-01	0
	P 2	169.00	-37.40	0.40	0.70	1.75E-01	0.9	1.37E-01	0
	P 3	170.50	-35.90	0.30	0.40	7.29E-02	0.9	5.73E-02	0
	P 4	168.70	-36.70	0.50	0.40	1.12E-01	0.9	8.41E-02	0
	P 5	170.90	-36.30	0.40	0.70	1.37E-01	0.8	9.51E-02	0
	P 6	173.60	-35.80	1.00	1.40	3.23E-01	0.7	1.93E-01	0
	P 7	172.50	-35.50	0.70	0.60	2.11E-01	0.7	1.19E-01	0
	P 8	169.20	-39.20	0.60	0.70	1.94E-01	0.6	1.07E-01	0
	P 9	167.20	-38.20	0.70	0.80	1.96E-01	0.6	1.00E-01	0
143	(0)	170.80	-25.10	0.80	0.60	2.35E-01	0.4	7.93E-02	0
144	(0)	175.60	-19.40	1.00	0.70	2.92E-01	0.4	9.82E-02	0
145	(0)	176.20	-28.10	1.20	0.40	2.38E-01	0.4	7.97E-02	0

 Table 9.
 (Continued.)

Cloud	Clump	Pos	ition	S	Size	Surface	Maximum	$\int A_V ds$	Number of
name	name	l	b	Δl	Δb	area	extinction		associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	$A_V(mag)$	$(mag deg^2)$	clouds
146	(0)	176.90	-13.40	0.40	0.90	2.04E-01	0.4	7.24E-02	0
147	(0)	177.20	12.60	1.30	0.90	3.32E-01	0.4	1.06E - 01	0
148	(0)	177.20	14 20	0.90	0.90	2.71E-01	0.3	8.69E - 02	Ő
149	(0)	177 70	15 40	1 20	1 20	6.46E - 01	0.4	2.17E - 01	Ő
150	(0)	178 40	-27.00	0.50	1.20	3.74E - 01	0.5	1.40E - 01	0
151	(0)	179.60	-25.50	1.00	1.50	$6.13E_{-01}$	0.5	$2.22E_{-01}$	0
152	(0)	179.80	15 30	0.80	0.50	$2.51E_{-01}$	0.3	8.82E_02	0
152	(0)	181.20	-24.10	1.00	0.50	2.51E 01 2.74E - 01	0.4	0.02E - 02 0.12E-02	0
153	(0)	182.20	-24.10	1.00	2.60	2.74E = 01 $1.32E \pm 00$	0.4	9.12E - 02	0
154	(0)	182.20	20.70	1.80	2.00	$1.32E \pm 00$ $1.01E \pm 00$	0.4	4.31E - 01	0
155	(0)	184.00	26.30	1.70	1.20	6.08E - 01	0.4	3.47E - 01 3.13E - 01	0
150	(0)	185.30	-20.30	2.30	1.20	1.33E + 00	0.7	3.13E - 01	0
150	(0)	105.50	-6.40	2.30	1.20	$1.55E \pm 00$	0.3	4.99E - 01	0
150	(0)	105.00	260	0.80	0.00	2.17E = 01	0.4	7.24E = 02	0
1.09	(0)	100.10	2.00	0.50	0.00	2.10E - 01	0.3	8.30E - 02	0
100	(0)	100.00	-28.30	0.00	0.80	2.20E - 01	0.4	7.01E - 02	0
101	(0)	100.00	22.30	0.80	0.50	2.13E - 01	0.3	0.78E - 02	0
162	(0)	189.80	-36.30	0.60	0.80	2.5/E - 01	0.6	1.09E - 01	1
163	(0)	190.60	-25.40	1.60	1.10	8.04E - 01	0.4	2.92E - 01	0
164	(0)	191.40	35.20	0.60	0.80	3.02E-01	0.6	1.31E-01	0
165	(0)	192.10	35.60	1.30	1.60	7.26E-01	0.5	2.57E-01	0
166	(0)	200.20	3.50	0.70	0.90	2.99E-01	0.4	9.65E-02	0
167	(0)	200.80	33.50	0.80	0.70	2.25E-01	0.5	8.08E-02	0
168	(0)	203.40	28.50	0.70	0.60	2.64E - 01	0.5	1.05E - 01	0
169	(0)	204.50	-18.70	0.90	1.40	3.51E-01	0.4	1.18E-01	0
170	(0)	204.60	-20.40	0.80	0.50	2.25E - 01	0.4	7.50E - 02	0
171	(0)	208.20	8.60	1.60	1.70	1.63E + 00	0.4	5.57E-01	0
172	(0)	209.40	-10.00	0.80	0.60	3.25E - 01	0.5	1.20E - 01	0
173	(0)	209.80	6.50	1.70	1.00	9.63E-01	0.4	3.28E - 01	0
174	(0)	211.00	-36.50	2.50	2.20	2.41E + 00	0.9	1.05E + 00	2
175	(0)	211.10	32.20	0.80	0.60	2.88E - 01	0.6	1.21E - 01	0
176	(0)	214.20	36.60	0.70	1.30	3.31E-01	0.5	1.19E - 01	0
177	(0)	214.90	34.50	1.00	2.10	1.15E + 00	0.6	4.47E - 01	0
178	(0)	216.70	-37.50	0.80	0.70	2.30E - 01	0.4	7.90E - 02	0
179	(0)	217.60	36.20	1.30	1.70	9.57E-01	0.6	3.87E - 01	0
180	(0)	217.70	39.00	2.00	2.30	1.45E + 00	0.6	5.61E - 01	0
181	(0)	219.20	28.90	0.60	0.80	2.36E - 01	0.5	8.65E - 02	0
182	(0)	221.50	-9.40	1.00	0.80	4.14E - 01	0.4	1.41E - 01	0
183	(0)	227.60	31.40	0.80	1.30	5.28E - 01	0.5	1.93E - 01	0
184	(0)	230.80	5.50	0.40	0.90	2.09E - 01	0.3	6.65E - 02	0
185	(0)	232.00	36.50	1.30	0.80	2.82E - 01	0.4	9.56E - 02	0
186	(0)	239.30	-7.00	0.70	0.70	3.08E - 01	0.3	9.94E - 02	0
187	(0)	245.10	-13.70	1.90	0.90	7.76E-01	0.4	2.56E - 01	0
188	(0)	248.70	35.90	0.90	0.90	3.15E - 01	0.4	1.12E - 01	0
189	(0)	249.10	39.00	1.60	1.70	7.79E-01	0.4	2.61E - 01	0
190	(0)	250.40	36.50	0.80	0.90	3.39E-01	0.4	1.14E - 01	0
191	(0)	254.90	34.60	1.00	0.50	2.55E-01	0.4	8.63E-02	0
192	(0)	260.40	38.40	0.80	0.70	3.21E-01	0.4	1.13E-01	0
193 [†]	(0)	261.70	35.00	3.60	5.90	5.73E + 00	0.5	2.08E + 00	0
194	(0)	263.70	-39.50	1.90	1.00	4.57E-01	0.4	1.49E-01	0
195†	(0)	263.70	38.70	2.40	3.20	2.73E + 00	0.5	9.50E-01	0
196	(0)	265.00	37.70	0.80	0.80	2.92E-01	0.4	1.04E - 01	0
197^{\dagger}	(0)	266.20	-39.60	0.70	0.80	2.54E-01	0.4	8.79E-02	0

Table 9. (Continued.)

Cloud	Clump	Pos	ition	S	Size	Surface	Maximum	$\int A_V ds$	Number of
name	name	l	b	Δl	Δb	area	extinction		associated
		(deg)	(deg)	(deg)	(deg)	(deg^2)	$A_V(mag)$	$(mag deg^2)$	clouds
198	(0)	266.30	8.90	1.30	1.30	8.00E-01	0.4	2.87E-01	0
199 [†]	(0)	267.70	-39.30	0.50	0.90	2.31E-01	0.4	8.04E-02	0
200	(0)	269.40	-38.80	0.70	0.70	2.73E-01	0.4	9.27E-02	0
201^{+}	(0)	276.70	39.80	1.50	0.50	2.84E-01	0.3	9.06E-02	0
202	(0)	277.40	38.80	1.50	1.50	5.68E-01	0.4	1.91E-01	0
203†	(0)	278.90	39.60	1.00	0.60	2.31E-01	0.4	7.72E - 02	0
204^{+}	(0)	280.40	39.90	1.00	0.90	2.85E-01	0.4	9.76E-02	0
205	(0)	284.10	-9.20	1.20	1.10	4.54E-01	0.4	1.51E-01	0
206	(0)	284.20	-10.40	0.50	0.70	2.07E-01	0.4	7.20E - 02	0
207	(0)	285.00	-8.50	0.50	1.20	2.77E-01	0.4	8.93E-02	0
208	(0)	285.80	-21.90	0.80	0.60	2.50E-01	0.4	8.44E-02	1
209	(0)	288.40	6.00	1.40	1.70	1.16E + 00	0.5	4.23E-01	1
210	(0)	290.40	-26.90	0.70	0.60	2.32E-01	0.4	7.59E-02	1
211	(0)	291.30	-26.90	0.50	0.80	2.06E-01	0.4	6.63E-02	0
212	(0)	292.60	-19.90	0.70	0.60	2.63E-01	0.4	9.42E-02	1
213†	(0)	293.00	39.20	1.60	1.30	6.42E-01	0.4	2.19E-01	0
214	(0)	294.10	37.30	0.50	0.90	2.70E-01	0.4	9.05E-02	0
215	(0)	294.20	-19.30	0.80	0.80	3.59E-01	0.4	1.26E-01	1
216	(0)	296.80	37.60	1.10	0.70	3.01E-01	0.4	9.91E-02	0
217^{\dagger}	(0)	301.30	37.50	9.90	5.00	1.04E + 01	0.5	3.70E + 00	0
218	(0)	303.90	9.60	0.90	1.00	6.41E-01	0.4	2.22E-01	0
219	(0)	306.70	-9.20	1.20	0.60	3.26E-01	0.4	1.05E - 01	0
220	(0)	329.40	-8.00	0.60	0.60	2.08E-01	0.4	7.41E-02	0
221	(0)	330.00	-4.50	1.50	0.70	5.38E-01	0.4	1.84E-01	0
222	(0)	333.30	-10.50	1.10	0.70	4.62E - 01	0.4	1.61E-01	0
223	(0)	335.60	22.70	0.80	1.60	4.87E-01	0.4	1.60E-01	0
224	(0)	335.90	-6.70	0.90	0.60	3.48E-01	0.4	1.23E-01	0
225	(0)	336.70	-10.00	1.20	1.80	8.38E-01	0.4	2.82E-01	0
226^{+}	(0)	337.40	40.00	2.20	0.70	5.00E-01	0.4	1.73E-01	0
227	(0)	338.10	21.10	0.50	0.80	2.89E-01	0.4	1.02E - 01	0
228	(0)	338.80	24.50	1.00	0.60	3.82E-01	0.4	1.35E-01	0
229	(0)	338.90	-11.30	0.60	0.80	2.84E-01	0.4	9.17E-02	0
230 [†]	(0)	341.30	37.60	4.00	4.10	5.81E + 00	0.5	2.06E + 00	0
231	(0)	348.50	25.10	1.40	0.90	8.24E-01	0.4	2.79E-01	0
232	(0)	350.10	24.10	1.00	1.00	5.29E-01	0.4	1.79E-01	0

[†] Cloud extending outside the survey area at $|b| \le 40^{\circ}$.

S198

Table 10. List of associated clouds in the low-resolution A_V map.

Cloud name	Clump name	Associated clouds
2		(1) G 1.0+26.0
6		(1) DIR 013+40, HMT 18
13		(1) IREC 47
16		(1) IREC 48
19		(1) IREC 51, (2) CB 124
32		(1) LDN 780
49		(1) 3C 454.3 Direction Cloud
60		(1) LDN 1009, (2) LDN 1012
61		(1) MBM 54
79		(1) MBM 1a
86		(1) IREC 165
101		(1) DIR 135+38
104		(1) HSVMT 16, (2) HSVMT 18
114		(1) MBM 31, HSVMT 20
118		(1) HSVMT 24
119		(1) MBM 7, IREC 215, (2) MBM 8
127		(1) UT 8d
130		(1) LDN 1453, (2) LDN 1454, (3) LDN 1458, (4) MBM 12, IREC 229, UT 1
130	P 2	(1) LDN 1457
138		(1) UT 5, (2) MBM 17
142		(1) MBM 16, IREC 252
162		(1) IREC 276
174		(1) MBM 20, IREC 305, (2) LDN 1642
208		(1) IREC 418
209		(1) FeSt 1-155
210		(1) IREC 420
212		(1) KM 292.7–19.8
215		(1) KM 294.6–19.7

Fig. 8. (a) Hatched area showing the region where we searched for dark clouds on the basis of the high-resolution A_V map. The coordinates of the surveyed area are summarized in table 6. The contour is drawn at $A_V = 0.5$ mag. (b) Distribution of 9 regions which are displayed in figures 9–17 on a finer scale.

Fig. 9. (a) Distribution of A_V in Region 1 denoted in figure 8b. The lowest contour is $A_V = 0.5$ mag, and the other contours are drawn at every 1 mag, starting from $A_V = 1$ mag. The resolution of the map is 6'. (b) Locations of bright stars composing constellations. Stars brighter than or equal to 3 mag are plotted. (c) Locations of H II regions (open circles) and supernova remnants (filled circles) cataloged by Sharpless (1959) and Green (1998), respectively. The sizes of the open and filled circles represent the cataloged extents of these objects. (d) Finding chart for more detailed A_V maps. Subregions denoted by the solid or shaded rectangular boxes are shown on a finer scale in figure 18.

Fig. 9. (Continued.)

Fig. 10. Same as figure 9, but for Region 2.

Fig. 10. (Continued.)

Fig. 11. Same as figure 9, but for Region 3.

Fig. 11. (Continued.)

Fig. 12. Same as figure 9, but for Region 4.

Fig. 12. (Continued.)

Fig. 13. Same as figure 9, but for Region 5.

Fig. 13. (Continued.)

Fig. 14. Same as figure 9, but for Region 6.

Fig. 14. (Continued.)

Fig. 15. Same as figure 9, but for Region 7.

Fig. 15. (Continued.)

Fig. 16. Same as figure 9, but for Region 8.

Fig. 16. (Continued.)

Fig. 17. (a)–(c) Same as figure 9, but for Region 9. The lowest contour and the contour interval in panel (a) are 0.5 mag. (d) High-pass filtered A_V map (see text). The lowest contour and the contour interval are 0.5 mag. (e) Finding chart for the identified clouds (filled circles) and clumps (plus signs) listed in table 7 (p.S68). The extent of the clouds and clumps listed in the table is indicated by the fainter and denser hatches, respectively. (f) Locations of already known dark clouds listed in table 8. Dark clouds identified by Lynds (1962) are indicated by filled squares with labels, and the other already known dark clouds compiled by Dutra and Bica (2002) are indicated by plus signs.

Fig. 17. (Continued.)

Fig. 17. (Continued.)

Fig. 18-1-1. Atlas of dark clouds for subregions indicated in panel (d) of figures 9–16. The subregions are named "Region name-order in the region". For instance, the first subregion in Region 1 is named "Region 1-1". All of the subregions from Region 1-1 to Region 8-16 are shown in a series of figures in this atlas. A figure for each subregion consists of the following four panels: (a) Distribution of A_V drawn at 6′ resolution. The lowest contour is 0.5 mag, and the contour intervals are 0.5 mag and 1.0 mag in the ranges $A_V \leq 3.0$ mag and $A_V > 3.0$ mag, respectively. The noise level of the map is less than 0.5 mag. Some regions where DSS plates are heavily saturated due to bright stars or H II regions are masked by gray hatches (e.g., α Cen in Region 8-14). (b) Filtered A_V map free from extended components. The contours are the same as in panel (a). (c) Finding chart for the identified clouds (filled circles) and the clumps (plus signs) listed in table 7. The extent of the clouds and clumps listed in the table is indicated by the fainter and denser hatches, respectively. The thick solid line, as can be seen in the figure for Region 1-2, denotes the boundary of clouds which appear to be one large continuous cloud in the filtered map, but are divided into two or more smaller clouds at the narrowest part of the cloud extents (see text). (d) Locations of already known dark clouds listed in table 8. Dark clouds identified by Lynds (1962) and Feitzinger and Stüwe (1984) are indicated by filled squares with labels, and the other already known dark clouds compiled by Dutra and Bica (2002) are indicated by plus signs.

Fig. 18-1-2.

Fig. 18-1-2. (Continued.)

С

2138

-9

-10

-11

-12

2158

351

2148 ூ。

FSD394

d

347

348

් FSD396

350 349

20

Fig. 18-1-5.

Fig. 18-1-7.

Fig. 18-1-7. (Continued.)

Fig. 18-1-8.

Fig. 18-1-8. (Continued.)

Fig. 18-1-9.

Fig. 18-1-9. (Continued.)

Fig. 18-1-10.

Fig. 18-1-10. (Continued.)

Fig. 18-1-11.

Fig. 18-1-11. (Continued.)

Galactic Longitude (Degree)

Fig. 18-1-12.

Fig. 18-1-12. (Continued.)

Fig. 18-1-13.

Fig. 18-1-13. (Continued.)

Fig. 18-1-14. (Continued.)

Fig. 18-1-15.

Fig. 18-1-15. (Continued.)

Fig. 18-1-16.

Fig. 18-1-16. (Continued.)

Fig. 18-1-17. (Continued.)

Fig. 18-1-18.

Fig. 18-1-18. (Continued.)

Fig. 18-2-1.

Fig. 18-2-1. (Continued.)

Fig. 18-2-2.

Fig. 18-2-3.

Fig. 18-2-4.

Fig. 18-2-5.

Fig. 18-2-6.

Fig. 18-2-8.

Fig. 18-2-9.

Fig. 18-2-11.

Fig. 18-2-12.

Fig. 18-2-13.

Fig. 18-3-1. (Continued.)

Fig. 18-3-2.

Fig. 18-3-3.

Fig. 18-3-5. (Continued.)

Fig. 18-3-6.

Fig. 18-3-7.

Fig. 18-3-8.

Fig. 18-3-9.

Fig. 18-3-10.

Fig. 18-3-11.

Fig. 18-3-12.

Fig. 18-3-12. (Continued.)

Fig. 18-3-13.

Fig. 18-3-13. (Continued.)

Fig. 18-3-14.

Fig. 18-3-14. (Continued.)

Fig. 18-3-15.

Fig. 18-3-16.

0

S281

Fig. 18-3-17.

Fig. 18-3-17. (Continued.)

Fig. 18-3-19.

Fig. 18-3-20.

Fig. 18-4-1. (Continued.)

Fig. 18-4-2.

Fig. 18-4-2. (Continued.)

•

Fig. 18-4-6.

Fig. 18-4-7.

Fig. 18-4-9.

Fig. 18-4-10.

Fig. 18-4-10. (Continued.)

Fig. 18-4-11.

Fig. 18-4-12.

Fig. 18-4-13.

Fig. 18-5-1. (Continued.)

Fig. 18-5-2.

Fig. 18-5-2. (Continued.)

Fig. 18-5-3.

Fig. 18-5-4.

Fig. 18-5-5.

Fig. 18-5-5. (Continued.)

Fig. 18-5-6.

Fig. 18-5-6. (Continued.)

Fig. 18-5-7.

Fig. 18-5-7. (Continued.)

Fig. 18-5-9.

Fig. 18-5-10.

Fig. 18-5-11.

Fig. 18-5-13.

Fig. 18-5-14.

Fig. 18-5-15.

Fig. 18-5-16.

Fig. 18-5-17.

Galactic Latitude (Degree)

Fig. 18-6-1. (Continued.)

Fig. 18-6-2.

Fig. 18-6-3.

Fig. 18-6-4.

Fig. 18-6-5.

Fig. 18-6-8.

Fig. 18-6-9. (Continued.)

Fig. 18-6-10.

Fig. 18-6-11.

Fig. 18-6-12.

Fig. 18-7-2.

Fig. 18-7-3.

Fig. 18-7-4.

Fig. 18-7-5.

Fig. 18-7-7.

Fig. 18-7-8.

Galactic Longitude (Degree)

Fig. 18-7-9.

Fig. 18-7-9. (Continued.)

Fig. 18-7-10.

Fig. 18-7-11.

Fig. 18-7-12.

Fig. 18-8-1. (Continued.)

Fig. 18-8-2.

Fig. 18-8-3.

Fig. 18-8-4.

Fig. 18-8-5.

Fig. 18-8-5. (Continued.)

Galactic Longitude (Degree)

Fig. 18-8-6. (Continued.)

Fig. 18-8-7. (Continued.)

Fig. 18-8-8.

Fig. 18-8-9.

Fig. 18-8-10.

Fig. 18-8-12.

Fig. 18-8-14. (Continued.)

Fig. 18-8-15.

Fig. 18-8-16.

Fig. 20. (a) Low-resolution A_V map. The resolution of the map is 18'. The contours are drawn at $A_V = 0.3$ mag. As can be seen in the map, systematic noise arising from the vignetting of individual DSS plates is rather high in the northern hemisphere (≤ 0.3 mag), while it is much lower in the southern hemisphere. (b) Finding chart for more detailed maps. The regions labeled "A"-"R" are shown in a series of figures 21–38 on a finer scale. The clouds and clumps identified in the low-resolution A_V map are indicated by filled circles and plus signs, respectively.

Fig. 21. (a) Distribution of A_V in Region A denoted in figure 20b. The resolution of the map is 18'. The first five contours are drawn at $A_V = 0.3$, 0.5, 1.0, 1.5, 2.0 mag, and the other contours higher than 2.0 mag are drawn at every 1 mag. (b) Finding chart for the clouds (filled squares) and clumps (plus signs) detected in the low-resolution A_V map. The labels indicate the cloud numbers listed in table 9. The contours are drawn at $A_V = 0.3$ mag. The filled circles denote the positions of the clouds identified in the high-resolution A_V map. (c) Locations of already known dark clouds listed in table 10. Dark clouds identified by Lynds (1962) as well as by Feitzinger and Stüwe (1984) are indicated by filled squares, and the other already known dark clouds compiled by Dutra and Bica (2002) are indicated by plus signs.

Fig. 22. Same as figure 21, but for Region B.

Fig. 23. Same as figure 21, but for Region C.

Fig. 24. Same as figure 21, but for Region D.

Fig. 25. Same as figure 21, but for Region E.

Fig. 26. Same as figure 21, but for Region F.

Fig. 27. Same as figure 21, but for Region G.

Fig. 28. Same as figure 21, but for Region H.

Fig. 29. Same as figure 21, but for Region I.

Fig. 30. Same as figure 21, but for Region J.

Fig. 31. Same as figure 21, but for Region K.

Fig. 32. Same as figure 21, but for Region L.

Fig. 33. Same as figure 21, but for Region M.

Fig. 34. Same as figure 21, but for Region N.

Fig. 35. Same as figure 21, but for Region O.

Fig. 36. Same as figure 21, but for Region P.

Fig. 37. Same as figure 21, but for Region Q.

Fig. 38. Same as figure 21, but for Region R.

K. Dobashi et al.

5. Summary

We derived a large-scale extinction map of A_V covering the entire region in the galactic latitude range $|b| \leq 40^\circ$, by applying a star-count technique to the optical database Digitized Sky Survey I (DSS). We then summarized the extinction map in a series of figures as an atlas of the optical extinction. Based on the extinction map, we carried out a survey for dark clouds at two different angular resolutions of 6' and 18', and identified 2448 dark clouds and 2841 clumps located inside them. We measured the physical parameters of the individual clouds and clumps, such as the positions, extents, and peak and integrated A_V values. We also searched for counterparts among already known dark clouds. These parameters as well as the counterparts are summarized as a catalog of dark clouds in this paper.

We compared our A_V map with that derived from the farinfrared dust emission, i.e., the E(B - V) map provided by Schlegel et al. (1998). We found that the A_V values derived from their E(B - V) map as $A_V = R_V E(B - V)$ with $R_V = 3.1$ is generally a few times higher than that derived from DSS in this work. This trend is seen not only along the galactic plane, where a single dust temperature assumed by Schlegel et al.

(1998) is apparently inappropriate, but also toward dark clouds at high galactic latitudes. The inconsistency observed at high latitudes may be caused by an enhancement of dust emissivity in the far-infrared wavelengths, probably due to the formation of fluffy aggregates, as pointed out by some other authors. Because the difference between the two extinctions has been widely observed, we suggest that such an enhancement of dust emissivity in the far-infrared wavelengths is common not only in dense dark clouds, but also in the diffuse interstellar medium with $A_V \lesssim 1$ mag.

We are grateful to D. Monet for his kindly providing us with the PMM catalog. Thanks are due to J. P. Bernard and an anonymous referee for fruitful comments on our discussion, and for useful suggestions concerning uncertainty analyses, respectively. We are also grateful to students at Tokyo Gakugei University, namely, M. Fujii, A. Kodera, M. Karai, T. Yoda, and T. Togashi, for their kind help to revise some figures and tables. This work was financially supported by Tokyo Gakugei University. The Digitized Sky Survey was produced at the Space Telescope Science Institute (STScI) under U. S. Government grant NAG W-2166.

References

- Arce, H. G., & Goodman, A. A. 1999a, ApJ, 512, L135
- Arce, H. G., & Goodman, A. A. 1999b, ApJ, 517, 264
- Barnard, E. E. 1919, ApJ, 49, 1
- Barnard, E. E. 1927, Catalog of 349 dark objects in the sky (Chicago: University of Chicago Press)
- Bazell, D., & Dwek, E. 1990, ApJ, 360, 142
- Bernard, J. P., et al. 1999, A&A, 347, 640
- Bless, R. C., & Savage, B. D. 1972, ApJ, 171, 293
- Cambrésy, L. 1999, A&A, 345, 965
- Cambrésy, L., Beichman, C. A., & Cutri, R. M. 2002, AJ, 123, 2559
- Cambrésy, L., Boulanger, F., Lagache, G., & Stepnik, B. 2001, A&A, 375, 999
- Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
- Dame, T. M., Hartmann, D., & Thaddeus, P. 2001, ApJ, 547, 792
- di Cicco, D. 1999, S&T, 98, 137
- Dickman, R. L. 1978, AJ, 83, 363
- Dobashi, K., Bernard, J. P., Yonekura, Y., & Fukui, Y. 1994, ApJS, 95, 419
- Dobashi, K., Uehara, H., Kandori, R., Umemoto, T., & Sato, F. 2002, in Proc. IAU 8th Asian Pacific Regional Meeting (Vol. II), ed.S. Ikeuchi, J. Hearnshaw, & T. Hanawa (Tokyo: Astronomical Society of Japan), 67
- Dutra, C. M., & Bica, E. 2002, A&A, 383, 631
- Feitzinger, J. V., & Stüwe, J. A. 1984, A&AS, 58, 365

- Green, D. A. 1998, VizieR Online Data Catalog (Cambridge: Mullard Radio Astron. Obs.), VII/211
- Høg, E., Fabricius, C., Makarov, V. V., Urban, S., Corbin, T., Wycoff, G., Bastian, U., Schwekendiek, P., & Wicenec, A. 2000, A&A, 355, L27
- Kandori, R., Dobashi, K., Uehara, H., Sato, F., & Yanagisawa, K. 2003, AJ, 126, 1888
- Kenyon, S. J., & Hartmann, L. 1995, ApJS, 101, 117
- Khavtassi, J. Sh. 1955, Bull. Abastumani Obs., 18, 29
- Lasker, B. M. 1994, BAAS, 26, 914 (DSS)
- Lasker, B. M., Sturch, C. R., McLean, B. J., Russell, J. L., Jenkner, H., & Shara, M. M. 1990, AJ, 99, 2019
- Lynds, B. T. 1962, ApJS, 7, 1
- Monet, D. 1996, BAAS, 28, 905
- Monet, D. 1998, BAAS, 30, 1427
- Ristorcelli, I., et al. 1998, ApJ, 496, 267
- Savage, B. D., & Mathis, J. S. 1979, ARA&A, 17, 73
- Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
- Sharpless, S. 1959, ApJS, 4, 257
- Stepnik, B., et al. 2003, A&A, 398, 551
- Stognienko, R., Henning, Th., & Ossenkopf, V. 1995, A&A, 296, 797
- Wolf, M. 1923, Astron. Nachr., 219, 109
- Yonekura, Y., Dobashi, K., Mizuno, A., Ogawa, H., & Fukui, Y. 1997, ApJS, 110, 21