
Atlas: Baidu’s Key-value Storage System
for Cloud Data

Chunbo Lai1, Song Jiang2, Liqiong Yang3, Shiding Lin1, Guangyu Sun3, Zhenyu Hou1, Can Cui1, and Jason Cong4

1Baidu Inc. , {laichunbo,linshiding,houzhenyu,cuican01}@baidu.com
2Wayne State University , sjiang@wayne.edu

3Peking University, candiceyoung@pku.edu.cn,gsun@pku.edu.cn
4University of California, Los Angeles, cong@cs.ucla.edu

Abstract—Users store rapidly increasing amount of data into
the cloud. Cloud storage service is often characterized as having
a large data set and few deletes. Hosting the service on a
conventional system consisting of servers of powerful CPUs and
managed by either a key-value (KV) system or a file system is not
efficient. First, as demand on storage capacity grows much faster
than that on CPU power, existing server configurations can lead
to CPU under-utilization and inadequate storage. Second, as data
durability is of paramount importance and storage capacity can
be limited, a data protection scheme relying on data replication
is not space efficient. Third, because of the unique distribution
of data object size (mostly a few KBytes), hard disks may suffer
from unnecessarily high request rate (when data is stored as KV
pairs and need constant re-organization) or too many random
writes (when data is stored as relatively small files).

In Baidu this inefficiency has become an urgent issue as data
is uploaded into the storage at an increasingly high rate and
both the user population and the system are rapidly expanding.
To address this issue, we adopt a customized compact server
design based on the ARM processors and replace three-copy
replication for data protection with erasure coding to enable
low-power and high-density storage. Furthermore, there is a
huge number of objects stored in the system, such as those for
photos, MP3 music, and documents, but their sizes do not allow
efficient operations in the conventional KV systems. To this end
we propose an innovative architecture separating metadata and
data managements to enable efficient data coding and storage.
The resulting production system, called Atlas, is a highly scalable,
reliable, and cost-effective KV store supporting Baidu’s cloud
storage service.

I. INTRODUCTION

Nowadays almost all Internet-based services, including
Google, Amazon, Microsoft, and Baidu, provide cloud storage
service. There are also numerous companies, such as Drop-
box [1] and Box [2], specialized for service in this rapidly-
expanding market. To be attractive and competitive, they often
offer large free space and price the service modestly. As an
example, in the cloud storage service at Baidu, China’s largest
Internet search company, there are more than 200 million users
and each user has 3TB free space. However, it can be expensive
to store a large amount of user data in a data center and
to assure an expected service quality. First, the data must be
reliably stored with a high availability. Second, though there
could be only a small portion of the data set actively accessed
in the system, requests for any of its data should be served
reasonably fast. Third, more data mean more storage servers.

Request Size (Bytes) Read (%) Write (%) #Read / #Write
[0, 4K] 0.6% 1.2% 1.45

(4K, 16K] 0.5% 1.0% 1.41
(16K, 32K] 0.5% 0.8% 1.67
(32K, 64K] 0.8% 1.2% 1.94
(64K, 128K] 1.3% 1.7% 2.08

(128K, 256K] 96.3% 94.1% 2.84
Sum 100.0% 100.0% 2.78

TABLE I: The workload data on a typical day in 2014. The
percentages describe distribution of requests across different
object size ranges within their respective types (read or write).
The last column shows ratios of read and write requests in
different object size ranges, and that of total read and write
requests, which is 2.78.

However, unbalanced use of computer resources (high demand
on storage space vs. less demand on processor speed) makes
conventional servers equipped with power-hungry processors
under-utilized and unnecessarily increases the service cost.
Below we describe specific challenges we had faced and were
motivated to address.

A. Challenge on Hardware Efficiency

Our previous cloud storage system ran on servers with Intel
x86 processors. Performance study of the system shows that
the processors were consistently under-utilized (with 20% or
lower utilization rates) even though each server was configured
with nine hard disks. We also analyzed its workload’s charac-
teristics, including request type and object size distribution.
The distribution in a typical day is shown in Table I. A major
reason for the processors’ low utilization is that the majority
of the requests are for large requests (128KB or larger 1)
and most of the data service time is attributed to the storage
devices (here hard disks). We also sent a sampled stream of
requests from the online system (a workload trace) into a
server based on an ARM processor (a 4-core 1.6GHz Cortex
A9 processor) and whose storage devices are also nine hard
disks of the same type. We found that system’s throughput
is little changed. Even when we accelerated the trace to its
highest possible rate, during most of the runtime the ARM
processor utilization remains lower than 50%. This suggests

1To prevent service of individual requests from holding excessive amount
of resources, including memory and I/O bandwidth, we impose a limit on
request sizes, which is 256KB, for our workload.

978-1-4673-7619-8/15/$31.00 c© 2015 IEEE

{laichunbo, linshiding, houzhenyu, cuican01}@baidu.com
sjiang@wayne.edu
candiceyoung@pku.edu.cn, gsun@pku.edu.cn
cong@cs.ucla.edu

that CPU cycles are over-supplied in the x86 system and
ARM processors are sufficient to support quality cloud storage
service, where requests are dominated by requests larger than
100KB, and hard disks, rather than SSDs, are used. Note
that installation of more hard disks on a server to increase
processor utilization is not an effective solution, as it would
allow individual servers to hold an excessive amount of data,
compromising data availability and increasing data recovery
time upon server failures. In addition, considering that price
and energy consumption of ARM processors are usually at
most one tenth of the counterparts of the x86 processors,
there is a strong incentive to introduce ARM-based servers
into cloud storage service.

Fig. 1: Photo of Baidu’s ARM-based servers.

In response to this technology trend on workload char-
acteristics and system cost-effectiveness, Baidu deploys its
customized ARM-based servers in its production system to
support Baidu Cloud, its cloud storage service [5]. As illus-
trated in Figure 1, in each 2U chassis there are six 4-core
Cortex A9 processors, each with 4GB memory and four 3TB
SATA disks. The storage density is greatly increased (each
chassis can hold up to 72TB data). However, the 32-bit ARM
processor supports only up to 4GB memory and the entire
chassis has at most 24GB memory to support accessing a data
set that can be as large as 72TB. This poses a significant
challenge on how to organize data on the disks for efficient
access.

B. Challenge on Using File System to Manage Cloud Data

We had used Linux Ext3 file system at Baidu to manage
user data when x86 servers with lower storage density and
more memory were deployed. Our system workload profiling
shows that average data object size is only about 128KB.
With a very small memory-storage ratio (2GB vs. 16TB) in
the ARM-based servers, it is unlikely to accommodate all
file system metadata in the memory if the data objects are
stored as files. Furthermore, because CDNs (Content Delivery
Network) are deployed as a cache of backend storage servers,
requests reaching the servers have little locality and the chance
of hitting file system metadata cached in the memory is
small. This would lead to multiple random disk accesses of
metadata and data for serving each request, or a significant
I/O performance degradation [10], [15]. To address the issue,
Facebook’s photo storage, Haystack, reduces metadata size by

storing multiple photos in one file [10]. However, because
the ARM processor has a very small memory size, even the
Haystack approach is not sufficient to keep all metadata in
memory.

C. Challenge on Using an LSM Tree to Manage Cloud Data

For efficient metadata access, we adopt the Log-Structured
Merge (LSM) tree [17] to manage data objects in the form of
key-value (KV) pairs. The LSM tree is introduced to manage
a large number of small tuples on the storage, especially on
hard disks that are faster with sequential accesses. A data set
organized in an LSM tree allows quick inserts as new data
items are always appended sequentially at the end of a log file.
In addition, updates and deletions are also efficiently supported
because the system sequentially records the corresponding
operations into the log, rather than conducting in-place data
modifications. To facilitate efficient data read and materialize
the data modifications, the data in the tree needs to be
constantly sorted. With the sorted data, metadata facilitating
quick search of requested data can be kept much smaller
than that in a file system, including Facebook’s Haystack file
system, and can easily fit in memory. As an example, if we use
Haystack each data object needs about 26 bytes as its metadata,
including 16B for key, 4B for data size, 4B for offset, and
2B for hashtable entry. If we assume the average data size
is 128KB, the metadata would be of 3.3GB for 16TB of data
that can be held in the four 4TB disks installed with one ARM
processor. While each processor can have up to 4GB memory,
the system software needs about 1GB and some additional
space must be reserved for buffer cache. In this case the
memory is highly constrained. In contrast, using Baidu’s LSM-
tree-based data system, we need only around 320MB memory
for the metadata. In the LSM-tree, KV pairs are sorted, and
each 1MB-block, rather than each KV pair, is associated with
a piece of metadata. So there are about 16 million blocks, each
with a piece of metadata of about 20 Bytes.

The major cost of using an LSM tree to manage the KV
store comes from constant data sorting operations, or data
compaction [20]. Usually new data is accumulated into a buffer
called memtable [11]. When a memtable is filled, it is flushed
to the disk with its KV pairs sorted. These sorted KV pairs
along with an index and Bloom filters are stored on the storage
as an SSTable [11]. While the KV pairs within each SSTable
have been sorted once it is created, the key ranges of KV pairs
from different SSTables can overlap. To approach the status of
having a fully sorted list, the system constantly carries out
the compactions, in which multiple SSTables are read into the
memory, merge-sorted, and written back to the storage as one
or multiple fully sorted SSTables.

For a given number of KV pairs written into the store, the
amount of data that is accessed for the compactions quantifies
the internal workload, which is additional to the write workload
from the users. As compaction is the most expensive opera-
tion in the LSM-tree-based data management, the amount of
internal workload is critical to the entire system’s efficiency.
The system’s efficiency can be quantified by measuring the
write amplification, which is defined as the ratio of amount
of data accessed as a result of serving users’ writes and the
amount of data contained in the users’ write requests. While
the purpose of compaction is to sort KV pairs on the storage,

its cost can be unnecessarily high if the cloud data is all
managed in a KV store. As shown in Table I, in our workload
only less than 2% of objects are smaller than 4KB. As the
key has a small fixed size (a couple of bytes), the value
size determines the amount of I/O access for sorting a given
number of KV pairs. While keys have to be sorted to facilitate
quick location of values, values do not need to be sorted
together with keys. This is especially the case for the cloud
storage of Baidu, in which range query and scan operations
are rarely required. Accordingly, we propose to write the
values onto a different set of servers and replace the values
originally in the KV pairs with references (or pointers) to their
respective locations in those servers. In the context of general
data management, the keys and values can be considered as
metadata and data, respectively. We name the existing LSM
tree managing combined metadata and data pairs as fat LSM
tree, or f-LSM in short, and name the LSM tree with only
metadata as slim LSM tree, or s-LSM in short.

Fig. 2: Comparison of the system throughput observed by the
client and the disk bandwidth when random write requests of
different value sizes are issued to f-LSM and s-LSM. The Y
axis is in the logarithmic scale. As s-LSM uses two disks, one
on the metadata server managed by LSM tree and the other
on the data server, respective bandwidths are shown in the
embedded graph. Write amplifications are shown at the top of
the respective disk-bandwidth bars. Keys have 16B size.

To see how write amplification is affected by the proposal,
we inserted random KV pairs into LevelDB [6], an open-source
LSM-tree-managed KV store [11]. In the experiment, the key
size is 16B, and the value size varies from 16B, 1KB, 4KB,
64KB, to 128KB. We used one client to synchronously send
KV write requests to a server hosting LevelDB back to back.
For s-LSM, a daemon at the server, acting as a metadata server,
intercepts the requests and transforms each request into two
requests, one containing the value sent to a data server, which
sequentially writes the value to its disk, and the other one
containing the key and the value’s location on the data server
sent to the LevelDB on the same local (metadata) server. The
LevelDB requests have fixed size (32B). The servers have the
same configuration (each with one Intel Xeon L5410 8-core
CPU and one Western Digital WDC WD5000AAKS-00V1A0
hard disk) and are connected with the 1Gbps network. Figure 2
shows the system write throughput observed by the client,

the disk bandwidth (one disk in f-LSM and two disks in s-
LSM), as well as the write amplification calculated as a ratio
of the bandwidth and the throughput. As shown, for f-LSM
the amplification is mostly in the range between 10 and 15.
This suggests that more than 90% of disk bandwidth is spent
on internal data re-organization. Only workloads with small
values are metadata-intensive, and allocation of a large share
of disk bandwidth for sorting key is justified. By removing data
out of the metadata sorting operations and redirecting it to the
data server, s-LSM essentially allows only keys to be involved
in the compaction. With 1KB values, the amplification is only
1.4. With values of 4KB or larger, the amplification approaches
1 as the performance bottleneck moves to the data server and
the LSM tree is lightly loaded. As data objects in Baidu’s cloud
storage is sufficiently large, the proposal of the slim LSM tree
architecture takes LSM-tree’s advantage of quick data updates
but avoids its weakness of high write amplification.

Note that for each key-value pair in our system, the value is
user’s data object and the key is a signature of the object. We
use SHA-1 to generate a 128-bit hash value of the object’s
data as the signature. This key naming method allows us
to efficiently identify duplicates in de-duplication operations.
However, it also makes the range search supported in an LSM-
tree-based store not useful. Fortunately, because each request
involves a sufficiently large amount of data, individually ac-
cessing KV pairs does not pose an efficiency issue in the
system. In addition, the storage separation of keys from values
has an implication on garbage collection. Garbage is produced
by update and deletion requests, and needs to be removed. In
an f-LSM system, the garbage, or the invalidated KV pairs, is
on-line collected in compaction operations. However, in our
s-LSM system, only metadata, which contains keys, is on-
line collected. Data is off-line collected in a lazy and batched
manner for efficiency (see Section II-E for more detail).

D. Design goals and Features

In this paper, we describe the design and implementation
of the Baidu’s cloud storage, called Atlas. In the design, there
are several goals to achieve.

• High availability and durability This requires re-
dundancy in almost all system components and data
storage. The system availability and data safety should
be minimally affected by system failures.

• High write throughput Because of strong require-
ment on data safety during the write operations, write
amplification is unavoidable. Efforts must be taken to
minimize random disk access and the amplification to
achieve high write throughput.

• Strong consistency As a storage system, Atlas only
needs to guarantee that any read request is always
served with the latest written data for strong consis-
tency.

• Fault tolerance The system must monitor all its func-
tionalities and self-repair any detected system failures
and data losses in all of its subsystems.

• Low cost Resources, including processors, disks, net-
work, and energy consumption, should be economi-
cally provisioned to accommodate workload needs and

to save system deployment and operation costs. This
goal is of particular importance as huge volume of
data is expected to be uploaded into the system and
the system must be able to scale to a very large size
with acceptable cost.

To ensure that these goals are successfully achieved, Atlas
has provided a number of features in its design and implemen-
tation.

• Atlas represents a hardware and software co-design
to achieve a high resource utilization with customized
low-power servers and efficient data management.

• Taking into account sizes of data objects in the cloud
storage, Atlas chooses to use optimized LSM tree to
store them as KV pairs, where data (the values) and
metadata (the keys) are separated to minimize system
I/O workload.

• For the assurance of data safety, Atlas adopts a cost-
effective approach where metadata and data are pro-
tected differently. As data is moved out of LSM-tree
managed KV storage system, it can be reorganized
and protected with the Reed-Solomon code [3]. With
only 50% redundancy Atlas achieves a data safety
as strong as that with the three-replica method. As
metadata is small and is still individually managed by
a KV system, it is protected by storing three replicas.
However, because it has small size, the space overhead
due to the high redundancy (200%) is not a concern. In
addition, having three replicas allows quick recovery
of service after metadata loss.

In the next section we describe the design and implemen-
tation of Atlas. The evaluation of the system is described in
Section III. Section IV describes additional related works, and
Section V concludes.

II. THE DESIGN OF ATLAS

The Atlas cloud storage is designed as a key-value (KV)
store to accommodate and leverage its workload’s charac-
teristics for achieving three goals. First, because values are
much larger than keys in the system, Atlas provides efficient
LSM-tree-based data management through separating data
(the values) and metadata (the keys and value’s location) in
their storage and processing. Second, because data volume is
much larger than metadata volume and most of the data in
the cloud storage is rarely requested, Atlas adopts a hybrid
data protection scheme in which metadata is protected by
three-copy replication and data is protected by Reed-Solomon
coding. The design provides both high space efficiency and
strong data reliability. Third, to handle the unbalanced use of
server resources between metadata service and data service
(the former is CPU/Memory/network intensive while the latter
is disk I/O intensive), Atlas co-locates the two services on
the same set of servers to complement each other’s resource
demand for the highest resource utilization.

A. The Architecture of Atlas

Atlas has two major subsystems. One is PIS (Patch and
Index System) for managing metadata and preparing data for

PIS

Slice

PIS

Slice

RBS

Partserver

RBS

Partserver

Application

Atlas Client

Shadow

RBS Master

RBS Master

Fig. 3: Architecture of Atlas

their storage. The other one is RBS (RAID-like Block System)
for data storage. The architecture of Atlas is illustrated in
Figure 3. As a general-purpose KV store, Atlas provides a
concise API interface to its clients (applications), as shown in
Table II. In the commands, key is a 128-bit GUID (Globally
Unique Identifier) and value is considered a character string up
to 256KB. Users can produce keys by computing SHA-1 sig-
natures of their corresponding values. As we have mentioned,
we cap the value size at 256KB to limit amount of resource
needed for serving one request.

Command Format
Read Get (UINT128 key, BYTE* value)
Write Put (UINT128 key, BYTE *value)
Delete Del (UINT128 key)

TABLE II: Atlas’s interface to applications

Rather than relying on a centralized metadata management
for locating KV pairs, Atlas distributes its metadata service into
a number of PIS slices, which will be described in Section II.B.
Facilitated with Atlas’s client-side library, an application uses
a hash function to determine a PIS slice to receive its request.
Choosing a hash function, such as MD5(key) module n
where n is the number of PIS slices, can ensure that keys
are uniformly distributed among all slices. Distribution of PIS
into many slices avoids a potential performance bottleneck
associated with the metadata service, which can be heavily
loaded when a large number of requests for relatively small
KV pairs arrive. Note that the PIS subsystem does have its
metadata server (not shown in Figure 3) for slice management,
including mapping slices to physical servers, migrating slices,
and recovering slices after failures. As clients cache the
mapping between slices and physical servers, in most cases
they do not need to consult the PIS master.

Being a metadata service provider, PIS retrieves a collec-
tion of values from KV pairs it receives from clients and sends
them to the RBS subsystem for storage. Note that PIS does
not send individual values for storage. Instead, it accumulates
them into a patch until a block of 64MB is formed. This

large block size facilitates convenient data coding and efficient
data storage. This 64MB block is evenly partitioned into eight
parts; each part is stored on a different RBS server, called
partserver as shown in Figure 3. RBS uses a large access
unit, or 64MB block, at the interface for data writing and
deletion at each partserver. Specifically, every write or deletion
operation on RBS must be of 64MB, although reads are served
in the actual number of requested bytes. This asymmetry
between write/deletion and read units keeps the metadata
describing data locations on individual partservers small and
keeps garbage collection and data recovery efficient. Section
II.D will discuss this further. Furthermore, using a large write
unit enables cross-block coding to generate parity blocks for
data recovery.

As shown in Figure 3, the RBS subsystem has a master
server, which is a centralized server maintaining metadata
about on which partservers a block is stored. RBS serves
write, read, and deletion requests received via the PIS slices.
However, partservers are not directly involved in the deletion
operations. Instead, deletions are conducted via garbage col-
lections at individual partservers in a lazy and batched manner
for efficiency. Section II.E will explain this further. In the next
two subsections, we will describe the PIS and RBS subsystems
in the context of serving write, read, and deletion requests.

B. The PIS subsystem

The PIS subsystem provides metadata service for the entire
system. In addition to data indexing, PIS also conducts data
replication and accumulation to allow the data to be reliably
and efficiently stored into the RBS subsystem. The structure of
a PIS slice is illustrated in Figure 4. Each PIS slice has three
units that are almost identical in terms of their constituent
components and functionalities except that one of them (the
primary unit) can serve write/deletion requests and the other
two units (the secondary units) are used to provide redundancy
preventing loss of medadata/data and service.

Fig. 4: Structure of a PIS slice

As shown in the figure, requests received by Atlas will first
be processed by PIS’s replication module. When the module
on the primary unit receives a KV write request, it assigns a
64-bit identifier (ID) unique in the slice to the data contained
in the request. It then sends the data along with its ID to the
replication modules in the secondary units in the same slice.

The patch modules in the slice are responsible for saving the
data into their respective patch files on their local disks for
data durability. When the replication module in a secondary
unit receives the data, it asks the patch module to append the
data into a log containing data already in the patch. When this
is done, the module acknowledges the replication module in the
primary unit with the data’s ID. When the replication module
in the primary unit receives such acknowledges from at least
one secondary unit, it writes the data to the patch at the primary
unit and acknowledges the requestor. The latency of a write
request is not as long as it seems to be, even though data has
to be written into local files (patches). The patch modules do
not use synchronous writes to the disks. A replication module
can simply leave dirty data in the memory buffer before it
sends its acknowledgement. This does not compromise data
durability as we make sure that three units of a slice are
distributed on different server racks. Because dirty data will
be flushed onto the disks within a few seconds and the servers
are always protected by battery backup powers, it is unlikely
that all three copies of data in memory get lost during this
short time window.

The patch module keeps track of offset and length of each
data added into the current patch. When the patch grows
to 64MB (padding data is added if the patch is not exactly
64MB), or a block is formed, a new patch is set up to
receive and accumulate incoming data. The patch module at
the primary unit passes the 64MB block to the RBSClient
module, which then calls the RBS write API to write the block
to a number of RBS partservers. After a successful writing,
the RBS function will return a GUID for the block. As the
patch module has recorded the offset and length for each data
in the block, these two metadata items together with block
ID become the value to form a KV pair, whose key is just
the key of the write request. In other words, the value in
the original KV pair is replaced with [block id(int64), off-
set(int64), length(int64)]. The KV pairs for all the data in the
block are sent to the two secondary units via their respective
replication modules. At every unit of the slice, the KV pairs
are written into its index module, which is managed by Baidu’s
log-structured-merge(LSM) tree, or a KV store similar to
Google’s LevelDB. At this time the data in the block has been
stored in the Atlas system and its corresponding patch can
be removed at each unit. When the secondary units complete
the operations, they need to send acknowledges to the primary
unit.

C. The RBS subsystem

The RBS subsystem is a storage system that provides
efficient and reliable data write, read, and deletion operations.
Its API is summarized in Table III. As mentioned, it requires
write and deletion in the unit of 64MB block, but allows read
at any offset and of any length in the block.

For a request of writing a 64MB block, RBS, specifically
the RBSClient module in a PIS unit, evenly partitions the block
into eight 8MB parts. It then applies the Reed-Solomon coding
over the eight parts to generate four 8MB parity parts so that
each block has 12 parts. Because ARM processors do not
support SSE instructions, we use a bit matrix to implement
the coding algorithm. According to properties of the Reed-
Solomon coding algorithm, a block cannot be recovered and

Command Format
Write Write (UINT64* block id, BYTE *data)
Read Read (UINT64 block id, UINT32 offset,

UINT32 length, BYTE* data)
Deletion Delete (UINT64 block id)

TABLE III: RBS’s interface

becomes unavailable only after five or more of the block’s
12 parts are lost. Because the 12 parts are guaranteed to be
distributed on 12 different servers, only after five servers are
lost together can RBS possibly lose data. In comparison to the
approach of GFS [13] in which each 64MB chunk has three
replicas, RBS provides a comparably strong data durability and
availability. However, RBS requires only 50% more storage
space for its redundancy while GFS needs 200% more space.
Admittedly each piece of data on RBS has only one copy.
When a set of data on a partserver becomes very hot, the
server can become a bottleneck. However, in practice this is
not an issue. First, caching systems or CDNs are deployed
before Atlas and any hot accesses would be absorbed before
they reach the storage. Second, in RBS data in each block are
striped over eight partservers and accessed in parallel. Third,
Atlas is used to support cloud storage whose workload usually
is not very intensive.

As mentioned, RBS employs a global metadata service.
When an RBSClient needs to write a block into RBS, it sends
a request to the RBS master for a globally unique 64bit block
ID (block ID) and 15 server IP addresses. The least significant
four bits of the block ID are always 0. Accordingly the 12 parts
of a block (eight data parts and four parity parts), each with an
in-block part ID (part ID) from 0 to 11, can easily obtain their
respective globally unique part ID as [block ID|part ID]. In
this way, block ID and part ID can be quickly obtained from
the global part ID without resorting to looking up an index
table. The server IPs returned by the master are guaranteed
to be on different servers. It is also guaranteed that at most
two of the IPs are from the same rack, so that losing any two
racks does not lead to loss of any blocks. In the meantime, the
master tries to uniformly distribute parts across the partservers.

To store a block RBSClient needs only 12 partserver IPs.
However, the master provides three extra IPs, so that RBS
does not need to communicate with the master for additional
IPs should some servers fail to store parts. The RBSClient
then writes the block’s 12 parts to 12 partservers in parallel.
For failed writes, it uses backup IPs to re-try until all of them
are exhausted and it has to request more IPs for additional re-
trials. When the RBSClient successfully stores all 12 parts to
partservers, it submits the block ID and the list of partserver IPs
where the block’s parts have been stored to the RBS master.
On the master the metadata is managed as KV pairs in an
LSM-tree manner, where key is the block ID and the value
is its corresponding IP list. This is called block table. The
master also maintains the partserver table, which is a reversed
block table consisting of the KV pairs. The key is partserver
IP, and value is the list of global part IDs representing all
parts stored on the partserver. Maintaining the partserver table
facilitates efficient garbage collection at partservers, which will
be described in section II.E. The master is accompanied by a

shadow metadata server, which syncs with the master. When
the master is out of service, the shadow master kicks in to
assume its role.

The RBS master periodically issues heartbeat messages to
all partservers to detect any loss of servers. If a server is found
to be lost, a recovery operation is initiated. The master looks
up the partserver table to identify all the lost parts on the
partserver. It then updates its block table by setting all parts
on the lost server as invalid so that a read request for data in
any of the lost parts would trigger a reconstruction of the data,
including retrieval of other eight parts belonging to the same
corresponding block. The recovery of the lost parts entails
generation of repair tasks (each for one 8MB part), dispatching
the tasks to selected partservers, and updating block table and
partserver table accordingly in the master. The tasks are evenly
distributed over all partservers to balance the recovery load. To
keep the recovery load from disruptively impacting service of
normal requests, Atlas ensures that no servers would receive
more than one such task per second. Therefore, the more
servers in the cluster, the faster the recovery becomes.

D. Serving Read Requests in Atlas

When the key of a KV pair in a read request is hashed
into a slice, one of the slice’s units will receive the request.
The request is first processed by the unit’s patch module. If
the key matches one in the patch, the corresponding value is
immediately returned to the requester. Otherwise, the key is
processed by the unit’s index module, a KV store, to see if
there is a match. A mismatch means that there is not such a
data item associated with the key not only in this PIS slice
but also in the entire system, because keys are distributed
across the slices by consistently using the same hash function.
Otherwise, the KV store returns the value associated with the
key. The value includes the ID of the block that contains the
requested data, and offset and length of the data in the block.
With this information, the read function in the RBS API is
called in the RBSClient module to ask RBS to retrieve the
data.

The above read function first needs to know the partservers’
IPs indicating locations of the block’s parts. This knowledge
can be cached in the PIS slices to alleviate load on the master.
If it is not found in the cache, the slice retrieves it from
the master. Having the offset and length information, it then
calculates which part(s) need to be retrieved and sends read
request(s) to the corresponding partserver(s). If all the required
data is retrieved, it is returned to the requester. Otherwise, the
function selects eight out of available parts of the block to read
and decode to recover the requested data. If this also fails, the
function asks the master for an up-to-date IP list in cases that
local cached IP list is out of date or the master has updated the
IP list since the last retrieval. This trial continues until data is
successfully read or a a threshold number of trials is reached.

E. Serving Deletion Requests and Garbage Collection in Atlas

The KV pairs stored in Atlas are immutable. They can be
deleted and overwritten by inserting pairs of the same keys,
but cannot be modified in place. Accordingly, blocks in Atlas
are also immutable, and the space held by deleted KV pairs
can only be reclaimed in a garbage collection operation.

When a PIS’s primary unit receives a deletion request,
its replication module forwards the request to the replication
modules in the two secondary units of the same slice. In all
three units the request is processed by their respective patch
and index modules. If the key is in the current patch, it is
removed from the patch so that future read requests cannot
see the KV pair and the pair will not be written to the
RBS. Otherwise, in the index module the deletion operation is
simply logged in the KV store and waits for future data merge
operation to remove metadata about the key. When the primary
unit receives acknowledgements from at least one secondary
unit about their completion of respective deletion operations,
it informs the requester of the completion. Since this time the
KV pair is not visible to applications, though it may still reside
in the RBS storage system.

The space held by the deleted data is reclaimed periodically
through garbage collection. This process is expensive and
needs support from an off-line system. First, two types of
metadata information are fed into an off-line MapReduce
system. One is the KV store managed by the index module
in every PIS slice. The other is information about all block
IDs and their respective creation times recorded in the block
table in the RBS master server. On the MapReduce system, the
metadata from PIS in the form of [key:block id, offset, length]
is transformed into the form of [block ID:offset, length] show-
ing what blocks and what segments in them hold valid data.
This metadata is then computed against metadata from the
RBS master in the form of [block ID:create time] to answer
a question for any block whose creation time is earlier than
a threshold (such as one week ago): is the ratio of valid data
in the block smaller than a threshold (usually set at 80%)? A
positive answer suggests an old and garbage-substantial block.
For such a block, Atlas reads its valid data items and writes
them back to the system in a controlled rate. Because all
metadata is managed in the logged structure tree, these writes
will invalidate the data items in the original block. When all
of data items are invalidated, the block can be removed.

To remove a block, Atlas removes any metadata about the
block in the RBS master, including those in the block table
and in the partserver table. At this time partservers storing the
block’s parts are not yet aware of the fact that space used by the
parts can be reclaimed. A partserver periodically asks the RBS
master for the list of its valid parts recorded in the master’s
partserver table. By comparing the list with the parts it actually
stores, the partserver identifies invalid parts and removes them.

Atlas is designed to support Baidu’s cloud storage service.
Our experience shows that deletion operations hold a very
small portion of its entire workload. Less than 0.1% of data
in the system is deleted in a day. The garbage collection
operations can be performed infrequently (once every week
or longer) to maintain a high space utilization (usually well
above 80%).

F. Summary of Atlas’s Design Features

Atlas is a KV storage system designed for workloads
whose data sizes are between those friendly to conventional
KV stores such as LevelDB (a few kilobytes or smaller) and
those friendly to most file systems (a few megabytes or larger).
Furthermore, as a cloud storage system, it stores a huge amount

of user data (currently more than 200PB) and the data set is
relatively stable. It grows at a rate of around 3% each day
and has a relatively low deletion rate. A number of design
considerations have been carefully made to accommodate the
system’s usage.

First, from the perspective of Atlas’s clients, Atlas does not
separate metadata service and data access. All data movements
pass through PIS, rather than directly between the clients and
RBS. Because the data is not large and PIS has been highly
distributed, this design choice has minimal performance impact
but can substantially ease the system design and management.
In the meantime, metadata service (in the RBS master) and
the data service (in the RBS partservers) are separated when
PIS accesses blocks or parts from RBS. This helps to improve
system efficiency as the data (blocks/parts) is large and the
metadata server (the RBS master) is centralized.

Second, PIS removes values from KV pairs and manages
them in an LSM-based KV store, whose efficiency is greatly
improved by involving much less data in the system’s com-
paction operation. Value of a KV pair in the index module is
replaced by the block ID and in-block offset. This is actually
the logical location of the value, and needs an indirection
provided by the RBS master to obtain its physical location,
such as partserver IP(s). This design enables flexible data
managements in RBS, including efficient data migration for
load balance, garbage collection, and part recovery.

Third, Atlas treats all PIS slice units and RBS partservers
as virtual servers that can be co-located and migrated if needed.
They have the form of processes, rather than virtual machines,
so they can be very light and each physical server can
accommodate a large number of them. On each physical server
currently there can be a few hundred units and usually one
partserver. Deploying a large number of units allows efficient
accommodation of new servers during system expansion, as
existing units can simply migrate to the new servers without
any change of hash function and data rehashing. Also because
partservers need large storage space and slice units demand
more CPU cycles for processing metadata, this co-location
helps to balance the usage of a server’s resources.

Fourth, because Atlas is a KV storage system, the consis-
tency issue is less challenging. A request to Atlas is served by
a unique slice, and a KV pair has only one copy stored in the
RBS subsystem. In addition, write and deletion requests can
only be served by a primary unit. So Atlas provides strong
consistency if it routes read requests only to primary units.
If secondary units can also serve read requests, a read request
may see out-of-date data because of delayed data update during
data replication among units in a slice. In Atlas write and
deletion are atomic, as all write/deletion requests are serialized
(each assigned a unique ID), and all blocks/parts on RBS are
immutable.

III. EVALUATION

In this section, we first evaluate the design of Atlas on
small-scale clusters with micro-benchmarks, including com-
parison with an Atlas’s predecessor system that does not take
out data from KV pairs to store in a different storage subsystem
(RBS), as well as Atlas’s performance on the customized ARM

(a) Write throughput (100% write)

(b) Read throughput (100% read)

Fig. 5: Throughput (requests per second) of random accesses
with either write or read requests of various value sizes.

servers. We then present Atlas’s performance behaviors on our
production cloud storage system.

A. Comparison with Atlas’s Predecessor on Conventional
Platform

Before the deployment of the Atlas system, Baidu used
its own developed LSM-based KV store to manage the cloud
storage. The prior system, which we refer to as pre-Atlas, also
has its PIS subsystem whose structure and functionalities are
similar to their counterparts in Atlas. For example, pre-Atlas’s
PIS consists of multiple slices; each slice covers a distinct
key space for load distribution and consists of three units to
provide data redundancy for their durability. The difference
from Atlas is the storage of KV pairs. Rather than forming
patches and employing the RBS subsystem to store the values,
each of a slice’s three units simply stores its received KV pairs
into its KV store managed by a system similar to LevelDB.
Because pre-Atlas runs on servers with x86 processors, in this
experiment we compare Atlas and its predecessor on an x86
cluster to observe how Atlas’s design helps with the system’s
performance. The experimental cluster consists of 12 servers,
each with two 4-core 2.4GHz E5620 processors and a 2.7TB
hard disk, connected with 10Gbps network.

In the experiment we use five client machines to send
requests to the cluster. We increase the load on the cluster
by increasing the number of threads at each client until the
cluster is saturated (when 5 percentile latency is over 100ms).
The threads keep sending synchronous requests to the cluster
back to back.

Our measurements show that when the system is saturated
for both pre-Atlas and Atlas the average disk utilization (the

(a) Write throughput (mixed workload)

(b) Read throughput (mixed workload)

Fig. 6: Throughput (requests per second) of random accesses.
The requests are mixed reads and writes with a 3:1 ratio.

percentage of disk busy time) is over 95%, and the average
CPU utilization (the percentage of CPU busy time) is less
than 20%. In both systems for write request a server’s disk
would be accessed with more data than that received (or sent)
through the server’s network (the NIC), as all received data is
written to the disk and the disk is also involved in the data
compaction operations. Accordingly the system’s throughput
is limited by the use of the disk, on which pre-Atlas and Atlas
have different management strategies.

Figures 5a and 5b show the throughput of the two systems
on the same cluster serving either write or read requests whose
keys are randomly selected. As shown in Figure 5a, Atlas
consistently has a write throughput around three times as high
as that of pre-Atlas over the wide range of value size (from
4KB to 256KB). This result is due to Atlas’s design choice
of separating metadata and data. As all of the value sizes
are much larger than key size, Atlas minimizes the impact
of LSM-tree compactions on the write amplification, lead-
ing to consistently higher throughput. However, compared to
performance difference between f-LSM and s-LSM shown in
Figure 2, the improvement of Atlas over pre-Atlas is smaller. In
this experiment, each server co-hosts multiple Atlas’s service
components competing for the disk bandwidth. In addition
to PIS’s LSM-tree for managing the index in each slice unit
and RBS for storing block parts, the disk also supports the
patch function for temporarily storing data on the disks. All
these operations make disk bandwidth available for storing data
lower, limiting Atlas’s potential improvement on throughput.
As shown in Figure 5b, Atlas’s read throughput is around 30%
lower than its counterpart in pre-Atlas for all read workload.
Atlas needs two disk operations, one for the index in PIS and
the other for data in RBS, assuming they are not cached.

However, in our real workloads, the ratio of read and write
request on the system is around 3: 1, which is smaller than that
from users’ perspective because many read requests have been
served in the CDNs. Figures 6a and 6b show the write and
read throughput, respectively, with this ratio. Atlas achieves
higher throughput for both write and read than pre-Atlas as it
reduces the load on the disks. From the experiments with these
two kinds of workloads, we can see that Atlas’s performance
advantage is mainly its efficient support of write requests.
When the system experiences bursty write requests, Atlas is
more likely to maintain a stable system with consistently high
quality service.

B. Atlas Performance on Customized ARM-based Platform

Having shown that Atlas can make more disk bandwidth
available for serving users’ requests and that x86 processors
are significantly under-utilized, we run Atlas on a cluster of
customized ARM servers as described in Section I. Specifi-
cally, this experiment employs a cluster of 12 ARM servers,
each hosting PIS slices and RBS’s partservers. Each ARM
server has a 4-core 1.6GHz Marvell PJ4Bv7 processor, 4GB
of memory, four 3TB 7200 RPM SATA disks, and a 1Gbps
full-duplex Ethernet adapter. One RBS master node runs on
an x86 server configured with 16-core 3GHz AMD Opteron
processors, 32GB of memory, sixteen 2.7TB 7200 RPM SATA
disks, and 1Gbps full-duplex Ethernet adapter. We use six
x86 machines as clients to send requests to the Atlas cluster.
As in the previous experiments, each client thread keeps
sending synchronous requests. Therefore the number of threads
represents load, or request intensity, on the system. All requests
in the experiments are for KV pairs whose value is 256KB,
the representative size in the real workload, if not specified
otherwise.

1) System Throughput and Request Latency: We first send
only write requests to the system. Figure 7a shows the through-
put averaged over all the ARM servers when the request
intensity, represented by number of threads, changes. Note that
with well-balanced load across the cluster each ARM server
contributes almost the same amount of throughput. Because
requests are assumed to be evenly distributed across the
ARM servers, this average throughput is a metric helpful for
estimating throughput of larger scale systems. In the following
presentation all reported throughput refers to the average one.
As shown in the figure, the write throughput increases with the
increase of write intensity until it becomes saturated at about
60 requests/second when there are more than eight threads
issuing write requests.

Now we send read requests to the system. Figure 7b shows
the read throughput. It demonstrates a similar trend as that
for write except that the read throughput reaches its peak
at a larger number of threads. In addition, the average read
throughput is much higher than that for write request (180
reads/s vs. 60 writes/s). Both observations are due to the fact
that write requests consume much more network and disk
bandwidths than read requests. The bandwidth consumption
will be quantitatively analyzed in the next subsection.

We then send read and write requests to the system in
a 3:1 ratio. Figure 7c shows the average throughput for this
workload. It falls into the range between the corresponding

(a) Write workload

(b) Read workload

(c) Mixed workload with read and write of a 3:1 ratio.

Fig. 7: Throughput with different workloads (write, read,
or mixed). Workload intensity is represented by number of
threads. The request size is 256KB. The reported throughput
is an average of those of all ARM servers.

ones for all-read and all-write workloads. Since most of the
requests are reads, Atlas can achieve a maximum throughput
of 125 requests per second.

Figures 8a, 8b, and 8c show the latencies observed at the
client side for the above three kinds of workloads, respectively.
As the request intensity increases, the pressure on both the
disks and the network increases, and the request service time
accordingly increases. When the throughput reaches to its
peak, the latency keeps increasing at a faster pace. Because
write requests demand more resources, their latencies are more
affected. Atlas has a threshold on request latency. A request
with a response time larger than the threshold is considered
as unsuccessful and is retried. In the production system, the
threshold is set at 100ms.

(a) Write workload

(b) Read workload

(c) Mixed workload with read and write of a 3:1 ratio.

Fig. 8: Request latencies with different workloads (write, read,
or mixed). Workload intensity is represented by number of
threads. The request size is 256KB.

2) Bandwidth of Disks and Network: For the benefit of
lower cost to enable larger-scale cluster, the system adopts
1Gbps network interface card (NIC). Accordingly it is neces-
sary to understand which component, either disk or network,
is the performance bottleneck. In this subsection we present
measurements of the disk bandwidth and the network band-
width with all-write workload as write requests place higher
load on the network and disks.

Figure 9 shows both input and output bandwidths of
the network and the disk write/read bandwidths in the all-
write workload. With the increase of write intensities (more
request-issuance threads), bandwidths of both network and
disks increase. The ratio of input/output bandwidths and that
of write/read bandwidths, as shown in the figures, match our
analytic estimates. Assume the client sends requests for storing

(a) Network bandwidth

(b) Disk bandwidth

Fig. 9: Network and disks bandwidth with all-write workload.

N MB data to the primary unit of a PIS slice, which sends the
data to another two secondary units (2N MB) of the slice via
the network and saves its copy to the local disk. The other two
units (or the servers hosting the units) receive their respective
copies and save them to their local disks. Then the primary
unit reads its copy from the local disk and writes the RS-coded
data (1.5N MB) to the RBS server via the network. Since the
hashing function can evenly distribute the requests across the
servers, each server would receive roughly the same amount
of data from other servers as it sends to others. Consequently,
the input/output bandwidth ratio of each network NIC would
be about 4.5:3.5, and write/read bandwidth ratio of the disks
would be about 4.5:1. This estimated ratios are confirmed in
Figure 9. Also as shown in the figures, if each server has
only one NIC and multiple disks, it is more likely that the
network would be the first to become the system’s bottleneck
with increased load.

3) Impact of Request Size on the Throughput: In order to
study the impact of request size on performance of Atlas, we
send requests of different sizes to the system to its sustained
highest throughput, which is reported in Figure 10. As shown,
throughput decreases with the increase of request size for both
read and write requests. For the small request size, such as
4KB or 8KB, Atlas achieves a much higher write throughput
than read throughput. For writes, data is accumulated into large
patches in PIS and stored to the RBS in large disk accesses (at
least 8MB). The disk efficiency is always well exploited and
the effective disk bandwidth is close to its peak one regardless
of write request size or request pattern (access of continuous

(a) Write throughput

(b) Read throughput

Fig. 10: Performance of the system with different request sizes.

keys or random keys). So the write throughput almost linearly
decreases with increase of the request size.

For read requests, the change of throughput with the request
size is not as significant as that for write requests. For small
requests, the service time is dominated by that of disk seeks
as each individual read needs a disk access operation. Thus,
read workload cannot achieve a throughput as high as that
for write workload. With larger read requests, data transfer
contributes more to the request service time and disk seek
time is amortized over large data. In this case read workload
has a higher throughput than write workload, which demands
much more data transfer for data replication and data encoding.
Our measurements also show that the request latency increases
with the request size for both read and write requests. Their
trends are similar to those for throughput.

C. Measurements on a Production System

Atlas aims to provide a large-scale low-cost cloud storage
service to a very large number of users. Currently it has more
that 120 million users, each of whom can use up to 3TB storage
space. In this paper, we choose one of its online clusters that
has 700 ARM servers to analyze the real system performance.
The cluster has similar setup as our test platform, including
configuration of ARM server, types of NIC and hard disks, and
co-hosting PIS slices and RBS servers on each ARM server.

1) Performance: Figures 11a and 11b show the write and
read throughput of the cluster in a 24-hour service time period,
respectively. We list read and write throughput separately
to show the workload composition. As we mentioned, the
throughput is an average of all the ARM server throughputs.

(a) Write requests

(b) Read request

Fig. 11: System throughput in a 24-hour time period.

The reported throughput numbers suggest runtime performance
behaviors of the entire system as the all ARM servers behave
similarly. As shown, the write throughput varies in the range
of 5 to 22 and the read throughput varies in the range of
10 to 48. We can observe that low request intensity happens
between 4am and 9am (China time zone). For the rest of a day,
both read and write intensities are at a stable level. Comparing
these numbers to the peak throughput obtained from the testing
cluster, we can tell that the servers still have substantial
unused capacity. This conclusion can be further supported
by the disk and network bandwidth measurements shown in
Figures 12a, 12b, 12c, and 12d. Though the throughputs vary
in a large range during the 24 hours, they do not reach the
maximum bandwidth of the disks or the network NIC.

2) Failure Recovery: To evaluate Atlas’s recovery perfor-
mance, we set up a cluster of 12 servers and shut down a
partserver during the system’s running to simulate a system
failure. We let a client keep sending read requests to the
system, each for a random data in the failed partserver. We
present throughput and latency of the read requests observed
at the client in Figure 13. At the time when the server is shut
down, there are about 65K parts stored on it. As shown in
the figure, after the failure it takes almost one hour to get the
lost data fully recovered when both throughput and latency
are back to their normal readings. This time seems very long.
Note that the performance of recovery process is approximately
proportional to the total number of servers in the cluster, as
the recovery load is evenly distributed onto all of them. In a
system of hundreds of servers, this time would reduce to less
than one minute.

As shown in the figure, before the recovery is complete
a read request for data in an uncovered part would take time
much longer than regular read requests. An RBSClient usually
sets a timeout threshold, and a retry is initialized whenever
the threshold is passed. This retry can be conducted for at
most three times before the data is successfully obtained. The
threshold is usually set at 1 second. However, for lost data eight
parts have to be read for decoding to produce the requested

(a) Disk write bandwidth

(b) Disk read bandwidth

(c) Network incoming bandwidth

(d) Network outgoing bandwidth

Fig. 12: Disk and network bandwidths in a 24-hour time
period.

data, which usually takes time longer than the threshold.
Being aware of possible occurrence of such scenario, Atlas
incrementally increases the threshold for the second and third
retries to avoid unnecessary load on the RBS subsystem.
Impact of the recovery on read requested for un-lost data and
write requests are very minor.

3) Analysis of Power and Cost: One important design
goal of Atlas is to reduce power consumption and cost. In
this subsection, we compare the Atlas system with pre-Atlas,
the x86 based system that had been deployed in Baidu for
its cloud storage service. In the x86 based system, data are
stored with three copies. In pre-Atlas each server has two 4-
core Intel E5620 processors, 32GB main memory, 12 disks
(total capacity 360TB), and a network adapter with 1Gbps
bandwidth.

(a) Read throughput

(b) Read latency

Fig. 13: Throughput (IOPS) and latency (milliseconds) of read
requests for data on a server before and after it fails. The failure
occurs at about the 4100th second.

For real-world workloads, the average power consumption
per TB can be reduced by about 53% after using Atlas system
with ARM based servers. The reason is two fold: (1) the
ARM processor consumes less power than the x86 processor;
(2) the rack of ARM servers occupies much less space than
that of x86 servers for the same storage capacity, leading
to reduced consumption of electricity for power supply and
thermal dissipation. In addition, Atlas with ARM-based servers
can save about 70% of hardware cost per GB storage compared
to x86 servers using 3-copy replication, including saving on
CPU, memory, and hard disks.

IV. ADDITIONAL RELATED WORK

Google’s GFS is a major effort on building scalable
distributed file system for large-scale data-intensive applica-
tions [13]. A major difference between GFS and Atlas is the as-
sumption on common data object sizes. GFS assumes files that
are large or even huge (”Multi-GB files are common.” [13]).
Accordingly GFS divides files into 64MB chunks, and both
space allocation and metadata management use the large chunk
as the data unit. As Atlas assumes much small data objects,
it has the PIS system for accumulating data into patch and
producing 64MB blocks. While GFS stores there copies of
each 64MB chunk on its chunkservers, Atlas divides a block
into 8MB parts and stripes them across partservers for higher
access parallelism and more efficient space usage. GFS has
a master server managing metadata of the files. Compared to
GFS’s master that has to provide file namespace management
and mechanisms such as lease and locking for consistency,

Atlas’s master server is much lighter and less complicated –
it only needs to provide location service to partservers. Atlas
moves the metadata service to the distributed PIS subsystem
to keep the master from being a bottleneck.

In FDS [16] a blob is divided into 8MB tracts, which are
stored in tractservers. It uses hashing to implement determin-
istic placement of tracts across tractservers, and the amount of
metadata in its master is proportional only to the number of
tractservers. In contrast, the amount of metadata in Atlas’s RBS
master is proportional to number of blocks. However, this does
not limit its scalability as Atlas does not expect all the metadata
have to be in memory. Instead, metadata cached at RBSClients
remove the need to contact the master whenever Atlas serves
read requests, which are dominant in its workloads. Similar to
Panasas [23] using RAID5 to stripe files across many servers to
accelerate data recovery, Atlas stripes its 64MB blocks across
partservers. Atlas treats its metadata as KV pairs managed by
the LSM tree. Similarly, TABLEFS [18] uses LSM tree to
manage metadata and small files. However, it is a local file
system.

While KV stores have become increasingly popular for
managing small data items [6], [15], [12], their expensive in-
ternal data sorting has been a headache, especially when values
are large. One effort to reduce the overhead is VT-tree [20],
which attempts to minimize amount of moved data during
data compaction. RocksDB takes a compaction arrangement
different from LevelDB. Rather than involving two levels in
a compaction, it compacts several consecutive levels at once
intending to sort and push data faster to the lower level [8].
However, the improvement is limited as fundamentally the
amplification is due to the difference on the sizes of data
sets from different levels involved in a compaction. To keep
the compactions from excessively degrading service quality
of users’ requests, bLSM limits the amount of data involved
in each compaction operation [19]. More recently, LSM-
trie is proposed to significantly reduce write amplification.
It introduces a linear tree growth pattern, and uses a hash-
function-based prefix tree structure to organize KV pairs [24].
Knowing that values would be larger than what are usually
assumed for a typical KV store, Atlas minimizes the value size
by replacing actual user data with a small piece of metadata.

A major design choice in distributed file systems or object
stores is how to map names of entities (files or objects)
to their physical locations. In Ceph files are striped across
multiple objects, which are mapped to the OSDs (object
storage devices) using with a two-level hashing approach [21].
Objects are first hashed to placement groups, which are then
hashed to OSDs using a CRUSH function. A CRUSH function
considers how to spread replicas of an object onto different
server shelves, cabinets of shelves, and rows of cabinets for
higher reliability and performance [22]. Similarly, Openstack
Swift stores objects in partitions and spreads partition replicas
onto different regions, zones, servers, and devices in a cluster,
and a structure, called ring, is used to record and maintain the
location information [7]. Atlas also uses two-level mapping
to locate a KV pair. The PIS subsystem (the Index unit in
a slice) tracks onto which block a pair is mapped, and the
RBS subsystem (the RBS master) tracks on which partservers
a block is stored. Because Atlas intends to minimize memory
demand and increase efficiency of accessing relative small KV

pairs, it makes a major effort on managing first-level mapping
information at each server by using LSM-based KV stores.
Its second-level mapping considers minimizing data loss due
to failures. However, unlike opensource systems that have
to consider all possible system configurations and workload
characteristics, Atlas takes a simple approach – it only ensures
that at most two parts from the same block are on the same
rack and all parts are evenly spread in the cluster. This design
meets our requirement on fault tolerance and greatly reduces
the implementation cost.

Using Reed-Solomon coding, instead of data replication,
means more data need to be read for data recovery. A new
set of codes for erasure coding (LRC) have been proposed
to reduce the cost [14]. In Atlas, the master makes efforts
to ensure that parts used for recovery are read from a large
number of servers and the read traffic is evenly spread. We
have the plan to look into other coding methods, including
LRC, for better performance and reduced redundant data.

FAWN is an energy-efficient key-value storage system that
employs both low-power embedded CPUs and small amount of
local flash storage on each node [9]. By using both low-power
CPUs and flash storage, FAWN is aggressive in its efforts on
improving energy efficiency. Similarly, Atlas also uses low-
power processors to support I/O-intensive workload. To store
a massive amount of data, FAWN has to replace flash with
hard disks, as Atlas does. However, FAWN uses in-memory
hash table and on-flash/disk linear (unsorted) data log. By
organizing data in this way, its metadata (the hashtable) can be
excessively large when the data set becomes large. In contrast,
Atlas adopts LSM-tree structure to organize data.

V. CONCLUSIONS

Atlas is positioned as an object store whose workloads
contain data objects that can be too small for file systems
and too large for KV stores to efficiently manage. It has
incorporated techniques proven to be effective for either large-
scale file systems or KV stores. Meanwhile, Atlas distinguishes
itself by proposing an architecture supporting a large-scale
cloud storage service efficiently in terms of both performance
and energy consumption. Atlas separates data and metadata
into different subsystems (PIS and RBS), so that metadata
can be efficiently managed in a KV store using LSM tree
and data can be accumulated into large and fixed-unit blocks
to enable RAID-like placement for parallel access and the
Reed-Solomon coding for data reliability in a space-efficient
manner. Experiments and online system profiling show that
Atlas provides a highly scalable, reliable, and cost-effective
service.

ACKNOWLEDGEMENT

We are very grateful to our shepherd Dr. Stergios Anas-
tasiadis, who made an extraordinary effort on the improvement
of the paper’s quality. Yuehai Xu helped with experiments
described in Section I.C. and Xingbo Wu helped draw a
number of graphs. Song Jiang had worked on the project
during his visiting professorship at the Center for Energy-
Efficient Computing and Applications in Peking University.
His later effort was partially supported by the National Science
Foundation under grants CAREER CCF 0845711 and CNS
1217948.

REFERENCES

[1] Your stuff, anywhere. In https://www.dropbox.com/

[2] Box — Free cloud storage and file sharing services. In
https://www.box.com/

[3] Reed Solomon Error Correction. In http://en.wikipedia.org/wiki/

Reed%E2%80%93Solomon error correction

[4] Fio. In hhttp://freecode.com/projects/fio.

[5] Chinese Internet Giant Baidu Rolls Out World’s First Commercial
Deployment of Marvell’s ARM Processor-based Server. In
http://www.marvell.com/company/news/pressDetail.do?releaseID=3576

February, 2013.

[6] Leveldb: a Fast and Lightweight Key/Value Database Library by Google.
In http://code.google.com/p/leveldb/.

[7] Swifts documentation. In http://docs.openstack.org/developer/swift/

[8] Under the Hood: Building and Open-sourcing RocksDB. In
https://www.facebook.com/notes/facebook-engineering/under-the-hood-

building-and-open-sourcing-rocksdb/10151822347683920

[9] D. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and
V. Vasudevan. “FAWN: A Fast Array of Wimpy Nodes”, In ACM

Symposium on Operating Systems Principles, 2009

[10] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. “Finding a
Needle in Haystack: Facebooks Photo Storage”, In USENIX Symposium

on Operating Systems Design and Implementation, 2010.

[11] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. “Bigtable: a
Distributed Storage System for Structured Data”, In USENIX Symposium

on Operating Systems Design and Implementation, 2006.

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. “Dynamo:
Amazons Highly Available Key-value Store”, In ACM Symposium on

Operating Systems Principles, 2007

[13] S. Ghemawat, H. Gobioff, and S. Leung. “The Google File System”,
In ACM Symposium on Operating Systems Principles, 2003.

[14] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin. “Erasure Coding in Windows Azure Storage”, In USENIX

Annual Technical Conference, 2012.

[15] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. “SILT: a Memory-
Efficient, High-Performance Key-Value Store”, In ACM Symposium on

Operating Systems Principles, 2011.

[16] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann, J. Howell, and Y.
Suzue. “Flat Datacenter Storage”, In USENIX Symposium on Operating

Systems Design and Implementation, 2012.

[17] P. ONell, E. Cheng, D. Gawlick, and E. ONell. “The Log-Structured
Merge-Tree (LSM-tree)”, In Acta Informatica, 1996.

[18] K. Ren and G. Gibson. “TABLEFS: Enhancing Metadata Effciency in
the Local File System”, In USENIX Annual Technical Conference, 2013.

[19] R. Sears and R. Ramakrishnan. “bLSM: A General Purpose Log
Structured Merge Tree”, In ACM SIGMOD International Conference on

Management of Data, 2012.

[20] P. Shetty, R. Spillane, R. Malpani, B. Andrews, J. Seyster, and E. Zadok.
“Building Workload-Independent Storage with VT-Trees”, In USENIX

Conference on File and Storage Technologies, 2013.

[21] S. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn.
“Ceph: A Scalable, High-Performance Distributed File System”, In
USENIX Symposium on Operating Systems Design and Implementation,
2006.

[22] S. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn. “CRUSH:
Controlled, Scalable, Decentralized Placement of Replicated Data”, In
ACM/IEEE International Conference for High Performance Computing,

Networking, Storage, and Analysis, 2006.

[23] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small1,
J. Zelenka, and B. Zhou. “Scalable Performance of the Panasas Parallel
File System”, In USENIX Conference on File and Storage Technologies,
2008.

[24] X. Wu, Y. Xu, Z. Shao, and S. Jiang. “LSM-trie: An LSM-tree-
based Ultra-Large Key-Value Store for Small Data”, In USENIX Annual

Technical Conference, 2015.

