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Abstract—We propose a method for brain atlas deformation in
the presence of large space-occupying tumors, based on an a priori
model of lesion growth that assumes radial expansion of the lesion
from its starting point. Our approach involves three steps. First,
an affine registration brings the atlas and the patient into global
correspondence. Then, the seeding of a synthetic tumor into the
brain atlas provides a template for the lesion. The last step is the
deformation of the seeded atlas, combining a method derived from
optical flow principles and a model of lesion growth. Results show
that a good registration is performed and that the method can be
applied to automatic segmentation of structures and substructures
in brains with gross deformation, with important medical applica-
tions in neurosurgery, radiosurgery, and radiotherapy.

Index Terms—Atlases, magnetic resonance (MR) imaging,
pathological brains, registration, segmentation.

I. INTRODUCTION

P
RECISE segmentation of functionally important brain
anatomical structures is of major interest in the mini-

mally invasive approaches to brain space-occupying lesions
treatment, including tumors and vascular malformations. It
aims to reduce the morbidity or mortality and to improve the
outcome of surgical, radiosurgical, or radiotherapeutic man-
agement of such lesions. Despite the spatial information and
higher anatomical resolution provided by magnetic resonance
(MR) imaging, precise visual segmentation may be a difficult
task when anatomic structures are shifted and deformed. The
use of deformable models to segment and project structures
from a brain atlas onto a patient’s MR image is a widely used
technique. However, when large space-occupying tumors or
lesions drastically alter shape and position of brain structures
and substructures, these methods have been of limited use.

The purpose of this work is to deform a brain atlas onto a
patient’s MR image in the presence of large space-occupying
meningiomas by explicitly modeling the tumor growth.
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To the best of our knowledge, only two approaches related to
atlas-based segmentation on pathological brains have been pub-
lished. Kyriacou et al. [1] propose to use a biomechanical model
of the brain implemented using the finite-element method. The
soft tissue deformations induced by the tumor growth are mod-
eled first. Then, the nonrigid registration matches the anatom-
ical atlas with a transformed patient image from which the tumor
was removed. On the other hand, Dawant et al. [2] rely on a sim-
pler approach based on optical-flows—Thirion’s demons algo-
rithm [3]—for both tumor growth modeling and atlas matching
deformations. Their solution is called seeded atlas deformation

(SAD), as they put a seed with the same intensity properties as
the lesion in the atlas image, then compute the nonrigid registra-
tion. Unfortunately, this requires to use a large seed that masks
atlas structures, potentially leading to erroneous results. In [4],
we presented preliminary results with an improved seeding pro-
cedure, i.e., using a smaller seed, but it still masks some atlas
structures.

The approach presented in this paper is also inspired by the
works of Dawant et al. [2], but introduces a number of impor-
tant changes. Instead of applying the nonlinear registration al-
gorithm to the whole image, we use a specific a priori model
of tumor growth inside the tumor area, which assumes that the
tumor has grown radially from a single voxel seed. Compared
to previous approaches, this minimizes the amount of atlas in-
formation that is masked by the tumor seed. It also allows to
use a single nonlinear registration step with adaptive regular-
ization instead of the two steps approach advocated by Dawant.
A further improvement comes from the automation of the seg-
mentation of the patient’s lesion. Finally, we propose a new val-
idation method using a synthetic patient-specific atlas. This dis-
tinguishes between deformations due to interpatient anatomical
variability and those induced by the tumor growth. Results ob-
tained on real patient images and the assessment of these results
by an expert show that atlas registration onto the MR image of a
patient with large space-occupying lesions can be correctly per-
formed.

This paper is organized as follows. In Section II, we detail the
relevant state of the art, i.e., Thirion’s demons algorithm, Kyr-
iacou’s biomedical deformation model, and Dawant’s seeded
atlas deformation. Section III describes our method in details. In
Section IV, it is applied to patient data and results are discussed
qualitatively. They are further validated in Section V. Finally,
those results are extensively discussed in Section VI.

II. STATE OF THE ART

Atlas-based medical image segmentation techniques have

been widely studied in the literature [5]. These techniques
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convert the segmentation of a MR image into a nonrigid regis-

tration problem between the MR image of the patient and the

MR image used to create the brain atlas. An exhaustive review

of these techniques is beyond the scope of this paper. Instead,

we present first a brief introduction to the demons algorithm

[3], [6], the nonrigid registration technique for healthy brain

images that serves as the basis for this paper as well as for

[2], [4]. Then, we describe the approaches of Kyriacou [1]

and Dawant [2], both dealing with the problem of atlas-based

segmentation for pathological brains.

A. The Demons Algorithm

The demons algorithm [3], [6] approaches the problem

of image matching as a diffusion process, in which object

boundaries in the reference image are viewed as semiper-

meable membranes. The other (so-called floating) image is

considered as a deformable grid, and diffuses through these

interfaces driven by the action of effectors situated within the

membranes. These effectors are also called demons by analogy

with Maxwell’s demons.

Various kinds of demons can be designed to apply this para-

digm to specific applications. In the particular case of voxel-by-

voxel intensity similarity, the demons paradigm is similar to

optical flow methods. In this paper, the instantaneous force (ve-

locity) for each demon point, at the iteration is

(1)

where and are the image intensities and is the cur-

rent displacement field. Thus, there is a displacement in the di-

rection of the reference image gradient if there is both a dif-

ference in image intensities and a reference image gradient dif-

ferent from zero.

The deformation field is then computed from the instanta-

neous velocity by assuming that the two images to match are

two frames separated by a unit of time

(2)

where .

Note that (1) is asymmetrical, that is, it gives different results

depending on which image is chosen as the reference and which

is chosen to be floating. In [3], Thirion presented a solution

to provide bijectivity to the demons algorithm, and therefore,

to provide a way of finding the inverse transformation. This is

done by computing at each iteration both the direct deformation

field [ , from (1) and (2)] and the inverse deformation field

[ , also from (1) and (2) but replacing F instead of G and

vice versa]. Then, a residual vector field

is equally distributed onto the two deformation fields

(3)

In this approach, global smoothness of the total displacement

field is not implicitly enforced. Locally similar displacements

for nearby voxels are imposed by smoothing both direct and

inverse displacement fields with a Gaussian filter, i.e.,

(4)

where is the deformation field at the current iteration,

refers to direct and inverse, is the Gaussian filter with

standard deviation , and is the regularized deformation field

that will be used in (1) in the next iteration. It can be shown that

if the instantaneous displacement field is filtered, a fluid

deformation is obtained; while if the total field is filtered,

it corresponds to an elastic deformation [7]. The choice of the

smoothing parameter of the filter is a critical issue that has

been studied in [8]. In the next section, we apply the nonrigid

registration as an elastic process and, therefore, we also call

the elasticity parameter.

Unfortunately, although it has been successfully applied to

the registration of brain atlases with MR images of healthy vol-

unteers or patients with nondeforming pathologies, this method

cannot be applied as such in the presence of tumors. First,

large morphological differences between image volumes render

optical flow methods ineffective, although the algorithm can

be made somewhat more robust if it is applied hierarchically.

Second, the algorithm can only match objects that exist in both

images, which is not the case for tumor brains, since there are

no voxels with tumor-like intensities in the atlas image.

B. Nonlinear Elastic Registration

A first approach of registration with anatomical atlas for

pathological brains was presented by Kyriacou et al. [1] in

1999. Their method is based on a biomechanical model of the

brain using finite-element method. The soft tissue deformations

induced by the growth of a tumor are modeled first. Then,

they proceed to the registration with the anatomical atlas. The

method can be summarized as follows.

1) An estimate of the anatomy prior to the tumor growth

is obtained through a simulated contraction of the tumor

region, using finite-elements and knowing the position of

the skull, ventricles and the falx and tentorium. It results

in an estimation of the patient anatomy before the lesion

growth.

2) This estimated tumor-less patient is treated like a healthy

brain. A normal to normal atlas registration is performed

using an elastic deformable model.

3) The estimation of the tumor growing process is applied

to the registered atlas. That is not performed using the in-

verse transformation found in the first step but applying a

nonlinear regression method driven by distinct anatomical

features that are used to estimate the origin of the tumor

and the level of strain.

This method presents good results, but has some important

drawbacks. The model for tumor growth has a tendency on uni-

form growth. Also, it requires the previous accurate segmenta-

tion of many structures in order to perform the nonlinear regres-

sion estimation. Finally, due to some implementation difficulties

such as computational requirements, mesh generation and visu-

alization, the method has only been implemented in two dimen-

sions while the problem is by nature three-dimensional.
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C. Seeded Atlas Deformation Method (SAD)

The other attempt at atlas registration for pathological brains

was introduced by Dawant et al. [2]. It is a simpler approach

where both the tumor deformation and the inter-patient vari-

ability are handled by a modified demons algorithm. The pres-

ence of the tumor is modeled by introducing synthetic lesion

voxels—the seed—in the atlas MRI. Indeed, there needs to be

at least some voxels with tumor-like intensities in the atlas MRI

in order to trigger the demons movements. Besides, the seed

cannot be too small compared to the tumor as this would violate

excessively the assumption of small displacements. Practically,

the algorithm works as follows.

1) Apply bijective demons algorithm in a very rigid way

mm to warp the brain atlas onto the patient’s

image.

2) Insert the lesion template into the warped brain atlas in

order to get a seeded atlas MRI.

3) Apply bijective demons algorithm in a very elastic way

mm , to warp the seeded atlas MRI onto the

patient’s image.

This method succeeds reasonably well at forcing the demons to

move similarly to the lesion growth. Unfortunately, it presents

an important drawback because the seed needs to have a consid-

erable size to obtain a reasonable modeling of the tumor growth.

Thus, the anatomical information masked by the seed cannot be

recovered and produces errors in the segmentation. Also, it turns

out that the seed deformation is strongly dependent on both the

number of iterations of the algorithm and the choice of the elas-

ticity parameter.

III. METHOD

Our approach to brain atlas deformation in the presence of

space occupying tumors is based on Dawant’s SAD algorithm

[2] but differs from it on three major points. First, segmenta-

tion of the patient’s lesion is performed automatically, instead

of manually. Second, an a priori model of radial tumor growth

is applied inside the lesion area. Third, the algorithm is imple-

mented in a single step thanks to the introduction of an adaptive

Gaussian filtering. Our method, which we call model of lesion

growth (MLG), works in four steps.

1) An affine transformation is applied to the atlas image in

order to globally match the patient.

2) The lesion is segmented using the adaptive template mod-

erated spatially varying statistical classification (ATM

SVC) algorithm.

3) The atlas is manually seeded by an expert with a single

voxel placed on the estimated origin of the patient’s le-

sion.

4) The nonlinear demons registration algorithm with MLG

is performed in order to deform the seeded atlas to match

the patient.

After applying these steps, we have a deformed brain atlas

image in which the tumor has grown from its seed, causing

displacement and deformation to the surrounding tissues.

Structures and substructures from the brain atlas may then be

Fig. 1. Scheme for the ATM SVC algorithm.

projected to the patient’s image using the same displacement

field. We now detail these four steps.

A. Affine Transformation

Before performing the nonrigid deformation, it is necessary to

bring the atlas and patient volumes into global correspondence.

Indeed, the demons algorithm requires having at least a partial

overlap of the corresponding patient and atlas structures in order

to match them.

As proposed by Cuisenaire et al. [9], the global transforma-

tion from the patient cortical surface to the atlas cor-

tical surface is modeled by a linear combination of elemen-

tary scalar functions for each coordinate

of . These functions are decorrelated, then the coefficients of

the linear combination are optimized in order to minimize the

Euclidean distance between the atlas cortical surface and the

correspondent cortical surface in the target image. These sur-

faces are previously segmented using simple morphological op-

erations [10]. Here, we restrict ourselves to an affine transform,

i.e., to and .

B. Lesion Segmentation

The patient’s lesion needs to be segmented in order to specify

the volume in which the model of tumor growth will be applied.

To this purpose, we use a variant of the ATM SVC algorithm

proposed by Warfield et al. [11], [12]. This algorithm uses both

image and anatomical information embedding them in a high di-

mensionality space in which a k-nearest neighbors (k-NN) clas-

sification is performed. One dimension of this feature space is

the image intensity. The other dimensions are the distances to

the structures from a brain atlas warped onto the corresponding

structures classified from the patient image. The algorithm is

implemented in a hierarchical way, so that the dimensionality

of the feature space and the number of classified structures in-

crease progressively at each level.

• Level 1: The intensity feature is used for the classification

into the brain and the background classes.

• Level 2: The intensity and distance to the brain surface are

used to classify the ventricles, brain, and background.

• Level 3: Intensity, distance to the brain and distance to

the ventricles are used for the classification into lesion,

ventricles, brain, and background.

• Level 4: Intensity, distance to the brain, distance to the

ventricles, and distance to the lesion contour are used for

the final classification into lesion, ventricles, brain, and

background.

In the first level, the classification is done by simply binarization

of the image. In the levels 2, 3, and 4, the process represented

in Fig. 1 is applied. We use the demons algorithm as elastic

matching instead of the one used in [11] and [12]. Note that the
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Fig. 2. Third level of the ATM SVC classification algorithm.

Fig. 3. Segmentation results obtained with the ATM SVC algorithm on
various lesion and tumor types. Red: manual segmentation. Green: ATM SVC
segmentation. (a) Meningioma with left parasellar location. (b) Low-grade
glioma with right frontal location. (c) Cardiovascular accident (CVA), also
called stroke.

distance to the brain surface and to the ventricles is computed

from the registered atlas while the distance to the lesion is com-

puted from the classified patient (see Level 3 in Fig. 2).

In Fig. 3, we compare the results for various lesion types of

the ATM SVC segmentation with those of a manual segmenta-

tion performed by experts (green and red contour, respectively).

These results were obtained with for the k-NN classifica-

tion, and using 100 prototypes (manually chosen) for each one

of the classes. A detailed description of our ATM SVC imple-

mentation can be found in [13].

C. Atlas Seeding

After the affine transformation, the atlas and patient volumes

are globally in correspondence except in regions that have been

drastically deformed by the tumor. We proceed to the atlas

seeding by manually selecting the point of origin of the tumor

growth in the affine-registered brain atlas.

Both our previous work [4] and Dawant’s [2] use an extended

seed in order to drive the tumor deformation. It makes the po-

sitioning of the seed a relatively easy task but unfortunately

masks atlas structures under the seed. In this paper, the single-

voxel seed induces no masking but—as will be discussed in

Section V—the selection of the correct seed location requires

anatomical and biological knowledge of tumor growth.

D. Nonrigid Deformation Using a Model of Tumor Growth

At this point, the affine registration ensures that the small dis-

placement assumption is respected in the region of the brain that

is far from the tumor. Meanwhile, the segmentation of the tumor

volume and the manual selection of the tumor seed provide an

adequate model for the tumor and its influence on immediately

surrounding tissues.

The nonrigid deformation method we propose distinguishes

between those two areas fixed from the lesion segmentation.

Outside the lesion, the demons force as defined in (1) is ap-

plied. Inside the lesion, the tumor growth model assumes a ra-

dial growth of the tumor from the tumor seed, i.e.,

(5)

where is the instantaneous velocity inside the lesion

area, is the distance from the corresponding point to

the seed, and is the number of iterations of the deformation

algorithm that have to be performed. Then, the deformation field

is computed similarly as in (2). The bijectivety inside

the lesion area is ensured by forcing . This

model allows the points inside the tumor to converge toward the

seed voxel,1 while remaining simple and allowing any number

of iterations to take place outside the tumor volume.

The displacement vector computed at every voxel using either

the demons force (1) or the tumor growth model (5) is regular-

ized by an adaptive Gaussian filter to avoid possible disconti-

nuities. Three areas are considered: inside the lesion area, close

to the lesion (within 10 mm of the tumor) where large deforma-

tions occur, and the rest of the brain. Smoothing is not necessary

inside the lesion because the vector field induced by (5) is highly

regular and the continuity is ensured. So, inside the le-

sion area. In the region close to the tumor (including the tumor

contour), there are large deformations due to the tumor growth.

Then, it is necessary to allow large elasticity, i.e., should have

1Notice that the vector field points the origin, and not the destiny, of a voxel.
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Fig. 4. Block diagram of the atlas-based segmentation method using a model of lesion growth (MLG algorithm). Note that, because of limited space, F (~p) and

G(~p + ~D (~p)) [see (1)] are denoted here by f and g, respectively.

Fig. 5. Coronal slices of the data set. From left to right: patients from 1 to 4, atlas MRI and atlas labels.

a small value, typically 0.5 mm. In the rest of the brain, deforma-

tions are smaller, due primarily to interpatient anatomical vari-

ability. So, a larger proves to be better, as it simulates a more

rigid transformation. Previous studies [8] suggest that a typical

to match two healthy brains is about 0.5 and 1 mm. In what

follows, mm is used. The number of iterations is arbi-

trarily fixed to from low to high resolution

scale.2 The algorithm stops at the end of the iterations.

IV. RESULTS

A. Data Sets

The patient images used in this study have been retrieved

from the Surgical Planning Laboratory (SPL) of the Harvard

Medical School and NSG Brain Tumor Database [14] and also

from the Department of Radiology of the Lausanne University

Hospital. They consist of 4 volumes of 128 coronal slices of

256 256 pixels and 0.9375 0.9375 1.5 mm of voxel

size. All of them present a meningioma. This kind of tumor is

usually benign and its extracerebral growth usually induce a

pure shift and deformation of the underlying brain structures

(see patient MR images on Fig. 5). Meningiomas are lesions

of interest because they are typically suitable for radiosurgery

2The algorithm is implemented in a multiscale way: a first match is made with
downsampled images and the resulting transformation is upsampled to initialize
the next match with finer image resolution.

or stereotactic radiotherapy. No brain edema was observed

on the data set. Notice that most of the patient images have

been acquired using a contrast agent.

The digital atlas used in this work comes from the SPL [15].

It is composed of two images: an MRI and a label image. The

MRI has been made of MR data from a single normal subject

scanned with high resolution 256 256 160 volume data set

in coronal orientation with 0.9375 0.9375 1.5 mm voxel

size. The label atlas image contains anatomical and functional

structures that have been manually segmented (see Fig. 5).

B. Deformed Atlas Images and Deformation Field

The MLG deformation is analyzed by comparing it to

Dawant’s SAD [2]. Because of limited space, only the study

for one patient (Patient 2, Fig. 5) is presented. Similar results

have been obtained for the other patients of the data set.

Patient 2 has a left parasellar meningioma of approximately

dimensions 41 42 52 mm . We have applied the SAD

method for two different seed sizes [resulting from the tumor

mask erosion of 8 and 12 mm, respectively, see Fig. 6(a)

and (b)]. The MLG has been run as presented in Fig. 4 and

using the parameters defined in Sections III-B and III-D.

In Fig. 6(c) the one-voxel seeded atlas is shown.

Fig. 6(g), (h), and (i) represents the vector field of the SAD

and the MLG respectively, and Fig. 6(j), (k), and (l) represents
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Fig. 6. Atlas seeding, lesion growth and deformation field analysis. (a) Seeded atlas, large seed. (b) Seeded atlas, small seed. (c) Seeded atlas, one voxel seed
(in green). (d) Deformation of seeded atlas with the large seed using SAD. (e) Deformation of seeded atlas with the small seed using SAD. (f) Deformation of
seeded atlas with one voxel seed using MLG. (g) SAD: deformation field using a large seed. (h) SAD: deformation field using a small seed. (i) MLG: deformation
field. (j) SAD: norm of deformation field using a large seed. (k) SAD: norm of deformation field using a small seed. (l) MLG: norm of deformation field. Note:
Deformation field corresponds to a zoom of the lesion. Brightest areas correspond to largest deformation.

the norm of the deformation of the SAD and the MLG respec-

tively. We can see that the performance of SAD when using the

largest seed is, in terms of deformed atlas and deformation field,

comparable to the performance of the MLG. Note that the defor-

mation field is almost the same for both methods [cf. Fig. 6(d)

and (f)]. However, when using the small seed, the deformation

obtained by the SAD method inside the tumor area does not

reach the tumor border [Fig. 6(e)]. The force inside the lesion

area is actually misguided as we can see in Fig. 6(h) and (k).

The different behavior between the two approaches can

be explained as follows. The SAD highlights the tumor and

seed masks to obtain a strong gradient on the tumor and seed

contours. But between them, only the intensity gradient of the

atlas MRI is used since intensity gradient within the highlighted

tumor area is zero. Having only gradient information on the

contours is not strong enough when using a small seed since a

large deformation is needed to make the seed grow toward the

tumor. Furthermore, that explains the dependency of the SAD
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Fig. 7. Patient 2: ventricles (MLG in blue, SAD in magenta), thalamus (MLG in cyan, SAD in yellow), and central nuclei (MLG in green, SAD in red). (a)
Coronal. (b) Sagittal. (c) Axial.

method on the seed size and iteration number. On the contrary,

the MLG can compensate the large anatomical differences

between the one-voxel seed and the tumor thanks to a priori

information from the growth model.

C. Segmentation Results Study

1) Importance of the Tumor Growth Model: The above sec-

tion may be too critical of SAD. Indeed, it would not really

matter that SAD fails to grow the tumor to its full size if this did

not affect the deformation of the structures of interest around it.

Hence, in this section we compare MLG and SAD with a small

seed according their ability to segment such structures, i.e., the

ventricles, the thalamus, and the central nuclei.

The coronal, sagittal, and axial view of these segmentations

are shown in Fig. 7. The ventricles are almost exactly segmented

by both approaches. The thalamus segmentation is performed

slightly better by MLG than by SAD. Their differences can be

appreciated in Fig. 7(b) and (c). The most critical structure is

the central nuclei for which the atlas structure after affine regis-

tration overlaps with the tumor. In this case, SAD fails and the

central nuclei segmentation remains inside the tumor volume.

On the contrary, MLG correctly pushes the central nuclei out of

the tumor region which improves the segmentation. This shows

the need of a correct estimation of the tumor growth in order to

obtain a good final segmentation of the structures directly dis-

placed and deformed by the lesion.

2) MLG Segmentation Results: Let us now consider the seg-

mentation results for all the patients of the data set with the MLG

algorithm. For this purpose, structures of interest from the de-

formed brain atlas have been projected to the patient images:

the tumor (in red), the ventricles (in green), the thalamus (in

yellow), and the central nuclei (in dark blue) (see Fig. 8).

Segmentations of both patient 1 and patient 2 are satisfac-

tory [see Fig. 8(a) and (b)]. The structures have been correctly

pushed outside the tumor area and the final deformation con-

verges accurately to the target image. For these patients, all large

anatomical differences between the patient images and the atlas

can be attributed to the lesion and the influence of its growth on

neighboring tissues.

The segmentation results for both patient 3 and 4 are less sat-

isfactory [see red arrows in Fig. 8(c) and (d)]. These two cases

are significantly more complex since large morphological dif-

ferences exist between the atlas and the patients’ brains in addi-

tion to the lesion. For instance, patient 3 also suffers from ven-

tricular entrapment. For this patient, the structures of interest

have been correctly pushed outside the lesion area, but some

structures, particularly the ventricles, have not been correctly

deformed. Our method considers a normal elasticity, and conse-

quently normal deformation, in the regions far from the tumor

while ventricular entrapment represent an abnormal dilatation

of a portion of a ventricle that is progressively excluded from the

ventricular system. In patient 4, the assumption of overlapping

between same anatomical structures required by the demons al-

gorithm has been largely violated. For example, the left ven-

tricle of the atlas is actually placed over the right ventricle of

the patient (see Fig. 9). This makes the nonrigid registration fail

outside the lesion area even if the seed has correctly grown until

the tumor edges.

D. Variation of the MLG Method

As we have seen in the previous section, in some cases, MLG

fails when there are large morphological differences between

the patient and the atlas in addition to the lesion itself. In these

cases, the method can be improved as follows.

First,weapplytheMLGalgorithmasexplainedinSectionIII-D

but in a very rigid way: mm far away from the lesion,

mm near the lesion, and no filtering is applied inside. More-

over, theMLGusesa tumormaskthathasbeeneroded(typically3

mm)inordernot to imposesomuchdeformationnext to the lesion

area at a first time. So, a rigid matching between the main struc-

tures is done and a new atlas with a lesion template is obtained.

Now, a nonrigid registration between two brains with an overlap

between the corresponding structures (including the tumor) can

be applied. Therefore the demons algorithm is valid for this ob-

jective. The algorithm is used in a elastic way mm be-

cause these brains have larger deformability than in the case of

normal anatomy. Fig. 10 summarizes the performance of the new

proposed algorithm. The modified MLG algorithm has been ap-

plied for patient 3 and patient 4. Segmentation results are shown

inFig.11.Muchbetterresult isobtainedforpatient3[comparethe

arrows in Fig. 8(c) and Fig. 11(a)] where the ventricles displace-

ment have been correctly match. However, no improvement has

been obtained for patient 4. Neither the ventricles nor the central

nucleioftheatlasoverlapthepatientstructures.Noticethatpatient

4 is a very complex case since even the MSP, that is usually much

more rigid than the brain tissues, has been largely deformed.
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Fig. 8. Segmentation results after applying the MLG algorithm. Displayed structures are: tumor (red), ventricles (green), thalamus (yellow), and central nuclei
(blue). (a) Patient 1. (b) Patient 2. (c) Patient 3. (d) Patient 4.

In summary, we propose to apply the MLG two steps

algorithm when large deformations exist in the patient brain

moreover the lesion, and, the MLG one-step when the lesion

is the main anatomical difference between the patient and

the atlas.

V. VALIDATION

The lack of a gold standard for validation is one of the key

problems of the nonrigid registration techniques in medical im-

ages. This problem is even more difficult in this case since two
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Fig. 9. Wrong initialization of MLG method for patient 4: the enumerated arrows represent the same spatial position. Note that anatomical structures do not
correctly overlap.

Fig. 10. Block diagram of the MLG modified algorithm.

different deformations occur: intersubject (or atlas-patient) vari-

ability and healthy to pathological warping. The validation of

registration between healthy subjects is a very active research

area [16]–[18]. However, the demons algorithm validation will

not be treated in this paper.

In this section, we focus on how accurately the MLG can

model the healthy to pathological warping. More precisely, our

aim is twofold: validate not only the lesion growth but also the

seed position.

A. Validation of the Lesion Growth

The validation method should demonstrate that our algorithm

warps the brain in the same way as the growth of the lesion. To

show it, our algorithm should be applied to the patient before

the growth of the lesion but of course this information is not

available. Thus, another question arises: how to have a good es-

timation of how the patient brain was before the appearance of

the tumor. We know that the brain has approximately symmet-

rical structures. Therefore, the damaged hemisphere was almost

like the healthy one before the tumor grew. This idea is the basis

of the validation, which goes as follows.

1) The brain symmetry plane that separates the right and

the left hemispheres, called midsagittal plane (MSP), is

found.

2) A synthetic healthy patient is created by mirroring the

healthy hemisphere of the brain.

3) The MLG algorithm is applied between the patient and the

synthetic healthy patient as explained in Section III-D.

4) The differences between the deformed synthetic healthy

patient and the patient are evaluated.

To find the MSP, the mean square error (MSE) between both

sides of the coronal plane is minimized. The tumor and its mirror

are not taken into account because they do not have a symmet-

rical structure. The minimization algorithm used is the Powell

algorithm as described in [19]. In Fig. 12, the MSP found for

the Patient 2 is shown.

Once the symmetry plane is found, the healthy and the dam-

aged hemispheres have been determined. To generate a new
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Fig. 11. Segmentation results after applying the MLG modified algorithm. Displayed structures are: tumor (red), ventricles (green), thalamus (yellow), and central
nuclei (blue). (a) Patient 3; (b) patient 4.

synthetic patient-atlas, a simple mirroring of the healthy side

is done. Note that, with this new atlas, the most similar brain a

posteriori to the healthy brain of the patient is obtained. Only

patients who do not present large deformations on the MSP and

those who have a tumor only in one hemisphere of the brain

can be used in this validation approach because of the mirroring

step. Unfortunately, there is only one patient in our database

fulfilling these conditions: patient 2 (Fig. 5). The result of the

validation for this patient is presented in Fig. 12. It shows the

warped synthetic atlas and the resulting segmentation of pa-

tient respectively. To obtain this final segmentation, a nonrigid

matching between the digitized atlas and the synthetic atlas has

been previously done in order to obtain a first segmentation of

the synthetic atlas. Then, the transformation found by the MLG

algorithm can be applied to the synthetic atlas image and a final

segmentation of the patient is obtained. So, two transformations

have been applied to the original atlas image. That means that,

if there was some imprecision on the first nonrigid registration

algorithm, the MLG method will propagate a wrong initial seg-

mentation. But, according to the expert criteria, the final seg-

mentation obtained for this case is correct. Of course, to obtain

a more accurate assessment, the validation method we have pro-

posed should be applied to many more cases.

B. Validation of the Seed Position

Seed position is a critical point of the MLG since it simu-

lates where the tumor has begun to grow, and different choices

of position may lead to very different results. To evaluate the in-

fluence of this parameter, MLG registration between synthetic

patient-atlas and the patient was applied for six different initial

positions of the seed voxel chosen by the expert as possible ori-

gins of the tumor (see Fig. 13). The resulting deformation for

each seed is shown in Fig. 14. The original patient and the re-

sulting deformed synthetic atlas-patient are displayed. The seed

position is represented by a little sphere. For this patient, the

most logical position, under expert criteria, is the one placed at

coordinates (205, 136, 47) [colored in magenta in Fig. 13 and

Fig. 14(a)]. It is actually placed in the middle of the cerebral con-

vexity since, in principle, no growing direction is more probable

than others inside the brain.

First, we have visually validated the deformation by the

assessment of an expert. The areas where the MLG method

has performed correctly are marked using green arrows and

the areas where MLG has not performed correctly using red

arrows. The most logical seed position has correctly displaced

gyri but it has also performed too much deformation at the

MSG. That is because large elasticity near the lesion has been

supposed while, in fact, in this case, the mid sagittal plane is

near the lesion and it is a structure largely rigid. The rest of

the seed positions, as desired, have not deformed too much

the MSP [see Fig. 14(d) and (c)] but they have not correctly

displaced the gyrus.

Second, the deformation error has been quantified calculating

the MSE per voxel between the original patient and the de-

formed synthetic atlas-patient (see Fig. 14). A small MSE rep-

resents, for this particular case, a good deformation since the

two images are supposed to be the same patient before and after

the lesion growth and both images have the same intensity dis-

tribution. The lowest error is 34.08 for (205, 136, 47), the most

logical initial seed position, and the largest error corresponds

to (206, 139, 53). However, these values are not significantly
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Fig. 12. Validation method results. Coronal view. Displayed structures: central nuclei (green), ventricles (blue) and tumor (red).

Fig. 13. Different locations of the initial seed. Magenta (205,136,47), red
(192,119,38), green (205,131,50), cyan (205,137,57), yellow (207,145,48) and
blue (206,139,53). (a) 3-D coronal view. (b) 3-D sagittal view.

different to conclude if one position performs much better de-

formation than another. In our opinion, MSE measure could be

hardly used to validate the deformation in the case of interpa-

tient matching because the images do not have a perfect inten-

sity correspondence. Furthermore, even if we know the most

probable initial position of the tumor in the synthetic atlas-pa-

tient, we cannot be sure that it will be exactly in the same po-

sition for the atlas since both, synthetic atlas-patient and atlas,

are morphological and morphometrically different. Third, val-

idation of segmentation for some interesting structures such as

the ventricles, the thalamus, the central nuclei, and the tumor is

performed. In Fig. 15 a global view of all the segmented struc-

tures superposed can be seen. Each color corresponds to the re-

sult of each seed position. Actually, not too much variability has

been detected neither in the position nor in the morphology of

the studied structures as expected [see the segmented thalamus

in Fig. 16(b)]. However, there are some morphological differ-

ences when looking at the ventricles region [see Fig. 16(a)]. In

this case, almost all structures under study are quite far from

the tumor, so they are not really influenced by the initial seed

position. Only the ventricles seem to be more influenced by the

seed since they are the most deformed structure due to the lesion

growth.

Finally, statistics on volume (in mm ) of the segmented struc-

tures have been calculated (see Table I). The structures that have

the largest volume standard deviation due to different seed posi-

tions are the ventricles with a 0.35% and, the tumor with 0.18%.

These measures confirm the visual validation on segmentation.

VI. DISCUSSION

The introduction of an explicit model of tumor growth (MLG)

into the seeded atlas deformation (SAD) algorithm positively af-

fects both the robustness of the method and its precision. The

robustness is improved by removing parameters from the al-

gorithm. While SAD requires a choice of seed shape and size,

MLG does not as its seed is a single voxel. Also, the extent of

the tumor growth with SAD is highly dependent on the number

of iterations performed, while the explicit MLG grows to the

whole tumor volume independently from this number.

Another important aspect of using the MLG is its effect on

the regularization parameter used by the demons algorithm.

SAD requires that only a mild regularization is applied in order

to let enough flexibility for the demons algorithm to compen-

sate the large shifts introduced by the tumor growth. This is a

potential source of imprecision as optical flow algorithms can

easily converge to a perfect match of image intensities that is

not at all anatomically relevant. Anatomical relevance in such

methods comes directly from a strong regularization step, with

the assumption that a regular deformation field is very likely an

anatomically relevant one. On the other hand, the MLG allows
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Fig. 14. Preliminary study of the deformation variability depending on the seed position. MSE is the sum of squared differences per voxel between the original
patient and the deformed synthetic patient-atlas. Green arrows denote the regions where MLG has deformed correctly. Red arrows denote the errors. (a) Seed
position (205, 136, 47), MSE = 34:08. (b) Seed position (192, 119, 138), MSE = 35:73. (c) Seed position (205, 131, 50), MSE = 42:5. (d) Seed position (206,
139, 53), MSE = 37:5. (e) Seed position (207, 145, 48), MSE = 36:3. (f) Seed position (205, 137, 57), MSE = 37:01.

Fig. 15. Segmentation results for each seed position. (a) Segmented structures:
sagittal view. (b) Segmented structures: axial view.

us to keep regularization at a reasonable level. Furthermore, the

introduction of adaptive filtering allows us to make the defor-

mation in a single step instead of two for SAD, once again im-

proving the plausibility of the obtained deformation field. Nev-

ertheless, for extreme cases where we need to apply the modified

algorithm of Section IV-D, we also need to relax the regulariza-

tion and resort to a two-step approach.

The main hypotheses of our method are that the lesion

expands radially and that there is no infiltration and no

edema. Therefore, only meningiomas have been considered

in this paper. Even though edema may be associated with

meningiomas, no edema was present in the cases we present.

Other—potentially more complex—models of growth and

infiltration should obviously be considered for other types of

tumors and lesions, but this is beyond the scope of this paper.

On the other hand, let us consider the clinical relevance of

our model for meningiomas: even if the vectors of growth of

space-occupying lesions are not precisely known, it seems

reasonable to assume from a biological point of view that

homogeneous intra cerebral tumors (totally solid or totally

cystic) have a radial growth. This is confirmed radiologically in

cases where follow up of such lesions is performed. Regarding

meningiomas, growth may be considered spatially homoge-

neous at least into directions where they are not restrained by

anatomical structures like bone, cerebral falx or tentorium. Ac-

tually a large majority of meningiomas have a dural attachment

and dura, except the falx and tentorium, is adherent to bone. As

bone is rigid, it is reasonable to consider that there is no growth

into the bone direction, even if bone may be invaded in rare

cases. In conclusion, it is realistic to assume from a biological

point of view that growth of meningiomas is radial and starts

from the center of their dural attachment surface, defined as the

seeding point.

The seed position has to be manually chosen by an expert.

That represents a drawback because our results clearly show

that the brain deformation induced by the lesion growth is

correlated with the position of the seeding point (see discussion

in Section V-B). Actually, this observation is not surprising

considering that we assume a radial growth. Furthermore, the

best deformation accuracy is not necessarily obtained when

seeding point is logically placed in the center of the surface

of dural attachment (see Fig. 14). As a proof, our two first
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Fig. 16. Segmentation results for each seed position: zoom at ventricles and thalamus area. (a) Segmented structures: ventricles. (b) Segmented structures:
thalamus.

TABLE I
VOLUME MEASURE OF SEGMENTED STRUCTURES FOR EACH SEED POSITION. VOLUME AND STATISTICS ARE IN mm . PERCENTAGE VALUES ARE CALCULATED

RESPECT TO THE MEAN VALUE. MSE IS THE MEAN SQUARE ERROR PER VOXEL BETWEEN THE ORIGINAL PATIENT AND THE DEFORMED

SYNTHETIC ATLAS-PATIENT INTENTITIES

Fig. 17. Deformation errors for patient 1 and 2. Falx and bone have been too much deformed since there are no special constraints of deformation for such
structures while they have in fact much less elasticity than the rest of the brain.

cases, patient 1 and patient 2, show no shift of neither the

falx nor the sella turcica (bone) despite the presence of the

meningioma while the corresponding deformed images by the

MLG method have deformed these structures (see Fig. 17).

Actually, falx and tentorium, although less rigid than bone,

have significantly higher resistances against tumor growth than

brain. So, we should also consider them like nondeformable

structures almost until the tumor reaches a significant size.

Consequently, in a future work, the algorithm will be modified

in order to prevent too much deformability of these structures

rendering the algorithm less dependent of finding the exact

initial seed position. Injecting a contrast product is very useful

in clinical practise to appreciate the anatomical limits of tumors

since most of them, including meningiomas, are iso-intense on

noncontrasted T1-weighted MR images. However, enhanced

brain structures like vessels, choroid plexus, meninges, and

vascularized tissues like sinus mucosae appear with different

intensities in patients than in atlas images, where contrast is not

injected. Thus, this effect should be also considered to avoid

possible problems (for instance, too much deformability of

some structures) when applying the nonrigid registration since

an optical flow method is used that assumes that the intensity

does not change between images. In fact, in the areas where the

contrast product is present, the strong gradient intensity in the

reference image and also large intensity difference between the

reference and the deformable images cause too large deforma-

tions. A possible solution would be to create the same contrast

effect in the atlas proceeding first by segmenting the meninges

and sinuses and simulating the same intensity as in the patient

image. So there would be a perfect intensity correspondence

and no errors in these regions will be performed.

Considering all the possible space-occupying lesions in a uni-

fied framework is almost impossible. Thus, different models

could be related to specific pathologies taking into account both

pushing and infiltrating effects as well as edema. On the other

side, the proposed method could be applied to ischemic lesions

like stroke (chronic phase) where surrounding brain tissue is at-

tracted rather than pushed by the lesion.
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Now, the method should be tested on more data sets con-

taining different kind and size of lesions in order to better vali-

date. Also, it would be important to study a case where the lesion

evolution is known to see if the model of lesion growth we have

proposed is near or far from the reality.

Finally, in a more evolved method it would be also very im-

portant to consider some anatomical constraints of the structures

of interest introducing for example some shape analysis of the

most important structures near the lesion as well as to take into

account the existence of the edema.

VII. CONCLUSION

We proposed a new approach for brain atlas deformation in

the presence of large space-occupying tumors, which makes

use of a simple model of tumor growth. We first compared our

method to the most similar methods found in the literature. Re-

sults show that limitations of other methods have been overcame

thanks to the use of an a priori model and that a good matching

is obtained in pathological brains, even when some structures

have been drastically altered by the presence of a tumor. We

proposed also a new validation method to analyze not only the

lesion growth but also the most probable origin of the tumor. Fi-

nally, we deeply discussed the weak points of our method and

proposed some solutions to overcome these limitations.
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