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Inconel 718

Introduction

Among the commercially available superalloys, Inconel 718 stands out as the most
dominant alloy in production. High performance requirements in the application of superalloys,
such as aircraft gas turbines, has increased the need to understand the behavior of superalloys.
At the same time modern metalworking processes require a better knowledge of mechanical and
microstructural behavior during high temperature deformation. Flow behavior of Inconel 718
was studied by conducting compression tests at various temperatures and strain rates to
determine the constitutive relation. From the constitutive relation a dynamic material modeling
on Inconel 718 was carried out to optimize processing conditions in terms of temperature and
strain rate. In addition, microstructural changes were characterized to show the effect of the
deformation on the resulting microstructure.

Experimental Procedure

The material used in this investigation was commercially available Inconel 718 wrought
bars in heat treated and aged condition. The typical microstructure of the as-received materials is
shown in Figure 1 showing equiaxed grains. The initial grain size is 23 pum (7.5ASTM).
Cylindrical compression test specimens with a diameter of 12.7 mm and a height of 159 mm
were machined, and compression tests were conducted isothermally on an MTS testing machine.
The temperatures selected include those which are both above and under 8 (1038 C) solvus. The
test matrix was as follows:

Temperature, C (F): 982 (1800), 1010 (1850), 1038 (1900), 1079 (1975) and 1149 (2100),
Strain rate, s'1: 0.01,0.14,1.84, 5 and 25.

The tests were conducted in air except the ones at strain rate of 5 s-1, which were
conducted in inert gas atmosphere. Load and stroke data from the tests were acquired by a
computer and later converted to true stress-true strain curves. Immediately after the compression
test, the specimens were quenched in order to retain the deformed microstructure. Longitudinal
and transverse sections of the quenched specimens were examined using optical microscope.
The photomicrographs presented were taken from the center of the longitudinal section of the
specimens.

Results

Table 1 is a list of the figures, test conditions and the observed microstructures. All the
true stress-true strain flow curves with the corresponding deformed microstructure are shown in
Figure 2 to Figure 26. True stress versus strain rate was plotted in log-log scale in Figure 27 at a
true strain of 0.3. The slope of the plot gives the strain rate sensitivity m, which is not a constant
over the range of strain rate tested. Log stress vs. 1/T at the same true strain is shown in Figure
28. Processing map at this strain was developed for Inconel 718, Figure 29. The optimum
processing conditions from the map can be obtained by sclecting the temperature and strain rate
combination which provides the maximum efficiency in the stable region. This condition is

approximately 1070 C and 0.01 s-1 for Inconel 718.




Table 1. List of figures, testing conditions and microstructural observations for Inconel 718.

Figure | Temperature | Strain Rate Microstructure Page
No C S-1 tical Microsco No
1 eat treated and aged wrought bars. 1ax 3

rains of ~23um (7.5ASTM).

2 982(1800) 0.01 eformed grains showing serrated grain| 4
boundaries (initiation of dynamic
recrystallization), incipient necklacing.

3 982(1800) 0.14 “Same as above, but the grains appeared to be [
more severely deformed.

4 982(1800) 1.84 Smail and equiaxed dynamically recrystallized 6

ins (~7pum).

5 . 982(1800) 5 ame as above, but the grains are smaller 7
(~5.6um), a very small proportion of deformed
grains still present, tested in an inert
atmosphere.

6 982(1800) 25 n/a 8

7 1010(1850) 0.01 Deformed grains showing serrated grain 9
boundaries , necklacing present.

8 1010(1850) 0.14 Equiaxed dynamically recrystallized grains with | 10
an average size of 6.5um.

9 1010(1850) 1.84 Equiax grains with an average size of 10.6um, 11
twinning present.

10 1010(1850) 5 Equiaxed grains with a duplex structure; small 12
grains 4-8um and large grains 20-30um. Small
fraction of large deformed grains is also present,
tested in an inert atmosphere.

11 - 1010(1850) 25 Equiaxed grains with an average size of /.6um. 13

12 1038(1900) 0.01 Equiaxed grains (~17pm) developing twins.| 14
Note that 1038 C is just bellow the & solvus.

13 1038(1900) 0.14 Equiaxed grains with an average size of 10um. 15

14 1038(1900) 1.84 Equiaxed grains (~12jum) developing twans. 16

15 1038(1900) 5 uiaxed grains with a duplex structure; smalil 17
grains ~12um and large grains 25-30jum. Smalil
fracuon of large defo.med grains is also present,
tested in an inert atmosphere.

16 1038(1900) 25 Same as above, but the grains are slightly 18
smaller, tested in an inert atmosphere.

17 1079(1975) 0.01 Large duplex equiaxed grains with a grain size 19

' in the range of 40-60 um. Tested in an inert
atmosphere.

18 1079(1975) 0.14 Equiaxed large grains with a duplex size 20

19 1079(1975) 1.84 Equiaxed grains (22-30um) developing twins. 21

20 1079(1975) 5 Equiaxed grains (~29um), tested in an inert] 22
atmosphere.

21 1079(1975) 25 Equiaxed grains (22-Z5um). 23

22 1149(2100) 0.01 Large equiaxed grains (~61um). 24

23 1149(2100) 0.14 Same as above, but smaller grains 25

24 1149(2100) 1.84 Large equiaxed grains. 26

25 1149(2100) 3 Equiaxed grains (~56um), tested in an inert] 27
atmosphere.

26 1149(2100) 25 Equiaxed grains (~41pm) 28




Figure 1. As-received microstructure of Inconel 718,
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Temperature: 982 C
Strain Rate: 5.0 s—1

Inconel 718
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Figure 5. True stress-true strain curve and microstructure at 982 C and 5 s-1.
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Temperature: 1010C
Strain Rate: 5.0 s—1
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Figure 10. True stress-true strain curve and microstructure at 1010 C and 5 s,
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Figure 13. True stress-true strain curve and microstructure at 1038 C and 0.14 s-1.
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Temperature: 1079 C
Strain Rate: 25.0 s—1

Inconel 718
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Figure 21. True stress-true strain curve and microstructure at 1079 C and 25 s-1,
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Figure 27. Effect of strain rate on stress in log-log scale at a true strain of 0.3 for Inconel 718.
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Figure 28. Effect of temperature on stress at a true strain of 0.3 for Inconel 718.
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Figure 29. Processing map of Inconel 718 at a true strain of 0.3.
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Summary

Compression tests have been performed on Inconel 718 over a range of temperatures and
strain rates. The experimental conditions used in this work are representative of those used in
metalforming practices. From the stress-strain curves, the flow behavior was characterized and a
processing map indicating the optimum processing condition was generated. This condition is
approximately 1070 C and 0.01 571

The deformed microstructures were characterized from the quenched specimens by
optical microscopy and are presented for each testing coudition under the stress-strain curves.
Dynamic recrystallization and grain growth occurred over the temperature and strain rate range
tested.

Implementation of Data Provided by the Atlas of Formability

The Atlas of Formability program provides ample data on flow behavior of various
important engineering materials in the temperature and strain rate regime commonly used in
metalworking processes. The data are valuable in design and problem solving in metalworking
processes of advanced materials. Microstructural changes with temperature and strain rates are
also provided in the Bulletin, which helps the design engineer to select processing parameters
leading to the desired microstructure.

The data can also be used to construct processing map using dynamic material modeling
approach to determine stable and unstable regions in terms of temperature and strain rate. The
temperature and strain rate combination at the highest efficiency in the stable region provides the
optimum processing condition. This has been demonstrated in this Bulletin. In some
metalworking processes such as forging, strain rate varies within the workpiece. An analysis of
the process with finite element method (FEM) can ensure that the strain rates at the processing
temperature in the whole workpiece fall into the stable regions in the processing map.
Furthermore, FEM analysis with the data from the Atlas of Formability can be coupled with
fracture criteria to predict defect formation in metalworking processes.

Using the data provided by the Atlas of Formability, design of metalworking processes,
dynamic material modeling, FEM analysis of metalworking processes, and defect prediction are
common practice in Concurrent Technologies Corporation. Needs in solving problems related to
metalworking processes can be directed to Dr. Prabir K. Chaudhury, Manager of the Atlas of
Formability project, by calling (814) 269-2594.
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