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Abstract. The process of constructing an atlas typically involves select-
ing one individual from a sample on which to base or root the atlas. If the
individual selected is far from the population mean, then the resulting
atlas is biased towards this individual. This, in turn, can bias any in-
ferences made with the atlas. Unbiased atlas construction addresses this
issue by either basing the atlas on the individual which is the median of
the sample or by an iterative technique whereby the atlas converges to
the unknown population mean. In this paper, we explore the question of
whether a single atlas is appropriate for a given sample or whether there
is sufficient image based evidence from which we can infer multiple at-
lases, each constructed from a subset of the data. We refer to this process
as atlas stratification. Essentially, we determine whether the sample, and
hence the population, is multi-modal and is best represented by an atlas
per mode. We use the mean shift algorithm to identify the modes of the
sample and multidimensional scaling to visualize the clustering process.

1 Introduction

Atlas-based techniques have many applications in medical image analysis. At-
lases take on many forms, ranging from an intensity image of the average subject
to more detailed shape, intensity and functional models of specific structures.
Atlases are used in basic research on population analysis, as guides in gross
segmentation and seed point selection, as context in navigation tasks, and as
models to overcome signal limitations and indistinct boundaries. Atlases may
be based on a single individual or on a sample of a population. Atlases can be
deterministic, where each region of space is associated with a single structure, or
atlases can be probabilistic, where each region of space is assigned a likelihood
of belonging to a variety of structures.

When atlases are constructed from a sample of a population, the imagery
for the subjects in the sample are transformed into a common coordinate frame
prior to consolidating their information. This step of rooting the atlas is com-
mon to both deterministic and probabilistic atlas construction. Establishing this
common coordinate frame is a critical step that impacts the quality of the re-
sulting atlas. A common practice is to select one subject from the sample on
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which to base the atlas. But if the selected subject is far from the population
mean, the resulting atlas will be biased towards this individual. This, in turn,
can bias any inferences made with the atlas. This issue has led to recent interest
in unbiased atlas construction. Unbiased atlases can be constructed by searching
for the subject closest to the population mean [1, 2] and rooting the atlas on that
subject, or by searching for the common coordinate frame in the center of the
population [3, 4, 5, 6, 7] and rooting the atlas on that coordinate frame.

Current atlas construction techniques are based on an assumption that the
population is best described by a single atlas, treating the population as uni-
modal after transformation to the common coordinate frame. While this trans-
formation may be non-rigid, and may therefore normalize away a portion of the
inter-subject variability, substantial inter-subject variability may remain. Study-
ing this remaining variability is the subject of population analysis. However, this
same variability may render an atlas ineffective when used as a prior to combat
signal limitations and indistinct boundaries. For these applications, variations
beyond unimodal variations are particularly troubling.

In this paper, we explore the question of whether a population is best de-
scribed by a single atlas or whether there is sufficient evidence to infer multiple
atlases, each constructed from a subset of the data. We refer to this process as
atlas stratification. We identify the modes in the population using a mean shift
algorithm [8]. Each mode represents a subspace of the population which requires
a unique atlas. In the process of identifying the modes, we determine which
subjects should be used in constructing the atlas for each mode. The stratifica-
tion process iterates between performing pairwise registrations of subjects and
constructing atlases from subsets of subjects.

2 Mean Shift

Fukunaga and Hostetler introduced the mean shift algorithm [8] to estimate
the gradient of a probability density function given a set of samples from the
distribution. Using a hill climbing algorithm, this gradient estimate can be used
to identify the modes of the underlying distribution. The mean shift algorithm
has been used for clustering [8, 9], segmentation [10], and tracking [11].

Following the notation and derivation in [8], let X1, X2, . . . , XN be a set of N
iid. n-dimensional random vectors. The kernel density estimate of the underlying
distribution is

p̂N (X) = (Nhn)−1
∑

j=1..N

k

(
1

h
(X − Xj)

)
(1)

where k(X) is a scalar function satisfying the requirements for a kernel [12] and h
is a parameter often referred to as the bandwidth [12]. If k(X) is a differentiable
function, the gradient of the density estimate is

∇̂xpN (X) = (Nhn)−1
∑

j=1..N

∇xk

(
1

h
(X − Xj)

)
(2)
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where ∇x is the gradient operator with respect to x1, x2, . . . , xn. A simple kernel
of the form

k(X) =

{
c(1 − XT X) if XT X ≤ 1

0 if XT X > 1,
(3)

where c is a normalizing constant chosen to make the kernel integrate to one,
satisfies the conditions for the density estimate to be asymptotically unbiased,
consistent, and uniformly consistent [8]. Substituting this kernel into (2) yields

∇̂xpN (X) = (Nhn+2)−12c
∑

Xi∈Sh(X)

(Xi − X) (4)

where Sh(X) is a neighborhood with a radius equal to the bandwidth, h.
When Sh(X) is small, pN (x) over the restricted domain of Sh(X) is approx-

imately uniform. The terms prior to the summation in (4) can be shown to be
proportional to the density of an n-dimensional uniform distribution over Sh(X).
Therefore, we can approximate the normalized gradient (see [8] for details)

∇̂xpN(X)

pN (x)
≈

n + 2

h2
Mh(X) (5)

where

Mh(X) =
1

k

∑

Xi∈Sh(X)

(Xi − X)

is referred to as the sample mean shift, or simply the mean shift, and k is the
number of samples in Sh(X).

We can use this approximation to the normalized gradient to cluster samples
Xj , j = 1, 2, . . . , N , using the update equations

X0
j = Xj, (6)

Xt+1
j = Xt

j + a
∇xpN (Xt

j)

pN (Xt
j)

. (7)

Using (5) and setting a = h2

n+2 , yields a simplified update equation

Xt+1
j = Xt

j + Mh(Xj). (8)

This derivation of the mean shift is a k-nearest neighbor formulation, where the
distance to the kth nearest neighbor defines the bandwidth h.

3 Atlas Stratification

To apply the mean shift algorithm to the problem of atlas stratification, we
consider the images for a subject as one sample. As such, each sample sits in
a very high dimensional space (rows × cols × slices). We drop the standard
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L2 norm, used by the original mean shift algorithm to establish the nearest
neighbor set, in favor of an information theoretic measure, specifically mutual
information [13, 14, 15]. Other metrics and measures for comparing subjects for
atlas stratification are possible. For instance, overlap metrics or shape similarity
metrics applied to presegmented structures could be used in the mean shift
framework.

Labeling the images for a subject as Ij and treating the N subjects as samples,
let

I0
j = Ij j = 1, 2, . . . , N.

At each iteration t, we align each pair of subjects using a Mattes mutual in-
formation registration algorithm [16]. The transformations that align each pair
of subjects is T t

ij . The mutual information values for each pair of subjects is
MI(T t

ij ◦ It
i , I

t
j). The nearest neighbor set for the mean shift iteration is the set

Sdk
(It

j) = {It
i : MI(T t

ij ◦ It
i , I

t
j) ≤ dk}

where dk is kth largest mutual information value to the image It
j . The mean shift

is defined here as

Mh(It
j) =

1

k

∑

T t
ij
◦It

i
∈Sh(It

j
)

(T t
ij ◦ It

i − It
j). (9)

The samples are updated

It+1
j = It

j + Mh(It
j) (10)

= It
j +

1

k

∑

T t
ij
◦It

i
∈Sh(It

j
)

(
T t

ij ◦ It
i − It

j

)
(11)

where after each mean shift iteration, t = t + 1, the pairwise registrations are
repeated using It

i and It
j from the previous iteration, producing new transfor-

mations T t
ij and mutual information metric values MI(T t

ij ◦ It
i , I

t
j). These trans-

formations and metric values define the nearest neighbor sets for the next mean
shift iteration. As the iterations of registrations and mean shift progress, the
samples converge to the modes of the population.

4 Data

Our data was a random selection of 222 MR scans from the High Field MRI
Studies of Neurodegenerative Disease conducted at the Albany Medical College’s
Neuroimaging Center. The scans were acquired on a 3T scanner (GE Medical
Systems, Milwaukee WI). Mean age of the subjects was 74 years and ranged
from 55-90 years. The scans were SPGR T1 weighted acquisitions with 15 deg
flip angle, 12.1/5.2 TR/TE, 22 cm FOV, 2 mm slice thickness. In each scan, 96
coronal slices were acquired.
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5 Results

The atlas stratification algorithm was implemented using the Insight Segmenta-
tion and Registration Toolkit [17]. Twenty iterations of atlas stratification were
performed using mean shift bandwidths (k) of 7, 15, and 30 neighbors. At each
iteration, 222x221 or 49062 volume registrations were performed followed by 222
averages of k volumes. The registrations were limited to estimating affine trans-
formations. In total, the processing comprised over 3 million registrations and
was distributed over a cluster of 500 computers.

5.1 Multidimensional Scaling

Multidimensional scaling is a cluster analysis technique that constructs a low-
dimensional representation of a set of high dimensional samples given just the
pairwise intersample distances [18]. Multidimensional scaling has previously been
used in atlas construction by Park et al [2] to identify a subject close to the ge-
ometric mean of the population and rooting their atlas on that subject. Here,
we use multi-dimensional scaling as a qualitative tool to visualize the mean shift
clustering process. Figure 1 shows the results of multidimensional scaling applied
to the intersubject distances after mean shift iterations 1, 2, 4, and 20 and for
mean shift bandwidths of 7, 15, and 30 neighbors. Subjects in the same cluster
at the last iteration are labeled with the same symbol. These symbol assign-
ments are propagated back to earlier iterations to illustrate the clustering pro-
cess. Note that multidimensional scaling produces a representation unique up to
rotation/flip/permutation. Therefore, the visualizations across the iterations or
down the bandwidth may vary in configuration by a rotation/flip/permutation.

To apply multidimensional scaling to the results of the mean shift algorithm,
the pairwise mutual information metric values are converted to distances

D(Ii, Ij) = α

(
max
Ik∈S

MI(Ik, Ij)

)
− MI(Ii, Ij) (12)

where α is a small scale factor near unity to keep the distances distinct from
zero. Since the mutual information values are the result of image registration,
and these registrations are based on random sampling and gradient descent
optimization, the mutual information values are not necessarily commutative.
To combat this, the distance matrix D(Ii, Ij) is made symmetric simply by

D(Ii, Ij) = (D(Ii, Ij) + D(Ij , Ii)) /2.0 (13)

and by prescribing the diagonal to be zero. These approximations are reasonable
since the multidimensional scaling is only used to provide a qualitative assess-
ment of the results of the mean shift algorithm.

Figure 1 shows the mean shift algorithm identifies multiple modes in the
population. The number of modes being a function of the mean shift bandwidth.
For a bandwidth of 30 neighbors, the mean shift algorithm produces 5 clusters
containing 33, 39, 43, 47, and 60 subjects.
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Fig. 1. Multidimensional scaling is an effective visualization tool for illustrating the
progress of the mean shift clustering algorithm applied to the entire image database.
The columns show multidimensional scaling applied to the output of mean shift iter-
ations 1, 2, 4, and 20. The rows illustrate the effect of the mean shift bandwidth for
nearest neighbor sizes 7, 15, and 30.

5.2 Atlas Modes

Figure 2 compares the atlases from two of the modes for a bandwidth of 30
neighbors. The atlas on the left is from a mode describing 43 subjects. The atlas
on the right is from a mode describing 60 subjects. In each case, the atlas was

Fig. 2. Atlases from two modes (left, right) identified using a bandwidth of 30 neighbors
and the difference between these two atlases (center)



718 D.J. Blezek and J.V. Miller

constructed using only the 30 neighbors in the mean shift bandwidth. There are
two interesting features to note. First, the atlas on the left has larger ventricles.
However, the stratification process employed no explicit information on brain
morphometry. Second, the atlas on the left is crisper. From this we infer subjects
within this mode have less inter-subject variability than the subjects in the mode
described by the atlas on the right (recall the same bandwidth, 30, was used to
construct each atlas).

6 Conclusions

In this paper, we investigate atlas stratification, questioning whether a single
atlas is appropriate for a given sample or whether there is evidence from which
we can infer multiple atlases, each constructed from a subset of the data. We use
the mean shift algorithm to search for modes in the population. If a population
has multiple modes, the population should be described by multiple atlases to
minimize bias. Our algorithm alternates between performing pairwise registra-
tions of subjects and constructing atlases from subsets of the subjects. As the
iterations of registrations and mean shift progress, the subjects converge to the
modes of the population.

While the approach taken here is direct, it is not the only possible construc-
tion. For instance, the distance metric does not have to be based on mutual
information. Overlap metrics or shape similarity metrics on presegmented struc-
tures could also be used in this mean shift framework. While our studies were
based on an affine transform between subjects, higher order transformations and
deformable registrations could be used. Mean shift formulations other than the
nearest neighbor variant could also be used.

Aside from the above refinements, we’ve identified two areas of future research
for atlas stratification. The first is a study of the algorithm itself, quantifying the
differences between the atlases produced by atlas stratification. The second is a
study of the algorithm in context, quantify an improvement in an atlas-based
technique when multiple atlases are available. The latter will require a method
to select the most appropriate atlas for a particular subject.
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