Atmosphere-Ocean Dynamics

ADRIAN E. GILL

Department of Applied Mathematics and Theoretical Physics University of Cambridge Cambridge, England

TAMY

Institut für Meteorologie der Technischen Nachschuk Hochschularabs 1 6100 Darmstadt

Iny.Mr. B 7/83

1982

ACADEMIC PRESS

A Subsidiary of Harcourt Brace Jovanovich, Publishers

New York London

Paris San Diego San Francisco São Paulo Sydney Tokyo Toronto

Contents

хi

Acknowledgments		xv
Chap	ter One How the Ocean-Atmosphere System Is Driven	
1.1	Introduction	1
1.2	The Amount of Energy Received by the Earth	2
1.3	Radiative Equilibrium Models	7
1.4	The Greenhouse Effect	. 8
1.5	Effects of Convection	10
1.6	Effects of Horizontal Gradients	13
1.7	Variability in Radiative Driving of the Earth	15
Chap	ter Two Transfer of Properties between Atmosphere and Ocean	
2.1	Introduction	19
2.2	Contrasts in Properties of Ocean and Atmosphere	20
2.3	Momentum Transfer between Air and Sea, and the Atmosphere's Angular	
	Momentum Balance	22
2.4	Dependence of Exchange Rates on Air-Sea Velocity, Temperature,	
	and Humidity Differences	26
2.5	The Hydrological Cycle	31
2.6	The Heat Balance of the Ocean	33
2.7	Surface Density Changes and the Thermohaline Circulation of the Ocean	36

Preface

Chap	ter Three Properties of a Fluid at Rest	
3.1	The Equation of State	39
3.2	Thermodynamic Variables	41
3.3	Values of Thermodynamic Quantities for the Ocean and Atmosphere	43
3.4	Phase Changes	44
3.5	Balance of Forces in a Fluid at Rest	45
3.6	Static Stability	50
3.7	Quantities Associated with Stability	51
3.8 3.9	Stability of a Saturated Atmosphere Graphical Representation of Vertical Soundings	55 58
0.5	Grapment Representation of Vertical Boundings	20
Chap	ter Four Equations Satisfied by a Moving Fluid	
4.1	Properties of a Material Element	63
4.2	Mass Conservation Equation	64
	Balance for a Scalar Quantity like Salinity	66
4.4	The Internal Energy (or Heat) Equation	70
4.5	The Equation of Motion	72
4.6	Mechanical Energy Equation	76
4.7 4.8	Total Energy Equation Bernoulli's Equation	79 82
4.9	Systematic Effects of Diffusion	83
4.10	·	84
4.11		85
4.12		91
Chap	ter Five Adjustment under Gravity in a Nonrotating System	
5.1	Introduction: Adjustment to Equilibrium	95
5.2	Perturbations from the Rest State for a Homogenous Inviscid Fluid	99
5.3	Surface Gravity Waves	101
5.4	Dispersion Short Ways and Long Ways Approximations	104 106
5.5 5.6	Short-Wave and Long-Wave Approximations Shallow-Water Equations Derived Using the Hydrostatic Approximation	100
5.7	Energetics of Shallow-Water Motion	111
5.8	Seiches and Tides in Channels and Gulfs	112
Chap	ter Six Adjustment under Gravity of a Density-Stratified Fluid	
·		
6.1	Introduction	117
6.2	The Case of Two Superposed Fluids of Different Density	119
6.3	The Baroclinic Mode and the Rigid Lid Approximation	127 128
6.4 6.5	Adjustments within a Continuously Stratified Incompressible Fluid Internal Gravity Waves	128
6.6	Dispersion Effects	131
5.0	- operator brease	

Contents		vii
6.7	Energetics of Internal Waves	139
6.8	Internal Waves Generated at a Horizontal Boundary	142
6.9	Effects on Boundary-Generated Waves of Variations of Buoyancy Frequency	
	with Height	· 146
6.10	Free Waves in the Presence of Boundaries	153
6.11	Waves of Large Horizontal Scale: Normal Modes	159
6.12	An Example of Adjustment to Equilibrium in a Stratified Fluid	162
6.13	Resolution into Normal Modes for the Ocean	167
6.14	Adjustment to Equilibrium in a Stratified Compressible Fluid	169
6.15	Examples of Adjustment in a Compressible Atmosphere	175
6.16	Weak Dispersion of a Pulse	177
6.17	Isobaric Coordinates	180
6.18	The Vertically Integrated Perturbation Energy Equation in Isobaric Coordinates	186
Chapt	er Seven Effects of Rotation	
7.1	Introduction	189
7.2	The Rossby Adjustment Problem	191
7.3	The Transients	f 196
7.4	Applicability to the Rotating Earth	204
7.5	The Rossby Radius of Deformation	205
7.6	The Geostrophic Balance	208
7.7	Relative Geostrophic Currents: The Thermal Wind	215
7.8	Available Potential Energy	219
7.9	Circulation and Vorticity	226
7.10	Conservation of Potential Vorticity for a Shallow Homogeneous Layer	231
7.11	Circulation in a Stratified Fluid and Ertel's Potential Vorticity	237
7.12	Perturbation Forms of the Vorticity Equations in a Uniformly Rotating Fluid	241
7.13	Initialization of Fields for Numerical Prediction Schemes	243
Chapt	ter Eight Gravity Waves in a Rotating Fluid	
8.1	Introduction	247
8.2	Effect of Rotation on Surface Gravity Waves: Poincaré Waves	249
8.3	Dispersion Properties and Energetics of Poincaré Waves	254
8.4	Vertically Propagating Internal Waves in a Rotating Fluid	256
8.5	Polarization Relations	262
8.6	Energetics	266
8.7	Waves Generated at a Horizontal Boundary	268
8.8	Mountain Waves	274
8.9	Effects of Variation of Properties with Height	283
8.10	Finite-Amplitude Topographic Effects	292
8.11	Dissipative Effects in the Upper Atmosphere	294
8.12	The Liouville-Green or WKBJ Approximation	297
8.13	Wave Interactions	302
8.14	The Internal Wave Spectrum in the Ocean	305
8.15	Wave Transport and Effects on the Mean Flow	309
8.16	Quasi-geostrophic Flow (f Plane): The Isallobaric Wind	311

viii Contents

Chapter Nine	Forced	Motion
--------------	--------	--------

9.1	Introduction	317
9.2	Forcing Due to Surface Stress: Ekman Transport	319
9.3	Wind-Generated Inertial Oscillations in the Ocean Mixed Layer	322
9.4	Ekman Pumping	326
9.5	Bottom Friction: Velocity Structure of the Boundary Layer	328
9.6	The Laminar Ekman Layer	331
9.7	The Nocturnal Jet	332
9.8	Tide-Producing Forces	334
9.9	Effect of Atmospheric Pressure Variations and Wind on Barotropic Motion	
	in the Sea: The Forced Shallow-Water Equation	337
9.10	Baroclinic Response of the Ocean to Wind Forcing: Use of Normal Modes	342
9.11	Response of the Ocean to a Moving Storm or Hurricane	346
9.12	Spin-Down by Bottom Friction	353
9.13	Buoyancy Forcing	356
9.14	Response to Stationary Forcing: A Barotropic Example	360
9.15	A Forced Baroclinic Vortex	362
9.16	Equilibration through Dissipative Effects	367
7.10	Equinoration through 2 to specify	-
Chapt	er Ten Effects of Side Boundaries	
10.1	Introduction	371
10.2	Effects of Rotation on Seiches and Tides in Narrow Channels and Gulfs	373
10.3	Poincaré Waves in a Uniform Channel of Arbitrary Width	376
10.4	Kelvin Waves	378
10.5	The Full Set of Modes for an Infinite Channel of Uniform Width	380
10.6	End Effects: Seiches and Tides in a Gulf That Is Not Narrow	382
10.7	Adjustment to Equilibrium in a Channel	385
10.8	Tides	391
10.9	Storm Surges on an Open Coastline: The Local Solution	394
10.10	Surges Moving along the Coast: Forced Kelvin Waves	398
10.11	Coastal Upwelling	403
10.12	Continental Shelf Waves	408
10.13	Coastally Trapped Waves	415
10.14	Eastern Boundary Currents	421
Chapt	er Eleven The Tropics	
11.1	Introduction	429
11.2	Effects of Earth's Curvature: Shallow-Water Equations on the Sphere	431
11.3	Potential Vorticity for a Shallow Homogeneous Layer	433
11.4	The Equatorial Beta Plane	434
11.5	The Equatorial Kelvin Wave	436
11.6	Other Equatorially Trapped Waves	438
11.7	The Equatorial Waveguide: Gravity Waves	440
11.8	Planetary Waves and Quasi-geostrophic Motion	444
11.9	Baroclinic Motion near the Equator	449
11.10	Vertically Propagating Equatorial Waves	450
11.11	Adjustment under Gravity near the Equator	454
	. rejection under Gravity near the Education	151

Conten	ts	ix
11.12	Transient Forced Motion	458
11.13	Potential Vorticity for Baroclinic Motion: The Steady Limit	465
	Steady Forced Motion	466
11.15	The Tropical Circulation of the Atmosphere	472
11.16	Tropical Ocean Currents	482
Chapt	er Twelve Mid-latitudes	
12.1	Introduction	493
12.2	The Mid-latitude Beta Plane	494
12.3	Planetary Waves	500
12.4	Spin-Up of the Ocean by an Applied Wind Stress	507
12.5	Steady Ocean Circulation	512
12.6	Western Boundary Currents	516
12.7	Vertical Propagation of Planetary Waves in a Medium at Rest	523
12.8	Nonlinear Quasi-geostrophic Flow in Three Dimensions	527
12.9	Small Disturbances on a Zonal Flow Varying with Latitude and Height	532
12.10	Deductions about Vertical Motion from the Quasi-geostrophic Equations	543
Chapt	ter Thirteen Instabilities, Fronts, and the General Circulation	
13.1	Introduction	549
13.2	Free Waves in the Presence of a Horizontal Temperature Gradient	550
13.3	Baroclinic Instability: The Eady Problem	556
13.4	Baroclinic Instability: The Charney Problem	560
13.5	Necessary Conditions for Instability	563
13.6	Barotropic Instability	565
13.7	Eddies in the Ocean	568
13.8	Fronts	571
13.9	The Life Cycle of a Baroclinic Disturbance	578
13.10	General Circulation of the Atmosphere	582
Appei	ndix One Units and Their SI Equivalents	595
Appe	ndix Two Useful Values	597
Appe	ndix Three Properties of Seawater	
A3.1	The Equation of State	599
A3.2	Other Quantities Related to Density	600
A3.3	Expansion Coefficients	601
A3.4	Specific Heat	601
A3.5	Potential Temperature	602

602

602

Speed of Sound

Freezing Point of Seawater

A3.6

A3.7

x	Contents
Appendix Four Properties of Moist Air	
A4.1 Methods of Specifying Moisture Content	605
A4.2 Saturation Vapor Pressure	606
A4.3 Further Quantities Related to Moisture Content	606
A4.4 Latent Heats	607
A4.5 Lapse Rates	607
Appendix Five A List of Atlases and Data Sources	609
References	613
Index	645

Index