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Abstract We report airborne measurements of acetaldehyde (CH3CHO) during the first and second

deployments of the National Aeronautics and Space Administration Atmospheric Tomography

Mission (ATom). The budget of CH3CHO is examined using the Community Atmospheric Model with

chemistry (CAM‐chem), with a newly developed online air‐sea exchange module. The upper limit

of the global ocean net emission of CH3CHO is estimated to be 34 Tg/a (42 Tg/a if considering

bubble‐mediated transfer), and the ocean impacts on tropospheric CH3CHO are mostly confined to the

marine boundary layer. Our analysis suggests that there is an unaccounted CH3CHO source in the

remote troposphere and that organic aerosols can only provide a fraction of this missing source. We

propose that peroxyacetic acid is an ideal indicator of the rapid CH3CHO production in the remote

troposphere. The higher‐than‐expected CH3CHO measurements represent a missing sink of hydroxyl

radicals (and halogen radical) in current chemistry‐climate models.

Plain Language Summary The Earth's atmosphere and its ability to self‐regulate and cleanse

itself is dependent on a complex interplay of trace chemical species, some of which are emitted from the

biosphere, while others are from human activities or fires. One of these key species, acetaldehyde, was

measured as part of the recent Atmospheric Tomography Mission, an aircraft (National Aeronautics and

Space Administration DC‐8) experiment transecting the lengths of the Pacific and Atlantic Oceans during two

seasons, measuring greenhouse gases and chemically reactive gases and particles. These measurements

allow us to test our ability tomodel the chemical state of the atmosphere. The results indicate that the ocean is

a large source of acetaldehyde and the analysis here suggests additional mechanisms that narrow the gap

between observations and simulations but also reveal that an additional unexplained source or sources

remain(s) in the remote free troposphere. It is critical to understand this missing carbon source because it has
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significant implications for understanding the cycle of oxidants which, in turn, provide for the means of

removing (cleaning) trace gases including methane, an important greenhouse gas, from the atmosphere.

1. Introduction

Acetaldehyde is one of the most abundant oxygenated volatile organic compounds (OVOCs) in the atmo-

sphere. It is a major precursor of peroxyacetyl nitrate (PAN; Fischer et al., 2014), which affects the long‐

range transport of NOx (NO + NO2; Singh et al., 1990). It also affects hydrogen oxide radicals (Moxim

et al., 1996; Seinfeld & Pandis, 2012) and reactive halogen chemistry (Hornbrook et al., 2016; Koenig

et al., 2017). High levels of CH3CHO have been reported in the remote marine boundary layer (MBL;

Read et al., 2012; Singh et al., 2003) and the free troposphere (FT; Singh et al., 2001, 2003). However, it

has been suspected that the early in situ CH3CHO measurements may have been subject to sampling arti-

facts, with the largest impacts in the remote FT (Apel et al., 2008; Bates et al., 2000; Goldan et al., 2004;

Millet et al., 2010; Northway et al., 2004). Evidence to support that suspicion in the remote FT is provided

by the concomitant PANmeasurements, with the observed PAN and CH3CHOmutually incompatible based

on their known chemistry (Millet et al., 2010; Staudt et al., 2003). Progress has been made in recent years to

quantify trace levels of CH3CHO in pristine environments using the NCAR Trace Organic Gas Analyzer

(TOGA; see more details in the supporting information, SI; Apel et al., 2003, 2015; Hornbrook et al., 2016).

The ocean is the biggest organic carbon reservoir on the surface of the Earth (Ogawa & Tanoue, 2003).

Colored dissolved organic matter (CDOM) in a variety of natural waters absorbs ultraviolet radiation (i.e.,

280–320 nm), producing a number of low‐molecular‐weight compounds, including CH3CHO (Kieber

et al., 1990, 2003; Mopper et al., 1991). CH3CHO produced in the surface seawater is rapidly consumed

via microbial processes (Dixon et al., 2013; Mopper & Stahovec, 1986). Using a global chemical transport

model (GEOS‐Chem), Millet et al. (2010) conducted pioneering work on quantifying oceanic emissions of

CH3CHO. However, at that time the modeled surface seawater concentrations and oceanic fluxes of

CH3CHO were largely untested with observations.

In this work, we use a global chemistry‐climate model (CESM2.1/Community Atmospheric Model with

chemistry [CAM‐chem]) to test our current understanding of CH3CHO budget in the remote atmosphere.

This includes the air‐sea exchange of CH3CHO which is examined in the context of all previous oceanic

observations (surface seawater concentrations and fluxes) available in the literature. In situ measurements

of CH3CHO during the first and second deployments of the recent Atmospheric Tomography Mission

(ATom‐1 and ATom‐2) were used for model evaluation.

2. Methods

The ATom‐1 and ATom‐2 missions took place from 29 July to 23 August 2016 and 26 January to 21 February

2017, respectively. In this work we focus on the flights over the Pacific Ocean. During ATom‐1 and ATom‐2,

air masses probed over the Atlantic were frequently affected by biomass burning, as indicated by elevated

HCN, CH3CN, and CO. Chemical evolution of organic compounds in biomass burning plumes remains

poorly understood. The scope of this work is to examine the budget of CH3CHO in the pristine air over

the Pacific; therefore, flights over the Atlantic were not included in this work. OVOCs were measured using

the TOGA instrument (see more details in SI and Figure S1 and S2), and other observations involved in this

work are listed in the SI. The flight tracks are shown in Figures S3–S5.

2.1. CESM2.1/CAM‐Chem

CAM‐chem is a component of the Community Earth System Model (CESM; Lamarque et al., 2012; Tilmes

et al., 2015). In this work, CAM‐chem is run in an off‐line configuration (with specified dynamics), using

National Aeronautics and Space Administration (NASA) MERRA2 (reanalysis) meteorology fields with a

horizontal resolution of 0.94° latitude × 1.25° longitude and 32 levels (surface to 3 hPa). The chemistry

scheme includes a detailed representation of tropospheric and stratospheric chemistry (Tilmes et al.,

2015). Anthropogenic emissions are from the Coupled Model Intercomparison Project Phase 6 (CMIP6;

Hoesly et al., 2018), biomass burning emissions are from the Fire INventory version 1.5 for NCAR (FINN;
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Wiedinmyer et al., 2011), and terrestrial emissions are calculated using the Model of Emissions of Gases and

Aerosols from Nature (MEGAN; Guenther et al., 2012).

2.2. Air‐Sea Exchange for Trace Gases

An Online Air‐Sea Interface for Soluble Species (OASISS) was developed for CAM‐chem to calculate the

bidirectional oceanic fluxes of trace gases (Johnson, 2010; Liss & Slater, 1974). In brief, the air‐sea exchange

is described by the air‐side and water‐side transfer velocities (kair and kwater). The kair is based on the NOAA

COARE algorithm (Jeffery et al., 2010), with the addition of the still air diffusive flux adjustment (Mackay &

Yeun, 1983). The kwater is based on Nightingale et al. (2000). The air‐sea exchange of a given gas is deter-

mined by its concentrations in the surface seawater and the atmosphere, as well as its (effective) Henry's

law constant. For CH3CHO, its effective Henry's law constant (12 M/atm at 298 K) is used in this work, con-

sidering its hydration in the aqueous phase (Betterton & Hoffmann, 1988). In addition, the bubble‐mediated

transfer due to white caps (Asher &Wanninkhof, 1998) is included in the framework as an option, in which

the fractional coverage of actively breaking whitecaps is parameterized based on a previous study (Soloviev

& Schluessel, 2002). In this work, the bubble‐mediated transfer is turned off unless otherwise noted. The sur-

face seawater salinity is obtained from the NASA SAC‐D/Aquarius level‐3 monthly climatology (Lee et al.,

2012). The parameterization of the CH3CHO seawater concentration is described in the following section.

2.3. Simplified Ocean Biogeochemistry Scheme for CH3CHO

The seawater concentration of CH3CHO is estimated using a satellite‐based approach similar to (Millet et al.,

2010). In brief, due to the short biological turnover time of CH3CHO (<1 day) in the surface seawater (Dixon

et al., 2013; Mopper et al., 1991; Zhou &Mopper, 1997), surface seawater CH3CHO is assumed to be in steady

state, and hence, its steady state concentration can be estimated based on production rate (Kieber et al.,

1990) and the turnover time. Kieber et al. (1990) measured the CH3CHO production from the UV photolysis

of CDOM obtained from natural water samples, and parameterized the production rate as a function of

CDOM absorption coefficient at 300 nm. In this work, the NASA SeaWiFS level‐3 product, the monthly cli-

matology of absorption coefficient due to colored dissolved and detrital organic matter at 443 nm

(Maritorena et al., 2002), is used to estimate the CDOM absorption (aCDOM) and attenuation (kd) at 300

nm using a linear regression method (Swan et al., 2009).

The local CH3CHO production rate within the oceanmixed layer can then be calculated using aCDOM,300 nm,

kd,300 nm, the total UV radiation (280–320 nm) absorbed by the ocean (CAM‐chem), and the acetaldehyde

production rate reported by Kieber et al. (1990). The ocean mixed layer depth is from the NCAR Large

Ensemble Community Project (Kay et al., 2014). A constant turnover time (0.3 day) is used throughout

the ocean mixed layer (Dixon et al., 2013; also see details in SI); therefore, the resulting steady state

CH3CHO concentration is an average throughout the ocean mixed layer.

2.4. Observation‐Based Box Model

An observationally constrained photochemical box model (Wang et al., 2015) is also used to examine sources

and sinks of CH3CHO. A near‐explicit gas‐phase chemical mechanism, Master Chemical Mechanism v3.3.1

(Jenkin et al., 2003), is used, with the addition of the reaction (CH3O2·+ OH) included based on recent find-

ings (Assaf et al., 2017; Bossolasco et al., 2014). The box model is constrained to all measurements available,

for example, j values (Shetter &Müller, 1999), water vapor (Diskin et al., 2002), NO (Ryerson et al., 2000), CO

(McManus et al., 2005), H2 and PAN (Elkins et al., 1996), methane (Crosson, 2008), and formaldehyde

(Cazorla et al., 2015). See SI for more details.

3. Surface Seawater Concentration of CH3CHO

The few published seawater measurements of CH3CHO range from below detection limits (mostly <2 nM)

to 30 nM (Beale et al., 2013, 2015; Dixon et al., 2013; Kameyama et al., 2010; Mopper et al., 1991; Mopper &

Stahovec, 1986; Schlundt et al., 2017; Yang et al., 2014; Zhou &Mopper, 1997). Figure S6 shows the modeled

surface seawater concentrations of CH3CHO, as well as all aforementioned surface seawater measurements.

Note that Zhou and Mopper (1997) measured CH3CHO in both bulk seawater (1.4 ± 0.1 nM) and the surface

microlayer (15.7 ± 2.2 nM), while all other studies reported bulk surface seawater. For consistency, bulk sea-

water measurements from Zhou and Mopper (1997) are plotted here. As shown in Figure S6, the modeled
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seawater concentrations of CH3CHO cover a similar range as most of the observations in the open oceans,

especially with the AMT cruise observations in the Atlantic (Beale et al., 2013; Yang et al., 2014), spanning

from 50°N to 45°N. The air‐sea exchange of CH3CHO is fully coupled with the chemical and physical pro-

cesses in the atmosphere, and the oceanic fluxes will respond to the production and removal mechanisms

in the atmosphere (section 6); therefore, the modeled oceanic fluxes are discussed in section 7 in the context

of CH3CHO chemistry in the atmosphere.

4. Peroxyacetic Acid as an Indicator of CH3CHO in the Remote Atmosphere

Previous studies have used PAN as an indicator of CH3CHO (Millet et al., 2010; Staudt et al., 2003). However,

NO2 is another direct precursor of PAN, and the low‐NOx air masses probed during the ATom flights do not

favor the formation of PAN. Moreover, PAN is much longer‐lived than CH3CHO and hence is less indicative

of the rapid local turnover of CH3CHO. In light of this, we propose that peroxyacetic acid (PAA) is an ideal

indicator for CH3CHO in the remote atmosphere, because (i) CH3CHO is the dominant precursor of PAA;

(ii) the chemical lifetime of PAA is a few days, and hence is less affected by long‐range transport and convec-

tion; and (iii) the formation mechanism of PAA is more relevant in pristine air with very low NOx content.

Using an observationally constrained box model, we found that the observed CH3CHO can possibly explain

all the PAA measurements (CIT ToF‐CIMS; Crounse et al., 2006; see the SI for details) which is otherwise

drastically underestimated (Figure S7). PAA measurements were not available in most previous studies.

The simultaneous measurements of PAA provide strong support for the veracity of the observed CH3CHO

mixing ratios in the remote troposphere, which is an observational advance permitting new

chemical insights.

5. Measured and Modeled Acetaldehyde Vertical Profiles

Figure 1 shows the vertical distribution of TOGA‐measured CH3CHO over the remote Pacific during ATom‐

1 and ATom‐2, as well as model simulations in which the model outputs were sampled along the flight

tracks. Anthropogenic (CO and NO as indicators), biomass burning (HCN and CH3CN as indicators), strato-

spheric (indicated by O3), and cloud (flagged by the onboard Cloud, Aerosol, and Precipitation

Spectrometer) influences were all filtered out, so that the observations reflect cloud‐free clean air conditions.

The latitudinal distributions of CO, NO, O3, and HCN, from both raw and filtered measurements, are shown

in Figures S4 and S5.

The observed CH3CHO shows both spatial and seasonal variations: During ATom‐1 (July–August 2016),

observed CH3CHO reached 200–400 pptv in the MBL in the NH and tropical Pacific, while slightly lower

levels, 100–350 pptv, were observed in the MBL in the SH Pacific. Above the MBL, observed CH3CHO

decreased gradually with increasing height, and above ~10 km the majority of observations dropped close

to or below the TOGA detection limit (5 pptv). Table S2 summarizes all CAM‐chem scenarios in this work.

Without oceanic fluxes, the CAM‐chem simulation underestimated CH3CHO in the MBL in all regions, and

underestimated CH3CHO by 1 order of magnitude in the FT in the NH and tropical Pacific (red lines in

Figure 1). With the oceanic fluxes (blue lines in Figure 1), CAM‐chem CH3CHO in the MBL is greatly

improved, but the impact of oceanic emissions in the FT is limited. The findings from ATom‐2 (January–

February 2017) generally mirror those from ATom‐1.

Air mass history analysis indicated that the FT air masses probed during ATom have not been influenced by

the marine/planetary boundary layer for at least two days prior being sampled on the aircraft (Figure S8).

Uncertainties in CAM‐chem modeled OH radicals are unlikely to explain all the underestimation in

CH3CHO, since CAM‐chem predicted OH radicals in the remote troposphere agree with ATHOS measure-

ments (Faloona et al., 2004) within 23% (Pearson coefficients: 0.79 and 0.76 for ATom‐1 and ATom‐2, respec-

tively). CAM‐chem predicted ethane (a major CH3CHO precursor) agrees with the UCIWASmeasurements

(Blake et al., 2003) within 33–68% in the remote troposphere during ATom (except for NH winter when

CAM‐chem underestimates by up to a factor of ~2), implying that the large underestimation of CAM‐chem

CH3CHO cannot be all explained by ethane. Analysis of tagged CH3CHO tracers (anthropogenic, terrestrial,

oceanic, biomass burning, and secondary productions) in CAM‐chem indicates that convective transport

plays a minor role in the CH3CHO budget in the remote troposphere (up to 30% in the upper FT over the
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Western Pacific which was not the target region of ATom). Moreover, Figure S9 shows that the TOGA‐

measured dimethyl sulfide (another short‐lived ocean emitted tracer) vertical gradient profile in the MBL

is reasonably captured by CAM‐chem providing evidence that CAM‐chem likely does not significantly

underestimate the convective transport into the FT (section S5). The tagged tracer analysis also indicates

that terrestrial CH3CHO emissions contribute negligible amounts of CH3CHO in the remote troposphere

(including CH3CHO produced from isoprene and terpenes). However, we cannot rule out the possibility

that CH3CHO may be produced during the aging processes of organic compounds emitted from the

terrestrial biosphere. Moreover, a photochemical steady state model constrained to all VOC

measurements available (including all C1–C4 hydrocarbons and OVOCs, isoprene, benzene, and toluene;

see Table S1) can explain less than 10% of the TOGA measured CH3CHO, consistent with our findings

using CAM‐chem. Given the short chemical lifetime of CH3CHO (a few hours; mainly OH oxidation, and

to a lesser extent, photolysis), our analysis strongly suggests a missing source of CH3CHO in the pristine

tropospheric air. The oceanic influence is mostly confined within the lowest 3–4 km (above the ocean),

and the modeled CH3CHO vertical profiles with oceanic influence show a steeper vertical gradient in the

lowest 3–4 km, compared to observations. This implies the missing source plays a role in the MBL as well.

Interestingly, the missing source appears to be at least partially radiation‐driven, as the measured

CH3CHO can be reasonably captured by the model in the winter hemisphere (ATom‐1 SH and ATom‐2

NH) but not in the summer hemisphere (ATom‐1 NH and ATom‐2 SH). Note that in the wintertime NH

upper FT, CH3CHO was overestimated in the CAM‐chem base case simulation without oceanic emissions.

Figure 1. TOGA measured CH3CHO in the Northern Hemisphere (>10°N), tropical (10°N–10°S), and Southern

Hemisphere (<10°S) over the remote Pacific Ocean during ATom‐1 (top) and ATom‐2 (bottom). Grey dots are 2‐min

TOGA measurements and black boxes are the median profiles (with 25% and 75% percentiles shown as thick black bars).

Light grey error bars represent TOGA measurement uncertainties for CH3CHO (20% + 10 pptv). Dashed vertical lines

indicate the TOGA detection limit (DL) for CH3CHO (5 pptv), and measurements below DL are shown as one half of DL.

Red lines are CAM‐chem base case simulation, while blue lines show the CAM‐chem simulation with oceanic emissions.

Green represents radiation‐driven CH3CHO production from OA (with a 50% CH3CHO yield), while yellow represents

O3‐induced CH3CHO production from OA, and dashed green lines represent simulations with 50% higher seawater

concentration and radiation‐driven CH3CHO production from OA (otherwise same as green).
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6. On the Currently Missing CH3CHO Production Mechanisms

In this section we explore the possible mechanisms to explain the underestimated CH3CHO based on obser-

vations. Due to its short chemical lifetime, CH3CHO in the remote troposphere can be assumed in steady

state. The observationally derived instantaneous removal rate as well as the inferred production rate of

CH3CHO are then given by

d CH3CHO½ �

dt
source≈

d CH3CHO½ �

dt

�

�

�

�

�

�

�

�

sink

¼ CH3CHO½ �· jCH3CHO þ kCH3CHOþOH OH½ �
� �

(1)

where [CH3CHO] and [OH] are the observed concentrations of CH3CHO and OH, jCH3CHO is the CH3CHO

photolysis frequency calculated from the actinic flux measurements, and kCH3CHO + OH is the OH reaction

rate coefficient (Burkholder et al., 2015). Two hypothesized CH3CHO production mechanisms are

examined:

1. Light‐driven CH3CHO production from organic aerosols (OA), motivated by laboratory studies (Chiu

et al., 2017; Kieber et al., 1990), in which UV photolysis of organic substances produces carbonyl

compounds:

OAþ hν→Yield⋅CH3CHO

d CH3CHO½ �

dt
sourcej ¼ jOA⋅Yield ⋅ OA½ �

(2)

where [OA] is the organic aerosol mass concentration (μg/m3), jOA is the photolysis frequency of organic

aerosol (s), and Yield is the stoichiometric yield of CH3CHO. If we plug equation (2) into equation (1) and

use micrograms per cubic meter per second as the units for
d CH3CHO½ �

dt
, then the observationally derived

CH3CHO loss rate corresponds to an OA lifetime of

Inferred OA lifetime dayð Þ ¼
OA½ �

d CH3CHO½ �
dt

≈

OA½ �

CH3CHO½ �· jCH3CHO þ kCH3CHOþOH OH½ �
� � ·

3

86; 400
: (3)

where the factor 3 (on the right‐hand side of equation (3)) roughly converts the instantaneous lifetime to

24‐hr average lifetime, and 86,400 converts the unit of lifetime from seconds to days. It is assumed here that

OA is converted into CH3CHO at 100% carbon yield (upper limit to possible CH3CHO production).

2. Ozonolysis of organic aerosols, also motivated by laboratory studies (Molina et al., 2004; Rudich, 2003;

Thornberry & Abbatt, 2004), in which reactive uptake of O3 on organic substances produces low molecu-

lar weight VOCs:

O3 þ OA→Yield⋅CH3CHO

d CH3CHO½ �

dt
sourcej ¼ γO3

⋅Yield·
1

4
⋅SA⋅c

⋅ O3½ � (4)

where γO3 is the reactive uptake coefficient of O3, SA is the measured total aerosol surface area (cm2/cm3), c

is the molecular speed (cm/s), [O3] is the O3 concentration (molec/cm3), and the term
1

4
·SA·c· O3½ � is the O3

collision rate (molec·cm−3·s−1). Plugging equation (1) into equation (4), the observationally derived

CH3CHO loss rate corresponds to an effective O3 uptake coefficient of

Inferred O3 uptake ¼ γO3
·Yield ¼

CH3CHO½ �· jCH3CHO þ kCH3CHOþOH OH½ �
� �

1
4
·SA·c· O3½ �

(5)

The formulation of equation (5) does not need to specify the yield, as the right‐hand side term

ð
CH3CHO½ �· jCH3CHO þ kCH3CHOþOH OH½ �

� �

1
4
·SA· c̄ · O3½ �

Þ is factually the product between the reactive uptake coefficient

and the yield (i.e., γO3 · Yield). Equations (3) and (5) are both purely observationally constrained and there-

fore are not affected by model uncertainties. HR‐AMS‐measured PM1 OA mass concentration (DeCarlo

et al., 2006; Nault et al., 2018; Schroder et al., 2018) is used in equation (3), and total aerosol surface area
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(nucleation, Aitken, accumulation modes) calculated from AMP measurements (Brock et al., 2000; Kupc

et al., 2018; Williamson et al., 2018) is used in equation (5). Figure 2 shows the combined results from

both ATom‐1 and ATom‐2, excluding measurements below 3 km (where oceanic emissions play an

important role). The TOGA‐observed CH3CHO implies a source strength of 1.7 × 10−3 ppt/s above 8 km

and 3.2 × 10−3 ppt/s between 3 and 8 km (or 1.2 × 10−6 and 3.1 × 10−6 μg·m−3·s−1, respectively; all

instantaneous rates). As shown in this figure, if hypothesis (i) is solely responsible for the missing

CH3CHO source in the remote FT, the observationally derived CH3CHO loss rate corresponds to an OA

lifetime ranging from ~1 day in the lower‐middle FT (<8 km) to ~10 days in the upper FT (>8 km).

Similarly, if hypothesis (ii) is solely responsible for the missing CH3CHO in the remote FT, the

observationally derived CH3CHO loss rate corresponds to an O3 uptake coefficient on the order of ~10−3

in the lower‐middle FT (<8 km) to ~10−5 in the upper FT (>8 km).

Previous studies have indicated that the OA lifetime in the remote FT is likely of the order of ~10 days

(Hodzic et al., 2016; Hu et al., 2016), much longer than what is required to explain the observed

CH3CHO. Similarly, laboratory studies found that the O3 uptake coefficient on various organic substances

is typically 10−4 or less (Molina et al., 2004; Rudich, 2003; Thornberry & Abbatt, 2004). However, to explain

the observed CH3CHO below <8 km, an O3 uptake coefficient much larger than 10−4 is required, which

appears to be unrealistic. These results indicate that organic aerosols are insufficient to explain all the miss-

ing CH3CHO especially in the FT.

These hypotheses were also tested in CAM‐chem, and the modeled CH3CHO vertical profiles with these

hypotheses (both include oceanic emissions) are plotted in Figure 1 along with the previously discussed

simulations:

1. Photolysis‐driven CH3CHO production from organic aerosols, and the photolytic loss of OA, is scaled to

modeled jNO2, leading to a mean daytime OA lifetime of ~9 days. The photolytic removal of organic aero-

sols in CAM‐chem is the same as Hodzic et al. (2016). The yield of CH3CHO fromOA photolysis included

in this study is assumed to be 50% (on a carbon basis), which leads to overall the best agreement in the

upper FT, except for the cold seasons. Previous studies indicated that CAM‐chem tends to transport

Figure 2. (left) OA lifetime and (right) O3 uptake coefficient inferred from CH3CHO measurements in the FT, color coded by HR‐AMS measured PM1 OA mass

concentration (left) and observed total aerosol surface area density (right). Temperature‐dependent kinetic uncertainty of the CH3CHO + OH reaction as well

as all measurement uncertainties are propagated into the error bars. Solid lines in the left panel indicate fine particle lifetimes calculated based on Hodzic et al.

(2016) and Hu et al. (2016). Grey shading in the right panel indicates the plausible range of O3 uptake coefficient in the literature (Molina et al., 2004; Rudich, 2003;

Thornberry & Abbatt, 2004).
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PAN and its precursors, including acetaldehyde, into higher altitude more rapidly in the source region

especially in cold seasons (Arnold et al., 2015; Emmons et al., 2015). This may explain the higher

CAM‐chem CH3CHO in the SH during ATom‐1 and NH during ATom‐2. The OA‐photolysis‐driven

CH3CHO production mechanism yields better spatial patterns of the oceanic fluxes (see section 7 for

more details). Moreover, the OA‐photolysis‐driven CH3CHO production (green line in Figure 1) also

yields reasonable agreement in the upper FT compared to observations (mostly within a factor of 2,

except for winter NH and summer SH when CH3CHO is overestimated in the upper FT by a factor of

8–20), while in the lower‐middle FT and MBL, the model still underestimates CH3CHO. An additional

sensitivity test with 50% higher seawater CH3CHO concentration plus the additional CH3CHO formation

from OA photolysis (as described above) was also performed (dashed green lines in Figure 1), and this

scenario leads to up to ~70% higher CH3CHO and yields the best CH3CHO agreement within the

MBL. Note that in this scenario, the enhancements in seawater concentration (50%) and the resulting

MBL CH3CHO (up to 70%) are both smaller than the uncertainty of the air‐sea exchange framework,

which is on the order of 200%, possibly larger (Carpenter & Nightingale, 2015; Johnson, 2010).

2. CH3CHO production from ozonolysis of OA, with an effective O3 uptake coefficient of 5 × 10−5, based on

previous laboratory studies (Molina et al., 2004; Rudich, 2003; Thornberry & Abbatt, 2004). This scenario

predicts that the high‐latitude northern Atlantic and Pacific and Southern Oceans (both Pacific and

Atlantic) are a net sink for CH3CHO (Figure S11), which is inconsistent with available flux observations

(Kieber et al., 1990; Yang et al., 2014).

In summary, we hypothesize that the gas‐phase CH3CHO precursors in the lower troposphere are currently

not captured by measurements or models. It is plausible that other OVOCs might be produced along with

CH3CHO as well. For example, previous studies indicated that the origin of formaldehyde (Anderson

et al., 2017; Baida et al., 2019) and glyoxal (Coburn et al., 2014; Volkamer et al., 2015) in the remote tropo-

sphere remain unexplained. There was a total OH reactivity (OHR) measurement onboard but the low OHR

observed in the remote FT during ATom presents analytical challenges even for current state‐of‐the‐art

instruments; our hypothesis that gas‐phase CH3CHO precursors are required cannot be informed by

comparisons of total measured versus calculated OHR because of the uncertainty in the measured OHR

(~0.3 s) in the background troposphere. The CH3CHO measurements in the MBL can be explained by a

~50% enhancement of surface seawater concentration, which may imply a surface microlayer enrichment

(relative to bulk surface seawater) as suggested by Zhou and Mopper (1997), although the uncertainties in

the air‐sea exchange framework (Carpenter & Nightingale, 2015) may well give rise to an ~50% increase

in the flux for a given seawater concentration.

7. Oceanic Flux of CH3CHO

Although our analysis of missing CH3CHO production (section 6) focused on the FT, it may occur in the

MBL as well, which is consistent with the less‐than‐expected vertical gradient in the MBL CH3CHO obser-

vations. The missing CH3CHO source(s) in the atmosphere affects its air‐sea exchange as well; for example,

additional CH3CHO production in the atmosphere shifts the air‐sea equilibrium toward the ocean side. In

this section we examine the modeled oceanic fluxes of CH3CHO with previous flux measurements.

Measurements of oceanic flux of CH3CHO are rare, especially in the Pacific. Most studies calculate the ocea-

nic flux using measurements in both seawater and the atmosphere (Beale et al., 2013; Schlundt et al., 2017;

Zhou &Mopper, 1997). Sinha and coworkers reported the net CH3CHO flux in a mesocosm system near the

Norwegian Sea (Sinha et al., 2007). Yang et al. (2014) reported the oceanic flux of CH3CHO across the

Atlantic using the eddy covariance method, which is to our knowledge the only study reporting the fluxmea-

surements of this type. Most studies report net upward CH3CHO fluxes, up to 5 × 109 molec·cm−2·s−1 over

the open Atlantic ocean (Yang et al., 2014) and 12 × 109 molec·cm−2·s−1 100 km east of Bahamas (Zhou &

Mopper, 1997), while Schlundt et al. reported a downward flux, up to −105 × 109 molec·cm−2·s−1 (median:

−7 × 109molec·cm−2·s−1) in the South China Sea (Schlundt et al., 2017) due to high concentration in the air

(median: 860 ppt). Figure 3 summarizes all previous oceanic CH3CHO flux measurements, as well as the

modeled fluxes using 50% higher seawater concentrations; also, included in the model is the radiation‐

driven CH3CHO production from OA. As discussed in section 6, this scenario yields the overall best agree-

ment in the MBL. As shown in Figure 3, the model predicts that the global ocean is generally a net source of
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CH3CHO. The modeled oceanic flux of CH3CHO is generally consistent with the flux observations, except

for the fluxes reported in the South China Sea (Schlundt et al., 2017), because the high atmospheric

CH3CHO observed in that region was not captured by the model. The global annual net oceanic emission

of CH3CHO in this scenario is 34 Tg/a, which is increased to 42 Tg/a if the bubble‐mediated transfer is con-

sidered. The bubble‐mediated transfer has a bigger impact in the Southern Ocean, where stronger winds are

frequently observed. The modeled global oceanic emission of CH3CHO in this work is comparable to pre-

vious studies (Millet et al., 2010; Read et al., 2012). We consider the oceanic emissions of CH3CHO estimated

in this work to be the upper limit, as the unaccounted production mechanism(s) in the atmosphere will

likely enhance the ocean uptake. Modeled oceanic fluxes of CH3CHO for other modeling scenarios are pro-

vided in Figures S10 and S11.

8. Summary

In this study, an online air‐sea exchange model framework is developed for CESM2.1/CAM‐chem, and is

combined with a simple ocean biogeochemistry scheme for CH3CHO (Millet et al., 2010) to evaluate the

CH3CHO budget in the remote atmosphere. The modeled surface seawater concentrations and the oceanic

fluxes of CH3CHO are compared to all measurements available in the literature. Airborne measurements of

CH3CHO using TOGA during ATom‐1 and ATom‐2 are used for model evaluation. Balancing the evidence

from the available oceanic flux measurements in the literature and vertical profile measurements, we esti-

mated that the global ocean is a net source of CH3CHO, with an annual net oceanic emission of 34–42

Tg/a (upper limit). Unfortunately, very few oceanic observations are available for model evaluation, and

there is almost a complete lack of seawater concentrations and flux observations in the majority of Pacific.

We suggest that future ship‐based studies should target these regions for a better understanding of the air‐

sea exchange of CH3CHO and other OVOCs.

Figure 3. Modeled ocean‐to‐air flux of CH3CHO. This model scenario is the same as the dashed green lines in Figure 1: oceanic emissions are calculated with 50%

higher surface seawater CH3CHO concentrations, and radiation‐induced CH3CHO production from OA is included as well. Flux measurements available in the

literature are shown as circles.
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We found that the observed CH3CHO in the remote troposphere is underestimated by the default configura-

tion of CAM‐chem, implying a missing CH3CHO source in the remote troposphere which is supported by

the simultaneous measurements of PAA. We further show that organic aerosols are probably insufficient

to explain all of the observed CH3CHO levels in the remote FT. We speculate the existence of unmeasured

gas‐phase organic compounds that are responsible for the observed CH3CHO. The total removal rate of

CH3CHO ranges from ~42 ppt/hr in the MBL to ~6 ppt/hr in the upper FT (both instantaneous rates), imply-

ing a possibly widespread missing reactive carbon source in the remote troposphere on the order of 0.1–0.7

ppb C/day (24‐hr average). The challenge for future research is to discover the origin and identity of

these precursors.
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