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Abstract. The REgents PARk and Tower Environmental

Experiment (REPARTEE) comprised two campaigns in Lon-

don in October 2006 and October/November 2007. The ex-

periment design involved measurements at a heavily traf-

ficked roadside site, two urban background sites and an el-

evated site at 160–190 m above ground on the BT Tower,

supplemented in the second campaign by Doppler lidar mea-

surements of atmospheric vertical structure. A wide range

of measurements of airborne particle physical metrics and

chemical composition were made as well as measurements

of a considerable range of gas phase species and the fluxes of

both particulate and gas phase substances. Significant find-

ings include (a) demonstration of the evaporation of traffic-

generated nanoparticles during both horizontal and vertical

atmospheric transport; (b) generation of a large base of in-

formation on the fluxes of nanoparticles, accumulation mode
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particles and specific chemical components of the aerosol

and a range of gas phase species, as well as the elucidation

of key processes and comparison with emissions inventories;

(c) quantification of vertical gradients in selected aerosol and

trace gas species which has demonstrated the important role

of regional transport in influencing concentrations of sul-

phate, nitrate and secondary organic compounds within the

atmosphere of London; (d) generation of new data on the

atmospheric structure and turbulence above London, includ-

ing the estimation of mixed layer depths; (e) provision of

new data on trace gas dispersion in the urban atmosphere

through the release of purposeful tracers; (f) the determina-

tion of spatial differences in aerosol particle size distribu-

tions and their interpretation in terms of sources and physico-

chemical transformations; (g) studies of the nocturnal oxida-

tion of nitrogen oxides and of the diurnal behaviour of nitrate

aerosol in the urban atmosphere, and (h) new information on

the chemical composition and source apportionment of par-

ticulate matter size fractions in the atmosphere of London

derived both from bulk chemical analysis and aerosol mass

spectrometry with two instrument types.

1 Introduction

Air quality provides one of the main drivers for the study

of atmospheric science. Whilst climate change presents a

massive challenge to mankind on future decadal timescales,

local air quality has presented major public health issues for

past centuries, and continues to do so to this day. Although

developed countries have made considerable progress in im-

proving air quality, there remain major impacts upon public

health in Europe and North America (Kunzli et al., 2000;

Cohen et al., 2005; Brunekreef and Holgate, 2002). While

much has been done to improve air quality on these conti-

nents, in less developed countries, and especially those un-

dergoing rapid development, air quality is not improving and

may indeed be deteriorating. Urban areas provide a natural

focus for research on air quality as they face special prob-

lems due to the high emissions from space heating and road

transport associated with their high population densities. In

less developed countries, polluting industries may also be fo-

cussed largely within the confines of urban areas, greatly ex-

acerbating urban air pollution problems. In the more devel-

oped world, industry is not only subject to tighter regulation,

but has largely moved out of major cities. Thus in the United

Kingdom, in the 1950s coal-fired power stations were a ma-

jor local source of emissions in London, whilst nowadays the

main electric power generating stations are located well out-

side of the main cities, with consequent sulphur dioxide con-

centrations having long ago converged between urban and

rural areas.

London has a long history of air quality problems (Brim-

blecombe, 1987). These were only addressed with vigour

following the Great Smog of 1952 which is estimated to have

caused 4000 excess deaths (Brunekreef and Holgate, 2002).

Smokeless fuel legislation and near-universal availability of

cleaner energy from gas consumption led to a rapid decline

in both black smoke and sulphur dioxide through the 1960s

and 1970s in London. Concurrent with this change in emis-

sions, a massive growth in road traffic took place, leading

to problems with emissions of carbon monoxide and oxides

of nitrogen, such that when a major pollution episode oc-

curred in London in December 1991, the main toxic pollu-

tants were nitrogen dioxide, which reached an hourly mean

of 423 ppb, and black smoke, with daily concentrations of

up to 148 µg m−3. Effects on health were measurable in

terms of increased mortality and hospital admissions, but at

a much lower level than in December 1952 (Anderson et al.,

1995). The pollutant responsible appears most likely to have

been particulate matter, which was not determined directly

by mass in London until the advent of an automatic urban

monitoring network in 1992. In the intervening period there

has been a decline in sulphate accompanied by an increase in

nitrate particles, and a reduction in vehicle exhaust particles.

Three-way catalysts have led to a tremendous improvement

in ambient concentrations of carbon monoxide and Volatile

Organic Compounds (VOC), the latter assisted by controls

on evaporative emissions from vehicles and petrol stations

(Stage 1 control only). Emissions of sulphur dioxide and

primary sulphate from road vehicles have declined to very

low levels as a result of requirements for ultra-low and sub-

sequently zero sulphur gasoline and diesel fuels. Despite

progressively stricter emission standards for primary parti-

cles and precursors of secondary pollutants from traffic and

industry, concentrations of airborne PM10 have changed lit-

tle in London (and other UK cities) since 2000 for reasons

which are poorly understood (Harrison et al., 2008), and

highlight the need for improved source apportionment stud-

ies (Sanchez-Reyna et al., 2005). Urban road transport ac-

tivity has increased across the UK by more than 15 % over

the last decade and a half (RTS, 2006) except for London,

despite non-technological abatement proposals, and this cur-

rently contributes the majority of urban regional ultrafine par-

ticle emissions.

Charron et al. (2007) used spatial analysis to estimate the

roadside traffic-generated and general urban increments in

PM10. The Marylebone Road traffic increment in PM10

above the urban background measured at London, North

Kensington was 12.6 µg m−3 at the annual average, and

the urban background increment above rural Harwell was

6.3 µg m−3 for 2002–2004. Subsequently, Jones et al. (2008)

used day-of-the-week differences in traffic emissions to esti-

mate that for background sites in London, the traffic contri-

bution to the urban increment was 1.6–4.4 µg m−3, with non-

traffic sources contributing 2.1–2.7 µg m−3. As seen from

the results of Charron et al. (2007), a large fraction of the

particulate matter pollution in London arises from regional

transport, and Abdalmogith and Harrison (2006) estimated

Atmos. Chem. Phys., 12, 3065–3114, 2012 www.atmos-chem-phys.net/12/3065/2012/
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that only 0.22 µg m−3 out of 2.90 µg m−3 of sulphate and

0.46 µg m−3 out of 3.72 µg m−3 of nitrate in central London

in 2002–2004 arose from formation within London itself;

rather they originate mainly from the regional background,

which distinguishes London from cities such as Los Ange-

les and Mexico City where much of the secondary aerosol is

formed within the urbanised area itself. Whilst a similar anal-

ysis is not available for secondary organic aerosol in London,

data from the West Midlands, the UK’s second major conur-

bation, indicate that much of the organic aerosol is regionally

distributed and does not have a discrete urban source (Harri-

son and Yin, 2008). This is consistent with the paradigm

proposed by Robinson et al. (2007) in which primary organic

compounds in traffic-generated aerosol progressively desorb

prior to oxidation and incorporation into secondary organic

aerosol, a process that presumably acts at a time-scale too

slow to create a marked urban increment in secondary or-

ganic aerosol.

Despite the importance of urban areas, and in particular

mega-cities for population exposure to air pollution, they

have in general been studied far less than the regional or

global atmosphere. In the case of urban climatology, there

have been significant advances in recent decades (Arnfield,

2003), but observations of meteorological variables within

most cities remain very sparse, despite far stronger gradi-

ents in meteorological fields in three dimensions within ur-

ban as opposed to rural areas. The situation with respect to

urban atmospheric chemistry is arguably the opposite: rou-

tine monitoring of composition for a very restricted range

of air quality pollutants (typically NO/NO2/NOx, SO2, O3,

CO, PM10, and in some cases PM2.5) has become progres-

sively more spatially intense as a result of public health con-

cerns, but the amount of genuine process-oriented research

on physico-chemical processes within the urban atmosphere

itself has been very limited. Despite the relatively intensive

monitoring activity, detailed three-dimensional studies of air

pollution processes are notably lacking.

It is appropriate to highlight some of the earlier urban air

quality/atmospheric chemistry experiments, focussing pri-

marily upon Europe. The BERLIOZ (Berliner Ozonexper-

iment) campaign took place in Berlin in July/August 1998

(Platt et al., 2002). Over the period, 12 ground stations

were operated, with measurements made both upwind and

downwind of Berlin within a range of 80 km. Additionally,

LIDAR, SODAR, radio sondes, balloons and aircraft were

deployed with measurements of O3, NOx, VOC, CO, PAN,

HONO, HNO3, H2O2, carbonyls, organic peroxides, key free

radicals and photolysis frequencies. The experiment con-

tributed valuable knowledge on the contribution of the city

of Berlin to regional photooxidant formation and the mecha-

nisms involved.

The ESCOMPTE (Experience sur Site pour Contraindre

des Modèles de Pollution Atmosphérique et de Transport

d’Emissions) experiment took place in a 120 × 120 km do-

main covering the city of Marseille and the adjacent indus-

trial zone and pond of Berre in 2001 (Cros et al., 2004). One

of the main goals was to produce a 3-D database of emis-

sions, transport and air composition measurements during

urban pollution episodes generating photooxidant and sec-

ondary aerosol. Process studies included the role of the sea

breeze in pollution events, quantification of deposition onto

aerosol, and aerosol formation in the urban plume, the inter-

action between aerosols and photooxidants and the chemical

regime within which ozone formation occurred.

The PUMA study in Birmingham, England involved inten-

sive campaigns within the city in the summer of 1999 and the

winter of 1999/2000. The aims of the study were to under-

stand urban photooxidant chemistry at a fundamental level,

as well as to study aerosol composition and processes. There

were both experimental and modelling components (Harri-

son et al., 2006; Baggott et al., 2006) and the major out-

comes included a much improved understanding of seasonal

influences on processes leading to hydroxyl radical forma-

tion (Emmerson et al., 2005), and work on aerosol compo-

sition which led to the development of the “pragmatic mass

closure model” for aerosol, which has subsequently proved

powerful in understanding the composition of aerosol at ur-

ban roadside, urban background and rural sites in the United

Kingdom (Harrison et al., 2003; Yin and Harrison, 2008).

MILAGRO (Megacity Initiative: Local and Global Re-

search Observations) was a very large experiment conducted

in or near Mexico City commencing in March 2006. The

experiment used ground-based, airborne and satellite instru-

ments to study the urban plume downwind of the city with

a special focus upon atmospheric chemistry and particulate

matter. The overview paper (Molina et al., 2010) reviews

over 120 papers from the campaign and summarises the main

findings. Although the scientific advances made are impres-

sive, they are of limited relevance to a European megacity

with a temperate climate.

The focus of most past experiments has been upon urban

plume chemistry and the impact of urban emissions upon

downwind regions. This has necessitated the use of both

ground-based and airborne observations. The latter have

used aircraft to provide rapid measurement capability in three

spatial dimensions. This is appropriate to making measure-

ments within urban plumes which rapidly expand in the verti-

cal plane, but less so to observational studies within the city

itself, where the emissions have had less time to mix ver-

tically and the lower altitude limits imposed by air traffic

control requirements can provide a major limitation on the

deployment. From this perspective, urban towers may pro-

vide a more suitable platform for measurements of vertical

profiles and fluxes above the city.

There is limited information available of pollutant fluxes

above urban areas. Fluxes of CO2 have now been measured

in several conurbations, and the first long-term time-series

are emerging (e.g. Helfter et al., 2011; Vogt et al., 2011a).

However, most of these are focussed on residential, less

dense locations because in many (notably US American) city

www.atmos-chem-phys.net/12/3065/2012/ Atmos. Chem. Phys., 12, 3065–3114, 2012
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centres the prevalence of highrise buildings makes flux mea-

surements difficult. Particle number flux measurements have

been made over only a few cities (e.g. Edinburgh, Helsinki,

Stockholm and Münster; Dorsey et al., 2002; Schmidt and

Klemm, 2008; Järvi et al., 2009; Nemitz et al., 2012b), and

fluxes of volatile organic compounds have previously been

reported for Mexico City and Houston. Over the lifetime of

the REPARTEE study and the collaborating CityFlux project

we have greatly improved the availability of flux measure-

ments, and measured number fluxes over Manchester and

London (Martin et al., 2009), fluxes of aerosol submicron

chemical components over Edinburgh, Manchester and Lon-

don (Phillips et al., 2012), VOCs over Manchester and Lon-

don (Langford et al., 2009, 2010), and we have extended the

approach further to make the first urban flux measurements

of N2O, CO and O3 (Famulari et al., 2010; and this paper).

London has a population of 7.6 million, whilst the Greater

London metropolitan area has between 12.3 and 13.9 mil-

lion, making it the largest in the European Union (Wroth

and Wiles, 2007). It has substantial air quality problems, es-

pecially in relation to nitrogen dioxide (AQEG, 2007) and

particulate matter (AQEG, 2005). One of the main stim-

uli for this research was the availability of an elevated sam-

pling platform on the BT telecommunications tower in cen-

tral London at heights of between 140–190 m, suitable for

measurements both of concentrations and fluxes. The Tower

lies within a typical commercial and residential area of cen-

tral London and close to a major park (Regents Park) suit-

able for measurement of central urban background concen-

trations. Hence, the experiment was named the Regents

PARk and Tower Environmental Experiment (REPARTEE).

Objectives of REPARTEE

– To study aerosol chemical and dynamical processes

within the atmosphere of central London in three spa-

tial dimensions.

– To measure the fluxes of selected aerosol and gas phase

species above the city, and where possible to compare

fluxes with estimates derived from emissions invento-

ries. In this context, the work was coordinated with

that on the CityFlux project in which fluxes were de-

termined over a number of UK cities as well as Swe-

den and, in collaboration with MILAGRO, Mexico City.

Work from CityFlux has also been published outside of

this Special Issue (Martin et al., 2009; Petersson et al.,

2010; Thomas, 2007; Famulari et al., 2010; Langford

et al., 2009), while some CityFlux related activities in

Edinburgh and Manchester are also included in the Spe-

cial Issue to provide a fuller understanding of UK urban

emission processes.

– To quantify gradients in selected aerosol and trace gas

species from ground-level to altitudes of sampling on

the BT tower and to use such information to better un-

derstand the respective roles of local emissions, local

transformations and regional transport of pollutants in

influencing the composition within and above London.

– To study the structure of the atmospheric boundary layer

and the influence of boundary layer vertical structure

upon trace gas and aerosol fluxes and air pollution pro-

cesses, especially in the context of diurnal changes.

– To deploy purposeful tracer releases at ground level

while monitoring at the surface and aloft in order to

evaluate the dispersion of trace gases released at low

level within the city.

– To determine spatial differences in aerosol particle size

distributions and to interpret those differences in terms

of the sources and physico-chemical transformations re-

sponsible.

– To study the properties of nitrate aerosol in the at-

mosphere of London, together with mechanisms of

formation, physico-chemical properties and dynamics

of nitrate particles.

– To throw new light on the source apportionment of PM1,

PM2.5 and PM10 in the atmosphere of London.

Towards those ends, two campaigns of one-month dura-

tion each, were held in 2006 and 2007, with a host of ad-

vanced instruments deployed both at ground-level and aloft.

In particular, the deployment of both Aerodyne Aerosol

Mass Spectrometers (AMS) and a TSI Aerosol Time-of-

Flight Mass Spectrometer (ATOFMS) has cast new light

upon aerosol composition, sources and processes (Dall’Osto

et al., 2009a, b; Allan et al., 2010; Phillips et al, 2012), and

the use of a Doppler lidar to determine vertical atmospheric

structure (Barlow et al., 2011) has aided the interpretation

of vertical gradients in atmospheric composition and parti-

cle size distributions. Other highlights include novel urban

dispersion experiments and generation of new insights into

fluxes of gaseous and particulate species above the city (Mar-

tin et al., 2011a; Phillips et al., 2012; Langford et al., 2010;

Helfter et al., 2011; Nemitz et al., 2012a, c).

2 Campaigns, sites and instruments

There were two intensive campaigns for the REPARTEE

programme. Both used essentially the same sampling plat-

forms, although the instruments deployed differed somewhat

between the campaigns. In both campaigns, measurements

were made aloft on the BT tower and at ground-level

in Regents Park, 1.2 km apart. In the second campaign

(REPARTEE II), a Doppler lidar instrument was deployed

at a third site in the near vicinity. The main campaign sites,

together with sites used additionally for traffic-impacted

Atmos. Chem. Phys., 12, 3065–3114, 2012 www.atmos-chem-phys.net/12/3065/2012/



R. M. Harrison et al.: Atmospheric chemistry and physics in the atmosphere of London 3069

Fig. 1. Map of measurement sites used in REPARTEE. The lidar

was sited adjacent to the Marylebone Road site.

(Marylebone Road) and background (North Kensington)

measurements appear in Fig. 1. Some instruments located

on the BT tower were also used for vertical flux estimation.

The campaign dates were as follows:

REPARTEE I 1–31 October 2006

REPARTEE II 17 October–15 November 2007

2.1 The sampling sites

BT Tower (BT Tower). (lat 51◦31′17.31′′ N; lon 0◦8′

20.12′′ W). This is the operational tower of British Telecom

(60 Cleveland Street). It is a cylindrical tower, shown in

Fig. 2, the top being 190 metres above ground-level. The

main platform for instruments was a well-ventilated balcony

(level T35) at a height of 160 m a.g.l. Inlet lines were in-

stalled from the top of the lattice tower to connect with instru-

ments for flux determination which operated on level T35.

A 3 axis ultrasonic anemometer (R3-50, Gill Instruments,

UK) and weather station (Vaisala WXT510) were installed

on top of the BT Tower located approximately 1.2 km to the

east of the lidar site (itself close to the Marylebone Road site

shown in Fig. 1). The Tower is the tallest building within

several kilometres of the site, with good exposure to winds

in all directions. The anemometer was clamped to an open

lattice scaffolding tower of 12 m height, situated on top of

the main building structure and resulting in a measurement

height of 190 m, or approximately 9 times local mean build-

ing height (Barlow et al., 2009). The sampling rate was

20 Hz and data were rotated into the mean wind direction us-

ing the double-rotation method (Wilczak et al., 2001) prior

to flux density calculation. For measurement of fluxes of

particles and chemical constituents, air samples were drawn

from an inlet adjacent to the ultrasonic anemometer through

 

Fig. 2. The BT Tower, showing sampling locations.

50 m long 1/2 inch o.d. copper and PTFE pipes, respectively,

at 60 l min−1 and subsampled into the measurement instru-

ments. Given the length of the inlets, temperature variations

are expected to have been smoothed out by the time the sam-

pled air reaches the analysers. Thus, only the effect of den-

sity fluctuations due to fluctuations in the water vapour con-

tent were corrected for according to Webb et al. (1980), and

only for those instruments that do not already correct for wa-

ter vapour effects, such as the Aerosol Mass Spectrometer

and the fast ozone analyser. The correction procedures ap-

plied ignore the fact that the long inlet tubes may have in-

troduced a time-lag between the variations in water vapour

concentration and the measured pollutant concentrations and

the correction may therefore be overestimated (Ibrom et al.,

2007). However, relative corrections were small given the

large fluxes in the urban environment. Due to the slow tur-

bulence high frequency losses in the inlet lines were esti-

mated to be negligible. Low frequency losses are assessed

in Sect. 4.10.2 below and demonstrate that 15 % of the flux

may be lost with the flux averaging time of 30 min, which

was nevertheless chosen for most instruments to balance the

effects of flux losses and non-stationarities. A fuller descrip-

tion of the setup and analysis methods is given by Nemitz et

al. (2012a).

Regents Park (R. Park) (lat 51◦31′44′′ N; lon 0◦09′09′′ W).

The park covers a total of about 2 km2 and mainly comprises

heavily vegetated open parkland. There are two lightly traf-

ficked circular roads within the park and major roads on three

external boundaries. The park is home to London Zoo which

is located 800 m from the air sampling site. Air sampling

took place within the inner circle in an area used mainly for

horticulture. Most instruments were housed in a sea con-

tainer and a mobile laboratory, except a Partisol filter sampler

which was free-standing.

In REPARTEE I, air was sampled from a height of 10 m

through a vertical sample pipe of 150 mm diameter and was

www.atmos-chem-phys.net/12/3065/2012/ Atmos. Chem. Phys., 12, 3065–3114, 2012
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sub-sampled from the main flow in an isokinetic manner as

described by Dall’Osto et al. (2009b). In REPARTEE II,

sampling was from a mobile laboratory with an inlet at about

2 m.

University of Westminster (lat 51◦31′19.86′′ N; lon 0◦09′

21.58′′ W). A pulsed Doppler lidar (HALO Photonics),

housed in a van, was located in a basement level car park

at the University of Westminster. The lidar beam was emit-

ted within 1 m of street level. Two modes of operation were

used: continuous vertical stare, and three-beam line of sight

to derive wind profiles every 30 min (Pearson et al., 2009).

The general area was characterised by commercial and resi-

dential buildings: near the Marylebone Road the mean build-

ing height is 21 m, plan area density is 0.4 (Barlow et al.,

2009), whereas the source area for the BT Tower generally

lies between 1 and 10 km distance, in which the mean build-

ing height is 9 m (Wood et al., 2010).

Marylebone Road (M. Road) (lat 51◦31′21′′ N; lon 0◦09′

17′′ W). Instruments were installed in a permanent monitor-

ing station located at kerbside, 1 m from the busy six-lane

Marylebone Road carrying ca 80 000 vehicles per day. In-

lets were sited about 3 m a.g.l. at differing distances from the

road, mostly 1–3 m distant.

North Kensington (NK) (lat 51◦31′15′′ N; lon 0◦12′

49′′ W). This is a permanent station of the Automatic Urban

and Rural Network located in the grounds of Sion Manning

School within a highly trafficked suburban area of London.

Inlets are located about 3 m a.g.l. The air pollution climate

at this site has been analysed in detail by Bigi and Harri-

son (2010).

2.2 Instruments and aerosol bulk chemical analyses

Instruments were installed by a number of research groups,

details of specific instruments appearing in Tables 1 and 2.

Bulk chemical analyses of aerosol collected using the di-

chotomous Partisol and MOUDI samplers were conducted

according to the methods reported by Yin and Harri-

son (2008), who also describe the methods for measurement

of PM mass on Partisol filters.

2.3 Tracer release experiments

During the 10 perfluorocarbon (PFC) tracer experiments con-

ducted during these campaigns three different PFCs (perfluo-

romethylcyclopentane, perfluoromethylcyclohexane and per-

fluorodimethylcyclohexane) were used. The PFCs are inert,

non-toxic, and non-depositing making them ideal to use as

atmospheric tracers, good separation during analysis allows

multiple tracers to be used in one experiment (Arnold et al.,

2004; Colvile et al., 2004; Martin et al., 2008, 2010a, b,

2011a, b; Patra et al., 2008; Petersson et al., 2010; Shall-

cross et al., 2009, Simmonds et al., 2002; White et al., 2010;

Wood et al., 2009). A detailed experimental description can

be found in Martin et al. (2011a) and only a brief overview is

provided here.

Gaseous PFCs (0.25–4 mole %) were released from stain-

less steel silica lined canisters SA) with accurate monitor-

ing of flow rate, canister pressure and temperature. The low

(ppqv) atmospheric background concentration of the PFCs

facilitates small release rates (∼10−6 kg s−1). Air samples

were collected in 10 l Tedlar bags, where the sampling flow

rate (0.2–1 l min−1) was constant during any one experiment.

The air samples were analysed no more than 1 month fol-

lowing the tracer experiments by Gas Chromatography Mass

Spectrometry run in Negative Ion Chemical Ionization Mode

(GC-NICI-MS). Before introduction to the GC an Adsorp-

tion Desorption System (ADS) was used where a micro-

trap containing 10 mg Carboxen 569, 40–50 Mesh (Supelco,

Bellefonte, USA) maintained at −50 ◦C during sampling

was used in order to pre-concentrate the sample without ex-

ceeding the theoretical breakthrough volumes (Martin et al.,

2008, 2010a, b, 2011a, b; Patra et al., 2008; Petersson et al.,

2010; Shallcross et al., 2009; Simmonds et al., 2002; Wood

et al., 2009). A detection limit lower than the current atmo-

spheric background mixing ratio in the 1–10 ppqv range is

achieved with a measurement uncertainty of about 5 %.

PFC Tracer experiments were conducted on five days; 2

June 2006 (01:30 to 01:40 p.m.) and 27 June 2006 (01:00 to

01:26 p.m.) in central Manchester (Petersson et al., 2010)

and 25 October 2006 (01:50 to 01:50 p.m.), 26 October

2006 (01:50 to 02:50 p.m.) and 7 November 2007 (01:00

to 05:20 pm) in central London (Martin et al., 2011a). The

methodology employed for the REPARTEE I experiments in

October 2006 was to release tracer at ground level, approx-

imately 1000 m upwind of the receptors. Three receptors

were located at the BT Tower (at altitudes of ground level,

150 m and 190 m) and three others on an equidistant arc from

the release point, also at ground level. During REPARTEE II

a more complicated arrangement of release points and sam-

plers was formulated (Martin et al., 2011a). Here, two tracer

release points were set up and two sampling arcs downwind

of these release points were made at ground level. Arc 1, with

3 samplers was ∼300 m and 750 m from the release points

and arc 2, with five samplers (including one at the BT Tower)

were ∼500 m and 950 m from the release points. In addition,

two samplers were at elevated levels at the BT Tower as be-

fore and one ground level sampler was positioned between

the two release points, about 350 m downwind from the most

distant release point (relative to both arcs) and about 170 m

upwind from the closer release point.

3 Meteorological conditions and back trajectories

3.1 Meteorological variables: REPARTEE I

The conditions through the campaign are summarised in

Fig. 3. As expected, windspeeds were much higher on the BT
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Table 1. Summary of measurements in REPARTEE I and II at the BT Tower and Regents Park Sites.

Species measured Analytical technique

(REPARTEE I/II)

Instrument

(Manufacturer)

Temporal

Resolution

Detection

limit

Measurement

Uncertainty

Campaign

(REPARTEE-

I/II)

Responsible

Institute

Reference

BT Tower

Turbulence & heat flux Ultrasonic anemometer R3Research Anemome-

ter (Gill Instruments)

20 Hz;

30 min

flux

I/II U. Read-

ing/CEH

Meteorology (T , RH, P ,

precipitation, wind speed

& direction)

Capacitive detectors Weather Transmitter

WXT510 (Vaisala Ltd.)

5 min I/II KCL/CEH

Sub-micron non-

refractory NH+
4 , NO−

3 ,

SO2−
4 , Cl−, Org & size

distribution (40–800 nm)

Aerosol mass spectrome-

ter for concentration and

flux

Q-AMS/HR-ToF-AMS

(Aerodyne Research

Inc.)

5 min con-

centration;

30 min

flux

Conc:

10 ng m−3

Flux:

5 ng m−2 s−1

Max

(100 ng m−3,

±20 %)

I/II CEH Jayne et

al. (2000);

DeCarlo et

al. (2006);

Nemitz et

al. (2008);

Phillips et al.

(2010a, b)

Reactive gases (HNO3,

HCl, NH3, SO2, HONO)

and water-soluble

aerosol components

in PM2.5/TSP (NH+
4 ,

NO−
3 , SO2−

4 , Cl−)

Wet-chemistry analyser

linking denuder/steam

jet aerosol collector

sampling to online ion

chromatography

GRAEGOR 60 min 20 ng m−3 Max

(200 ng m−3,

±20 %)

I/II CEH Thomas et

al. (2009);

Nemitz et

al. (2010)

CO concentration & flux Cold vapour fluores-

cence

AL-5002 (AeroLaser) 10 Hz;

30 min

flux

1 ppb I/II CEH Famulari et

al. (2010)

CO2 concentration

& flux

Infra-red gas analyser IRGA 7000/6262

(LI-COR)

10 Hz;

30 min

flux

1 ppm I/II CEH

Concentration & flux of

selected VOC (isoprene,

monoterpenes,

methanol, acetone,

acetaldehyde, ...)

Proton transfer reaction

mass spectrometer

PTR-MS (Ionicon) 2 Hz;

30 min

flux

I Lancaster/

CEH

Langford et

al. (2009,

2010)

H2O concentration &

flux

Infra-red gas analyser IRGA 7000 (LI-COR) 10 Hz;

30 min

flux

10 ppm I/II CEH

O3 flux Fast dry chemilumines-

cence analyser

ROFI (CEH) 2 Hz;

30 min

flux

I CEH

Size-segregated aerosol

number flux (70–

1000 nm)

Optical Particle Spec-

trometer

UHSAS (Particle Mea-

surement Systems)

10 Hz;

30 min

flux

I/II CEH

Ozone Uv photometry Model 205 (2B Tech-

nologies)

5 min 1 ppb ±2 % II Univ B’ham

NO/NO2/NOx Chemiluminescence

with Mo converter

42C-TL

(Thermo-Electron)

5 min 50 ppt ±15 % II Univ B’ham

6NO3 + N2O5 LED-BBCEAS 15 s 2 ppt 10–16 % II Univ

Cambridge

Benton et al.

(2010)

Particle number and flux Butanol condensation CPC 3010A (TSI Inc.) 1 s Dp >

10 nm

I/II Univ

Manchester

Particle size distribution Electrical mobility SMPS 3080L (TSI Inc.) 90 s 14.9 <

DP

<673 nm

I/II Univ

Manchester

Particle size distribution Time-of-Flight APS 3321 (TSI Inc) 1 s 0.5 <

Dp <

20 µm

I/II Univ

Manchester

PM10, PM2.5, sulphate,

nitrate, chloride, organic

and elemental carbon

(24 h)

Dichotomous sampler Partisol 2025D 24 h <0.1 µg m−3 I Univ B’ham

Size and composition of

individual particles

Transmission electron

microscope

Philips FEI CM200

FEGTEM STEM

2 h I KCL Smith et al.

(2012)
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Table 1. Continued.

Species measured Analytical

technique

(REPARTEE I/II)

Instrument

(Manufacturer)

Temporal

Resolution

Detection limit Measurement

Uncertainty

Campaign

(REPARTEE-

I/II)

Responsible

Institute

Reference

Regents Park

Meteorology (T , RH, P ,

precipitation, wind speed

& direction)

Capacitive detectors Weather Transmitter

WXT510 (Vaisala Ltd)

5 min I/II CEH

NO/NO2/NOx Chemiluminescence us-

ing thermal converter

42C-TL (Thermo Envi-

ron.)

5 min 50 ppt I CEH

O3 UV photometry 49 (Thermo Environ) 5 min 1 ppb I CEH

SO2 Pulsed chemilumines-

cence

43S (Thermo Environ.) 5 min I CEH

Particle size distribution Electrical mobility SMPS 3080L (TSI Inc) 90 s 14.9 <

Dp <

673 nm

I/II Univ

Manchester

Particle size distribution Time-of-Flight APS 3321 (TSI Inc) 1 s 0.5 <

Dp <

20 µm

I/II Univ

Manchester

Particle number Butanol condensation UCPC 3776 (TSI Inc.) 1 s Dp >

2.5 nm

I/II Univ

Manchester

Particle size distribution Electrical mobility DMPS (Univ.

Manchester)

1 s 5.05 <

Dp <

783 nm

Univ

Manchester

Particle size distribution Light scattering Model 1.108 (Grimm) 1 s 0.3 <

Dp <

20 µm

I/II Univ

Manchester

Black carbon Multi-angle absorption

photometer

MAAP 5012 (Thermo

Scientific)

I/II Univ

Manchester

Petzold and

Schonlinner

(2004)

Particle number and flux Butanol concentration CPC 3010A (TSI Inc.) 1 s DP >

10 nm

I/II Univ

Manchester

Soot Particle soot absorption

photometer

PSAP (Radiance

Research)

0–5 × 10−5 m−1 II Univ

Manchester

Size and composition of

individual particles

Aerosol Time-of-Flight

mass spectrometry

ATOFMS 3800 (TSI Inc) <20 s−1 I Univ B’ham Gard et al.

(1997)

PM10, PM2.5, sulphate,

nitrate, chloride, organic,

and elemental carbon

(24 h)

Dichotomous sampler Model 2025D (Partisol) 24 h <0.1 µg m−3 I Univ B’ham

Windspeed, direction Sonic anemometry Research Anemometer

(Gill Instruments)

1 Hz 0.02 cm s−1 I/II Univ

Manchester

Temperature/relative hu-

midity

HMT 107 (Vaisala Ltd.) +0.2 ◦C ± 2 %

RH

I/II Univ

Manchester

Sub-micron non-

refractory NH+
4 , NO−

3 ,

SO2−
4 , Cl−, org and size

distn

Aerosol mass spectrome-

try

C-TOF-AMS (Aerdoyne

Research Inc.)

5 min 10 ng m−3 Max

100 ng m−3

±20 %

I Univ

Manchester

Canagaratna

(2007); Allan

et al. (2010)

Sub-micron non-

refractory NH+
4 , NO−

3 ,

SO2−
4 , Cl−, org and size

distn

Aerosol mass spectrome-

try

HR-TOF-AMS (Aer-

doyne Research Inc.)

5 min 10 ng m−3 Max

100 ng m−3

±20 %

II Univ

Manchester

Drewnick et

al. (2005)

University of

Westminster

Atmospheric vertical

structure (Doppler

velocity and backscatter)

Pulsed Doppler Lidar 0.25–1 Hz II Univ Salford/

Reading

Various Locations

Perfluorocarbon tracer

experiments

Bag sampling/

GC-NICI-MS

GC 5973

(Hewlett Packard)

1–10 ppq ±5 % I/II Univ Bristol Martin et al.

(2010a, b,

2011a)

Note: KCL is Kings College, London and CEH is Centre for Ecology and Hydrology.
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Table 2. Summary of measurements in REPARTEE I and II at the Marylebone Road and North Kensington sites.

Species measured Analytical Technique Operator Campaign

Marylebone Road

NO/NO2/NOx

Ozone

Sulphur dioxide

PM10 mass

PM2.5 mass

Particle number concentration

Particle number distribution

Chemiluminescence

u.v. absorption

u.v. fluorescence

TEOM (grav. equiv.)

TEOM (grav. equiv.)

TSI 3022A CPC

TSI 3080 + TSI 3776 CPC

TSI 3321 APS

AURN

AURN

AURN

AURN

AURN

NPL

NPL

Birmingham

I/II

I/II

I/II

I/II

I/II

I/II

II

II

North Kensington

NO/NO2/NOx

Ozone

Sulphur dioxide

PM10 mass

Particle number

Chemiluminescence

u.v. absorption

u.v. fluorescence

TEOM (grav. equiv.)

TSI 3022A CPC

AURN

AURN

AURN

AURN

NPL

I/II

I/II

I/II

I/II

I/II

Note: AURN = Automatic Urban & Rural Network operated on behalf of Dept. for Environment, Food & Rural Affairs.
NPL = National Physical Laboratory, operating particle counting and sizing instruments on behalf of Dept. for Environment, Food & Rural Affairs.

Fig. 3. Local meteorological measurements from the R. Park and BT Tower sites during REPARTEE I. LRT indicates periods of long-range

transport.

Tower, averaging 7.6 ± 0.3 m s−1 (s.d. of daily means) com-

pared to 1.5 ± 0.8 m s−1 at the Regents Park site. Wind direc-

tions varied little between the sites, reflecting the good expo-

sure and lack of building effects at both sites. There is lit-

tle suggestion of a consistent directional wind shear (Fig. 3).

Temperature in REPARTEE I was consistently higher at the

ground-level R. Park site, typically by about 2 ◦C, but on

some nights the temperatures converged, suggesting a stable

atmosphere. Relative humidities averaged around 80 % (typ-

ical of the UK) with a typical diurnal variation anti-correlated

with temperature. Relative humidities were generally higher

on the Tower than in Regents Park, consistent with the lower

temperatures. While during daytime, average wind speeds

increased in Regents Park (Fig. S1 in Supplement), there was

a slight decrease in average windspeed on the BT tower be-

tween 07:00 and 15:00 (Fig. S1).

3.2 Meteorological variables: REPARTEE II

Meteorological conditions during REPARTEE II appear in

Fig. 4. Average wind speed values for the BT Tower were

slightly lower (6.4 ± 3 m s−1) relative to REPARTEE I. Av-

erage temperature at the BT tower (7.7 ± 2 ◦C) and R. Park

(10.4 ± 3 ◦C) were cooler than during REPARTEE I, and the
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Fig. 4. Local meteorological measurements from the R. Park and BT Tower sites during REPARTEE II.

 
 

Fig. 5. Examples of the types of air mass trajectory experienced in (a) REPARTEE I and (b) REPARTEE II.

RH at the BT Tower (79.3 ± 11 %) and R. Park (77.7 ± 12 %)

were similar.

Probably the largest difference between the two field stud-

ies was observed for the atmospheric pressure (corrected

to sea level), with higher values for the second field study

(1016 ± 6 mb) relative to the first campaign (1005 ± 12 mb).

The higher variety of different air masses encountered for

the REPARTEE I was also reflected in a higher standard

deviation for REPARTEE I. The relatively high pressures

in REPARTEE II were frequently associated with cloudless

night skies, reflected in shallow nocturnal boundary layers

(Barlow et al., 2011).

A number of precipitation events were recorded during

REPARTEE I (especially during the second part of the field

study; 18–26 October 2006) whilst only two events were

observed during REPARTEE II (28 October and 8 Novem-

ber 2009).

3.3 Back trajectories during REPARTEE I

Five day trajectories terminating in London at altitudes of

200, 500 and 1000 m were calculated by the HYSPLIT on-

line model. These were categorised according to the origins

of the air masses received at midnight and 1200 each day.

The trajectories varied greatly from almost pure maritime

air (12:00 UTC on 6 October 2006), to those travelling over

France and Spain (12:00 UTC on 11 October 2006) or with

largely polar origins (00:00 UTC on 22 October 2006) to

air masses which had travelled over the European mainland

for several days (00:00 UTC on 16 October 2006). These
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Table 3. Classification of air mass origins during REPARTEE.

Date Air mass origin

REPARTEE I

1–3 October 2006

3–5 October

5–8 October

8–12 October

12–14 October

14–17 October

17–19 October

19–24 October

24–25 October

25–27 October

27–28 October

29–31 October

N. Atlantic

Polar/Scandinavia

N. Atlantic

Atlantic across France/Spain

N. Atlantic

European continent (east)

European continent (south)

N. Atlantic across France/Spain

N. Atlantic

Atlantic across France/Spain

Polar

N. Atlantic

REPARTEE II

17–20 October 2007

21–23 October

23–25 October

25–29 October

29 October–2 November

3–4 November

4–8 November

9 November

9–12 November

12 November

13–14 November

15 November

Polar

Polar via Scandinavia and near continent

European continent (north)

European continent (various)

N. Atlantic

N. Atlantic across France

N. Atlantic

South across France

N. Atlantic

Polar

N. Atlantic

Central Europe across Scandinavia

examples appear in Fig. 5a. A generic classification of air

mass origins appears in Table 3.

The month of October started with the dominance of

North Atlantic air, which continued until 3 October, when air

masses became more northerly, arriving after crossing north-

ern Scandinavia. By 5 October, the Atlantic air masses had

once again taken over, with some trajectories to the UK pass-

ing over France and Spain for a number of days from 8–12

October. From 13–17 October the UK was subject to high

pressure and from 14–17 October air masses approached

from continental Europe, initially from the east, but by 18–20

October, a maritime circulation had re-established, but with

air reaching the UK from a southerly sector crossing France.

These conditions persisted until 27 October when there was

a brief spell of polar air, returning to a North Atlantic circu-

lation for the remainder of the month.

3.4 Back trajectories during REPARTEE II

The early days of the campaign were characterised by air

masses originating over polar regions, typically northern

Greenland (e.g. 12:00 UTC on 18 October, see Fig. 5b).

By 23 October, although still with northerly origins, the

air masses were crossing the near-continent before arriving

in the UK (e.g. 00:00 UTC on 23 October). This was fol-

lowed by a few days of persistently continental air masses

(e.g. 12:00 UTC on 26 October, Fig. 5b). By 29 Octo-

ber, North Atlantic air had re-established its dominance

(e.g. 00:00 UTC on 1 November). Although, in some cases

briefly crossing France, Atlantic or polar air re-established

itself for the remainder of the campaign, until the last day

(25 November), when an easterly circulation originating over

central Europe took over. Typical examples of back trajec-

tories appear in Fig. 5b, and Table 3 summarises the entire

campaign.

3.5 Boundary layer structure

Boundary layer structure over urban areas can be com-

plex due to the heterogeneous, rough surface, and the ur-

ban heat island, caused by anthropogenic heat emissions,

reduced albedo and the delayed cooling of the urban sur-

face at night (Roth, 2000). Both of these factors affect

the mixing height, up to which surface-released pollutants

are transported. During REPARTEE II, as part of the ex-

perimental strategy a Doppler lidar was deployed at the
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Fig. 6. Doppler lidar observations on 31 October 2007 of backscatter β (m−1 sr−1, log10 scale), vertical wind velocity w (m s−1) and

variance of vertical wind velocity σ 2
w (m2 s−2). Observations show 1 min averages of 0.278 Hz data. Derived heights of boundary layer top,

aerosol layer and mixing height are also shown. Dashed line shows height of BT Tower (190 m).

study site to provide continuous measurements of bound-

ary layer turbulence. The set-up and results are reported

in this Special Issue (http://www.atmos-chem-phys-discuss.

net/special issue95.html) (Barlow et al., 2011), and are

the first quantitative observations of the structure of cen-

tral London’s boundary layer, following Spanton and

Williams (1988) sodar observations of mixing height.

The lidar operated in vertical stare mode with a 3.6 s in-

tegration time: Fig. 6 shows Doppler lidar observations of

backscatter, Doppler velocity and velocity variance for 31

October 2007. Note that the lidar wavelength is 1.5 µm thus

the backscatter is mainly from relatively coarse aerosol par-

ticles. Many interesting features can be seen: from 00:00 to

06:00, high backscatter near the ground indicates an aerosol

layer of depth zAER, the top of which is marked. During the

same period, the variance shows there is little turbulence in

the layer. From 06:00 to 10:00, a layer of cloud is indicated

by high backscatter at ca. 1000 m; the vertical wind veloc-

ity shows downward mixing associated with the cloud, and

an increase in turbulence in the layer at the ground – this is

marked by a black line as the mixing height, zMH. After a

brief break in cloud, the daytime convective mixing begins

from ca. 10:00 onwards: there is an increase in variance and

mixing height and the backscatter decreases as aerosol is dis-

persed. Cloud tops the boundary layer until ca. 17:00. There-

after zMH decreases rapidly as solar heating of the ground
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Fig. 7. Histogram of aerosol layer height, zAER, and mixing height,

zMH in REPARTEE II derived from Doppler lidar data. Bin width

equals lidar gate depth.

ceases, and the backscatter shows distinct layers of aerosols

at different heights which evolve in the nocturnal boundary

layer.

Figure 7 shows the frequency of occurrence of the two

derived heights, zAER and zMH, for the 18 days of opera-

tion for 30 min averaged periods. The lidar gates are 30 m

in depth, and the lowest operational gate was 90 to 120 m

to which both zAER and zMH defaulted if layers were below
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Fig. 8. Normalised frequency of occurrence of aerosol layer (zAER)

and mixing height (zMH) being lower than BT Tower (190 m) dur-

ing REPARTEE II campaign.

this height, and thus undetectable. It can be seen that most

of the time, both turbulence and aerosol layers were below

ca. 500 m – given the autumnal timing of the campaign the

boundary layer was not expected to be deep. The observa-

tions showed a significant number of occasions when the

aerosol or turbulent layers appeared to be lower than the

BT Tower (190 m) according to the height derivation algo-

rithms. Figure 8 shows the diurnal cycle of the frequency of

occurrence of zAER and zMH < 190 m. There are significant

numbers of events at night where both layers appear to be

lower than the BT Tower – this indicates that the nocturnal

urban boundary layer in London can become stratified; and

that the BT Tower measurements were then decoupled from

the surface. It is also notable that the two layer heights be-

have differently at night: the aerosol layer tends to deepen

at night, whilst the mixing height becomes shallower (Bar-

low et al., 2011), hence the difference in Fig. 8. It should be

noted that atmospheric pressure was unusually high during

the campaign compared to the UK climatology: high pres-

sure systems can lead to clear sky periods, and in turn to a

more stable boundary layer. Analysis of a longer term dataset

would be required to establish how representative the current

results are.

4 Overview of results and discussion

4.1 Particulate matter, PM2.5, PM10 and PM2.5−10

4.1.1 REPARTEE I

PM2.5 and PM10 daily gravimetric measurements were taken

during REPARTEE I at the BT Tower site and the R. Park

site. Moreover, data from the monitoring stations at M. Road

and NK were also included in the analysis (see Fig. 9).

PM2.5 data for different sites gave minimum, maximum,

average and one sigma standard deviation (all in µg m−3)

as: R. Park (5, 30, 10 ± 6), BT Tower (4, 37, 10 ± 8) and

M. Road (11, 46, 24 ± 7); whereas PM10 data for the four

sites gave minimum, maximum, average and one sigma stan-

dard deviation (all in µg m−3) as: NK (15, 65, 26 ± 11),

M. Road (31, 91, 56 ± 13), BT Tower (9, 49, 17 ± 9) and

R. Park (10, 44, 18 ± 8), respectively. Strong correlations

were found between PM10 NK and PM10 R. Park (R2 = 0.95;

YRP = 0.67XNK) and together with the zero intercept re-

flect the strong correlation between the two sites. Strong

PM10 correlations were also found between the BT Tower

site and the two background sites of NK (R2 = 0.94; YBT =

0.77XNK −3) and R. Park (R2 = 0.96; YBT = 1.11XNK −3).

The coarse fraction PM2.5−10 was also found to be highly

correlated between R. Park and BT Tower (R2 = 0.7; YRP =

0.8XBT +1.5). Much weaker PM10 correlations were found

between the roadside site M. Road and NK or R. Park

(R2 = 0.45; YMR = 0.78XNK +35), whereas the coarse frac-

tion (PM2.5−10) was found to be poorly correlated between

M. Road and R. Park (R2 = 0.3; YMR = 1.8XRP +18) reflect-

ing the additional sources of coarse aerosols for the M. Road

site likely to be associated with road dust and abrasion prod-

ucts.

The daily PM10 Limit Value of 50 µg m−3 was exceeded

for 3 days at NK (15–17 October) and almost every day at

the M. Road site but for only one day (16 October) for both

BT Tower and R. Park. The period of the 15–17 October was

subject to long range transport (LRT) of nitrate (Dall’Osto et

al., 2009b; Nemitz et al., 2012a), which was an appreciable

component of the aerosol mass loadings. Figure 9 shows that

for the NK, R. Park and BT Tower sites the impact of the

long range transport period of 14–17 October was evident

in the PM10 fraction, whilst although an increment was seen

during the same period for the M. Road site, the trend was

less pronounced. The coarse mode PM2.5−10 for the three

sites (Fig. 9b) did not show much variation for the month

of October. By contrast, the fine component PM2.5 showed

the highest concentrations during LRT periods, with an en-

hancement of about a factor of 4 relative to the other days at

the background sites (Fig. 9c).

4.1.2 REPARTEE II

PMx data were not available for the R. Park and BT Tower

sites, but PM10 data from the M. Road and NK air qual-

ity monitoring stations were analysed (see Fig. 10). Mini-

mum, maximum, average and one sigma standard deviation

(all in µg m−3) for the two sites were: NK (12, 73, 29 ± 11)

and M. Road (24, 107, 48 ± 18). PM2.5 concentrations were

available only for the M. Road site (11, 70, 24 ± 11 µg m−3)

and were on average about 65 % of the total PM10 mass.

PM10 exceeded the daily 50 µg m−3 Limit Value on about

50 % of days at M. Road, but only 3 times at the NK site (19

October, 4 and 5 November). Comparing the REPARTEE I

and II campaigns, average concentrations were fairly simi-

lar. However, while concentrations at M. Road were found to
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Fig. 9. PMx temporal trends for the REPARTEE I experiment in fractions (a) PM10, (b) PM2.5−10 and (c) PM2.5.

Fig. 10. PMx temporal trends for the REPARTEE II experiment in fractions (a) PM10 at different stations and (b) PM2.5 and PM2.5−10 for

the MR site.

exceed 50 µg m−3 on almost every day during REPARTEE I,

they exceeded only for about half of days during REPAR-

TEE II, which was also reflected by average concentrations

that were higher in the first campaign (56 ± 13 µg m−3 versus

48 ± 18 µg m−3 for REPARTEE I and II, respectively). The

explanation for this difference lies with the street canyon na-

ture of the Marylebone Road sampling site. This is located

on the southern side of the canyon such that as a result of

the vortex set up within the canyon, the on-road traffic emis-

sions are sampled in addition to the local background when

winds have a southerly component, but when winds are from

the northerly sector, the sampling site is exposed predomi-

nantly to background air from outside of the canyon. During

the REPARTEE I campaign, there was a much higher pre-

dominance of winds from the southerly sector than during

REPARTEE II.

4.2 Major component composition

Daily samples of fine and coarse particulate matter from the

R. Park and BT Tower sites collected in REPARTEE I were

analysed for major components, i.e. SO2−
4 , NO−

3 , Cl−, OC

(Organic Carbon), EC (Elemental Carbon). The results for

nitrate and sulphate in the fine fraction appear in Fig. 11a

and b. The two ions show a strong divergence in behaviour

with sulphate concentrations at the two sites tracking one an-

other closely (Fig. 11a). It is only for samples in the declin-

ing period of the long-range transport episode of 13–18 Oc-

tober that sulphate concentrations on the BT Tower exceeded
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  (a)      (b) 

  (c)      (d) 

Fig. 11. Aerosol mass loadings concentrations in PM2.5 at R. Park and the BT Tower during REPARTEE I sampling campaign and difference

(Park minus Tower) for (a) sulphate, (b) nitrate, (c) organic carbon and (d) elemental carbon.

those at ground-level (R. Park). In contrast, nitrate (Fig. 11b)

exhibited much lower concentrations at the R. Park site, most

probably due to the response of volatile ammonium nitrate

to local conditions. Over semi-natural vegetation NH4NO3

evaporation is expected (Allen et al., 1989; Nemitz and Sut-

ton, 2004),

NH4NO3 ⇋ HNO3 +NH3 (1)

because the park is expected to be a strong sink for nitric

acid and ammonia, unless subject to heavy fertiliser use in

the case of ammonia (Yamulki et al., 1996; Nemitz et al.,

2009). By contrast, the cooler temperatures and higher rela-

tive humidity on the tower shift the gas/aerosol equilibrium

towards the aerosol phase. The nitrate deposition gradient

between BT Tower and R. Park, also confirmed by the two

AMS systems, is in contrast to the observation of net nitrate

emission derived from the AMS eddy-covariance flux mea-

surements on the Tower (cf. Section “Chemically resolved

mass fluxes”). As discussed in more detail by Nemitz et

al. (2012a), the likely reason is that the Park is a local sink

region for NH3, HNO3 and NH4NO3, while, averaged over

the city, ground level concentrations are elevated, e.g. due to

the emission of NH3 from catalytic converters.

The loss of nitrate in the park probably accounts for the

lower PM2.5 concentrations at R. Park during this period

shown in Fig. 9. Su et al. (2011) have reported reduced con-

centrations of PM2.5 and NO2 in public parks relative to local

neighbourhoods in the Los Angeles area.

Chloride (data not shown) was predominantly in the coarse

particles and showed consistently high concentrations on

the BT Tower consistent with a source external to London

(i.e. the sea).

Concentrations of OC and EC appear in Fig. 11c and d,

respectively. These were measured by a Thermo-optical

method (Yin and Harrison, 2008). Concentrations of OC

were typically higher at the ground-level R. Park site, and

this was also the case for the submicron organic mass mea-

sured with Aerosol Mass Spectrometers (AMS) at both sites

(Nemitz et al., 2012a), but in some instances there was little

difference in concentrations between BT Tower and R. Park.

This is consistent with a ground-level source (mainly traf-

fic), but a major contribution of regional transport of mainly

secondary particles, as seen in the UK West Midlands (Har-

rison and Yin, 2008), and confirmed for the REPARTEE

campaigns by the factor analysis of the organic aerosol frac-

tion derived from the AMS measurements (Sect. 4.4 below).

This view is confirmed by the larger relative vertical gradi-

ent in EC seen in Fig. 11d reflecting the ground-level source

(mainly road traffic) and exclusively primary source of this

pollutant.
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  (a)      (b)   

  (c)      (d) 
 

Fig. 12. Size distribution of particle mass and major anion components collected by MOUDI impactor at R. Park and BT Tower during

REPARTEE I.

Applying the factors from our Pragmatic Mass Closure

Model (Harrison et al., 2003) gave a very close agreement

between reconstructed mass (y) and gravimetrically deter-

mined mass (x) concentrations in the PM2.5 fraction, i.e.

for R. Park :y=0.84x +1.42 µg m−3 R2=0.988

for BT Tower :y=1.06x−0.08 µg m−3 R2=0.985

This indicates a fine fraction aerosol whose major compo-

nent composition is well described by the sum of ammonium

nitrate, ammonium sulphate, sodium chloride, elemental car-

bon and organic compounds.

4.3 Particle size distributions

4.3.1 MOUDI

MOUDI impactors were deployed at both sites (R. Park and

BT Tower) during REPARTEE I for a total of four periods of

48 h each. The total aerosol mass loadings over the size range

up to 14.5 µm are shown in Fig. 12. Three out of four sam-

ples (Fig. 12a, b, d) showed a clear bimodal size distribution

peaking at about 0.5 µm and 3 µm at the R. Park site, whereas

in the BT Tower data the coarse mode is less prominent. This

suggests a different general picture for the two sites, with a

lower abundance of coarse mode particles at the BT Tower

for most of the samples. The highest mass loading with a

distribution peaking at 900 nm was found for the sample of

14–15 October, which is the period when London was sub-

ject to long range transport of pollutants. Moreover, a sys-

tematically higher value of aerosol mass can be seen during

this period (Figs. 9 and 12c) at the BT Tower site relative to

the R. Park. For this sample (Fig. 12c), a strong enhancement

of particles at about 900 nm can be seen also at the R. Park

site. Samples taken during 5–7 October (Fig. 12a) present

a stronger mode at about 3 µm, associated with marine air

masses and the mode in the chloride distribution.

When considering inorganic anion mass loadings (nitrate,

sulphate and ammonium) in Fig. 12, it is clear that the coarse

mode seen at both sites (Fig. 12a, d) is partly due to chloride,

reflecting the sea salt transport from marine areas and the air

mass back trajectories (Table 3). By contrast, the mode at

about 900 nm seems to be dominated by sulphate aerosols.

Sulphate was found systematically higher at all size ranges

at the BT Tower site, showing also a shift towards coarser

sizes for all samples relative to the R. Park site (Fig. 12a, d).

Nitrate mass loadings were found fairly similar for samples

shown in Fig. 12a, b and d. However, the 14–15 October

sample (Fig. 12c) showed a higher nitrate concentration in

the fine mode at the BT Tower relative to the R. Park site.

Much of the nitrate is lost in the MOUDI by evaporation

(Huang et al., 2004).
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Table 4. SMPS spectral clusters identified at REPARTEE sites.

Cluster Site(s) Period Mode(s) Intensity

1 MR all 25 nm; 100 nm (sh) strong

2 BT night 100 nm strong

3 RP, BT (few) day <20 nm weak

4 RP, MR (few) day 20 nm weak

5 BT night broad weak

6 BT night broad v. weak

7 MR evening 25 nm; 100 nm (sh) strong

8 MR/RP/BT night 100 nm medium

9 RP midday 25 nm; 100 nm medium

10 RP/BT night 75 nm strong

11 BT all 90 nm strong

12 MR/RP night 25 nm; 75 nm (sh) strong

13 RP/BT day 20 nm; 80 nm medium

14 MR/RP day 28 nm; 70 nm strong

15 BT night 95 nm strong

Note: sh = shoulder

4.3.2 SMPS and SMPS/APS

A range of instruments summarised in Tables 1 and 2 were

used in the REPARTEE campaigns in order to measure the

particle size distributions. In REPARTEE I, these were

mainly limited to the range measureable by electrical mo-

bility, whereas in REPARTEE II, the range was extended by

the inclusion of Aerodynamic Particle Sizers. Additionally,

some measurements were made at R. Park using a Grimm

aerosol spectrometer. The main findings of the measure-

ments using SMPS or DMPS instruments in the range up

to around 500 nm have been described extensively elsewhere

(Beddows et al., 2009; Dall’Osto et al., 2011) and will be

only briefly summarised here.

Beddows et al. (2009) took particle size spectra from

R. Park, M. Road and BT Tower and analysed the pooled

data by k-means cluster analysis. This technique is able to

summarise a large set of hourly average particle size distribu-

tions as a much smaller number of clusters characteristic of

specific combinations of sources/meteorological conditions.

When applied to the three-site dataset, a total of 15 clusters

were identified and are listed in Table 4. The attribution of

clusters to specific source contributions was based upon the

sites at which they were observed, the size distribution mea-

sured and the typical diurnal variation. Some clusters were

found to be specific to individual sampling sites (see Table 4)

whilst others were observed at a range of sites. Some clusters

were characteristic of traffic emissions, others showed size

distributions much more characteristic of the regional back-

ground. Not unexpectedly, the spectra observed at M. Road

were dominated by traffic emissions and those at BT Tower

by the regional background. Those observed at R. Park ap-

peared to correspond to either aged traffic aerosol or re-

gional background with aged traffic aerosol superimposed.

The observation that size distributions observed at R. Park

sometimes exhibited a mode smaller than that at M. Road,

but nonetheless showed a temporal profile typical of traffic-

generated primary pollutants (Fig. S2 in Supplement shows

the median diurnal pattern of particles <10 nm) led to a more

detailed investigation of the processes involved. Dall’Osto et

al. (2011) looked in detail at the particle size distributions

measured in REPARTEE I and REPARTEE II, identifying a

regional transport mode at all sites as well as a mode associ-

ated with traffic emissions. However, at R. Park, there was an

additional mode peaking below 10 nm diameter which could

only be explained by evaporation of the semi-volatile compo-

nent of the traffic emissions. Examination of particle num-

ber count to elemental carbon ratios showed a relative loss

of particles (by number) at the BT Tower site. This led to

an examination of clustered size distributions which showed

that the count of particles less than 30 nm at the BT Tower

site correlated strongly (r2 = 0.86) with the turbulence as

represented by the variance of the vertical velocity as esti-

mated from the lidar. It was inferred that at the longer verti-

cal transport times associated with lower levels of turbulence

(i.e. relatively stable atmosphere), particles were evaporating

to sizes below those measured by the condensation particle

counter or SMPS system (Dall’Osto et al., 2011).

During REPARTEE II, SMPS instruments based upon a

TSI 3080 classifier and 3022A or 3776 CPC were deployed

at all three sites (M. Road, R. Park and BT Tower). To ex-

tend the particle size range above the upper limit detected

by the SMPS instruments, concurrent measurements were

made using TSI Aerodynamic Particle Sizers, measuring par-

ticle diameters within the range 0.5–20 µm. The data col-

lected from these instrument pairs, located at the three sites,

were averaged into hourly spectra and merged into one par-

ticle size spectrum matrix (dia. 14.9–10 000 nm) according

to the method of Beddows et al. (2010). Surface area and

volume spectra are calculated using assumed spherical par-

ticle geometry and mass distributions using the density de-

rived from the merging routine. Figure 13 shows the average

merged spectra for the three sites. The top row of spectra

shows the average number, surface area and mass spectra

measured at M. Road; the number spectrum is typical of a

roadside spectrum, differentiated from other London sites in

Beddows et al. (2009) by having a notable peak between 0.02

and 0.03 µm and shoulder at 0.1 µm which becomes more

evident in the average surface area plot. From the plot of

dm/dlog(Dp) vs. Dp, two peaks are observed centred at 0.2–

0.3 µm and 2.0–3.0 µm. The middle row of Fig. 13 shows the

average merged spectra from R. Park. In comparison to the

measurements at M. Road, the average number spectrum has

a smaller number of counts and the spectra show an increase

in the accumulation mode relative to the nucleation mode.

The accumulation mode in the average surface area spectrum

is seen to shift by roughly 0.05 µm to a higher modal diame-

ter and a similar shift is seen in the average mass size spectra.

The bottom row of Fig. 13 presents the average spectra col-

lected at the BT Tower. The nucleation mode is again smaller
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Fig. 13. The mean ±1 standard deviation of the spectra of the merged data collected from the M. Road, R. Park and BT Tower during

REPARTEE II expressed as number (left), surface area (centre) and mass (right).

   

Fig. 14. Particle count data measured at the BT Tower presented as number, surface area and volume and according to the boundary layer

height.

in comparison to the accumulation mode in the number spec-

tra and the modal diameters of the accumulation and coarse

mode are shifted to higher values. Further characteristics of

the merged SMPS-APS spectra, measured at the BT Tower,

were observed when the spectra were averaged according to

the boundary layer height, measured using lidar (shown in

Fig. 14). When the boundary layer height is below 250 m, the

tower is more likely to sample air above the boundary layer

transported from the regional background. This is reflected in

the average spectra where a clear accumulation mode (modal

diameter ca. 200 nm) which classically contains well aged

aerosol particles is seen. When the boundary layer is above

250 m the sampling site is well within the boundary layer and

anthropogenic contributions from traffic are observed with

the emergence of a mode at 20 nm in the number spectrum

and a mode at 400 nm in the surface area spectrum.

Further insights into the sources of particles on M. Road

have been gained from applying Positive Matrix Factori-

sation to hourly average wide range particle size distribu-

tions measured on M. Road (Harrison et al., 2011) during
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REPARTEE II. The PMF analysis was able to identify 10

separate size distributions contributing to the overall aver-

age size distribution at Marylebone Road including four that

were clearly associated with emissions on the road and six as-

sociated with the regional background. This separation was

possible by including in the PMF analysis traffic and me-

teorological variables and examining both the diurnal varia-

tion of the component spectra (factors) and their association

with regional wind direction. This allowed a clear differen-

tiation of emissions within the canyon from those outside.

The results showed that emissions on M. Road were respon-

sible for 71.9 % of the total integrated particle number within

the spectra and 40.5 % of the particle volume, the remainder

coming from regional and local sources external to the street

canyon. The analysis separately identified solid and semi-

volatile particle modes within the on-road emissions as well

as particles associated with brake dust and resuspension from

the road surface.

Interestingly, the volume distribution reported from the

Grimm aerosol spectrometer sited at the R. Park site featured

a mode at around 2.5 µm. The corresponding size channel

shows a diurnal trend that peaks around midnight. Given

the proximity of the measurement location to vegetation, it is

possible that this corresponds to fungal spores (Gabey et al.,

2010). The peak at night is possibly due to the spore ejec-

tion mechanisms, which can occur during periods of higher

humidity. However, given the similarity to the OOA diurnal

profile (see Sect. 4.4), it may be that secondary processes are

more responsible for this profile.

4.4 Aerosol Mass Spectrometer (AMS)

AMS instruments were deployed at both sites during the

REPARTEE I and II campaigns (see Table 1 for details).

A detailed analysis of selected results is given by Allan et

al. (2010), Phillips et al. (2012) and Nemitz et al. (2012a).

The AMS is sensitive to non-refractory components in the

sub-micrometre size range (Canagaratna et al., 2007) and

hence concentrations are not directly comparable to the filter

and impactor data. The AMS on the BT Tower were operated

in an eddy-covariance flux mode (see Sect. 4.10), and the

concentration analysis here is therefore based on the instru-

ments in R. Park. The standard calibration and data analysis

procedures were employed (Allan et al., 2003, 2004) and a

collection efficiency of 0.5 was used, consistent with the par-

ticulate matter composition measured (Matthew et al., 2008)

and validated using DMPS data (Allan et al., 2010).

The overall mass loadings detected using the AMS and

MAAP (Fig. 15) showed contrasts between the two cam-

paigns. In spite of the overlap in the calendar, the ambi-

ent temperatures were lower during REPARTEE II hence

increasing the requirement for space heating. Conversely,

REPARTEE I was more influenced by regional sources

(Dall’Osto et al., 2009b), showing periods of high concen-

trations of secondary species such as sulphate that lasted a

number of days. Interestingly, the equivalent black carbon

reported by the MAAP also increased with the larger load-

ings of secondary material. This could be in part regional

transport by black carbon but could also be related to an in-

crease in the mass specific absorption of the black carbon as

a result of being coated by secondary material (Bond et al.,

2006).

Major findings of this work arose from the application of

Positive Matrix Factorisation (Paatero, 1997; Ulbrich et al.,

2009) to the organic component of the AMS data, as pre-

sented by Allan et al. (2010). This was able to numerically

separate the different components of the organic fraction into

primary hydrocarbon-like organic aerosol (HOA) from traffic

emissions, secondary oxygenated organic aerosol (OOA), or-

ganic aerosol from cooking (COA) and organic aerosol from

solid fuel burning (SFOA). These were identified by inspect-

ing the mass spectral profiles and diurnal trends of the dif-

ferent factors (see Fig. 16) and comparing with previously

published material and laboratory data. The results were also

found to be largely consistent with wintertime data taken in

central Manchester (Allan et al., 2010).

The HOA was found to be consistent with previous stud-

ies of diesel emissions (Canagaratna et al., 2004; Schneider

et al., 2006) and could be linked to NOx concentrations mea-

sured at the site; an emission factor of 31.6 µg m−3 ppm−1

was derived (Allan et al., 2010), which corresponds to a mass

emission ratio of 0.026 (assuming NOx is emitted as NO).

The diurnal trend peaked in the morning, coincident with

rush hour. The OOA was also consistent with previous mea-

surements of highly processed secondary organic aerosols

(Jimenez et al., 2009; McFiggans et al., 2005) and were sig-

nificantly more prevalent during REPARTEE I, which expe-

rienced more regional pollution generally. The COA diurnal

pattern showed peaks corresponding to lunch and evening

meal time and presented a greater fractional contribution

than was expected. Its mass spectral profile was consistent

with previous ambient results (Lanz et al., 2007) but it was

not identical to previously published spectra from laboratory

charbroiling simulations (Mohr et al., 2009). As was pre-

sented by Allan et al. (2010), a closer mass spectral match

was found to particles from heated cooking oil baths, imply-

ing that the oils used in frying may have been more important

for the aerosol formation. The SFOA factor was only dis-

cernable during the campaign with cooler weather (REPAR-

TEE II) and featured mass spectral markers consistent with

wood burning (Alfarra et al., 2007). This typically peaked at

night, consistent with space heating, and was also prevalent

during the weekend of “bonfire night” (5 November).

4.5 Single particle analyses by ATOFMS and TEM

The Aerosol Time-of-Flight Mass Spectrometer (ATOFMS;

TSI-Model 3800-100) provides information on a poly-

disperse aerosol, acquiring precise aerodynamic diameter

(±1 %) within the range 0.2 to 3 µm and individual particle
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Fig. 15. Time series of species concentrations measured by AMS and MAAP together with particle number counts (TSI 3776) at R. Park in

the two campaigns. (Note the different time periods described by upper and lower graphs)

 

Fig. 16. Average diurnal profiles of AMS factors (defined in text)

observed in REPARTEE I and II and in Manchester (originally pub-

lished in Allan et al., 2010).

positive and negative mass spectral data in real time. TSI

ATOFMS data are imported into YAADA (Yet Another

ATOFMS Data Analyzer, version 1.30) and analysed with

the powerful ART-2a tool, an artificial intelligence algorithm

that sorts single particle mass spectra into specific particle

types or clusters. The ATOFMS was deployed at R. Park for

19 days, between 4 and 22 October 2006 in REPARTEE I.

In total, 153 595 particles were hit by ATOFMS and the pos-

itive and negative mass spectra of individual particles were

recorded. By running ART-2a, 306 clusters were found ini-

tially but many were merged if they presented similar tem-

poral trends, size distributions and similar mass spectra. By

merging similar clusters, the total number of clusters describ-

ing the whole database was reduced to 15. These appear in

Table 5.

Quantification of ATOFMS data can only be achieved

through labour-intensive scaling with independent data

(Dall’Osto et al., 2006) which were not available. This has

not been attempted and hence the data should be regarded

as only semi-quantitative. Analysis of ATOFMS and AMS

data together proved valuable in understanding in real time

atmospheric processes occurring during the REPARTEE I
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Table 5. Summary description of ATOFMS particle clusters found

in REPARTEE I (defined in Dall’Osto et al., 2009b).

Main ATOFMS cluster N particles % cluster

Secondary

LRT nitrate 43 516 33.7

LRT core 10 278 8.0

Local nitrate 29 563 22.9

Amine 2306 1.8

HMOC (fog) 4865 3.8

MSA (fog) 245 0.2

SOA-PAH 2834 2.2

Primary

Ca-EC 5496 4.3

OC 4671 3.6

PAH 269 0.2

EC 2001 1.5

Na-OC-EC 2207 1.7

NaCl only 3637 2.8

Inorganic Aged NaCl 15 638 12.1

Fe 1748 1.4

TOTAL 129 274 100.0

campaign which have been described in detail elsewhere

(Dall’Osto et al., 2009a, b). Two main inorganic ATOFMS

particle types were identified. The first was rich in iron (Fe,

1.4 % of the total particles) with strong signals at m/z 54

and 56 (54Fe and 56Fe, respectively) internally mixed with

sodium, nitrate, sulphate and elemental carbon. This parti-

cle type was found mainly distributed in the fine mode below

1 µm in aerodynamic diameter, whereas previous ATOFMS

studies found this particle type mainly distributed in the

coarser mode and attributed it to local dust sources. Dur-

ing REPARTEE, Fe-rich particles were found to correlate

with LRT nitrate and were associated with long range trans-

port of pollutants. The small mode of this particle type re-

flects the fact that only fine fraction particles were likely

to travel long distances relative to the coarser ones which

were lost during transport. The second inorganic class sam-

pled by the ATOFMS was due to NaCl, which accounted

for 14.9 % of the total particles sampled. Two sub-classes

were further identified (NaCl only and aged NaCl, account-

ing for about 20 % and 80 % of this inorganic particle type,

respectively). The NaCl cluster presented the peaks typical

of sodium chloride clusters ([Na]+ (m/z 23), [K]+ (m/z 39),

[Na2]+ (m/z 46), [Na2Cl]+ (m/z 81 and 83), [Na3Cl2]+

(m/z 139 and 141); [Na]− (m/z 23), [Cl]− (m/z 35 and 37),

[NaCl]− (m/z 58 and 60), [NaCl2]− (m/z 93, 95 and 97) and

[Na2Cl3]
− (m/z 151, 153 and 155) whilst aged NaCl also ex-

hibited nitrate peaks (m/z −46 and m/z −62) reflecting the

reaction between NaCl and HNO3 and the replacement of

chloride by nitrate. NaCl was mainly detected during air

masses that had travelled over oceanic regions (5–6 and 20–

23 October), also reflected in both the MOUDI and Partisol

samples taken during REPARTEE I and in the GRAEGOR

measurements on the tower (Nemitz et al., 2012a).

Twelve of the 15 clusters were associated with organic-

containing aerosols, accounting for 83.7 % of the total par-

ticles classified. Of these, the 3 main clusters were rich

in nitrate and have already been discussed in Dall’Osto et

al. (2009b). Two specific ATOFMS clusters associated with

a secondary organic aerosol production during a fog event

have also been discussed in Dall’Osto et al. (2009a). Cluster

EC was found to present a strong elemental carbon signature

but represented only 1.5 % of the total particles sampled and

did not show a clear temporal profile. By contrast, the cluster

Amine was found to correlate very well with the cluster LRT

nitrate and AMS nitrate concentrations (R2 = 0.85), spiking

mainly during nighttime, consistent with a semi-volatile na-

ture of this aerosol. These particles exhibited a relatively

coarse size distribution, with key peaks in the positive and

negative mass spectra occurring at m/z 59 (Angelino et al.,

2001) and m/z −125 [H(NO3)2] as well as others associated

with EC, nitrate and sulphate. Amines were also found to in-

crease substantially in number concentration during the fog

event of 13 October 2006 (Dall’Osto et al., 2009a).

The ATOFMS cluster named PAH presented two main

spikes on 4 (23:00–01:00) and 12 (07:00–10:00) October

2006. This class represented only 0.2 % of the particles sam-

pled, but other ATOFMS particle classes also spiked during

these two periods, indicating a contribution from an uniden-

tified local source. Clusters Ca-EC and OC were found to

spike during rush hour morning traffic, while Na-EC-OC was

found to spike mainly during evenings. These primary or-

ganic aerosol ATOFMS classes, together with cluster SOA-

PAH, are discussed in Dall’Osto and Harrison (2011).

Comparison of results from the ATOFMS with the AMS

has been conducted. While fundamental issues mean that

the data from the two mass spectrometers are not com-

pletely analogous, certain common trends were found. The

ATOFMS identified two clusters that could be associated

with traffic emissions (denoted Ca-EC and OC), which were

found to have a temporally similar behaviour as the AMS

HOA. While a cluster could not be directly associated with

OOA, Dall’Osto et al. (2009b) found that the prevalence of

more aged aerosols (confirmed by the AMS data) altered the

mass spectral response to nitrate, allowing the different pro-

file to be used as a marker for regional (as opposed to local)

influence.

ATOFMS and AMS are powerful techniques for charac-

terizing the atmospheric aerosol but give a very incomplete

picture over the whole size range and of the different types

of particles, however in combination they provide a much

improved coverage (Dall’Osto et al., 2009a, b; Allan et al.,

2010). The transmission electron microscope (TEM) offers a

complementary technique for characterising particles across

a wide range of sizes, nanometers through to micrometers,

and in terms of their morphology and their elemental com-

position. During REPARTEE I, size-fractionated particles

were collected and subjected to TEM and Energy Dispersive

X-Ray analysis (EDX). During the TEM study period, the
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Fig. 17. Time series of gas phase species in the REPARTEE I campaign at ground-level sites.

ATOFMS at R. Park was in operation and therefore provided

a basis for a comparing the particle types observed by both

methodologies (Smith et al., 2012).

TEM analysis revealed eight main particle types that were

common to samples taken from R. Park and BT Tower. Of

these, amorphous carbonaceous aggregates (soot-like) con-

taining C and O and often including Ca, K and Fe were

the most common especially in the fractions <1.2 µm. Also

common were beam-sensitive sulphur-rich particles, includ-

ing Na and Cl, in amorphous and crystalline forms. Iron and

titanium were common elements in other types of particles.

During the concurrent sampling period, 600 particles were

examined by TEM and about 1300 particles were mea-

sured by ATOFMS. Of the 15 particle clusters classified

by ATOFMS for the whole campaign (Dall’Osto et al.,

2009a, b), 13 were found in the overlap period. Three types

of particle (out of eight) identified by TEM had analogues

(but not direct equivalents) in the ATOFMS clusters. Many of

the particle types identified by the ATOFMS were vacuum-

volatile (e.g. nitrates) and therefore not seen by the TEM.

TEM, even more than ATOFMS, gives a very biased pic-

ture of aerosol composition. Its strengths lie in source trac-

ing of involatile particle components, especially those rich in

metals. Whilst ATOFMS is capable of processing thousands

of particles per hour, TEM is a manual and time-consuming

methodology. Both techniques provide valuable information

on internal mixing of particles.

4.6 Gases

4.6.1 REPARTEE I

O3, NO, NO2 and NOx were measured during REPARTEE I

at the R. Park site. Data from the NK and M. Road air quality

monitoring stations have also been included. Measurement

techniques are listed in Tables 1 and 2. Concentrations are

given as the arithmetic average and 1 standard deviation of

hourly measurements. Values of NO (ppb) were comparable

at NK (11±18) and R. Park (10±21), but much higher at the

M. Road site (84±137). Values of NOx (109±202) and NO2

(27±65) were also higher at the M. Road site relative to NK

(NOx: 29±26; NO2: 19±10) and R. Park (NOx: 30±28;

NO2: 20±11) background sites. For ozone, the concentra-

tions (ppb) at R. Park (12±9) were slightly lower than at NK

(14±10) possibly due to enhanced dry deposition processes

at the Park, whilst even lower concentrations were found at

the M. Road site (4 ± 4) due to titration by NO emissions.

Ozone at the BT Tower was always higher, consistent with

the city acting as an efficient chemical sink for regional O3,

which was also confirmed by strong downward fluxes of O3

measured on the BT Tower (Nemitz et al., 2012a). There was

a gradient in concentrations of SO2 (ppb) between M. Road

(1.9±2.6), NK (1.1±1.2) and R. Park (0.7±1.0), reflecting

greater deposition at the R. Park site and road traffic emis-

sions at M. Road. Concentrations of selected volatile or-

ganic compounds (VOCs) were measured on the Tower dur-

ing REPARTEE I and NH3, HNO3 and HCl were measured

during both campaigns. The data are discussed elsewhere

(Langford et al., 2010; Nemitz et al., 2012a).

Figure 17 shows the temporal trends of SO2,

NO/NO2/NOx and O3 mentioned above over the month

of October 2006. SO2 presented two main spikes in the

afternoon of 13 and in the morning of 16 October. This was

a period of easterly winds and the peaks probably arise from

emissions from the East Thames power stations. NO and

NO2 levels were highest in the morning of 13 October when

stagnant conditions were recorded as already described in

Dall’Osto et al. (2009a, b). Ozone concentrations were

generally lower during the period affected by long range

transport (13–19th), presumably due to enhanced chemical

depletion under conditions that did not favour formation by

photochemistry.
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Fig. 18. Time series of gas phase species measured in REPARTEE II.
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4.6.2 REPARTEE II

A number of novel measurements were performed during

REPARTEE II, including measuring ozone and nitrogen ox-

ides at the BT Tower site. These data are discussed in some

detail in Sect. 4.7.

Similar trends in the REPARTEE II data (shown in Fig. 18)

were found for the NK and M. Road sites (relative to

REPARTEE I) for most gases. In general, concentrations

(ppb) at NK were higher for NO (26 ± 40), NO2 (22 ± 12)

and NOx (47 ± 47) relative to REPARTEE I and lower for

ozone (9 ± 9 ppb). M. Road presented increased values for

some gases relative to REPARTEE I (NO2: 52 ± 25; NOx:

166 ± 100; O3: 4 ± 5). Data available at the BT Tower only

for REPARTEE II gave concentrations (ppb) for NO (9 ± 13)

NO2 (17 ± 9) and NOx (26 ± 27), lower than for the NK site,

but with higher ozone at the BT Tower (32 ± 14). Again,

ozone at the BT Tower was always higher, and never went

below 3 ppb. During daytime, values of ozone were similar

at the NK and BT Tower site, but the trend was not observed

during evening times. NOx was highest at M. Road, but val-

ues of NO2 sometimes were higher at the BT Tower site rela-

tive to NK, NO and NOx at the BT Tower site never exceeded

concentrations at NK. This is consistent with a ground-level
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source of NOx, predominantly as NO, with enhanced con-

version to NO2 at times due to greater availability of ozone

aloft.

4.7 Ozone/NOx chemistry on the BT Tower

NO, NO2 and ozone data from the BT Tower were com-

pared with measurements from two nearby Automatic Ur-

ban and Rural Network (AURN) Air Quality monitoring sta-

tions: M. Road and NK. Measurement methods appear in

Table 2. NO2 was determined by thermal conversion (heated

Mo catalyst)/chemiluminescence; the NO2 signal may there-

fore be subject to interferences from other NOy compounds

(e.g. Dunlea et al., 2007).

Figure 19 shows the average diurnal profile in NO, NO2

and O3 observed at each site over the period of the REPAR-

TEE II campaign. Levels of NOx were clearly higher and

displayed the traffic-volume related double peak for the

M. Road site; the same features were apparent at the other

locations, with lesser amplitude. Figure 20 shows an “oxi-

dant plot”, where the level of total oxidant (Ox = O3 + NO2)

is plotted as a function of NOx (NO + NO2). Oxidant plots

such as these have been interpreted as showing both the re-

gional background oxidant (ozone) level, indicated by the y-

axis intercept, and the local primary contribution to oxidant

(potentially primary NO2 emissions), indicated by the gradi-

ent (Clapp and Jenkin, 2001). The data shown in Fig. 20 are

hourly averages from the whole REPARTEE II campaign pe-

riod (26 October–13 November 2007) for daylight only (de-

fined conservatively here as 08:00–16:00 GMT). Figure 21

shows how the intercept and gradient of the Ox-NOx rela-

tionship varied for each measurement site for each hour over

the 24-h period, again averaged over the REPARTEE II cam-

paign period.

The reduction in the NOx range crudely indicates a mean

dilution factor of five between the roadside site within the

Marylebone Road street canyon and the 190 m BT Tower

sampling point well above the height of the surrounding

buildings. The agreement between the intercepts of the

dataset shown in Fig. 21 indicates that all three locations ex-

perienced the same general air masses (hence the same point

may be drawn for the BT Tower, R. Park and M. Road sites

for REPARTEE) with incoming ozone levels of 33–35 ppb,

typical for the UK in late autumn. The gradients of the

Ox-NOx relationship shown in Fig. 20 are very different for

the M. Road kerbside site (0.19 ± 0.008) vs. the BT Tower

(−0.06 ± 0.02) and North Kensington sites (0.02 ± 0.02) –

uncertainties are 2σ . As mentioned above, the gradient is

thought to be indicative of local primary NO2 emissions,

or of co-emissions (with NOx) of species which promote

NO-to-NO2 conversion, i.e. HO2 and RO2 radical precursors.

The lower levels for the BT Tower and NK sites is likely to

indicate that these do not experience significant direct pri-

mary NO2 (or equivalent) emissions, i.e. they are sufficiently

removed from the (predominantly road traffic) sources that
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the measured composition is representative of the well-mixed

regional background. This is a surprising finding for NK

which is within and much affected by the London conurba-

tion (Bigi and Harrison, 2010).

Interpreted purely as NO2 emissions, the gradient of the

M. Road dataset in Fig. 21 would indicate that 19 % of pri-

mary NOx is NO2, a fraction which is significantly greater

than has been conventionally assumed in the past, but is con-

sistent with other monitoring station data which has shown

that the primary NO2 fraction as measured at a range of Cen-

tral London sites ranged from 3–24 %, with a value of 9–

10 % determined for Marylebone Road (Carslaw and Beev-

ers, 2005). Subsequent measurements indicated that the pri-

mary NO2 fraction at Marylebone Road increased between

2003 and 2005 to around 20 %; similar increases have been

observed for other UK and European sites (AQEG, 2007).

These findings have been rationalised in terms of changing

vehicle fleet composition and technology, in particular in-

creasing numbers of intermediate age (Euro-III) diesel ve-

hicles, and potentially enhanced NO2 emissions resulting

from fitting of regenerative diesel particulate traps to buses.

Other causes of the observed trend at Marylebone Road in-

clude co-emissions of compounds which would be detected

as NO2 (e.g. nitrous acid, HONO, thought to comprise a

small, but significant and uncertain, component of vehicle

exhaust (e.g. Jenkin et al., 2008; Kurtenbach et al., 2001)

and radical precursor species such as carbonyl compounds,

although the timescales for their photolysis (of the order of

a few hours for HCHO) are long compared with the antic-

ipated street canyon residence time. HONO itself may be

both detected as NO2 by the monitors used, and will un-

dergo photolysis on a timescale of a few minutes, leading

to OH and hence peroxy radical formation, which will pro-

mote NO2 to NO conversion. Clapp and Jenkin (2001) per-

formed model simulations showing that a 1 % direct HONO

emission can substantially increase the calculated Ox-NOx

relationship slope, leading to apparent primary oxidant emis-

sions of 3–4 %, a significant fraction of the 19 % indicated

by Fig. 20.

The variation in incoming ozone over the diurnal period

(indicated by the intercept in Fig. 21) shows a clear late

morning/ early afternoon maximum, peaking at 15:00 GMT

(also apparent in Fig. 19), reflecting (modest) regional pho-

tochemical ozone production, common to all three sites. The

variation in the Ox-NOx relationship gradient over the 24-

h period is more complex: the gradient is zero (within un-

certainty – error bars are 1σ for clarity) for the BT Tower,

and consistently ca. 0.2 for M. Road, but varies for the urban

background North Kensington location. The measured com-

position is also notably more variable on the BT Tower (as-

suming the instrument performance was similar at all three

locations). In the case of M. Road, night-time levels of NO
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were nearly always 25 ppb or more, and O3 correspondingly

low or negligible, while at NK and on the BT Tower, NO lev-

els frequently fell below 1 ppb. As the rate constant for the

NO + NO3 reaction is high compared with those for (partic-

ularly) NO3 and N2O5 formation, the presence of constant

NO emissions in the MR street canyon, removing both O3

and NO3, may effectively be curtailing the night time NO3-

N2O5 chemistry allowing the Ox-NOx daytime relationship

to be maintained, while at the BT Tower NO is much lower

and the night time N2O5 formation is significant (Benton et

al., 2010 and Sect. 4.8), a situation which may also prevail

at NK. While this would not affect the Ox-NOx relationship

if the thermal conversion/chemiluminescence NO2 measure-

ment were free from interference, in practice N2O5 will con-

tribute to the measured signal, leading to lower values of

(measured) Ox for a given (measured) NOx; it will also re-

sult in smaller variations in (measured) NOx overnight. The

increased gradient seen for NK in Fig. 21 in the period from

18:00 to 02:00 may be consistent with a shallow nocturnal

boundary layer trapping local traffic emissions containing a

comparable percentage NO2 to M. Road. The subsequent de-

cline in gradient (from 03:00 to 07:00) may reflect nitric acid

formation via N2O5 and loss by deposition or aerosol forma-

tion leading to a reduction in the Ox relative to NOx as N2O5

formation removes three Ox species, but only two NOx.

4.8 NO3 and N2O5 measurements

A broadband cavity enhanced absorption spectroscopy

(BBCEAS) instrument was deployed from the BT Tower dur-

ing REPARTEE II, with the aim of providing insights into

nocturnal nitrogen chemistry near the top of the urban bound-

ary layer. The instrument is described in detail by Langridge

et al. (2008) and has previously been used to measure NO3

and N2O5 at ground level at a coastal site (McFiggans et al.,

2010): a successor instrument has very recently made NO3

and N2O5 measurements from on board the UK’s Facility for

Airborne Atmospheric Research (Kennedy et al., 2011). The

instrument uses the broadband emission from a light emit-

ting diode (LED) coupled into a high finesse optical cavity

to record the absorption spectra of atmospheric samples over

extended bandwidths, in this case covering the wavelength

range 640–670 nm which includes the characteristic absorp-

tion band of the NO3 radical centred at 662 nm. N2O5 is

measured indirectly via its thermal decomposition to produce

additional NO3 in the instrument’s heated inlet, i.e. driving

equilibrium (Eq. 2) to the left and so reversing the process by

which N2O5 is produced from NO3 in the atmosphere itself:

NO3 +NO2+M ⇋ N2O5+M (2)

Thus in the configuration deployed during REPARTEE II,

the LED-BBCEAS instrument measured the sum of NO3 and

N2O5 concentrations, 6[NO3] + [N2O5].

The instrument was deployed from the 35th floor of the

BT Tower (160 m a.g.l.). It was sited on the south west side

Fig. 22. NOy data summary for REPARTEE II. (Greyed back-

ground = night-time): (a) 6[NO3] + [N2O5] raw data and LOD

(blue, note different scale) as measured using BBCEAS. (b) NO3

and N2O5 mixing ratios inferred from the [NO3 + N2O5] data in

panel (a), and separate temperature and NO2 measurements (see be-

low) under the assumption of a rapid equilibrium between NO3 and

N2O5. The data are depicted as a 1 h moving means. The speciated

NO3 and N2O5 data series ends after the night of 8/9 November

because no temperature data were available thereafter. (c) Wind di-

rection and temperature data from the Vaisala instrument at the 35th

floor. (d) NO, NO2 and O3 data.

of the tower’s balcony, with its heated inlet directed into the

prevailing wind (220◦) and protruding 20 cm through the bal-

cony railings to sample the air flow past the tower. Absorp-

tion spectra were acquired at 15 s intervals from 10:00 on 19

October to 09:00 on 15 November 2007, with around 80 %

data coverage during that period. The instrument’s limit of

detection (LOD) for 6[NO3] + [N2O5] was generally around

2 pptv, with an absolute accuracy of 20 %.

The top panel of Fig. 22 shows the sum of 6[NO3]

+ [N2O5] concentrations deduced from the 15 s absorption

spectra. The measurements show the distinct diurnal pro-

file expected for 6[NO3] + [N2O5], with night-time max-

ima and daytime values below the instrument’s detection

limit due to the efficient solar photolysis of NO3 dur-

ing the day. Substantial night-to-night variability is ev-

ident, and this is associated with shifts in the altitude

of the nocturnal boundary layer as indicated by the lidar
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Fig. 23. Scatter plots of 6[NO3] + [N2O5] showing (a) a positive correlation with O3, (R = 0.102, N = 37 245), (b) negative correlation

with NO (R = −0.057,N = 37 302), and (c) a negative correlation with NO2 (R = −0.160,N = 50 764) for all night-time data from panel (a)

of Fig. 22. N = number of points. All correlations are significant at the 99 % confidence level.

observations made from the nearby University of Westmin-

ster on Marylebone Road. The peak night-time mixing ra-

tio of 6[NO3] + [N2O5] = 796 pptv (15 s data) occurred in

the early evening of 12 November 2007, although the night

of 30–31 October 2007 had the highest night-averaged mix-

ing ratio of 166 pptv (night-time is taken as the period be-

tween sunset and sunrise times). On both occasions, data

from the Lidar and from a sonic anemometer located on the

top of the tower showed relatively slow vertical wind com-

ponents and therefore the LED-BBCEAS sampling point to

be somewhat decoupled from the mixed layer below (for ex-

ample, see the lidar data from 31 October shown in Fig. 6).

The vertical stratification of its sources and sinks are ex-

pected to lead to elevated concentrations of NO3 and N2O5

away from the surface (Aliwell and Jones, 1998; Fish et al.,

1999; Brown et al., 2007a, b). The LED-BBCEAS data ad-

ditionally show some very rapid fluctuations on timescales

as fast as ∼1 min. Of particular note are rapid extinctions

in the 6[NO3] + [N2O5] signal associated with the uplift

of NO (i.e. fresh pollution) to the LED-BBCEAS sampling

height on the tower. A broadly positive correlation is ob-

served between the 6[NO3] + [N2O5] data and O3, and neg-

ative correlations with NO and to a lesser extent with NO2

(Fig. 23). These correlations are consistent with the fast

NO + NO3 → 2NO2 reaction being a sink for NO3 (and a

minor source of NO2), and NO being a sink for O3 and

therefore reducing the NO3 source strength from the reaction

NO2 + O3 → NO3 + O2.

Under the assumption of a rapid equilibrium between NO3

and N2O5 (which was generally valid during REPARTEE II

– see Benton et al., 2010), 6[NO3] + [N2O5] can be parti-

tioned into NO3 and N2O5 using an independent measure-

ment of the NO2 mixing ratios (TE42C-TL NOx analyser)

and ambient temperature data to inform the temperature de-

pendent equilibrium constant for the formation of N2O5 from

NO3 and NO2 (Eq. 2). Hourly averaged NO3 and N2O5 data

are shown in the second panel of Fig. 22. The relatively cold

temperatures experienced during the campaign and the gen-

erally high NOx levels prevalent in central London led to

the vast majority of 6[NO3] + [N2O5] being present as the

N2O5 reservoir compound: NO3 was only 1–4 % throughout

the night-time dataset. The heterogeneous uptake of N2O5

onto aerosols and its rapid reaction with H2O to give HNO3

provides the main night-time loss mechanism for NOx and a

production route for nitrate aerosol. The N2O5 reservoir also

acts to replenish NO3 lost due to reaction with trace gases,

and thus may sustain chemical processing of e.g. reactive

VOCs at the interface between a pollution-rich layer below

and an otherwise decoupled N2O5-rich layer above (Jones et

al., 2005). The large concentrations of 6[NO3] + [N2O5] ob-

served when the LED-BBCEAS sampling point was decou-

pled from the surface suggests that such chemical process-

ing could be rather efficient at the interface of such stratified

layers, or on the occasions when pollution is mixed into an

N2O5-rich layer.

4.9 Perfluorocarbon tracer results

Previous studies during DAPPLE (Arnold et al., 2004; Mar-

tin et al., 2010a; 2010b; Wood et al., 2009) and CityFlux

(Petersson et al., 2010) showed extensive channelling of the

perfluorocarbon inert tracer through the urban street network

in combination with rapid vertical dispersion. At some loca-

tions during CityFlux, paired samplers showed higher tracer

levels aloft than at the ground. During REPARTEE I and II

the objective was to inspect the spread of the tracer plume in

the vertical and horizontal, taking advantage of the opportu-

nity to sample at elevated levels afforded by the BT Tower.
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For the vertical distribution the shape component S of the

Gaussian plume model was inspected. The equation relating

the ratio of the elevated concentration at height z (XZ) to that

at the surface (X0) is given by

XZ

X0
= exp(−bzS) (3)

where b is a constant, z is the vertical height and S is the

so called shape component, where a value of S = 1 leads to

an exponential profile and S = 2 leads to a Gaussian one.

The combined set of experiments during REPARTEE I and II

suggests that for source-receptor distances of approximately

1 km, the shape exponent S was approximately 2 (i.e. a Gaus-

sian profile), and for distances greater than 1 km S was less

than 2 (between Gaussian and exponential). Both campaigns

were conducted at the same time of year and factors such as

surface roughness, weather conditions (overcast for all exper-

iments) wind direction and wind speed (on average 12 m s−1

in 2006 and 7.5 m s−1 in 2007) were very similar. In other

studies (Shallcross et al., 2009) it was noted that concentra-

tions due to moving sources (e.g. vehicles) decayed with a

dependence on distance z as z−1 and during DAPPLE (Wood

et al., 2009) a transition from a dependence of the decay of

z−2 to z−1.5 was noted at distances greater than about 1 km.

The time taken for tracer to reach the top of the BT Tower

(∼190 m) through turbulent transport by diffusion was esti-

mated to be around 10 min for neutral conditions and as long

as 20–50 min under the most stable conditions encountered

(Barlow et al., 2011). The lateral plume spread was observed

to be described well by a Gaussian distribution. Since the

samples were collected over a set period of time in tedlar

bags, the Dose D (the time-integrated concentration over the

sampling period) was compared with the normalized distance

from the source according to the relationship:

DUH H 2

q
= K

H 2

x2
(4)

Where D is the dose (kg m−3 s), UH is the wind speed at

roof height in m s−1, H is the building height in metres, q

is the release rate (kg s−1) and x is the downwind distance

from the source in metres. Plotting all the data from these

experiments, i.e. DUH H 2

q
vs. H 2

x2 yielded an upper bound for

K . For most data a value of K = 10 was sufficient and in

keeping with experiments during DAPPLE (e.g. Wood et al.,

2009; Martin et al., 2010a, b) and other studies (as reviewed

in Martin et al., 2011b), in particular those from cities in the

USA with a different street geometry.

4.10 Pollutant fluxes and their controls

4.10.1 Background

Emissions of pollutants are usually estimated in bottom up

inventory approaches by adding up the different sources.

These approaches can be reliable for emissions that are dom-

inated for well-characterised large industrial point sources,

but tend to be less reliable for pollutants that originate mainly

from diffuse area sources. They also tend to be more ro-

bust for compounds whose emission is easily linked to ac-

tivity (CO2 emissions are directly linked to fuel usage), than

those which are further affected e.g. by engine/driving con-

ditions (e.g. for CO) or meteorological variables (for fugi-

tive emissions of some volatile organic compounds, VOCs).

Bottom-up inventories often only compile annual average

emissions without further temporal information at the sea-

sonal or hourly scale, and are limited to few pollutants or

pollutant metrics.

By measuring pollutant fluxes with the micrometeorologi-

cal eddy-covariance method well above the city an indepen-

dent, integrated (top-down) estimate can be obtained at the

city scale, which can be used to assess the bottom-up inven-

tories, to study the control of the emissions, to derive emis-

sions of novel metrics (such as total particle number) and,

in some cases, to study chemical or physical transformations

between the point of emission and arrival at the measurement

height.

During the REPARTEE campaigns flux measurements

were conducted from the top of the BT tower of momen-

tum, sensible and latent heat (Wood et al., 2010; Helfter et

al., 2011), together with a large number of pollutants. Ta-

ble 6 summarises the compounds studied, their anticipated

major sources and reference to the individual companion pa-

pers that discuss the results in more detail. These include car-

bon dioxide (CO2), carbon monoxide (CO), selected volatile

organic compounds (VOCs) such as benzene, toluene and

isoprene, ozone (O3), total particle number as well as size

and composition resolved particle fluxes (Wood et al., 2010;

Helfter et al., 2011; Langford et al., 2010; Phillips et al.,

2012; Nemitz et al., 2012a, b). Fluxes of VOCs and O3

were measured during REPARTEE I only, while measure-

ments of momentum, heat and CO2 continued for a total

of 18 months. This extensive flux measurement programme

was possible by collaboration of REPARTEE with the UK

NERC funded CityFlux project, which also contributed flux

measurements to four other campaigns in Gothenburg (Swe-

den), Edinburgh, Manchester and Mexico City (e.g. Thomas,

2007; Langford et al., 2009; Martin et al., 2009; Petersson

et al., 2010; Phillips et al., 2012). Here the results from

the London measurements are summarised, where the other

studies are referred to, it is for comparison.
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Table 6. Summary of pollutants whose fluxes were measured during REPARTEE.

Compound Instrument Dominant urban sources/sinks Literature reference

Carbon dioxide (CO2) IRGA Li-COR 6262,

7000

Traffic & heating emissions Helfter et al. (2011)

Carbon monoxide (CO) Traffic & other combustion Phillips et al. (2012)

Benzene PTR-MS Traffic Langford et al. (2010)

Toluene PTR-MS Traffic Langford et al. (2010)

C2-benzenes PTR-MS Traffic Langford et al. (2010)

Isoprene PTR-MS Traffic & nature Langford et al. (2010)

Acetone PTR-MS Traffic & solvents Langford et al. (2010)

Acetaldehyde PTR-MS Traffic & solid fuel Langford et al. (2010)

Acetonitrile PTR-MS Solid fuel Langford et al. (2010)

Methanol PTR-MS Solvent, evaporative Langford et al. (2010)

Ozone (O3) Fast chemiluminescence,

ROFI

Destruction by NO Nemitz et al. (2012a)

Total ultrafine particle num-

ber (UFP)

CPC TSI 3010 Traffic emissions Martin et al. (2009)

Accumulation mode parti-

cle number (80–1000 nm)

FAST Traffic emissions Nemitz et al. (2012c)

Organic aerosol AMS Emissions from traffic, solid fuel,

cooking

Phillips et al. (2012);

Nemitz et al. (2012a, b)

Aerosol nitrate AMS Gas-aerosol partitioning Phillips et al. (2012);

Nemitz et al. (2012a, b)

Aerosol sulphate AMS Deposition from regional background Phillips et al. (2012);

Nemitz et al. (2012a, b)

4.10.2 Site characterisation: turbulence and fluxes of

momentum and energy

Flux measurements were taken at about 190 m above the

street level, which represents about 9 times the mean building

height in the area. While this is advantageous for avoiding

artefacts from the building structures (wake, roof heat flux)

and has the potential for providing integrated fluxes averaged

over large urban areas, there are also downsides. This high up

in the boundary layer, fluxes may no longer be constant with

height, and, especially during nighttime the top of the tower

may be above the nocturnal boundary layer, and therefore de-

coupled from the surface. During this time, urban emissions

may be stored within the urban air space rather than moving

past the tower. Thus, the fluxes presented here reflect lo-

cal fluxes at the measurement height, which will be a robust

representation of the surface exchange only during daytime.

Indeed the lidar measurements during REPARTEE II showed

that the tower was above the mixing layer height during about

40 % of the nights during that period (see Fig. 8). Conditions

during REPARTEE I were warmer and less stratified, sug-

gesting that the fraction would have been lower. Similarly,

comparison of heat fluxes on the tower and a much lower

eddy-covariance roof-top site demonstrates that, while heat

fluxes are almost always upwards just above the buildings,

this is no longer the case at 190 m (Barlow et al., 2009). From

the 18-month measurement record of momentum, energy and

CO2 fluxes, it is apparent that the importance of stable lo-

cal stratification (defined as ζ = z/L > 0.32; with ζ being

the Monin-Obukhov stability parameter, z being height and

L the Obukhov length) on the tower depended on season and

was most pronounced for daytime in winter and for nighttime

in autumn (small heat fluxes combined with relatively little

anthropogenic heating). However, it never exceeded 50 % of

the time.

Figure 24 compares the ratio of the CO2 flux to traffic

flow on Marylebone Rd. with the boundary layer height prod-

ucts derived from the lidar measurements for a period during

which particularly low nocturnal mixing heights were ob-

served (Sect. 3.5). During nights when the convective mixing
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Fig. 24. Heights of the boundary layer and aerosol layer derived from the lidar measurements compared with the ratios of CO2 emission to

traffic counts. The figure highlights observations of increased FCO2
/traffic ratios made in the early morning hour, when the boundary layer

expanded.

layer was below the measurement height, CO2 fluxes were

close to zero although there was still considerable traffic, and

often there was a clear lag between the increase in the traffic

volume and pollutant fluxes in the morning. Daytime emis-

sions after these calm nights were often asymmetric, with

an enhanced CO2/traffic ratio in the morning. This reflects

the fact that in the early morning emissions initially occur

into a shallow residual nocturnal boundary layer, which then

gradually expands, much of this accumulated material is then

vented across the measurement height (circled events). This

demonstrates that some of the material stored during night

will moved past the measurement point in the morning and

was captured at that time. However, some of the material

may be advected horizontally out of the city, re-deposit or

react chemically.

An analysis of the boundary layer turbulence using the ver-

tical and horizontal turbulence scalars, Ai = σi
/

u∗
, was con-

ducted to validate the range of meteorological conditions for

applicability of emission models. Here u∗ is the friction ve-

locity and i represents the orthogonal turbulent vector com-

ponents, u, v or w. Ai is a function of the dimensionless

Monin-Obukhov scaling parameter, which may also be ap-

plied to other scalars, e.g. temperature, CO2 or particle num-

ber concentration (N) so that Ai = σi
/

i∗
and i∗ = −w′i′

/

u∗

where w′ and i′ are the fluctuations from the mean of the

vertical wind speed and scalar, respectively. Using this ap-

proach, one can show that Ai , for the unstable atmospheric

boundary layer regime, ζ < 0 can be described by the func-

tion

Ai = ai (1−biζ )ci (5)

where ai , bi and ci , are empirical constants and ci is com-

monly found to be 1/3 for w and −1/3 for CO2 fluxes,

e.g. Vesala et al. (2007). The measurements by Vesala et

al. (2007) over semi-urban surfaces broadly agreed with typ-

ical values for w over complex terrain but can range be-

tween 1.11–1.42, and 2.58–5.36 for CO2 depending on the

dominant surface type. They also analysed temperature and

water vapour concentration scalars and found them to ex-

hibit similar “−1/3” power laws. Roth (2000) provided a

review of similarity scaling applied to wind, temperature and

humidity scalars over several different surfaces and showed

that, despite the requirement for similarity theory for uniform

homogeneous surfaces, the observed functional dependence

agreed well with this theory, justifying its application to ur-

ban surfaces. Figure 25a–c shows the same functional anal-

ysis applied to the REPARTEE flux data sets and compared

with the model proposed by Roth (2000). The empirically

derived constants described in Eq. (5), along with their neu-

tral intercepts for London are summarized in Table 7. Again
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(a) 

(b) 

(c) 

(d) 

Fig. 25. Normalised standard deviations of (a) vertical wind speed (w), (b) horizontal wind component (u), (c) transverse wind component

(v) and (d) UFP concentration (N ), versus dimensionless Monin-Obukhov stability parameter, ζ(= z/L) for both REPARTEE experiments

compared to the model prediction by Roth (2000) and regression fits.
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Table 7. Empirically derived constants to fit Eq. (5) for wind speed under unstable conditions with coefficient of determination (r2) between

the observed and predicted data. Neutral intercept in each case is given by Ai (compiled from Martin, 2009; Helfter et al., 2011; Wood et al.,

2010).

iunstable Experiment r2 ai ± bi ± Ai

u 2006 0.157 2.273 0.0539 0.3912 0.102 2.27

2007 0.185 2.444 0.0790 0.4059 0.103 2.44

v 2006 0.160 1.834 0.0831 1.066 0.312 1.83

2007 0.238 1.881 0.0914 0.8682 0.237 1.88

w 2006 0.483 1.279 0.0306 1.215 0.178 1.28

2007 0.490 1.322 0.0387 1.149 0.148 1.32

Full year (seasons) 1.31 (1.24–1.36) 0.65 (0.28–0.66)

CO2 Full year (seasons) 2.02 (2.00–2.12) 0.43 (0.22–0.66)

N 2006 −10.28

2007 −9.46

± denotes one standard deviation

there is good agreement between the REPARTEE observa-

tions and the model prediction.

This analysis was then applied to the Ultrafine Particle

(UFP) number (N) fluxes (Fig. 25d), with the neutral inter-

cepts for AN , from each REPARTEE study summarized in

Table 7. It should be noted that the correlation for AN was

weaker than for Au,v,w as expected and consistent with that

found for CO2.

The evolution in turbulent transport scales during the ex-

perimental period is encapsulated in Fig. 26a. Plotted is the

normalized energy spectral density of the vertical velocity

component, nSw(n)/σ 2
w, where Sw(n) is the spectral density

of the vertical velocity, n is the sampling frequency and σ 2
w

is the variance in the vertical velocity component, with each

spectrum averaged over a period of one hour. These are plot-

ted against the normalised frequency (f=nz/U) and cover a

24 day period from the 2006 experiment. In particular, stag-

nant conditions are seen where higher energy levels domi-

nate at lower frequencies, e.g. 4, 12, 24 and 29 October. This

is consistent with the analysis of the turbulence by Wood et

al. (2010) who showed that for the high measurement height

employed here the mixing layer scale (i.e. scaling on the ba-

sis of the boundary layer height, zi), becomes more appropri-

ate than measurement height as used for surface layer scal-

ing.

Significantly, the aerosol flux co-spectra, Fig. 26b, show a

weaker diurnal variation, which is consistent with the smaller

dependence of the mixing scales on stability, and may sug-

gest mass transport is less sensitive to mixing layer height.

Generally, the position of the w′N ′ co-spectral peak is con-

trolled by wind speed whereas the magnitude of the peak in

the w spectrum exhibits a diurnal pattern. Figure 26b also

demonstrates on the basis of the aerosol fluxes that mass

fluxes have a larger contribution from low frequency eddies

than the momentum transport, with implications for the flux

averaging time needed to capture most of the flux. Analysis

of the ogives (cumulative frequency distributions) for parti-

cle number flux (Fig. S3 in Supplement) demonstrates that

during individual periods up to 15 % of the flux may be car-

ried in eddies slower than 30 min. This is consistent with a

similar analysis carried out by Langford et al. (2010) for the

heat flux which indicated that an averaging time of 1.5 and

2 h increased the heat flux by an average of 5.8 and 8 % com-

pared with 30-min calculations. Nevertheless, to avoid non-

stationarities and to provide more information on the vari-

ability of the fluxes and their response to other parameters,

most fluxes, except the UFP flux, were calculated on 30-min

averaging times.

In summary, although turbulence at the tower is “well be-

haved” and agrees with observations above less complex ter-

rain, some uncertainties remain in linking the nocturnal (and

thus average) measurements on the tower to surface fluxes.

Multi-point and height flux and concentration measurements

would be required to quantify advection and storage effects.

4.10.3 Trace gas fluxes

As mentioned before, anthropogenic CO2 emissions are par-

ticularly closely linked to fossil fuel combustion and there-

fore annual national bottom-up inventories are thought to

be fairly accurate. Spatial attribution becomes more uncer-

tain and not much is known about temporal patterns. Thus,

the annual average measured above the city should provide

a reasonably robust test of the accuracy with which the ur-

ban fluxes can be measured. Indeed, the 18-month CO2 flux

dataset above London compared with the UK National At-

mospheric Emissions Inventory to within 3 % for the London

Borough of the City of Westminster (Helfter et al., 2011),
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Fig. 26. Time series of normalized (a) vertical velocity energy spectral density, nSw(n)/σ 2
ω and (b) ultrafine aerosol co-spectra,

nCwN (n)/<w′N ′> as a function of normalized frequency f = nz/U , observed on the BT Tower during the period 5/11–31/10/2006. Low

frequencies (long time scales) are to the bottom of the y-axis, with red contours denoting high spectral density values, and blue, low values.

which must be considered somewhat fortuitous given the un-

certainties in the CO2 flux measurement and the correction

for biogenic contributions to the net exchange. However, the

biogenic correction was estimated to be small which reflects

the dense urban nature of the London city centre position and

is similar to previous measurements above Edinburgh city

centre (Nemitz et al., 2001). This contrasts with many other

urban CO2 flux measurements which were often made above

sub-urban residential areas with less traffic and more green

spaces. In North America in particular, the high building

height often prevents measurements being made in the city

centres.

In London, emissions were largest in the SE direction of

the BT Tower where the city centre is located. By contrast,

emissions were very small in the NW sector, which contains

Regent’s Park. Here the uptake by the biosphere balances

some of the emission. Concentrations behaved differently,

with the highest concentrations observed when the air masses

were coming from the NE. This is a wind direction com-

monly observed with the advection of European continental

air masses. Flux magnitudes were somewhat lower in sum-

mer than during the other seasons, probably reflecting the

drawdown by photosynthesis and the minimum in emissions

related to residential and institutional space heating. For the

same reason winter emissions were elevated, in particular at

low traffic counts. See Helfter et al. (2011) for a fuller dis-

cussion of the long-term dataset.

Carbon monoxide (CO) is another popular tracer for fos-

sil fuel combustion. For this compound effects from bio-

sphere/atmosphere exchange are expected to be negligible

and chemistry is inefficient at the typical urban transport time

scale. However, the CO/CO2 emission ratio is very variable

for different fuels and combustion conditions (including en-

gine and driving conditions for traffic emissions) and thus the
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(a) (b)

Fig. 27. Relationship between CO and CO2 flux during (a) REPARTEE-I and (b) REPARTEE-II in relation to the hour-of-the-day (colour

scale). The grey dashed line on plot (b) is a repeat of the fit from plot (a) for comparison.

emission ratio is thought to be variable. In this light the tight

correlation between CO and CO2 flux (Fig. 27) is therefore

surprising, with average emission ratios of 0.87 and 0.51 %

(in terms of CO-C (g CO2-C)−1) during the two campaigns.

The relationships suggest a slight curvature with the highest

emission ratios at midday and lower ratios in the early morn-

ing hours (00:00–08:00 UTC), which is consistent with the

lower CO/CO2 emission ratio from heating-related residen-

tial gas combustion which makes a fractionally larger con-

tribution to the CO2 emission at night. For comparison, a

somewhat higher emission ratio of 2.14 % was derived above

Edinburgh using the same methodology, also within CityFlux

(Famulari et al., 2010). To our knowledge these are the first

published direct eddy-covariance flux measurements of CO.

Urban sources of volatile organic compounds (VOCs) are

less well characterised and quantified. During REPARTEE-

I a proton transfer reaction mass spectrometer (PTR-MS)

was applied for the eddy-covariance measurement of fluxes

of a range of VOCs which were selected according to the

VOCs that can be identified by this technique (Langford et

al., 2010). Because some fragmentation occurs during the

proton transfer reaction and because the quadrupole mass

spectrometer used in this PTR-MS cannot distinguish dif-

ferent fragments of the same (integer) mass to charge ratio

(m/z), the fluxes measured at some m/z could also represent

some other compounds. The results show distinct average

diurnal cycles for the different compounds. Emission fluxes

of acetaldehyde, benzene, ethylbenzene, toluene and acetoni-

trile are closely related to those of CO with R2 > 0.85.

Acetone shows a similar pattern overall and an increase

around 07:00 a.m. like the other CO-related compounds, but

emissions tail off more sharply after 10:00 a.m., possibly in-

dicating that acetone is either related to cold start emissions

or that a chemical destruction kicks in later in the day which

does not operate in the early morning hours when temper-

atures and light levels are lower. Methanol and isoprene

show much flatter diurnal profiles and larger fluxes during

night, probably representing non-traffic fugitive sources for

methanol and biogenic sources for isoprene, which were es-

timated to contribute 65 % and 47 %, respectively. Mea-

sured emissions of benzene, toluene, ethylbenzene and ace-

tone compared with the NAEI estimates within a factor of 2,

while measured methanol emissions were twice the bottom-

up estimate. Measured fluxes of acetaldehyde, isoprene and

acetonitrile were many times larger than the emission inven-

tory suggests.

Fluxes of ozone (O3) were measured for the first time

above an urban area during REPARTEE I (Nemitz et al.,

2012a). Although urban emissions of nitrogen oxides con-

tribute to O3 production at the regional scale, within the

urban area the traffic-related NO emission destroys much

of the O3 and therefore the urban air space below the

measurement provides an efficient sink. Above London

deposition fluxes peaked at typically 2–6 µg O3 m−2 s−1,

which relates to effective local deposition velocities (Vd =

− flux/concentration) of typically 50 to 100 mm s−1, bearing

in mind that most of the O3 will not deposit to the urban

surface, but be destroyed by reaction with NO. NOx fluxes

were not determined during the campaigns. The correlation

between fluxes of O3 and CO2 is fairly weak (R2 = 0.49;

cf. Table 8), which indicates that there are other factors

that contribute to the efficiency at which O3 is destroyed in
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R. M. Harrison et al.: Atmospheric chemistry and physics in the atmosphere of London 3099

Table 8. Matrix of correlation coefficients between hourly fluxes of the different components during REPARTEE I (bottom left triangle)

and REPARTEE II (top right). Correlations with R2 > 0.3 are highlighted in bold. Negative R2 indicate anti-correlations. Each correlation

coefficient was calculated from between 188 and 587 hourly data points. AMP is accumulation mode particles.
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CO2 - 0.61 - - - - - - - - - 0.50 0.08 0.07 0.05    

CO 0.88 - - - - - - - - - - 0.51 0.11 0.09 0.06    

O3 -0.49 -0.45 - - - - - - - - - - - - - - - - 

Benzene 0.10 0.12 -0.05 - - - - - - - - - - - - - - - 

Methylbenzenes 0.18 0.18 -0.23 0.08 - - - - - - - - - - - - - - 

Toluene 0.17 0.18 -0.07 0.11 0.30 - - - - - - - - - - - - - 

Isoprene 0.22 0.19 -0.21 0.21 0.39 0.30 - - - - - - - - - - - - 

Acetone 0.26 0.27 -0.26 0.14 0.37 0.32 0.41 - - - - - - - - - - - 

Acetaldehyde 0.09 0.07 -0.21 0.07 0.17 0.09 0.14 0.32 - - - - - - - - - - 

Acetonitrile 0.25 0.29 -0.27 0.12 0.20 0.20 0.44 0.29 0.00 - - - - - - - - - 

Methanol 0.16 0.22 -0.42 0.10 0.14 0.04 0.20 0.13 0.06 0.34 - - - - - - - - 

UFP 0.70 0.71 -0.24 0.17 0.30 0.24 0.41 0.45 0.11 0.51 0.40 - 0.16 0.11 0.07    

AMP number - - - - - - - - - - - - - 0.82 0.60    

AMP surface area - - - - - - - - - - - - - - 0.98    

AMP mass/volume - - - - - - - - - - - - - - -    

HOA 0.09 0.09 0.08 0.00 0.04 0.01 0.05 0.01 0.00 0.04 0.10 0.12 - - - -   

NO3
-             - - -  -  

SO4
2-             - - -   - 

UFP: ultrafine particle number (0.01 – 2 µm); AMP: accumulation mode particle (0.5 – 1 µm); HOA: 

REPARTEE-

II 

REPARTEE-I 

addition to fossil fuel combustion. These are likely to include

the NO/CO2 emission ratio, the transport timescale between

emission and measurement on the tower as well as the O3

photolysis rate. Future measurements at this London flux

site will address this interaction in more detail, as the O3 flux

measurement provides a powerful constraint for urban chem-

ical transport models.

4.10.4 Aerosol fluxes

Ultrafine particle number

Urban particle number flux measurements were pioneered

within our earlier NERC SASUA project (Dorsey et al.,

2002), with more comprehensive investigations for differ-

ent cities subsequently provided by Mårtensson et al. (2006),

Järvi et al. (2009) and Martin et al. (2009). The latter mea-

sured and compared the diurnal patterns of particle num-

ber fluxes measured over several different cities as a func-

tion of season, including preliminary measurements from the

CityFlux sites and first REPARTEE experiment in London.

Here we summarise results from both REPARTEE experi-

ments where measured fluxes typically covered the particle

diameter range 0.01 to 2 µm with a dominant size mode at

0.05 µm (cf. Fig. 14 and Dall’Osto et al., 2011). Average di-

urnal peak flux values ranged from 5 to 70 × 104 # cm−2 s−1

with a clear dependence on traffic activity, confirming the

role of traffic as the major source of UFP in the urban area.

These data were used to test a simple parameterized UFP

emission model applicable to London. Several increasingly

sophisticated parameterisations for city-scale aerosol fluxes

have been developed (Dorsey et al., 2002; Mårtensson et al.,

2006 and Martin et al., 2009). For example, Mårtensson et

al. (2006) proposed a refinement to the basic emission model

of Dorsey et al. (2002) of the form

f = EFfmTA
(

u∗
/

u∗

)0.4
+f0 (6)

where f is the flux, EFfm is the emission factor of a mixed

fleet (vehicle−1 km−1), TA is the traffic activity (vehicle

km m−2 s−1), u∗ is the friction velocity, u∗ is the average

friction velocity and f0 is the contribution by any non-traffic

related sources. This parameterisation, for the city of Stock-

holm, was refined further to give the respective contributions

from light and heavy duty fleet components, the latter con-

tributing a greater emission factor for that city.

The experimental setup used on the BT tower was de-

scribed by Martin et al. (2009) and is similar to that first
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Fig. 28. Averaged diurnal cycles of vertical UFP number flux for weekdays (left) and weekends (right) during the Autumn 2006 experiment

(top) and Autumn 2007 experiment (bottom).

described by Buzorius et al. (1998). Net particle fluxes cor-

responded to particle sizes >0.01 µm. Data analysis and

quality control measures follow those described by Foken

et al. (1996) and are discussed in Martin et al. (2009). As

explained above, all fluxes and parameterisations for UFPs

are based on hourly values. Confirmation of the performance

of the experimental setup was provided by spectral and co-

spectral analysis of the particle concentration and turbulence

time series which agreed well with theoretical predictions of

near scalar turbulent transport and are comparable to the ex-

pected performance of an aerosol eddy flux system (Buzorius

et al., 1998 and Fairall et al., 1984).

Average diurnal cycles of vertical UFP number fluxes for

both REPARTEE experiments for weekdays and weekends

are summarised in Fig. 28. The majority of fluxes, as ex-

pected, were positive (i.e. upwards) with only a small mi-

nority of negative (downward) fluxes, the latter mainly, but

not always, occurring either at night or when the prevailing

wind was from a sector with increased parkland and reduced

source activity. There is a clear daily cycle with fluxes peak-

ing during the day at 14:00, and minima at 04:00 in the early

morning. Smaller peak emission fluxes were observed at

11:00 and between 13:00–14:00 and appear to correlate with

increased average traffic activity at these times. During the

Autumn 2007 experiment secondary peaks occurred at 12:00

and 16:00, following the pattern of the diurnal sensible heat

flux cycle. The Autumn 2006 weekend diurnal cycle is very

similar to the weekday cycle except in the evening. The Au-

tumn 2007 cycle was more variable which explains the lower

regression obtained when fitted to the emission model.

During periods of peak emission a characteristic ellip-

soidal behaviour (Fig. S4 in Supplement) was observed in

the w′N ′ quadrant analyses (Longley et al., 2004; Kruijt et

al., 1995), with emission dominating deposition in the lower

left quadrant and small deposition in the upper right quad-

rant, consistently.
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Fig. 29. Averaged diurnal cycles of ultrafine particle emission velocity, Ve, (cm s−1) for weekdays (left) and weekends (right) over London.

Very good consistency was also seen in the diurnal parti-

cle emission velocity, Ve (Ve = Fp/C, where Fp is the particle

flux and C is the particle concentration), with weekday peak

values of the order 9–10 cm s−1 and slightly lower at week-

ends, 7–9 cm s−1 (Fig. 29).

When segregated by wind sector the fluxes revealed a clear

pattern with both the weekday plots showing the highest

fluxes between 11:00 and 17:00 from the 90 to 180◦ wind

sectors. This was consistent with the geographical loca-

tion of main traffic routes and urban/business sectors within

the expected tower measurement footprint whereas the west-

erly sector, 315◦ (see Martin et al., 2009), consistently dis-

played the lowest fluxes over all days during both experi-

ments. Again this can be explained by the proximity of the

large Regent’s Park area in this sector. The lowest fluxes oc-

curred during early morning, between 01:00 and 08:00, re-

flecting a decrease in both traffic emissions and other UFP

sources at these times. During the weekends however there

were additional evening peaks in the 135◦ sector seen in both

experiments.

For the London study, mixed fleet emission factors could

not be calculated, as for the Stockholm study by Mårtensson

et al. (2006), due to lack of a suitable fleet database. There-

fore a multi-regression emission model was derived based

solely on net traffic activity (Martin et al., 2009), collected

from the nearby Marylebone Road. The most suitable emis-

sion model was found to be

fp=C [(EFfrictionu∗)+(EFheatH)]fm+(EFtrafficTA)−f0 (7)

where fp is the predicted particle number flux (# cm−2 s−1),

EFtraffic,friction,heat are the factors associated with traffic ac-

tivity, TA, friction velocity, u∗, and sensible heat flux , H ,

respectively. C is a dimensionless coefficient and f0 a com-

pensation or sink term whose sign may vary depending on the

urban surface type as well as the source or sink density within

the measurement footprint (Schmid, 1994). These coeffi-

cients will vary for different cities and must be determined

experimentally. For London the results are summarized in

the papers in Table 6, for weekday periods, and were found to

be similar to those from other UK cities (Martin et al., 2009).

Using this approach EFtrafficTA is the source term due to

predominantly anthropogenic activity, described through the

proxy of traffic activity (TA), whereas the EFfriction u∗ term

describes the turbulent transport of particles to the measure-

ment height. The sensible heat flux EFheatH term describes

both the coupling between particle emission and boundary

layer transport due to convection but this contribution was

significantly weaker than the EFfriction u∗ term. A key limita-

tion is that the non-traffic UFP emissions are not segregated

at this level of analysis.

Size-resolved accumulation mode particle number fluxes

Size-segregated measurements of urban aerosol fluxes ap-

pear to have been made only three times, above Edin-

burgh, UK (Nemitz et al., 2001, 2012b), Münster, Germany

(Schmidt and Klemm, 2008) and Stockholm, Sweden (Vogt

et al., 2011a, b), covering the diameter ranges of 0.1 to

10 µm, 0.03 to 10 µm and 0.25 to 2.5 µm, respectively. Above

the centre of the windy city of Edinburgh, emissions were

found to be composed of two modes: fine mode fluxes cor-

related closely with traffic flow, while super-micron parti-

cle emissions correlated with wind speed and dominated the

mass flux. Similar observations were made during the year-

long Stockholm city centre flux study, where the mass flux

was again dominated by super-micron particles (although the

particle counter only started at 0.25 µm and thus covers less

of the fine mode) and emission factors increased with wind

speed. The highest super-micron fluxes were observed in

spring, probably related to the resuspension of road wear

following the use of studded tyres in winter. Conversely, at

the less densely urban site at Münster, subject to lower wind

speeds, the particle number flux tended to be upwards and

related to traffic, while the mass flux was on average down-

wards.

During REPARTEE II, size-segregated particle number

fluxes were made with an optical particle counter (“UHSAS”
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

Fig. 30. Example time-series of size-resolved particle number fluxes across the accumulation mode. (a) Wind speed and direction and traffic

counts on Marylebone Road, (b) particle number concentration, (c) bulk flux in terms of number (FN ) and mass (Fm), (d) particle number

flux spectra, (e) exchange velocity (Ve) as well as flux spectra in terms of (f) mass and (g) surface area. Black areas indicate downward

fluxes. The surface graphs represent 4-h running means. Ve becomes increasingly uncertain for Dp > 0.4 µm, due to poor counting statistics.

Ultra High Sensitivity Aerosol Spectrometer; Particle Mea-

surement Instruments, Boulder, USA) that counts and sizes

particles according to their optical diameter into 99 logarith-

mically spaced size bins spanning the range 0.05 to 1 µm

and saves data at 10 Hz during REPARTEE II, although

the counting efficiency of the instrument appeared to be re-

duced <∼0.065 µm. Super-micron particle number fluxes

were logistically not feasible, because for these measure-

ments the counter would have had to be placed near the sonic

anemometer.

A four day example time series shows that concentra-

tions (Fig. 30b) were regulated by wind speed (Fig. 30a) and

air mass trajectory, with elevated concentrations observed

during conditions of lower wind speed, and European air

masses (not shown). Total particle number flux and submi-

cron mass fluxes (estimated assuming spherical particle size
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and a particle density of 1.7 g cm−3) followed each other

closely (Fig. 30d) and peaked during low S wind direction

(where also the CO2 emissions were largest; Helfter et al.,

2011). The particle number fluxes are dominated by parti-

cles <0.2 µm (Fig. 30c) and over this time period the particle

number flux derived by the UHSAS (FAMP,N ) represents on

average 39 % of the total UFP flux (FUFP) measured by the

CPC setup, which implies that 61 % of the measured UFP

particle flux was due to particles in the size range 10 nm

< Dp <50 nm, although this ratio showed clear temporal

variability and was 10 % during the first and close to 100 %

during the second half of this period (Fig. 30d). Mass and

surface area flux distributions (Fig. 30e and f) were bimodal

with contributions from modes centred around 100 nm and

400 nm. The observation of accumulation mode emissions

was somewhat surprising, because Nemitz et al. (2012b)

did not find an efficient urban source in this size range

over Edinburgh, while Deventer et al. (2011), also using an

UHSAS, recently reported deposition of the accumulation

mode to Münster. It is possible that in London, due to the

high measurement height, more time is provided for sec-

ondary organic aerosol to form in the accumulation mode.

The exchange velocity (Fig. 30g) was highly variable and

ranged from <10 mm s−1 for the centre of the accumulation

mode (0.2 µm < Dp < 0.5 µm) to >60 mm s−1 for peak val-

ues found for the smallest particles. Deposition was at times

observed for the accumulation mode (0.2 to 0.8 µm), when

the wind was bringing more polluted European air masses

to the measurement point and the flux footprint was situated

in the less intensely urban northern wind sector. A tail from

the supermicron resuspension mode was not observed, which

would have led to dFm/dlogDp increasing again towards the

largest sizes.

Chemically resolved mass fluxes

Eddy covariance flux measurement systems for individual

(non-refractory) PM1 chemical components have recently

been developed based on the Aerodyne Aerosol Mass Spec-

trometer (AMS), utilising either a quadrupole (Q-) or time-

of-flight (ToF-) mass spectrometer (Nemitz et al., 2008;

Farmer et al., 2011). The former was applied during REPAR-

TEE I and the latter during REPARTEE II (Phillips et al.,

2012; Nemitz et al., 2012c). Both systems are capable of de-

riving fluxes of aerosol nitrate (NO−
3 ) and sulphate (SO2−

4 ),

but the Q-AMS derives the organic mass fluxes by circulat-

ing through a small number of pre-selected m/z, while the

ToF-AMS can monitor all m/z’s at 10 Hz, providing a more

robust organic mass flux and additional information on the

mass spectral “fingerprints” associated with the fluxes. Due

to its higher mass resolution the ToF-AMS can also derive

fluxes of NH+
4 .

Fluxes of SO2−
4 were near zero which is consistent with

measurements above other cities in the developed world (Ne-

mitz et al., 2008; Phillips et al., 2012) and suggests that there

are no significant sources of submicron SO2−
4 in the urban

environment. This is also consistent with the relatively small

gradients in SO2−
4 concentration that were measured between

the Tower and the Park, except for the period around 13–18

October 2006 (Sect. 4.2). Fluxes of NO−
3 were variable, with

small fluxes on some days and considerable emission on oth-

ers, contradicting the gradients which indicated smaller NO−
3

concentrations at ground level inside the Park than aloft.

There are two possible reasons for this apparent contradic-

tion: there could be a maximum of nitrate at an intermediate

layer so that fluxes at the tower are upwards, but concentra-

tions on the tower still higher than at ground level. More

probably, however, is that the Park is an efficient sink area

for NH4NO3 as discussed in Sect. 4.2. Both NH3 and HNO3

can deposit efficiently to vegetation, while long-term mea-

surements at a kerbside location indicate significantly higher

concentrations of NH3 at street level than on the BT Tower.

As a result, there is likely to be a potential for NH4NO3 evap-

oration in the Park at the same time as there is a potential for

NH4NO3 formation at the roadside location, with the latter

dominating the observed net flux above the city.

Non-refractory submicron chemical aerosol fluxes (as re-

solved by the AMS) were, however, dominated by the

organic aerosol fraction. Unlike the concentrations (see

Sect. 4.4) the fluxes could only be divided into two factors,

HOA and OOA, where other contributions (COA and SFOA)

will be convolved into these two factors. While OOA fluxes

were small and bi-directional, HOA showed clear diurnal cy-

cles with an average emission of 136 ng m−2 s−1 and midday

values of up to 600 ng m−2 s−1 during REPARTEE I. The

comparison of the HOA and estimated sub-micron aerosol

mass flux (Fig. 30c) confirms that HOA accounts for the bulk

of the submicron mass flux. The HOA/CO emission ratio was

0.024 ng HOA/ng CO, which is in the range of ratios derived

from concentration measurements. Interestingly, the HOA

flux somewhat lags the CO flux and the HOA/CO ratio peaks

in the evening, which indicates a change in the sources over

the day, with a source that is particularly high in HOA/CO

contributing in the evening. This might suggest a contribu-

tion of COA to the HOA flux in the evening and would be

consistent with the diurnal pattern of the COA concentration

observed in the Park and the lack of a quantitative link be-

tween COA and CO by multilinear regression (Allan et al.,

2010). The importance of cooking aerosol in contributing to

urban OA emissions and concentrations is further substanti-

ated by the emission ratio between accumulation mode par-

ticles and CO2 peaking at lunchtime and in the evening in

another UK city (Edinburgh) (Nemitz et al., 2012c).

4.10.5 Relationships between fluxes

Table 8 summarises the Pearson correlation coefficients be-

tween hourly fluxes of the different components measured

on the BT Tower. Note that the correlation coefficient can
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increase significantly if averaged diurnal values are consid-

ered (e.g. Langford et al., 2010): the averaging reduces the

effect of random errors on the individual flux measurements

and averages out any potential differences in the spatial pat-

tern of the emissions of the different pollutants. Clearly, a

correlation is no proof of a causal link in emissions or a com-

mon source, but some of the patterns are interesting:

– The ozone depletion in the urban air space correlates as

well with the emission of methanol as it does with CO

and CO2, although methanol is poorly correlated with

these two gases. This may indicate that while CO and

CO2 may be reasonable proxies for the NOx emission

that dominates the O3 destruction, the methanol flux

may reflect a second common control through the resi-

dence time and photochemical activity in the air space.

– The total UFP number flux correlates almost as well

with methanol, acetonitrile, acetone and isoprene as

it does with CO2 and CO. By contrast, the UFP flux

is poorly correlated with the flux of the accumulation

mode particles, which is not as much dominated by the

urban emission but also influenced by concurrent depo-

sition of accumulation mode particles advected into the

city.

– Of the other VOCs measured, the flux of acetonitrile

correlates best with that of isoprene – both compounds

are thought to have a biospheric contribution. Methyl-

benzenes, toluene, isoprene and acetone all correlate

with each other and form a cluster, possibly dominated

by the same sources.

4.10.6 Summary of flux experiments

The REPARTEE campaigns generated arguably the most

comprehensive dataset of pollutant fluxes in the urban en-

vironment to date, including the first urban eddy-covariance

flux measurements of ozone and carbon monoxide. The tur-

bulence follows the scaling laws expected for the convec-

tive mixed layer rather than the surface layer and decoupling

could be observed during some nights, especially during the

colder REPARTEE II period, when stable conditions were

more frequent. Thus, the fluxes measured at the tower are

affected not only by the surface emission, but transport and

storage as well as chemical conversions, but are nevertheless

closely linked to surface activity, at least during the day. In-

creased pollutant emissions in the morning, and close agree-

ment of measured annual CO2 flux with emission inventory

predictions suggests that long-term average fluxes are rea-

sonably robust. The comparison of other compounds with

bottom-up emission inventories is variable: emissions are

reasonably close for CO and some key VOCs, but fluxes of

some compounds (isoprene, acetaldehyde and acetonitrile)

are many times larger than emission inventories predict. In

addition, it was possible to measure fluxes directly of primary

aerosol using metrics that are not covered by the inventories.

A parameterization was derived for ultrafine particles (Eq. 6):

comparison of the diurnal cycles of both the predicted and

observed particle number flux for London (Fig. 28) suggests

that the model explained more than 90 % of the observed

variance (r2 > 0.9), although some individual features are

not reproduced. These are likely due to infrequent, fugi-

tive emissions or synoptic transport contributions that are not

fully captured in this simplistic approach. The diurnal results

however are in good agreement with Mårtensson et al. (2006)

and Martin et al. (2009), suggesting simple model parame-

terisations of emissions based on flux analyses perform well

over urban surfaces.

While UFP particles are closely linked to fluxes of CO and

CO2, the behaviour of the accumulation mode particle fluxes

is more complex, as these are also affected by the deposition

of regional aerosol to the city. The diurnal cycles of HOA and

CO in London and particle number and CO2 in Edinburgh

are both consistent with the contribution of cooking aerosol

emissions during lunch time and in the evening.

For the future we recommend complementing urban flux

measurements with profile measurements in the air space be-

low, to quantify storage effects. In addition, concurrent flux

measurements of NO and NO2 would assist greatly in the

interpretation of the O3 fluxes.

5 Synthesis and conclusions

Earlier analyses of data from single sites in London have

been instrumental in gaining an understanding of the air

pollution climate of a background site (Bigi and Harrison,

2010) and in the understanding of processes affecting traffic-

generated pollutants (e.g. Charron and Harrison, 2005; Har-

rison et al., 2011). In some cases paired sites have been used

(e.g. Charron et al., 2007) in order to better understand the

traffic-generated pollutants by subtraction of the roadside in-

crement. The REPARTEE study has advanced the science

considerably by simultaneous use of data from a number of

ground-level sites together with both concentration and flux

data from aloft on the BT Tower. It should be noted that the

fluxes measured on the tower are averaged over large flux

footprints (cf. Helfter et al., 2011), while the ground-based

measurements are made at individual locations within the ur-

ban matrix: in a source region in the case of M. Road and

a sink region in R. Park. This may be responsible for some

of the inconsistencies between the apparent vertical gradient

between Tower and Park and the fluxes. A further asset avail-

able to this study, which has not previously been used in stud-

ies of London, is the deployment of the Doppler lidar which

has provided valuable information on the vertical structure of

the atmosphere, and in particular, the mixing depths, turbu-

lence and transport time-scales.

A key question is how representative the sampling sites

are of Europe in general, and whether the two one-month
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snapshots well represent the longer-term position. Compar-

ative data for particulate matter are available from Putaud et

al. (2010). Concentrations of PM10 and PM2.5 at urban back-

ground sites in London (including North Kensington, as used

in REPARTEE) are fairly typical of north-western Europe

(excluding Scandinavia), similar to central Europe and gen-

erally lower than southern European sites. It is less easy to

compare chemical composition, as analytical protocols were

not identical across Europe, but the composition of PM10 at

London sites is fairly typical, as is the number concentration

of sub-µm particles (Putaud et al., 2010). Data for roadside

sites is less abundant, but Marylebone Road lies within the

range of other European sites (Putaud et al., 2010).

In REPARTEE I, the pollution levels were fairly typi-

cal of the annual mean. PM10 at NK averaged 26 µg m−3

during the month of REPARTEE, while the annual mean

was also 26 µg m−3. At M. Road, the monthly mean was

56 µg m−3, compared to an annual mean of 47 µg m−3. The

month of REPARTEE II was also fairly representative with

the monthly PM10 averages at NK and M. Road respec-

tively 29 µg m−3 and 48 µg m−3 compared to annual means

of 25 µg m−3 and 45 µg m−3.

The site at M. Road is on the northern boundary of the

London congestion zone. Introduction of the zone had a rel-

atively minor impact upon the emissions of traffic-generated

pollutants (Beevers and Carslaw, 2005) and consequently

only a small effect upon pollutant concentrations (Atkinson

et al., 2009).

The weather during the two campaigns was fairly typi-

cal of the autumn in London. Weather during the REPAR-

TEE I campaign was markedly warmer than in REPAR-

TEE II (mean 15.5 ◦C and 10.4 ◦C, respectively). This com-

pares with long-term averages for October of 12.05 ◦C (cor-

responding to REPARTEE I) and 9.9 ◦C for the mean of Oc-

tober and November (corresponding to REPARTEE II).

5.1 Local versus regional pollution

Earlier work (Charron et al., 2007) has emphasised the im-

portance of regional pollution in affecting concentrations of

particulate matter within London and has highlighted its im-

portance in relation to exceedences of the 50 µg m−3 24-h

Limit Value for PM10. By comparison of observations made

aloft at 160 m on the BT Tower with those made at ground

level in R. Park, it has been possible to gain a clearer under-

standing of the influence of regional processes. Because of

its relatively slow formation within the atmosphere and its

presence predominantly in the accumulation mode, sulphate

is an excellent marker of regional transport processes. For

the majority of the campaign period during REPARTEE I,

concentrations of sulphate on the BT Tower were insignif-

icantly different from those at ground level in R. Park and

during the campaign as a whole, the measured fluxes of sul-

phate on the BT Tower were generally near zero. However,

during the regional pollution episode from 14 to 19 October,

concentrations on the Tower exceeded those at ground level

(Fig. 11a) giving a clear indication that regionally transported

sulphate was driving the concentrations measured at ground

level. This work provides no significant evidence for forma-

tion of sulphate, which is a major component of London’s

particulate matter, within London itself. The behaviour of

nitrate shows some similarities to that of sulphate (Fig. 11b),

but also some differences and will be discussed later.

The behaviour of elemental and organic carbon showed a

marked contrast. In the case of elemental carbon (Fig. 11d),

which in the UK derives very largely from diesel vehicle

emissions, concentrations in R. Park exceeded those on the

BT Tower by a substantial margin except on one day when

the Tower showed a marginally higher concentration. This

is behaviour expected for a pollutant predominantly from a

strong ground level source within London. On the other

hand, organic carbon (Fig. 11a) showed a proportionately

smaller positive increment at the R. Park site relative to the

BT Tower suggestive of ground-level emissions of primary

organic carbon but a substantial regional presence of sec-

ondary organic carbon. The AMS results (Fig. 16) suggest

a slight excess of OOA (reflecting secondary organic car-

bon) over HOA (reflective of primary organic carbon from

road traffic at ground level). The flux data for OOA showed

fluxes that were small and bi-directional giving a clear in-

dication that regional processes dominate the concentrations

of secondary organic aerosol within London and that forma-

tion within the city itself, although possibly having influence

from time-to-time, is not a significant contributor overall. On

the other hand, the AMS HOA fraction reflecting primary

traffic aerosol showed a flux accounting for the bulk of the

submicron mass flux.

The comparison of particle size distributions between

M. Road, R. Park and the BT Tower (Fig. 13) shows that par-

ticle volume reduces substantially from M. Road to R. Park

to BT Tower, as would be expected, and that the peak in

the accumulation mode distribution becomes progressively

coarser from M. Road to BT Tower probably reflecting the

greater relative importance of more aged regionally trans-

ported particles at the altitude of the Tower. There is also a

notable reduction in the coarsest (>10 µm) particle mode at

R. Park and the BT Tower relative to M. Road which might

possibly be an artefact of different sample inlet characteris-

tics, but more probably reflects an important source of coarse

particles from road traffic at the roadside site which are sig-

nificantly reduced within the Park and on the Tower due to

the short atmospheric lifetime of this size fraction with re-

spect to dry deposition.

5.2 Aerosol particle dynamics

One of the less expected findings of this study was the re-

markable change in the nanoparticle region of the particle

size distributions between the M. Road, R. Park and BT

Tower sites. This is not described in detail in this overview as
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it is reported in depth by Dall’Osto et al. (2011). This study

has provided the most compelling evidence published to date

for the volatile loss of semi-volatile hydrocarbon components

of the aerosol during advection of traffic-generated particles

into R. Park and vertical transfer to the BT Tower site. It has

long been known that the nucleation mode within fresh road

traffic exhaust arose from the condensation of semi-volatile

compounds during mixing of hot exhaust gases with cooler

ambient air, but the subsequent behaviour of such particles

had not previously been elucidated so clearly. There seems

little doubt from the observations during REPARTEE that

once such particles leave the immediate environment of the

road and the vapour phase components become diluted with

cleaner air, such particles begin to shrink by evaporation. The

advection times of particles from road traffic sources to the

R. Park site and the vertical transfer to the BT Tower site

would typically take tens of minutes (Barlow et al., 2011),

which gives an indication of the timescale for shrinkage. In

the case of the BT Tower site, where transport times under

the more stable conditions could extend to around an hour,

such nucleation mode particles are totally lost from the mea-

sured size distribution having shrunk to below 5 nm diame-

ter. The shrinkage process has clearly been shown to relate to

vertical transport times using turbulence as a surrogate mea-

sure (Dall’Osto et al., 2011) which is only possible because

of the high quality data on vertical wind velocities as a func-

tion of height available from the Doppler lidar.

5.3 Sources of organic aerosol

Application of the elemental carbon tracer method (Castro et

al., 1999) to the R. Park data indicates a primary OC/EC ratio

of 1.0 in the PM2.5 fraction. This is somewhat higher than the

minimum OC/EC ratio measured in Birmingham of 0.65 by

Harrison and Yin (2008). However, Pio et al. (2011) have re-

cently demonstrated that minimum OC/EC ratios are around

0.3–0.4 very close to a source of traffic emissions and pro-

gressively increase with the distance from source. This may

be attributable to mixing with particles from sources with

higher intrinsic OC/EC ratios such as from wood burning,

or relatively rapid formation of secondary organic carbon

(SOC) from volatile precursors which associates itself with

the primary particles thereby raising the minimum ratio. The

higher OC/EC ratio in R. Park is consistent with the greater

distance from road traffic activity than the Birmingham city

centre site and the source of VOCs from vegetation in the

Park. If one takes the minimum OC/EC ratio as descriptive

of this “primary” organic carbon, then the mean concentra-

tion of primary organic carbon at R. Park in REPARTEE I

was 1.51 µg m−3 with 1.43 µg m−3 of secondary organic car-

bon. If the same primary ratio is applied to the data from the

BT Tower, the split at the Tower is estimated as 0.96 µg m−3

of primary organic carbon and 1.40 µg m−3 of secondary or-

ganic carbon, almost equal to that measured at ground-level.

While there is inevitably significant uncertainty associated

with these figures, they are highly suggestive of regional pro-

cesses dominating the secondary organic carbon concentra-

tions and of only a relatively minor influence of processes

within London itself upon concentrations of SOC. Such an

interpretation is broadly consistent with the results of the

AMS measurements made in R. Park during REPARTEE I

in which 53 % of organic aerosol mass was attributed to sec-

ondary OOA with 47 % attributable to the sum of HOA and

COA. It is also consistent with the flux data referred to above.

The AMS measurements have provided valuable differen-

tiation of the organic aerosol according to source. The break-

down to OOA and HOA had been seen regularly in AMS

studies but the work in REPARTEE (and associated work in

Manchester) was one of the first identifications of cooking

organic aerosol, COA, as distinct from meat cooking aerosol,

as a significant contributor to atmospheric concentrations.

Since these observations, there have been a number of other

reports of the COA factor from other parts of the world. The

identification of solid fuel organic aerosol, SFOA, largely

from wood burning in the REPARTEE II data, but not dur-

ing the warmer period of REPARTEE I, is also important and

has led to further studies with wood smoke tracers in London.

The ATOFMS was less successful in characterising sources

of organic aerosol, although it was able to identify two parti-

cle types termed Ca-EC and OC which correlated with traffic

activity together with two organic particle types with a much

more complex behaviour which made clear source attribution

very difficult.

5.4 Processes affecting nitrate

Some aspects of nitrate behaviour were broadly similar to

those of sulphate, but other aspects proved very different. For

periods with relatively low concentrations of nitrate, there

was no marked difference between concentrations in R. Park

and on the BT Tower (Fig. 11b). However, during the episode

period commencing around 7 October 2006 and continuing

until 19 October 2006, there was a very major depression

of measured concentrations at the R. Park site. The com-

parison of nitrate data from the Partisol samples and GRAE-

GOR instrument are suggestive of a substantial negative sam-

pling artefact for the Partisol data even on the BT Tower, and

this is likely to have affected both sites. Our earlier work

on the size distribution of nitrate (Abdalmogith et al., 2006)

has indicated that at lower nitrate concentrations in the UK

atmosphere, the nitrate is largely present in the form of in-

volatile sodium nitrate, but at higher concentrations semi-

volatile ammonium nitrate predominates. This is consistent

with the form of the instrument comparison shown by Ne-

mitz et al. (2012a). The large excess of nitrate on the BT

Tower relative to R. Park during the pollution episode is

strongly suggestive of regional transport of nitrate and mix-

ing down to influence concentrations at R. Park. However,

the much greater depression of concentrations of nitrate rela-

tive to sulphate at R. Park suggests that the strong potential of
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vegetation to remove gas phase nitric and ammonia is likely

to have promoted the dissociation of ammonium nitrate lead-

ing to the much lower ground-level concentrations. The fact

that fluxes of nitrate measured on the BT Tower were vari-

able with small downward fluxes on some days and con-

siderable emissions on others is consistent with higher am-

monia concentrations in heavily trafficked areas suppressing

the dissociation of ammonium nitrate and leading to ammo-

nium nitrate formation within the urban atmosphere. Ab-

dalmogith and Harrison (2006) in an analysis of urban and

rural data suggested a modest level of net formation of ni-

trate within the boundaries of London. The results of this

study are consistent with that picture but add to its mech-

anistic understanding. They indicate that the NH3-HNO3-

NH4NO3 system is sufficiently dynamic to result in a consid-

erable variability of NH4NO3 at ground level. Measurements

of nitrate aerosol with the ATOFMS showed two types of

nitrate-rich particle with contrasting behaviour. The region-

ally transported nitrate dominated during the main episode

period in the middle of the REPARTEE I campaign and the

ATOFMS data show clearly the diurnal cycling of nitrate into

the aerosol as the air temperature reduces and humidity in-

creases and release from the particles in the warmer part of

the day. The ATOFMS also identified a secondary type of

nitrate-rich particle which appeared to be associated with lo-

cal formation processes and occurred in the main at times

outside of the long-range transport episode. This observation

further supports the dynamic behaviour of NO−
3 formation,

which in the urban environment can be re-located onto the

locally emitted aerosol. The combination of ATOFMS and

AMS provided a very powerful combination in elucidating

the processes affecting nitrate aerosol.

Measurements from other instruments are also highly rel-

evant to the question of nitrate concentrations. The mea-

surements of dinitrogen pentoxide, N2O5, and the nitrate-

free radical, NO3 during REPARTEE II show considerable

episodicity of formation at the level of the BT Tower. Be-

cause of the strong excess of NO from “fresh” pollution at

ground-level, formation of NO3 and N2O5 at ground-level is

likely to be insignificant. While it was not possible to fol-

low the incorporation of N2O5 and NO3 into aerosol, this is

an inevitable sink for these species and it appears certain that

there will have been formation of nitrate aerosol aloft at some

times during the REPARTEE II campaign. Such formation of

nitrate above the city may have contributed to some of the ob-

served downward fluxes of nitrate. The highly variable and

sometimes rather large concentrations of 6[NO3] + [N2O5]

observed when the LED-BBCEAS sampling height was de-

coupled from the surface have implications for the some-

times efficient, sometimes highly patchy nature of night-time

gas-phase oxidation chemistry initiated by the NO3 radical.

5.5 Gas phase species

The gas phase was not a major focus of this study but the

results available from the many measurements undertaken

provide some useful insights into gas phase species and pro-

cesses. The examination of vertical profiles clearly shows

the predominant influence of NOx, predominantly NO, and

a source of ozone aloft. The oxidant plot (Fig. 20) demon-

strates that the source of ozone is the same both at ground

level and aloft but the differing gradients of the plot of Ox

versus NOx suggests some rather different processes. The

significant upward gradient of the plot for Marylebone Road

indicates 19 % of NOx to comprise primary NO2 consistent

with other estimates of traffic emissions for around the same

time. However, the lack of a significant upward gradient in

the case of the background site at North Kensington is sur-

prising. Concentrations of NOx on the BT Tower were gen-

erally too low to generate a meaningful plot, with variation in

background ozone tending to dominate the behaviour. How-

ever, the diurnal variation of the intercept in the oxidant plot

(shown in Fig. 21) is interesting in showing significant for-

mation of regional ozone during the afternoon period affect-

ing all sites, even in October/November during which sun-

light levels are relatively modest. Alternatively a deepening

boundary layer may have brought ozone-rich air from aloft.

The other notable feature of the gas phase data is the fact

that the flux estimations indicate that bottom-up estimates

of emissions of carbon dioxide are very close to those esti-

mated from the flux data. Fluxes of some some VOCs were

highly correlated with those of carbon monoxide and emis-

sion rates estimated from the fluxes corresponded within a

factor of two to the bottom-up emissions in the National At-

mospheric Emissions Inventory for benzene, toluene, ethyl-

benzene and acetone. However, for methanol, acetaldehyde,

isoprene and acetonitrile, measured fluxes were many times

larger than the emission inventory reports and this is a matter

warranting further investigation.

5.6 Flux estimation

Careful investigation of the atmospheric properties measured

on the Tower gave confidence that it was a suitable platform

for the estimation of vertical fluxes. Combination of these

measurements with the availability of data from the Doppler

lidar proved an extremely valuable combination. Not un-

expectedly, fluxes tended to peak when atmospheric mixing

was at its best, and at certain periods the flux measurement

site was above the atmospheric mixed layer and fluxes were

suppressed although there was some evidence of pollutant

storage. Advection might be important during these periods

as a mechanism for removing pollutants from the local at-

mosphere. The REPARTEE campaigns generated a highly

comprehensive set of pollutant flux data including the first

urban eddy covariance flux measurements of ozone and car-

bon monoxide. The measured ozone fluxes indicate that the
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urban air space provides a much more efficient sink for ozone

than vegetation canopies. This has the substantial advantage

of reducing ground level ozone concentrations but at the cost

of increasing nitrogen dioxide. In addition, other pollutants

emitted in the city have the potential to contribute to tropo-

spheric ozone production downwind.

5.7 Purposeful tracer experiments

Although these took place during REPARTEE, they have not

been used in interpretation of other datasets from the two

campaigns. However, looked at on their own, they make

an important contribution to understanding urban dispersion

processes. The studies showed that the time taken for tracer

to reach the measurement height on the BT Tower through

turbulent transport was around 10 min for neutral condi-

tions and as long as 20–50 min under the most stable condi-

tions encountered, consistent with estimates derived from the

Doppler lidar results. The lateral plume spread was well de-

scribed by a Gaussian distribution. The results yielded values

of an empirical parameter, which together with meteorolog-

ical, building height and release rate data, allows estimation

of downwind time-integrated concentrations, highly valuable

in estimating the consequences of accidental and terrorist re-

leases of toxic substances.

6 Progress against objectives

– To study aerosol chemical and dynamical processes

within the atmosphere of central London in three spa-

tial dimensions. This has been achieved successfully

especially in relation to aerosol dynamical processes.

The experiments have provided the first convincing

demonstration of the volatilisation of traffic-generated

nanoparticles under realistic atmospheric conditions.

Results from the project also highlight the very dynamic

behaviour of ammonium nitrate.

– To measure the fluxes of selected aerosol and gas phase

species above the city, and where possible, compare

fluxes with estimates derived from emission invento-

ries. Flux measurement work has succeeded in pro-

viding a very large base of information on the fluxes

of nanoparticles, accumulation mode particles, specific

chemical components of the aerosol and a range of gas

phase species. Processes which determine those fluxes

have been substantially elucidated. Comparisons with

emission inventories have shown a good agreement for

a number of substances, most notably carbon dioxide

but has highlighted major discrepancies for other com-

pounds including methanol, isoprene, acetaldehyde and

acetonitrile.

– To quantify gradients in selected aerosol and trace gas

species from ground level to altitudes of sampling on

the BT Tower and to use such information to better

understand the respective roles of local emission, lo-

cal transformations and regional transport of pollutants

in influencing the composition within and above Lon-

don. The consideration of the flux and vertical pro-

file data has clearly demonstrated the important role of

regional transport in influencing concentrations of sul-

phate, nitrate and secondary organic compounds within

the atmosphere of London. While there is evidence for

some secondary formation of organic aerosol and nitrate

within the atmosphere of London, this is relatively mod-

est and no evidence is seen for the formation of sulphate

within London itself.

– To study the structure of the atmospheric boundary

layer and the influence of boundary layer vertical struc-

ture upon trace gas and aerosol fluxes and air pol-

lution processes, especially in the context of diurnal

changes. The application of the Doppler lidar to the

measurement of atmospheric structure and turbulence

has proved extremely successful and has provided valu-

able information to assist in the interpretation of the flux

data. Fluxes are influenced by source strength but typi-

cally peak when the atmosphere is best mixed in the ver-

tical. Mixed layer depths shallower than the sampling

point on the BT Tower were encountered on around

40 % of nights during this autumn period, which showed

highly suppressed vertical fluxes, with other data indica-

tive of some pollutant storage and the potential for ad-

vective loss of pollutants from the city.

– To deploy purposeful tracer releases at ground level

while monitoring the surface and aloft in order to eval-

uate the dispersion of trace gases released at low level

within the city. New data have been generated which

provide important insights into the travel time of trace

gas releases at ground level within London and the form

of the downwind plume.

– To determine spatial differences in aerosol particle size

distributions and to interpret those differences in terms

of the sources and physico-chemical transformations

responsible. This area of work has been most suc-

cessful in relation to the number size distributions of

traffic-generated nanoparticles which have been shown

to evolve substantially with advection away from the

traffic source and vertical mixing to the sampling point

on the BT Tower. The predominant process appears

to be one of particle shrinkage due to evaporative loss

of semi-volatile materials. Particle size distributions

within the accumulation and coarse particle ranges have

also been contrasted and reflect the physico-chemical

processes affecting particle behaviour.
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– To study the properties of nitrate aerosol in the at-

mosphere of London together with mechanisms of

formation, physico-chemical properties and dynamics

of nitrate particles. This area of work would have been

more successful had planned continuous measurements

of ammonia and nitric acid been achieved at more than

one site. Nonetheless, the combination of flux data, ver-

tical profiles between the Tower and R. Park and the

insights provided by both the aerosol mass spectrome-

ter and Aerosol Time-of-Flight Mass Spectrometer have

shed significant light on the behaviour of nitrate in the

urban atmosphere. The diurnal cycling of nitrate be-

tween aerosol and gas phase is clearly seen through the

use of the ATOFMS and AMS. There is evidence both

for net formation and loss of nitrate consistent with the

extremely dynamic behaviour of semi-volatile ammo-

nium nitrate. The measurements of N2O5 and NO3 on

the BT Tower have confirmed the ability of nocturnal

reactions of nitrogen dioxide and ozone to lead to ni-

trate formation although the transition into aerosol was

not observed directly due to an absence of the necessary

instrumentation. However, the ATOFMS data demon-

strates this process in REPARTEE I.

– To throw new light on the source apportionment of PM1,

PM2.5 and PM10 in the atmosphere of London. The

mass closure study has shown the dominance of sul-

phates, nitrates and carbonaceous material in making up

PM2.5 within the atmosphere of London. Comprehen-

sive information on PM10 composition was not sought

although some data were generated concerning the sea

salt component of PM10. Source apportionment data

has come from the AMS and ATOFMS instruments giv-

ing valuable quantitative information on primary and

secondary components of the organic aerosol includ-

ing one of the first reports of cooking organic aerosol

(COA) determined from an AMS instrument.

Supplementary material related to this

article is available online at:

http://www.atmos-chem-phys.net/12/3065/2012/

acp-12-3065-2012-supplement.pdf.
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