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The Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission will carry into space the

Ocean Color Instrument (OCI), a spectrometer measuring at 5 nm spectral resolution

in the ultraviolet (UV) to near infrared (NIR) with additional spectral bands in the

shortwave infrared (SWIR), and two multi-angle polarimeters that will overlap the OCI

spectral range and spatial coverage, i. e., the Spectrometer for Planetary Exploration

(SPEXone) and the Hyper-Angular Rainbow Polarimeter (HARP2). These instruments,

especially when used in synergy, have great potential for improving estimates of

water reflectance in the post Earth Observing System (EOS) era. Extending the top-

of-atmosphere (TOA) observations to the UV, where aerosol absorption is effective,

adding spectral bands in the SWIR, where even the most turbid waters are black

and sensitivity to the aerosol coarse mode is higher than at shorter wavelengths,

and measuring in the oxygen A-band to estimate aerosol altitude will enable greater

accuracy in atmospheric correction for ocean color science. The multi-angular and

polarized measurements, sensitive to aerosol properties (e.g., size distribution, index

of refraction), can further help to identify or constrain the aerosol model, or to retrieve

directly water reflectance. Algorithms that exploit the new capabilities are presented,

and their ability to improve accuracy is discussed. They embrace a modern, adapted

heritage two-step algorithm and alternative schemes (deterministic, statistical) that

aim at inverting the TOA signal in a single step. These schemes, by the nature of

their construction, their robustness, their generalization properties, and their ability
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to associate uncertainties, are expected to become the new standard in the future. A

strategy for atmospheric correction is presented that ensures continuity and consistency

with past and present ocean-color missions while enabling full exploitation of the new

dimensions and possibilities. Despite the major improvements anticipated with the PACE

instruments, gaps/issues remain to be filled/tackled. They include dealing properly with

whitecaps, taking into account Earth-curvature effects, correcting for adjacency effects,

accounting for the coupling between scattering and absorption, modeling accurately

water reflectance, and acquiring a sufficiently representative dataset of water reflectance

in the UV to SWIR. Dedicated efforts, experimental and theoretical, are in order to gather

the necessary information and rectify inadequacies. Ideas and solutions are put forward

to address the unresolved issues. Thanks to its design and characteristics, the PACE

mission will mark the beginning of a new era of unprecedented accuracy in ocean-color

radiometry from space.

Keywords: ocean color, aerosols, atmospheric correction, hyper-spectral remote sensing, multi-angle

polarimetry, PACE mission

INTRODUCTION

Importance of Water Reflectance
The electromagnetic radiation (radiance) emanating from awater
body at solar wavelengths, or water-leaving radiance, normalized
by the incident solar irradiance at the surface defines “remote
sensing” reflectance and, to an angular factor, water reflectance.
Water body refers to oceans, seas, lakes, ponds, wetlands,
rivers, and smaller pools of water, and the terminology marine
reflectance is often used for oceanic and coastal waters. Water
reflectance depends on light-matter interactions, therefore on the
concentration and type of optically active constituents present in
the water column and on the state of the air-water interface. The
optically active constituents include water molecules, bubbles,
and a variety of hydrosols and dissolved organic and inorganic
materials (bacteria, viruses, phytoplankton, organic detritus,
minerals, nitrates, bromides, and humic and fulvic acids). The
radiative processes involved are elastic and inelastic scattering
by water molecules (Rayleigh and Raman, respectively), elastic
scattering by bubbles and hydrosols, absorption by water
molecules and hydrosols, absorption by dissolved substances,
fluorescence by phytoplankton and dissolved compounds,
photoluminescence and bioluminescence by a variety of marine
organisms, and Fresnel reflection/refraction at the wavy surface.
These processes are generally fast, i.e., quasi instantaneous, but
some are slow (phosphorescence). They interact in emitting,
transmitting, absorbing, and reflecting light, contributing to
the final reflectance. Water reflectance is an apparent, not
intrinsic, optical property (depends on geometry), but its value
is largely determined by the inherent properties of the water
body, i.e., absorption and scattering coefficients, not by variations
in directional illumination (angular distribution of downward
radiance) or the viewing direction, providing a good—certainly
convenient—way to characterize a water body.

Owing to this link to optical and biogeochemical variables,
and despite the relatively small penetration depth of solar
radiation in the water column, observations of spectral water

reflectance, commonly referred to as “water color” (or “ocean
color” in the case of marine waters), constitute a major tool
to gather information about water constituents and associated

processes (e.g., primary production), complementing traditional
physical, biological, and chemical measurements of the euphotic
zone. Spectral water reflectance gives access to chlorophyll-a,
-b, and –c and other phytoplankton pigment concentrations,

diffuse attenuation coefficient, euphotic depth, inherent

optical properties (absorption and scattering coefficients),

dissolved organic matter, total suspended matter, particulate

organic and inorganic carbon, phytoplankton physiological

properties (carbon-to-chlorophyll ratio, fluorescence quantum
yield), phytoplankton taxonomic groups (based on size
and/or pigments), and primary production (see, IOCCG,
2012). Knowing these parameters is essential to advance our
understanding of the biological pump and carbon/nutrient
cycling, i.e., processes that affect the ocean uptake of atmospheric
carbon dioxide and the functioning of aquatic ecosystems. The
information allows one to confront biogeochemical models
with actual data, assimilate optical properties in ecosystem
models, quantify complex evolutionary rates, determine
biological-physical interactions, and clarify the photochemistry
of dissolved organic matter, and it provides key water quality
and ecological indicators for managing aquatic environments.
Applications and societal benefits of ocean color radiometry
are discussed with illustrative examples in IOCCG (2008). The

retrieval methodologies exploit differences or specific features
in the spectral absorption and scattering properties of water

constituents that imprint on the observed reflectance, for

example larger chlorophyll-a absorption in the blue than in the
green to infer chlorophyll-a concentration, or spectral slope

of the backscattering coefficient to estimate particle size. The
inversion schemes and empirical algorithms, including many
variants, are described extensively in the literature; see the

reviews of IOCCG (2006) and Werdell et al. (2018) for inherent
optical properties and IOCCG (2014) for phytoplankton types.
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Need to Observe Water Reflectance From
Space
Due to the vastness and remoteness of the oceans, traditional
observing platforms such as ships, moorings, free-drifting floats,
and even aircraft, cannot collect marine reflectance data at the
required spatial and temporal scales (local to global, hour to
decade) to resolve the highly dynamic nature of biogeochemical
phenomena. Turbulent diffusion, vertical mixing, advection,
upwelling, and the life characteristics of marine organisms
control these scales, resulting in complex patterns of ocean color
variability (e.g., eddies, plumes, and fronts). A ship observing at
a point in space and time, for example, cannot detect changes
that may occur a short distance away from the station and
before/after the measurements, and interpolating information
from discrete stations may not capture actual variability.
Only satellite instruments can provide, via water reflectance
observations, a synoptic view of algal blooms, phytoplankton
community structure, primary production, sediment plumes, oil
spills, benthic habitats, and linkages between biology and the
physical/chemical environment (e.g., Platt et al., 2008), although
water reflectance is only sensitive to the surface layer (about
one attenuation depth). Thanks to their global, repetitive, and
long-term capability, satellite instruments constitute the only way
to quantify and monitor the role of the ocean as a sink for
carbon, to describe coherently inter-annual variability associated
to large-scale phenomena (e.g., El Niño), to detect trends in
carbon fixation, and to address how biological carbon uptake
and aquatic ecosystems respond to climate change (National
Research Council, 2008). Note, in this context, that marine
reflectance may have a clearer signature of climate than derived
quantities like chlorophyll concentration, because it integrates all
the optically important water constituent alterations (Dutkiewicz
et al., 2016). Depending on the applications, the satellite ocean
color data requirements, in terms of spatial resolution, spectral
resolution, frequency, and coverage, vary widely. For example,
studies of phytoplankton phenology, carbon inventory, heat
budget and ocean dynamics, and ecosystem management need
global multi-spectral images at 1 km resolution every 2–3 days,
but monitoring of coral reefs and sea grass beds requires
multi- to hyper-spectral observations twice a year at a fine
10m resolution over coastal and estuarine regions, and tracking
harmful algal blooms necessitates frequent (hourly) hyper-
spectral observations over specific areas (National Research
Council, 2011). The applications are so diverse that the various,
sometimes-conflicting data requirements, cannot be met with a
single observing satellite (Muller-Karger et al., 2018).

Algorithms to Retrieve Water Reflectance
From Space
Water reflectance observations from space are affected by a
variety of interfering processes associated with the propagation
of electromagnetic radiation in the atmosphere-surface system.
In clear sky conditions, these processes are gaseous absorption,
molecular scattering, aerosol scattering and absorption, and
water surface (Fresnel) reflection. In cloudy conditions,
scattering by cloud droplets makes it very difficult to sense

the surface (the cloud signal largely dominates), except when
clouds are optically thin or occupy a small fraction of the
pixel, i.e., their effect on pixel reflectance is less than 0.2. The
influence of the atmosphere and surface must be removed in the
satellite imagery to give access to water reflectance, the signal
of interest (containing information about water constituents).
This is commonly referred to as atmospheric correction, even
though the process includes removing surface effects. Gaseous
absorption is easy to handle when the satellite sensors observe in
atmospheric windows (the usual case), but complicated to correct
when measurements are made in absorbing bands (e.g., hyper-
spectral sensor observing in the entire visible spectrum), and
molecular scattering can be computed accurately. The influence
of scattering by aerosols, highly variable in space and time,
and of reflection by a wind-ruffled surface, which may exhibit
whitecaps, is especially difficult to correct. In coastal regions,
absorbing aerosols, complex water optical properties, and bottom
influence (non-null water reflectance in the near infrared), and
the proximity of land (adjacency effects) introduce further
difficulty. Fundamentally, accurate atmospheric correction is not
easy to achieve since the contribution of the water body may
only represent a small fraction of the measured signal, typically
10% in the blue over clear waters and a few percent over waters
rich in phytoplankton and/or yellow substances. The accuracy
requirements depend on the application, but based on the
experience with the Coastal Zone Color Scanner (CZCS) proof-
of-concept the announced goal is that the uncertainty in the
water reflectance of clear (oligotrophic) waters at 443 nm should
not exceed ±5% or ±0.002 (e.g., IOCCG, 2013). Atmospheric
correction algorithms, therefore, aim at achieving this goal.

The standard approach for atmospheric correction, first
suggested by Gordon (1978), consists of (1) estimating the
aerosol/surface reflectance in the red and near infrared where
the water body can be considered as totally absorbing (i.e.,
black), and (2) extrapolating the aerosol/surface reflectance to
the shorter wavelengths. Algorithms based on this approach have
been developed successfully and employed for the operational
processing of data from most satellite ocean-color sensors. In
the coastal zone where waters often contain inorganic material,
the assumption of null water reflectance in the red and near
infrared is not valid, and improvements to the standard algorithm
have been proposed. The improvements in these regions consider
spatial homogeneity for the spectral ratio of the aerosol and water
reflectance in the red and near infrared (Ruddick et al., 2000) or
for the aerosol type, defined in a nearby non-turbid area (Hu
et al., 2000). They also use a bio-optical model (Moore et al.,
1999; Siegel et al., 2000; Stumpf et al., 2003; Bailey et al., 2010),
exploit differences in the spectral shape of the aerosol and marine
reflectance (Lavender et al., 2005), or make use of observations
in the short-wave infrared, where the ocean is black even in the
most turbid situations (Gao et al., 2000; Wang and Shi, 2007; Oo
et al., 2008; Wang et al., 2009).

Another approach to atmospheric correction is to determine
simultaneously the key properties of aerosols and water
constituents of the coupled system by minimizing an error
criterion between the measured top-of-atmosphere (TOA)
reflectance and the output of a radiation transfer (RT) model
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(e.g., Land andHaigh, 1997; Chomko andGordon, 1998; Stamnes
et al., 2003; Kuchinke et al., 2009; Shi et al., 2016). This belongs
to the family of deterministic solutions to inverse problems.
Through systematic variation of candidate aerosol models,
aerosol optical thickness, hydrosol backscattering coefficient,
yellow substance absorption, and chlorophyll-a concentration,
or a subset of those parameters, a best fit to the spectral
top-of-atmosphere reflectance (visible and near infrared) is
obtained in an iterative manner. The advantage of this single-
step approach, compared with the standard, two-step approach,
resides in its ability to manage situations of both Case 1 and
Case 2 waters. It also works in the presence of weakly and
strongly absorbing aerosols, even if the vertical distribution of
aerosols, an important variable (which governs the coupling
between aerosol absorption and molecular scattering), is usually
not varied in the optimization procedure. A main drawback
is that the inversion relies on a water reflectance model that
may not represent well bio-optical variability across diverse
aquatic ecosystems. Another drawback is that convergence of the
minimizing sequence may be slow in some algorithms, making it
difficult to process large amounts of satellite data. To cope with
this issue, a variant proposed in Brajard et al. (2006) and Jamet
et al. (2005) consists of approximating the operator associated
to the RT model by a function which is faster in execution than
the RT code, e.g., by neural networks. It may also not be easy
to differentiate absorption by aerosols and water constituents
like yellow substances, processes that are indistinguishable in the
observed TOA signal. As a result, the retrievals may not be robust
to small perturbations on the TOA reflectance. This reflects the
fact that atmospheric correction is an ill-posed inverse problem;
in particular, different values of the atmospheric and oceanic
parameter can correspond to close values of the TOA reflectance
(Frouin and Pelletier, 2015). In the context of deterministic
inverse problem, stability of the solution can be obtained by
regularization, but regularization strategies are not implemented
in the approaches described above.

Another route is to cast atmospheric correction as a statistical
inverse problem and to define a solution in a Bayesian context.
In this setting, some algorithms aim at estimating, based
on simulations, a function performing a mapping from the
TOA reflectance to the water reflectance. In Schroeder et al.
(2007), a neural network model is fitted to simulated data.
A similar approach is studied in Gross-Colzy et al. (2007a,b),
where the (finite-dimensional) TOA signal, corrected for gaseous
absorption and molecular scattering, is first represented in a
basis such that the correlation between the ocean contribution
and atmosphere contribution is, to some extent, minimized.
This representation of the TOA reflectance makes the function
approximation problem potentially easier to solve. In these
studies, data are simulated for all the observation geometries.
In Pelletier and Frouin (2004, 2006) and Frouin and Pelletier
(2007), the angular information is decoupled from the spectral
reflectance, and atmospheric correction is considered as a
collection of similar inverse problems indexed by the observation
geometry. In Frouin and Pelletier (2015), the solution of
the inverse problem is expressed as a probability distribution
that measures the likelihood of encountering values of water

reflectance given the TOA reflectance (i.e., after it has been
observed). This posterior distribution is a very rich object.
Its complete reconstruction is computationally prohibitive, but
one may extract (approximate) expectation and covariance,
which gives an estimate of the water reflectance and a
quantification of uncertainty in the water reflectance estimate.
This is accomplished using partition-based models. In Saulquin
et al. (2016), Gaussian mixture models represent the prior
distributions of reference water and aerosol reflectance spectra,
and maximum a posteriori estimation (based on optimization
from random initializations) is used in the numerical inversion.
Performance of the statistical algorithms depends critically on
prior knowledge of aerosol properties and water reflectance and
noise in the measurements.

Comparing the aforementioned schemes, the chief advantage
of the standard scheme is that no assumption is made about water
reflectance, the signal to retrieve, except to account for the non-
black reflectance of Case 2 waters in the near infrared in some
variants. However, such methods make significant assumptions
about the atmospheric state, and often cannot actively account
for multiple scattering interactions between the atmosphere and
ocean. In all the other schemes, the solution is constrained by
a reflectance model with (often empirical) bio-optical relations
or picked in an (relatively small) ensemble of actual spectra. The
reflectance model or the ensemble of possible solutions may not
be representative of actual variability, especially if the objective is
general applicability, i.e., a scheme that functions adequately for
all types of waters. In fact, the number of parameters to vary in
optimization schemes is usually limited, otherwise convergence
may be too difficult to achieve, which restricts the use of the
reconstructed water reflectance.

Atmospheric Correction Issues
The atmospheric correction algorithms so far proposed, whether
empirical (standard approach, 2 steps), deterministic (spectral
optimization, 1 step), or statistical (Bayesian inference, 1 step),
rely on RT codes to generate look-up tables (e.g., Rayleigh
scattering, aerosol optical properties) and/or simulate the TOA
signal and its components. The codes have intrinsic errors
depending on the way the RT equation is solved (scalar
versus vector, matrix operator, doubling-adding, successive-
orders-of-scattering, spherical harmonics, Monte Carlo, etc.)
and how the atmosphere-surface-water system is modeled
(e.g., number of layers). They employ parameterizations based
on current knowledge to specify processes such as surface
reflection by the agitated surface and diffuse reflection by
whitecaps, but these parameterizations have uncertainties. The
calculations are generally performed assuming a plane-parallel
atmosphere, which yields significant errors with respect to
calculations in a spherical-shell atmosphere, even at low Sun
and view zenith angles. No horizontal changes in atmospheric
properties are considered for slanted geometries. The “large
target” formalism, in which surface reflectance is assumed
homogeneous spatially, is used to express the RT equation, but
this treatment is not appropriate near clouds, land, and sea ice,
and in regions with high water reflectance contrast (adjacency or
environment effects).
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As already mentioned above, atmospheric correction is an
ill-posed inverse problem, i.e., even without noise the different
states of the atmosphere, surface, and water body may match
well of the satellite signal. Determining the aerosol model
from a somewhat arbitrary set of candidates according to the
spectral dependence of the aerosol reflectance in the red, near
infrared, and shortwave infrared, a key feature of the standard
algorithm, does not guarantee that the selected model is the
actual one. First, an aerosol model cannot be unambiguously
identified from observations in the red and infrared alone,
especially without polarized and multi-angular information. In
this spectral range, sensitivity to small particles is limited (these
particles scatter more light backward to space than large particles,
i.e., they have a strong influence on the TOA signal), and it
is not possible to distinguish absorbing aerosols from non-
absorbing ones since the coupling between molecular scattering
and aerosol absorption is ineffective. This inability to deal
properly with absorbing aerosols constitutes a major drawback
of the standard scheme. Second, the aerosol model selection
strongly depends on the set of models to choose from. Defining
the models conveniently so that they uniquely describe the
range of observed spectral dependence of aerosol reflectance
is not satisfactory, even though the models may be obtained
from measurements (e.g., AERONET). One may argue that
selecting the proper aerosol model is a secondary issue since
the objective of the atmospheric correction is to retrieve water
reflectance and not aerosol properties, but extrapolating aerosol
reflectance to UV and visible wavelengths with an incorrect
model may yield inaccurate estimates of the aerosol signal at
those wavelengths (coupling terms may be quite different). Kahn
et al. (2016) examined the sensitivity of ocean color retrievals
to aerosol amount and type. They showed, from comparisons
with AERONET observations, that aerosol optical thickness in
the blue derived from the Sea-viewingWide Field-of-view Sensor
(SeaWiFS) was overestimated, leading to systematic differences
in derived water reflectance.

Another issue with aerosols is their vertical distribution, which
is fixed in the standard scheme and whose variability is often
not accounted for in simulations of the TOA signal used in
other schemes. This parameter, however, affects significantly
the coupling between scattering by molecules and scattering
and absorption by aerosols, especially in the UV and blue,
where molecular scattering is effective, all the more as aerosols
are absorbing (effect is still non-negligible when aerosols are
non-absorbing). Absorbing aerosols tend to decrease the TOA
reflectance, and the decrease is more pronounced when they are
located higher in the atmosphere, exhibit higher loadings, are
more absorbing, or as the surface is brighter. In the presence
of such aerosols, using a fixed distribution may result in large,
unacceptable errors onwater reflectance retrievals. Depending on
vertical structure, the estimates by the standard scheme may be
lower (underestimation) by as much as 10 times the inaccuracy
requirements for biological applications, or even be negative
as revealed in many studies, theoretical and experimental.
Neglecting the effect of aerosol absorption on atmospheric
transmittance, which lowers its value, further contributes to
underestimating water reflectance (when the retrieved water

signal is positive). Most satellite ocean-color sensors, however,
do not have the capability to provide information about
aerosol altitude.

It is often assumed that the color of a water body can be
observed from space only over areas not contaminated by Sun
glint and free of clouds. The thinking, based on “common sense”
visual observations, has been that the presence of even a small
amount of glint or a thin cloud prevents utilization of the data.
Standard atmospheric correction algorithms, therefore, apply
strict glint and cloud filters, usually a radiance or reflectance
threshold applied to measurements in the near infrared (typically
0.03 on the Rayleigh-corrected reflectance). Such threshold may
also exclude regions with highly scattering hydrosols under clear
conditions. In general, about 10–15% of the observed pixels pass
through the glint and cloud filters. As a result, Level-2 daily
products are very patchy, and weekly Level-3 products show
many areas with no information. This limits considerably the
utility of satellite water reflectance observations for operational
oceanography. In the open ocean, global coverage every three to
five days is necessary to resolve seasonal biological phenomena
such as phytoplankton blooms. In coastal waters, wind forcing
creates “events” (e.g., upwelling) that occur every two to ten days,
and one-day coverage is the requirement for resolving the event
time scale. These requirements are not achieved with the present
satellite systems and state-of-the-art standard algorithms. Some
techniques are promising, however, such as those proposed by
Steinmetz et al. (2011) and Gross-Colzy et al. (2007a), which
either exploit the fact that Sun glint and cloud signals are smooth
spectrally and can be well represented by a simple polynomial or
select the principal components of the TOA signal that are less
influenced by atmospheric and surface effects. Accurate retrievals
may be obtained by relaxing the reflectance threshold in the
near infrared to 0.2, with the potential of increasing daily spatial
coverage by over 50% in many areas.

The performance of one-step algorithms depends on the
accuracy of the water reflectance model, i.e., its ability to describe
expected conditions, and/or prior knowledge of the variables to
retrieve. Many of these models are developed with simulated
data sets that may not represent the diversity and complexity of
the real ocean. The available field data sets to specify modes of
variability and prior distributions, however, are too few. They
do not sample adequately many regions (e.g., the Southern
Oceans) and biogeochemical regimes, they are less frequent in
winter, and they are often incomplete (e.g., limited spectral range,
inherent optical properties not measured concomitantly). Hyper-
spectral data that incorporates the large bio-optical variability
in absorption and backscattering of different assemblages of
phytoplankton, particularly in complex coastal and inland
waters, is lacking. Most of the data are acquired in cloudy
conditions, but satellite retrievals are generally obtained under
clear skies. Depending on cloudiness, bio-optical relations may
be different, as well as the quality (spectral, angular) of available
sunlight. In other words, the domain of acceptable solutions
may not be represented properly by existing data sets. Future
measurement programs will contribute to a more complete and
broader knowledge, but this will probably remain insufficient.
Additional information about space and time variability of
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atmospheric and oceanic variables, possibly from coupled
biogeochemical-physical dynamic models (regional, global), will
improve retrieval accuracy.

Opportunities With PACE
The current generation of ocean color sensors, e.g., MODerate
resolution Imaging Spectrometer (MODIS), Visible Infrared
Imaging Radiometer Suite (VIIRS), and Ocean and Land Color
Instrument (OLCI), Geostationary Ocean Color Imager (GOCI),
and Second generation GLobal Imager (SGLI), provides limited
spectral information on water reflectance, i.e., observations in a
few spectral bands in the visible and near infrared. This makes
it difficult to distinguish water constituents (e.g., phytoplankton
species or groups), to quantify their relative abundance, and
to infer ecosystem properties/processes. The retrieval of water
reflectance, based on spectral information alone (visible to near
infrared, sometimes including shortwave infrared), is good, but
not sufficiently accurate in the coastal zone and over inland
waters, where water and air properties are highly variable
and intricate, aerosols are absorbing, and adjacency effects
are substantial (see section Atmospheric Correction Issues).
The PACE mission will carry a primary sensor, the Ocean
Color Imager (OCI), and two multi-angle polarimeters, the
Spectrometer for Planetary Exploration (SPEXone) and the
Hyper-Angular Rainbow Polarimeter (HARP2). OCI is a hyper-
spectral radiometer measuring at 5 nm resolution in the UV
to NIR (350 to 885 nm) and possibly higher spectral sampling
in selected spectral intervals, with additional lower resolution
bands at 940, 1,038, 1,250, 1,378, 1,615, 2,130, and 2,260 nm.
SPEXone will measure at 5 viewing angles from 385 to 770 nm
in 2–5 nm steps, with reduced spectral resolution (10–40 nm)
for polarization. HARP2 will measure polarization at 10 viewing
angles in spectral bands centered on 441, 549, and 873 nm, and
60 angles for a band centered at 669 nm. Polarimetric accuracy,
in terms of Degree of Linear Polarization (DoLP), is expected
to be 0.003 for SPEXone and <0.01 for HARP2. Swath width
(spatial coverage) is 1,500 km for both OCI and HARP2 and
100 km for SPEXone. This instrument package promises to
advance our knowledge of water ecosystems and biogeochemistry
to an unprecedented level, not only because the high spectral
resolution allows one to retrieve more accurately multiple
water-column and benthic constituents and separate a larger
number of end members, or because polarization measurements
can aid in the characterization of hydrosols, but also because
of the great potential of combining spectral, directional, and
polarized information to improve atmospheric correction, i.e.,
water reflectance estimates.

Extending the TOA observations to the UV, where aerosol
absorption is effective, using the SWIR, where even the most
turbid waters are black and sensitivity to the aerosol coarse
mode is higher than at shorter wavelengths, and measuring
at hyper-spectral resolution in the oxygen A-band to estimate
aerosol altitude would allow, at least in principle, a more
accurate atmospheric correction. Measuring in spectral intervals
where solar irradiance exhibits sufficiently large variations and
Raman scattering can be assumed constant, the Raman signal
can be separated from the elastic signal. This would improve

bio-optical algorithms in which Raman scattering effect is
not taken into account and allow retrieval of information
about absorbing material in clear waters. Multi-angle and
polarized measurements, sensitive to aerosol properties (e.g., size
distribution, index of refraction), would further help to specify
the aerosol model. This may be accomplished by constraining
the domain of possible aerosol types in a classic atmospheric
correction scheme or, if the information is sufficiently accurate,
by directly computing the aerosol scattering effect. The sensitivity
of polarized reflectance to aerosol type has also the potential to
improve inversion schemes that aim at retrieving simultaneously
air and water properties. Using multi-angular information alone
(i.e., without polarization), already possible with the Multi-
angle Imaging SpectroRadiometer (MISR) and the Sea and Land
Surface Temperature Radiometer (SLSTR), may also improve
atmospheric correction in the presence of absorbing aerosols,
and using the non-polarized or plane-parallel components of the
TOA signal instead of the total signal may reduce the effect of Sun
glint and boost the contribution of the water signal. Many of the
ideas and approaches briefly exposed above have yet to be fully
developed, tested, and evaluated, but they strongly suggest that
most of the atmospheric correction issues associated with current
ocean-color sensors (see section Atmospheric Correction Issues)
will be solved during the PACE era. One important task, apart
from technical studies, is to devise a strategy for atmospheric
correction that ensures continuity and consistency with past and
presentmissions while enabling full exploitation of the new PACE
dimensions and capabilities.

Contents of the Study
In the following, the history and progress of atmospheric
correction during the last two decades (i.e., since the beginning
of the EOS era) is recounted, state-of-the-art approaches and
algorithms are described, and possibilities/improvements in view
of new knowledge and future missions, in particular PACE,
are examined. In section Heritage Atmospheric Correction
Algorithm, the standard 2-step heritage algorithm, from which
operational ocean color products are currently generated, is
described. Adjustments envisioned to deal with hyper-spectral
measurements that extend to the UV (case of OCI) are proposed
and challenges are discussed. In section Alternative Algorithms,
alternative algorithms, deterministic or statistical, that utilize
simultaneously all available information, are presented, and
their ability to deal with situations that cannot be handled by
the heritage algorithm (e.g., absorbing aerosols) is emphasized
and illustrated. In section Enhancements using Multi-Angular
and/or Polarimetric Information, the benefits of multi-angular
and polarimetric observations to determine aerosol properties
or enhance the contribution of the water body to the TOA
signal, and of using these observations synergistically with
multi- or hyper-spectral information, are identified. In section
Improvements Using “Super-Sampling” in Selected Spectral
Intervals, the super-sampling capability of the OCI in some
spectral intervals is investigated to estimate ocean Raman
scattering and improve retrievals of chlorophyll fluorescence and
aerosol altitude. In section Significant Issues, issues that remained
to be addressed satisfactorily, such as adjacency in a “large
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target” RT formalism, whitecaps and underwater bubbles, Earth’s
curvature, atmospheric horizontal/vertical heterogeneity, and
observing in the UV where the atmosphere is optically thick and
multiple scattering and coupling processes makes atmospheric
correction especially difficult, are discussed and possible avenues
considered. In section Strategy for Atmospheric Correction, a
strategy for atmospheric correction is devised, that accounts for
the accomplishments of the previous decades using the heritage
algorithm and at the same time fully integrates the qualities of
alternative schemes and the new PACE capabilities. In section
Conclusions, finally, the recent developments in atmospheric
correction are summarized, the expected improvements with the
PACE instrumentation are highlighted, concerns and remaining
gaps are reiterated, and research directions are suggested to
address challenges and achieve a new level of accuracy in future
satellite water reflectance products. All the figures of the study
are provided separately online at: https://www.frontiersin.org/
articles/10.3389/feart.2019.00145/full#supplementary-material.

HERITAGE ATMOSPHERIC CORRECTION
ALGORITHM

Approach
The heritage approach to the retrieval of ocean bio-optical
properties from satellite radiometric observations, as historically
employed by all international space agencies and operational
agencies, is a two-step process wherein the atmosphere
(and surface contributions) are first removed using minimal
assumptions about the water optical properties (Fukushima et al.,
1998; Antoine and Morel, 1999; Ahn et al., 2012; Mobley et al.,
2016), and the resulting spectral water-leaving radiances are then
used to infer information on water column optical properties
and constituent concentrations (e.g., O’Reilly et al., 1998; Morel
and Maritorena, 2001; Hu et al., 2012; Werdell et al., 2013).
Step one, the atmospheric correction process, is based on finding
the solution to a set of deterministic models that enable the
removal of atmospheric path and surface effects from the top of
atmosphere (TOA) signal. The primary challenge is to determine
the contribution of aerosols to the atmospheric path radiance,
which is highly variable and thus must be inferred from the
observations. The approach takes advantage of the very strong
absorption property of water in the NIR/SWIR spectral range
(longward of 750 nm) to separate the atmospheric and oceanic
signal from the satellite observations (Gordon and Wang, 1994;
Antoine and Morel, 1999).

This two-step approach assumes the additive property of
light, where the spectral signal or radiance measured at the
top of atmosphere (TOA) by a satellite sensor, LTOA, is the
summation of the radiance contribution from each component
of the atmosphere-ocean (AO) system. Specifically,

LTOA (λ) = Latm (λ) + LTOAsurf (λ) + LTOAw (λ) (1)

where Latm (λ) is the radiance contribution due to scattering
and absorption of air molecules and aerosols, LTOA

surf (λ) is the

contribution of light reflected from the ocean surface and
propagated to the TOA, and LTOAw (λ) is the subsurface ocean
radiance that is transmitted through the ocean surface and

propagated to the TOA. Note that the dependence on radiant
path geometry from sun to surface and back to sensor (i.e., Sun
and view zenith angles and relative azimuth angles (θs, θ ,φ),
is not shown here for brevity. Equation (1) can be further
partitioned into multiple components of the atmosphere and
ocean surface. The atmospheric path radiance, Latm (λ), for
example, can be treated as the summation of the scattering by
non-absorbing air molecules, Lr(λ), which is well characterized
as pure Rayleigh scattering, and the scattering by the aerosol
particles and aerosol-molecule coupling processes, La (λ), which
depends on aerosol morphology, size distribution, concentration,
and chemical composition. These atmospheric path radiance
contributions are then modulated by losses due to transmittance
through the absorbing atmospheric gases, Tg(λ), such as ozone,
oxygen, and water vapor to compute the TOA contribution.
Similarly, the surface radiance term at TOA, LTOA

surf (λ), can be

treated as the summation of the light diffused by whitecaps
and foam on the ocean surface, Lwc(λ), that propagates through
the atmosphere and is therefore modulated by the atmospheric
total (i.e., direct plus diffuse) transmittance along the surface-
to-sensor path, tu (λ), and the ocean surface glint (specular
reflection of the Sun), Lg(λ), that is also propagated through
the atmosphere and modulated by the direct atmospheric
transmittance, Tu (λ), along the specular direction, with both
surface contributions also reduced by Tg (λ) before reaching the
TOA. The primary quantity of interest for ocean color is the
water-leaving radiance, Lw(λ), which is the subsurface radiance
after transmission through the air-sea interface. Lw (λ) is also
modulated by tu (λ) and Tg(λ) when measured at TOA. The
total radiometric contribution of the AO system can thus be
described as:

LTOA (λ) =
[

Lr (λ) + La (λ) + tu (λ) Lwc (λ)

+ Tu (λ) Lg (λ) + tu (λ) Lw (λ)
]

Tg (λ) (2)

This formulation presumes that (1) the fraction of the sea
covered by whitecaps is small and can be neglected, (2) the
contribution of diffuse reflected skylight off the sea surface is
accounted for in the Lr(λ) and La(λ) terms, (3) the surface is
homogenous spatially, and (4) gaseous absorption and scattering
processes are decoupled. The goal of the heritage atmospheric
correction (AC) approach is to accurately estimate each radiance
and transmittance term in Equation (2) so that the surface and
atmospheric path radiance contribution can be subtracted from
the observed TOA radiance to retrieve Lw (λ). To remove the
time variation of incident direct solar irradiance, Equation (2)
can be written in terms of reflectance as:

ρTOA (λ) =
[

ρr (λ) + ρa (λ) + t(λ) ρwc (λ)

+T (λ) ρg (λ) + t(λ) ρw (λ)
]

Tg (λ) (3)

In this expression, t (λ) = tu (λ) td (λ) and
T (λ) = Tu (λ)Td (λ)where td (λ) and Td (λ) are total and direct
downward atmospheric transmittance along the Sun-to-surface
path, respectively, ρTOA (λ), ρr (λ), and ρa (λ) are LTOA (λ),
Lr (λ), and La (λ) normalized by Es(λ)cos(θs)/π , ρf (λ) and
ρw (λ) are Lwc (λ) and Lw (λ) normalized by Es(λ)cos(θs)td(λ)/π ,
and ρg (λ) is Lg (λ) normalized by Es(λ)cos(θs)Td(λ)/π , where
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Es(λ) is extraterrestrial spectral solar irradiance corrected for
Earth-Sun distance. Thus in Equation (3) the signal to retrieve
is ρw(λ), the water reflectance just above the surface, hereafter
referred to as water reflectance for short. Remote sensing
reflectance, Rrs(λ), often used instead of ρw(λ), is defined as
Rrs(λ)= ρw(λ)/π .

Procedures
Absorbing Gas Correction
Several gases in the atmosphere, including O2 (Oxygen), O3

(Ozone), NO2 (Nitrogen Dioxide), H2O (Water Vapor), CO
(Carbon Monoxide), N2O (Nitrous Oxide), CH4 (Methane),
and CO2 (Carbon Dioxide), absorb the light along the path
radiance. In heritage multispectral sensors such as MODIS or
MERIS, the spectral bands used for ocean color are generally
situated to avoid the strongest absorption features of O2 andH2O
(i.e., the spectral bands are located in atmospheric transparency
windows), however O3 and NO2 absorb light over a broad
spectral range. For a given column concentration of gasmeasured
in number density per unit area, equivalent to Dobson units
(DU), and its vertical profile (pressure, temperature, and volume
mixing ratio (VMR), the transmittance of gas can be calculated.
Because ozone is concentrated very high in the atmosphere, the
O3 transmittance can be accurately estimated using the Beer-
Lambert Law and the geometric air mass. The coupling between
the absorption of gases and the scattering by non-absorbing
gases and aerosols is not significant in this case. NO2 absorption,
however, occurs in the tropospheric layer of the atmosphere, and
near a source region that is spatially limited, thus the coupling
between the absorption and scattering can be significant and
the Beer-Lambert Law treatment is not appropriate (Ahmad
et al., 2007). Although multi-spectral sensor bands are typically
selected to avoid the strong absorption features, the nominal
spectral bands for sensors such as MODIS or SeaWiFS can
still suffer from significant out-of-band (OOB) sensitivity to
these gases, thus requiring sensor-specific corrections (Ding and
Gordon, 1995).

Molecular Scattering Correction
Light scattering by air molecules in the atmosphere, mainly N2

and O2, can be accurately modeled following the principles of
Rayleigh scattering. Typically, a vector radiative transfer (VRT)
code is used to generate a set of Look-up-tables (LUTs) of spectral
Rayleigh scattering as a function of radiant path geometry and
wind-driven ocean surface roughness (e.g., Ahmad and Fraser,
1982 is used for all operational processing by NASA). The LUTs
include the contribution of photons that are reflected by the
wavy interface after being either scattered in the atmosphere
and then transmitted (directly and diffusely) to the TOA or
directly transmitted through the atmosphere and then diffusely
transmitted to the TOA. Because this contribution, commonly
referred to as skylight reflected radiance, is enhanced in violet
and UV wavelengths (due to more effective Rayleigh scattering),
its correction is particularly critical in retrieving accurate water
reflectance moving from the visible into UV wavelengths. The
VRT model generally assumes an atmosphere-ocean system with
discrete wind-driven ocean surface roughness states described
by the analytical, azimuthally symmetric Cox-Munk slope

distribution model (Cox and Munk, 1954). A required input to
the VRT code is the Rayleigh optical thickness of the atmosphere
at each sensor spectral wavelength, which can be computed from
existing models (e.g., Bodhaine et al., 1999) and convolved with
the relative spectral response of each spectral band pass.

Sun Glint and Whitecap Correction
Sun glint is a strong signal that reflects off the flat ocean surface
in the specular direction. With increasing wind speed, the surface
roughness also increases, thus a glitter pattern appears. The glitter
pattern is the reflected Sun glint in the off-principal plane of
the Sun when a wave facet is tilted. The glitter pattern spreads
off the principal plane proportionally to the increasing wind
speed. Some ocean color sensors, such as SeaWiFS, have tilting
capability that avoids the detection of light in the principal plane
of the Sun, thus avoiding the specular reflection of the ocean
surface. Even so, a significant residual Sun glint can reach the
sensor, especially near the edges of the glint region in and near the
principal plane. To estimate this glint reflectance contribution,
ρg (λ), the heritage AC algorithms typically rely on the Cox-
Munk model (Cox and Munk, 1954).

The surface contribution from whitecaps and foam to the
TOA radiance is typically estimated from whitecap reflectance
and a wind speed dependent estimate of the fractional coverage
of whitecaps on the ocean surface. The whitecap reflectance is
assumed Lambertian and wavelength dependent (Koepke, 1984;
Frouin et al., 1996; Stramska and Petelski, 2003). Opposite to the
specular glint, the whitecap reflectance contribution at the TOA
is diffuse in nature, and thus modulated by the total (direct +
diffuse) transmittance of the atmosphere, t(λ).

Aerosol Scattering Correction
Sources of the aerosol particles suspended in the atmosphere
are natural, such as dust, sea-salt, mineral dust, or volcanic
emissions, or anthropogenic in origin, such as sulfates, organics
and smoke from biomass burning or urban/industrial output.
Aerosols vary in morphology, size distribution, scattering
properties, and concentration. Analogous to the Rayleigh
correction, an aerosol LUT is typically used to remove the
aerosol contribution to the TOA radiance. The LUT defines a
set of aerosol models, where the aerosol correction algorithm
determines the most appropriate aerosol type (aerosol model) for
a given pixel, to perform the correction. Different aerosol types
are defined based on a bimodal size distribution of fine and coarse
particles of specified refractive index, each with a lognormal
distribution. NASA’s operational aerosol LUTs, for example, are
based on aerosol modeling by Ahmad et al. (2010). In this case,
the aerosol models were derived to match the observations from
the Aerosol Robotic Network (AERONET), with aerosol radii,
refractive index, and fine-mode fraction parameterized as an
explicit function of the relative humidity (30, 50, 70, 75, 80,
85, 90, and 95%). In constructing the LUT, the microphysical
properties of the aerosols are assumed to be homogenous
spheres, and therefore follow the scattering by Mie theory. VRT
simulations are performed to characterize the aerosol radiance
contribution to the TOA signal for each aerosol type, assuming
a standard aerosol vertical profile for marine aerosols [e.g.,
from Shettle and Fenn (1979)].

Frontiers in Earth Science | www.frontiersin.org 8 July 2019 | Volume 7 | Article 145

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Frouin et al. Atmospheric Correction of Ocean-Color Imagery

A primary assumption for the determination of aerosol type
and concentration within the heritage atmospheric correction
(AC) approaches is that water-leaving radiance contributions
within the NIR/SWIR spectral regime can be considered
negligible due to the strong water absorption (Gordon andWang,
1994; Antoine and Morel, 1999). This is referred to as the dark
pixel assumption and is valid for most of the global ocean, where
the hydrosol scattering is insignificant in the NIR/SWIR part
of the spectrum. For highly productive or turbid conditions,
most common in coastal and inland waters, methods have been
developed to estimate the water-leaving radiance in the NIR
regime through iterative solutions and model extrapolation (e.g.,
Moore et al., 1999; Bailey et al., 2010), or switching algorithms
are employed to restrict to the more strongly absorbing SWIR
spectral range in the presence of turbid waters (Wang et al., 2009).

Advantages and Limitations
The primary advantage of the two-step heritage AC approaches is
that they do not require strong assumptions about the magnitude
or spectral distribution of the ocean radiance contribution. The
approaches are limited, however, by strict reliance on the NIR-
SWIR spectral regime to determine the aerosol contribution,
which is then extrapolated to the visible spectral bands based on
a pre-determined set of aerosol models. The heritage approaches
fail in the presence of strongly absorbing aerosols, and they
are challenged in complex or highly productive waters where
the water-leaving signal in the NIR-SWIR spectral regime can
be significant. A small uncertainty in the determination of the
aerosol type in the NIR-SWIR spectral regime can be magnified
when extrapolating that information to the blue spectral range.

Absorbing aerosols
The ability to account for the presence and impact of absorbing
aerosols, such as terrigenous dust and black or biogenic carbon,
is a long-standing challenge in ocean color AC (Li et al.,
2003; Schollaert et al., 2003; Nobileau and Antoine, 2005;
Antoine and Nobileau, 2006; Ransibrahmanakul and Stumpf,
2006). Absorbing aerosols are common in coastal waters, due in
particular to air pollution, but they can be encountered over vast
areas of the open oceans (Kaufman et al., 1997; Remer et al., 2008;
Colarco et al., 2014). Large plumes of Saharan dust, for example,
are routinely transported across the Atlantic and deposited in
the Caribbean, and smoke plumes from biomass burning off
the west of African can be found well into the equatorial
Atlantic. Since the heritage AC algorithms rely exclusively on the
NIR/SWIR spectral regime and thus cannot identify and account
for the presence of strongly absorbing aerosol types, the water
reflectance in such cases will typically be underestimated, which
leads to an overestimation in the chlorophyll concentration
(Gordon, 1997; Gordon et al., 1997; Chomko and Gordon, 1998;
Schollaert et al., 2003; Nobileau and Antoine, 2005; Antoine and
Nobileau, 2006; Shi and Wang, 2007).

Heritage OC sensors observe the ocean at a single viewing
angle and at a limited set of spectral bands, and thus the AC
algorithm is tasked with solving an underdetermined, ill-posed
AO system. Additional constraints on the aerosol microphysical
properties, such as the hygroscopic growth determined by relative

humidity, helps in determining the type of aerosol for the
AC, but absorbing aerosols have spectral absorbing signatures
that are similar to other optically active components of the
ocean such as colored dissolved organic matter (CDOM) and
minerals. Additionally, most absorbing aerosol species absorb
in the shorter (UV-visible) wavelengths, thus the NIR/SWIR
heritage approach to aerosol determination is not sensitive to
their optical variations (Kahn et al., 2016). Furthermore, there
is no consensus on the range of microphysical properties that
must be considered for absorbing aerosols, due to the variation
in their morphology, chemical composition, etc., and knowledge
of the aerosol vertical distribution, which is critical to properly
quantify the impact of aerosol absorption, cannot be determined
from heritage sensor systems.

Figure 1 shows the sensitivity of TOA radiance to changes in
aerosol layer height (i.e., location in the vertical column) relative
to a 3 km layer height. The analysis was performed using the
Ahmad and Fraser (1982) VRT code, for a specific solar and
viewing geometry at 412 nm and for varying single scattering
albedo of an assumed dust aerosol model detailed in Ahmad
and Franz (2014). Chlorophyll-a concentration, Chl-a, is 0.3
mgm−3. From Figure 1, it can be seen that the TOA reflectance is
overestimated for absorbing aerosol layers lower than 3 km, while
it is underestimated when the aerosol is higher in the atmosphere.
The relative magnitude of change depends on the amount of
aerosol absorption and the optical thickness.

At higher optical thickness, the TOA reflectance shows more
sensitivity to absorbing aerosol layer height on the order of
∼1 to 4%, while at small optical thickness, the sensitivity is
<1%. It is important to note that unknown layer height of the
absorbing aerosol can lead to a large error in the derived water
reflectance from the AC process. Additionally, when absorbing
aerosols are not detectable from satellite observations, their
treatment as non-absorbing in the AC can lead to overestimation
of the aerosol radiance, which is demonstrated in Figure 2.
Based on VRT simulations, the heritage AC algorithm retrieves
an overestimated aerosol reflectance (blue line) in the presence
of absorbing aerosols, while the true reflectance is lower (red
line), and thus an overestimated aerosol contribution leads to
an underestimated remote sensing reflectance. These over/under
estimation errors increase with decreasing wavelengths, thus
compromising efforts to retrieve water reflectance into the UV
spectral regime.

Plane-Parallel RT Limitation and Pseudo-Spherical

RT Correction
Presently all atmospheric correction LUTs used for ocean color
retrievals assume that the atmosphere consists of plane parallel
layers, which are inhomogeneous vertically but homogeneous
and infinite horizontally. This generally limits applicability to
solar angles less than 70◦ and sensor view angles less than
50◦. To extend the solar and view angle range, the sphericity
of the Earth atmosphere must be accounted for in the RT
simulations. Herman et al. (1995) have carried out a detailed
comparison of TOA radiance for spherical and plane-parallel
atmospheres and concluded that there is a strong agreement
between the two methods except at highly oblique angles. For a
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spherical atmosphere, the RT calculations account for sphericity
in both the incoming solar beam and the outgoing scattered
beam. Vector RT calculations (with multiple scattering and
polarization) are computationally expensive. If retrievals at very
large solar zenith angles (>80◦) and large view angles (>50◦) are
not required, then one can carry out the vector RT calculations
for a spherical atmosphere in single scattering approximation,
and use full multiple scattering for a plane parallel atmosphere
(Caudill et al., 1997). Another simplification is to account for
sphericity in the incident solar beam only, which is done by
computing the air mass factor in a spherical model atmosphere,
and perform the rest of the calculations in a plane parallel
atmosphere. This is generally known as the pseudo-spherical
correction (Deluisi and Mateer, 1971).

Figure 3 shows how the Sun zenith angle varies as the solar
beam traverses through a spherical model atmosphere. It is θ ′′ at
the top of layer 1 (TOA), θ ′ at the top of layer of layer 3 and θ at
the Earth surface. For a plane-parallel model atmosphere, the Sun
zenith angle for all the layers would be equal to θ . Figure 4 shows
the difference in TOA reflectance as simulated with both plane-
parallel and pseudo-spherical assumptions, for a Rayleigh model
atmosphere at 380 nm in the direction θ =30◦, φ =144◦. The
figure shows that, for Sun zenith angle<50◦, the difference is very
small (<0.05%), but increases rapidly at higher Sun zenith angles.
In the nadir direction, it is −0.12, −0.53, and −1.53% for Sun
zenith angles of 60, 72, and 78◦, respectively. For accurate water
reflectance retrievals at solar zenith angles above 50, these results
suggest that future AC algorithms should utilize spherical or, at
a minimum, pseudo-spherical VRT simulations in the retrieval
algorithm or in generating any required atmospheric LUTs.

From Multi-Spectral to Hyper-Spectral
Remote Sensing
Challenges
The AC process must estimate and remove the atmospheric
path radiance contribution due to the Rayleigh scattering by
air molecules and scattering by aerosols from the measured
TOA radiance, account for surface contributions, and correct
for reflection and refraction of the air-sea interface. For a
hyper-spectral sensor, the heritage AC approach can largely be
employed as-is, by simply extending the Rayleigh and aerosol
scattering tables and surface reflectance models to the hyper-
spectral domain. A primary issue, however, is the influence of
absorbing gases.

Heritage multispectral ocean color sensors such as SeaWiFS,
MODIS, MEdium Resolution Imaging Spectrometer (MERIS),
VIIRS, OLCI, and SGLI, detect the light at specific wavelengths or
bands. These bands are strategically located to provide sufficient
spectral information to enable estimation of the inherent optical
properties and optically active constituent concentrations in
the water column, while also being located in atmospheric
window regions where the atmospheric transmittance is
maximized. The window regions are selected primarily to
avoid the absorption of water vapor in the atmosphere,
which is highly variable and thus difficult to correct, and the

narrow but strong spectral absorption features of oxygen. To
fully utilize the greater spectral information available from
a hyper-spectral ocean color sensor, as needed for emerging
science such as the detection of phytoplankton types and
phytoplankton community structure (a primary goal of the
PACE mission), the observed signal must be corrected for these
absorbing gases.

Figure 5 shows the atmospheric gas transmittance calculated
at 5-nm spectral resolution fromUV to SWIR. The transmittance
includes ozone, oxygen, and water vapor (blue solid line), while
the red circles are located at MODIS bands. As shown, the
MODIS bands are located in the spectral window regions,
where the impact of absorption by oxygen and water vapor
is minimized. For a continuous 5-nm sampling, however, as
expected from the PACE OCI sensor, several bands in the visible
wavelengths will suffer absorption by strong spectral features
of water vapor and oxygen. This is especially true in the red
(600–720 nm), which is critical for distinguishing phytoplankton
types and quantifying natural fluorescence of phytoplankton
chlorophyll. Production of a continuous 5-nm sampling of visible
remote sensing reflectance over the ocean is a primary goal to
the PACE mission, thus proper compensation of absorbing gas
features is needed.

To make full use of a hyper-spectral instrument for ocean
color, the effect of water vapor must be estimated and corrected.
This is challenging due to the complexity of the atmospheric
water vapor profile, the spectrally variable nature of the
absorption features, and the spatial heterogeneity of the water
vapor concentration (Kaufman and Gao, 1992; Gao et al.,
2000, 2009). Challenges also arise in the UV spectral range,
where the AC is difficult due to the significant contribution
of the atmospheric scattering, and the strong impact from
absorbing aerosols.

Hyper-Spectral Atmospheric Correction
Similar to the heritage multispectral atmospheric correction, pre-
computed hyper-spectral look-up tables (LUT) can be generated
using VRT simulations to model the Rayleigh and aerosol
contributions. The hyper-spectral optical properties used in the
VRT simulations, such as the extraterrestrial solar irradiance,
Rayleigh optical thickness, and the depolarization factors, would
be optically weighted for each hyper-spectral band based
on the measured spectral response functions. Hyper-spectral
glint and whitecap radiance contributions can be modeled
based on ancillary wind speed and observing geometry, as
they are for the heritage multispectral AC approaches. The
hyper-spectral aerosol type and concentration can also be
estimated using heritage methods (Fukushima et al., 1998;
Antoine and Morel, 1999; Ahn et al., 2012; Mobley et al.,
2016), and similarly coupled with an iterative bio-optical model
to separate the scattering contributions from aerosols and
water-column constituents in turbid (high-scattering) waters
(Moore et al., 1999; Bailey et al., 2010).

Since the heritage AC does not perform water vapor
correction, except for out-of-band effects using the Gordon
(1995) method, the algorithm must be enhanced to include
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such a correction, if spectral regions with modest to large water
vapor features are to be used for ocean color science (i.e.,
600–710 nm). Recently, the heritage AC algorithm maintained
by NASA (Mobley et al., 2016) was extended to include the
hyper-spectral algorithm of ATmospheric REMoval (ATREM)
for the estimation and correction of water-vapor transmittance
(Gao and Davis, 1997), as detailed in Ibrahim et al. (2018).
ATREM calculates the transmittance using the HITRAN 2012
(Rothman et al., 2013) database at 0.05 cm−1 wavenumber
spectral resolution, which is down-sampled to the sensor spectral
resolution. ATREM has the capability to estimate the column
water vapor amount (CWV) [given a water vapor volume
mixing ratio (VMR) profile], and to correct for the water vapor
absorption along the radiant path. It does so by using a 3-band
ratio technique utilizing two atmospheric window channels
around one strongly absorbing water vapor band as shown
in Figure 6.

The trough in the TOA reflectance at the water vapor
band (e.g., near 940 and 1,130 nm in Figure 6) relative to the
two window bands is a direct measure of the water-vapor
transmittance loss along the path that the light traveled, which
can be correlated to the water-vapor amount. Strong water-vapor
absorption features such as these are used to estimate the water-
vapor transmittance, which is then extrapolated to the visible
regime to correct for the weaker water-vapor absorption features
in the 600–710 nm region. Note that the 3-band ratio technique
assumes the surface reflectance is spectrally monotonic. Any
surface spectral features within the spectral windows can lead
to erroneous correction for water vapor transmittance losses,
but ocean reflectance is generally monotonic in the red/NIR
part of the spectrum, except in bloom conditions (Gower et al.,
2008; Doron et al., 2011), very turbid (i.e., sediment-laden)
waters (Doron et al., 2011; Knaeps et al., 2015), optically shallow
waters (Fogarty et al., 2018), or when the sea is covered by
floating vegetation (Dierssen et al., 2015a; Kudela et al., 2015) or
whitecaps (Frouin et al., 1996).

For water vapor correction over oceans, the very strong water-
vapor absorption features at 940-nm and at longer wavelengths
can actually be too strong, as the small surface signal (typically
0.02 in reflectance) is completely absorbed before reaching
the sensor. To demonstrate this, and identify alternative band
selection for water vapor retrieval over oceans, a radiative transfer
study was performed using the Monte Carlo-based VRT code
MYSTIC (Mayer, 2009; Emde et al., 2016). The code was used
to simulate the polarized TOA radiance for a simple Rayleigh
atmosphere and absorbing flat ocean, at a very high wavenumber
spectral resolution of 1 cm−1 (∼0.01nm in VIS). Water vapor
was assumed to be the only absorber in the atmosphere, and
was coupled with the scattering in the VRT simulations. The
simulation runs were calculated for 0.3, 0.5, 0.7, 1, 1.3, 1.5, 1.7,
2, 2.3, 2.5, 2.7, and 3 cm CWV at geometries permuted from
10◦ to 50◦ solar and viewing zenith angle with 10◦ step, while
the relative azimuth was fixed to be 90◦ composing a total of
300 cases. The water vapor profile was assumed to be the US
standard 1976 and the water vapor absorption coefficients were
obtained from theHITRAN 2012 database (Anderson et al., 1986;
Rothman et al., 2013).

Figure 7 shows the scatter plot between the assumed CWV
in the VRT simulations and the retrieval of CWV by the AC
algorithm. In this analysis, the water body was assumed black
(not reflecting). We used three modes of retrieval. The first is
using the average CWV retrieval using the strongly absorbing
940 nm band and the less sensitive 820 nm band shown in blue
circles, with the error bar of 1 standard deviation due to changes
in the simulated geometries. With this combination, the CWV
retrieval shows a strong underestimation at higher water vapor
concentrations. This is due to the combination of a weak ocean
signal (in that case ocean surface reflectance) and a strongly
absorbing 940-nm water vapor feature that leads to loss of
sensitivity to further increases in CWV. The retrieval for CWV
less than 1 cm, however, shows good performance suggesting that
the 940-nm channel can be utilized to detect and retrieve small
amounts of water vapor in the atmosphere, while its sensitivity
saturates for larger than 1 cm CWV. The second mode of CWV
retrieval shown in green circles, using an average of CWV
retrievals at both 720 and 820 nm, shows very good performance
along the whole dynamic range of CWV. Although the retrieval
shows a slight bias at small CWV values, the impact of erroneous
(biased) CWV at low values is less significant on the Rrs of the
ocean, especially at weakly absorbing bands in the visible range
of the spectrum. The third mode of CWV retrievals using 720 nm
only, shows also a good retrieval along the whole dynamic range.
Retrievals at low CWV values show less bias compared to the
combination of 720 and 820 nm, while there is a stronger bias
at high CWV values. The absolute average percent error is 19,
8.5, and 9% for retrievals using 820 and 940 nm, 720 and 820 nm,
and 720 nm only, respectively. In Gao and Kaufman (2003), their
CWV retrieval using MODIS showed a systematic bias relative to
both a ground-based sunphotometers (AERONET) observations
and a smaller bias to a ground-based, upward looking microwave
radiometer (Gao and Kaufman, 2003). In the latter case, the error
in CWV retrieval was less than 10%, which corroborates with the
analysis shown here, except in the 820 and 940 nm combination,
which is not ideal for a wide dynamic range of retrievals. Based
on the analysis presented here, it is therefore recommended to
use either 720 or 820 nm or both for the atmospheric correction
of water vapor over oceans.

Application to HICO Imagery
To demonstrate the heritage AC extended to hyper-spectral, we
present an application to Hyperspectral Imager for the Coastal
Ocean (HICO) imagery, as detailed in Ibrahim et al. (2018).
HICO (Table 1) is a hyper-spectral imaging radiometer that
operated onboard the international space station (ISS) from 2009
to 2014, capturing over 10,000 scenes over the globe (Corson
et al., 2008, 2010; Korwan et al., 2009; Lucke et al., 2011). HICO
measured light with a spectral coverage from 353 nm to 1,080 nm
with a 5.7 nm spectral resolution. It has a pointing capability
in the cross-track direction. At the nadir looking direction, the
spatial resolution is 90m. HICO collected one scene per orbit
of size 50 × 200 km that was scheduled weekly by the science
team, with scenes mostly collected over coastal regions to derive
products such as water clarity, benthic types, and bathymetry.
HICO provided adequate radiometric performance to support
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TABLE 1 | HICO sensor and data characteristics.

Platform International Space Station (ISS)

Operation lifetime 2009–2014

Orbit repeat time/period 3 days/90 min

Scene size (km) 50 × 200

Pixel size (m) ∼100

Wavelength (nm) 353–1080 (128 bands)

Spectral resolution (nm) 5.7

Spectral FWHM (nm) 10 (≤745 nm), 20 (>745 nm)

Sensor type Offner Spectrometer

Signal-to-noise ratio (SNR) >200:1 assuming 5% surface albedo

Polarization sensitivity <5%

ocean color applications in these coastal regions, where high
concentrations of phytoplankton and suspended sediments result
in high water reflectance in the visible regime (e.g., Dierssen
et al., 2015b), but scenes collected over darker, open ocean
regions suffer from the relatively low signal to noise ratio (SNR),
especially in the green to NIR regime (Korwan et al., 2009; Lucke
et al., 2011).

For HICO, an operationally viable algorithm for hyper-
spectral ocean color retrieval has been implemented and assessed
(Ibrahim et al., 2018), which follows the heritage approach
used by NASA for all global ocean color sensors (Mobley
et al., 2016). Water vapor correction, using the 720-nm spectral
window, was a significant addition to that heritage process. The
AC for HICO is completely automated, requiring no scene-
specific operator intervention. As such, this work demonstrates
the first operationally viable algorithm for hyper-spectral water
reflectance retrieval, and can serve as a baseline AC for OCI on
PACE. To minimize biases in the water reflectance retrievals due
to uncertainty in HICO’s radiometric calibration or systematic
algorithm errors, a system-level vicarious calibration was also
developed and based on hyper-spectral in-situ measurements
from MOBY (Franz et al., 2007).

The atmospheric correction algorithm and the gains derived
from the vicarious calibration process were applied to the
HICO observations to retrieve hyper-spectral remote sensing
reflectance (Rrs). As a verification of system performance, the
approach was applied to all HICO scenes available over the
MOBY site. In Figure 8, Rrs derived from HICO after the
atmospheric correction process with and without applying the
vicarious gain factors are compared to MOBY’s in-situ Rrs
optically integrated to HICO’s spectral response function. Also
shown is co-incident Rrs from MODIS onboard Aqua (MODIS-
A), when available. It is clear that the Rrs match-ups from
HICO are improved after applying the vicarious calibrations,
showing a good agreement with both in-situMOBY andMODIS-
A retrievals. HICO’s Rrs also does not contain any features from
the absorbing gases (i.e., negative reflectance at the 720-nm
and 820-nm water vapor bands), including at the water vapor
bands, emphasizing that the gaseous compensation process is
performing well.

The hyper-spectral comparison of HICO and MOBY Rrs
is very good. The improved NIR-band vicarious calibration,

which determines the aerosol contribution for the atmospheric
correction, reduces the bias in the visible spectrum. Overall,
MODIS-A shows very good agreement in Rrs with MOBY, as
expected, since the vicarious calibration was performed at the
same site.

Figure 9 shows a true color image acquired by HICO in
the Chesapeake Bay region at the east coast of the US, a
highly complex and productive estuary with large anthropogenic
influences on both the ocean and the atmosphere, and Figure 10

shows the retrieved Rrs at selected bands in the visible spectrum.
The retrieval of Rrs captures the large dynamic range due to

the changes in the bio-optical properties of the water body. The
Rrs images of HICO in the blue part of the spectrum exhibit
image artifacts, such as stripping and reduced sensitivity. This is
resultant of degraded sensor performance due to electronic smear
and strong polarization sensitivity detailed in (Lucke et al., 2011).
A detailed comparison between MODIS and HICO Rrs estimates
for that scene is described in Ibrahim et al. (2018).

Figure 11 shows the hyper-spectral Rrs retrieved from HICO
and the multi-spectral MODIS-A retrievals at three stations
(STs) in the image from Chesapeake Bay. As in Figures 9, 10,
Station 1 (ST1) is located in the York River, a highly turbid,
highly productive region, Station 2 (ST2) is located at the mouth
of the Chesapeake Bay, and Station 3 (ST3) is located just
outside the bay in the Atlantic Ocean. The agreement between
MODIS-A and HICO Rrs retrieval is very good for the three
locations, indicating good consistency in algorithm performance
regardless of the water type. Figure 11 also demonstrates the
spectral features that HICO can resolve as compared to the
multi-spectral MODIS-A.

Recapitulation
The two-step heritage atmospheric correction algorithms have
served the ocean community well, providing a reliable and
efficient mechanism for the retrieval of water reflectance and
derived marine bio-optical properties frommultispectral satellite
sensors. Within the framework of this heritage algorithm,
and without employing deterministic or statistical methods, a
prototype algorithm has been demonstrated for hyper-spectral
atmospheric correction. This algorithm improves upon heritage
by using measurements within and adjacent to water vapor
absorption bands to derive column water vapor internally,
without the need for ancillary inputs from reanalysis data.
Exploration of this method points to the use of the 720 and
820 nm water vapor absorption bands to derive water vapor
transmittance for use in the atmospheric correction algorithm,
with the capability to produce columnwater-vapor concentration
as a valuable additional product. Improvements will be required
to accurately treat air-sea processes, such as wind-roughened
and whitecap-prone seas, and conditions when the near infrared
reflectance is enhanced due to surface blooms, vegetation or
high turbidity.

ALTERNATIVE ALGORITHMS

In order to discuss different optimization methods, including
Bayesian optimization schemes (Gelman et al., 2013), that may
be of relevance to the analysis of PACE hyper-spectral data we
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will introduce the relationship between the Likelihood function
P

(

y
∣

∣xw,xatm
)

, the prior probabilities for the oceanic, P(xw), and
atmospheric constituents, P(xatm), of interest and the posterior
probability distribution, P

(
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∣

∣y
)

, viz.,
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y
∣

∣xw,xatm
)

P(xw)P(xatm), (4)

where we are assuming that the prior probabilities for the
atmospheric state and the oceanic state are independent. In this
formalism y is the vector of reflectances observed at the top
of the atmosphere, xw is the vector of water reflectances and
xatm is the vector of atmospheric properties (if any) that are
estimated as part of the atmospheric correction process. Rodgers
(2000) provided a comprehensive description of this approach
for the atmospheric sciences. While not all optimization schemes
explicitly make the link to the posterior probability distribution
and the benefits of its use in obtaining an optimal estimate, most
in fact use cost functions that are closely related to this form.
The prior distribution is in some cases used purely to stabilize
the search for xw and xatm (section Statistical Algorithms), but
in more sophisticated approaches it is derived from existing data
bases or is related to known functions of xw and xatm (section
Multi-term Statistical Algorithm, GRASP Retrieval).

Deterministic Algorithms
As noted above in section Algorithms to Retrieve Water
Reflectance from Space, atmospheric correction is in principle an
ill-posed problem since the range of possible atmospheric, surface
and ocean states is not uniquely constrained even by hyper-
spectral measurements. Nonetheless, by suitably constraining
the problem and fitting all the observed TOA reflectances
simultaneously, stable solutions that are valid under a variety of
conditions relevant to atmospheric correction for PACE can be
obtained. Examples of this type of one step approach are provided
by Stamnes et al. (2003) in which a simple iterative scheme is used
to provide a least squares estimate of chlorophyll concentration
and aerosol optical thickness and Li et al. (2008) where a
maximum a posteriori estimate of chlorophyll concentration,
absorption by colored dissolved organic material, backscattering
by suspended particulate matter, aerosol optical thickness and
aerosol fine mode fraction is obtained. Similar optimization
schemes are described in Land and Haigh (1997), Chomko and
Gordon (1998), Kuchinke et al. (2009), Steinmetz et al. (2011),
Shi et al. (2016). By representing the ocean and atmosphere with
simplified parametric forms the estimation problem becomes
stable, since its dimensionality has been reduced. As the approach
presented by Li et al. (2008) is an optimal estimate in the sense
described by Rodgers (2000) its extension to include the types
of measurement in the UV and O2 A-band from a PACE OCI,
that can be used to constrain aerosol absorption and vertical
distribution, is natural. For example, in turbid coastal waters
where absorbing aerosols are most likely to be an issue for
atmospheric correction the ocean body reflectance in the deep
blue and UV tends to be stable and low and can therefore be
used primarily as a constraint on the atmosphere (Oo et al.,
2008; He et al., 2012). The sensitivities of these radiances to
aerosol absorption and vertical distribution, versus ocean body

properties is incorporated into the retrieval scheme through its
use of functional derivatives of the radiation field with respect
to the parameters being retrieved (Jacobian matrices, see section
Information Content Assessment) such that reflectances that are
sensitive to a parameter play a greater role in its determination
than those that are not sensitive to it.

More recently a particularly simple approach to representing
the Rayleigh corrected atmosphere as a polynomial function
of wavelength, referred to as POLYMER, was introduced
(Steinmetz et al., 2011). Together with an ocean body reflectance
parameterized with chlorophyll concentration and a non-
covarying ocean body scattering term this representation was
used to perform atmospheric correction in the presence of Sun
glint. The application of this approach to PACE OCI data may
be beneficial in terms of increased coverage by providing valid
retrievals in the presence of Sun glint with a reflectance as
bright as 20% and in the presence of semi-transparent clouds
(Frouin et al., 2014). This is illustrated in Figure 12, which
displays POLYMER-processed MERIS imagery acquired over the
Northwest Atlantic (June 21, 2005). The satellite observation is
contaminated by Sun glint and a variety of cloud systems, as
evidenced in the RGB composite (Figure 12, left). Chlorophyll-
a concentration is retrieved in the presence of the glint and thin
clouds, and there is spatial continuity between cloud- or glint-
contaminated areas and adjacent clear areas (Figure 12, right). A
band of relatively high chlorophyll-a concentration, not detected
in the RGB image, is revealed at the shelf break in the Bay of
Biscay, a known phenomenon due to internal waves generated
by the interaction of the surface tide with the steep topography
(Pingree et al., 1986; Robinson, 2010).

However, it is important to recognize that all of the one-
step methods described above have the same potential issue
with regards to the atmospheric correction for PACE. While it
is possible within this framework to provide water reflectance
estimates that are relaxed from the assumed ocean body
reflectance spectrum, e.g., Equation (10) of Steinmetz et al.
(2011), it remains an open question as to how much and in what
spectral domains the ocean body spectra assumed in the retrieval
process will distort the estimated water reflectance spectra. Given
the expected application of PACE OCI water reflectance to the
identification of subtle absorption features (e.g., Gitelson et al.,
2011) this clearly needs to be quantified as part of the use of any
such algorithm. Tan et al. (2018) provide information about the
representativeness of the 2-parameter water reflectance model
now used in the POLYMER algorithm. The model, based on
Park and Ruddick (2005), depends on chlorophyll concentration
and a factor specifying the contribution of algal and non-algal
particles to the backscattering coefficient. It was applied to 500
Case 1 andCase 2 water situations used in IOCCG (2006), and the
parameter values giving the best fit against accurate Hydrolight
simulations were determined following procedures described in
Steinmetz et al. (2011). Agreement is generally good (about
10% RMS difference in the blue) between the two-parameter
model results and Hydrolight values, i.e., much better than
typical atmospheric correction errors), even in optically complex
waters; many spectral details are correctly modeled in the 10-nm
resolution reflectance spectrum. Significant differences exist in
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some cases, but having a more intricate model (i.e., using more
parameters) might not guarantee convergence. The trade-off is
between efficiency/robustness and accuracy.

Statistical Algorithms
Neural networks (NNs) and other machine-learning techniques
have seen considerable and diverse use in addressing the
atmospheric correction problem (Schiller and Doerffer, 1999;
Jamet et al., 2004, 2005; Brajard et al., 2006, 2008, 2012; Gross-
Colzy et al., 2007a; Schroeder et al., 2007; Fan et al., 2017). This is
because NNs and in particular multilayer feedforward networks
with non-linear transfer functions provide a universal method to
approximate arbitrary non-linear functions (Hornik, 1989). They
can therefore be used either to solve the atmospheric correction
problem directly by having observed reflectance and viewing
geometry as input and water reflectance as output (Schroeder
et al., 2007), or to model the radiative transfer equation (RTE)
itself, where they replace the time-consuming solution of the
RTE in an optimal estimation scheme (e.g., Brajard and Jamet
references). In Gross-Colzy et al. (2007a) the TOA reflectance,
after correction for gaseous absorption and molecular scattering,
is decomposed into principal components (PCs), and the PCs
sensitive to the water reflectance are combined to retrieve the
PCs of the water reflectance. This allows a reconstruction,
therefore estimation, of the water reflectance. Neural network
methodology is used to approximate the non-linear functions
that relate the useful PCs of the satellite reflectance to those of
the water reflectance. Keeping only the water-sensitive PCs of
the measured signal reduces the influence of the atmosphere and
surface, making the non-linear mapping easier and accurate. The
speed inherent in neural networks, once trained, means that they
are a valuable tool for global processing of ocean color imagery
and can be readily extended to the atmospheric correction of
the hyper-spectral ocean color observations that will be provided
by PACE OCI.

Figure 13 displays an example of water reflectance retrieval
obtained with the PC-based algorithm (Gross-Colzy et al., 2007a)
applied to Sentinel-2 MultiSpectral Instrument (MSI) imagery.
TheMSI scene was acquired over the Gironde estuary onOctober
21, 2016. The PC-based algorithm uses TOA reflectance in 11
spectral bands to retrieve water reflectance at 15 wavelengths
including 412, 510, and 620 nm (not observed with MSI). This
is possible since the TOA PCs can be mapped to the water PCs
defined on a different base. The consequence (advantage) for
PACE, is that it might not be necessary to observe in spectral
regions strongly affected by gaseous absorption to retrieve water
reflectance in those regions. As expected, the offshore waters are
characterized by relatively high reflectance at 443 nm and low
reflectance at 620 nm, and almost null reflectance at 865 nm,
in contrast with the more productive and turbid waters of the
estuary, which exhibit high reflectance at 620 nm (>0.25) and
865 nm (>0.10). In the estuary, the water reflectance spectra
are similar in shape and magnitude to those reported by
Doxaran et al. (2002), even the feature around 750 nm. The high-
resolution (30m) images also reveal a sharp contrast between
the turbid estuarine waters and the clearer offshore waters, i.e.,

relatively little mixing, which would not be observed in coarse
resolution (e.g., 1 km) imagery.

In the case where the NNs are used to provide a direct solution
of the atmospheric correction problem it is not clear that this
is applicable to the PACE OCI hyper-spectral data. As there is
no relaxation to the observations based on the estimate of the
atmospheric state, in this approach the NN estimate of water
reflectance can only reproduce something close to what is in its
training data set. A procedure should be applied to check whether
the observations are compatible with the training data set. One
of the main reasons for obtaining the PACE OCI hyper-spectral
observations is that there is currently no such data set available
to train a NN. In the case where NNs are used to model the RTE
something similar to the optimal estimation approach described
by Rodgers (2000) can be implemented since the gradients of
the RTE that are needed can be obtained in a straightforward
way directly from the NN that provides the forward simulation
of the RTE (Bishop, 1995). While the forward model in such
an optimal estimation scheme may contain assumed water
reflectance spectrum, that assumption can be relaxed in the last
step of the correction process (e.g., Equation 8 of Brajard et al.,
2012). We note that if the Likelihood (errors in the observations)
and prior probabilities (uncertainties in the atmosphere and
ocean state vectors) are both Gaussian then the cost function that
is being minimized in the NN approach is remarkably similar to
− log[P

(

xw,xatm
∣

∣y
)

], e.g., Equation (5) of (Brajard et al., 2012),
and so the atmospheric correction will be similar to a Maximum
A Posteriori estimate. However, the treatment of the priors is
not based on data as one would expect in a completely Bayesian
formulation, but is rather, a means to regularize the solution
of the atmospheric correction problem. Nonetheless, based on
their speed and applicability to cases where there are absorbing
aerosols (Brajard et al., 2008) and to bright coastal waters (Brajard
et al., 2012) NN atmospheric correction algorithms may well be
appropriate for PACE OCI.

The identification of the cost function as akin to a Maximum
A Posteriori estimate brings us to the subject of explicitly
Bayesian AC approaches. While the use of a MAP estimate
does not necessarily require detailed evaluation of the prior
distributions, there are considerable benefits to doing so. As
was noted above the priors can also be regarded as a way of
regularizing the solution of the ill-posed atmospheric correction
problem and ideally any such regularization should be based on
independent observational, or theoretical evidence, rather than
ad hoc estimates. Two recent papers introduce Bayesian methods
for AC of ocean color (Frouin and Pelletier, 2015; Saulquin et al.,
2016), although the solution approaches are completely different.
Frouin and Pelletier (2015) construct a numerically efficient
partitioning of the Rayleigh corrected, or “observed” spectral
reflectance using a perfect binary tree. This partition is used
in conjunction with inverse models estimated from simulated
atmospheric and in situ ocean data to estimate the means and
covariances of the water reflectance and the atmospheric state
parameters. In addition a model probability is calculated, i.e., a
quantitative measure of how well the TOA observations fit the
forward model, allowing for the rejection of scenes for which
the model is inappropriate. The method is numerically efficient
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and provides its own estimate of the mean and covariance of
the water reflectance as an output. Since the atmospheric state
is also estimated, a relaxation step similar to those identified
above could be applied to the observed reflectance if that was
required. However, the authors do point out that “using data
instead of simulations for the water reflectance was deliberate,
dictated by the fact that models do not take fully into account the
natural correlations between the intervening optical parameters”
and so the spectral variability of their water reflectance is not
tied to a specific chlorophyll absorption spectrum. The numerical
efficiency and fact that the spectral behavior is not tied to a
specific absorption spectrum mean that this AC scheme should
be applicable to PACE OCI. Saulquin et al. (2016) generate
prior distributions that are Gaussian Mixture Models for the
water reflectance and the atmospheric reflectance, using the
MERMAID in-situ matchup database. They then use a gradient
descent search to try and find a minimum of the Maximum
A Posteriori cost function. Since the Maximum A Posteriori
criterion may not be concave they use 25 random initializations
to try and eliminate solutions that are captured in local minima.
While this method has been successfully applied to AC in
complex coastal waters, it is not clear that the existing method
for finding the MaximumA Priori solution is sufficiently efficient
for global applications.

Figure 14 presents an example of results obtained with the
Bayesian methodology described in Frouin and Pelletier (2015).
The scheme was applied to SeaWiFS imagery acquired over the
Sea of Japan and northwest Pacific on April 7, 2001. In the Sea
of Japan, the TOA reflectance at 865 nm (Figure 14, top left) is
relatively high, due to dust from Northern China and pollution
from the Korean Peninsula and Japan. This was confirmed by in
situ aerosol measurements collected onboard R/V Brown during
the ACE-Asia experiment and back trajectories (Kahn et al.,
2004). In fact, most of the Sea of Japan was clear, but so hazy that,
in the SeaWiFSData Analysis System (SeaDAS) screening scheme
applied here, many pixels were flagged as cloudy. The retrieved
water reflectance at 555 and 412 nm, as well as associated
uncertainties, and a quality index (p-value) are displayed in
Figure 14 (top left and right and bottom). This ability to
provide uncertainties on a pixel-by-pixel basis, i.e., to quantify
the quality of the retrievals, is characteristic of the statistical
technique. The water reflectance at 555 and 412 nm corresponds
to chlorophyll concentrations typical of those observed in the
region (Yamada et al., 2004). The uncertainties are higher in
the vicinity of clouds and the coast, reaching 0.01 at 412 nm
and 0.002 at 555 nm. In general, however, the values are much
lower, e.g., below 0.004 at 412 nm. The quality index indicates
good retrievals everywhere (p-value > 0.05), but values are lower
where aerosol loading is higher (e.g., Sea of Japan). The marine
reflectance retrieved by the SeaDAS AC algorithm (Mobley
et al., 2016; see also section Heritage Atmospheric Correction
Algorithm), reprocessing version R2010.0, exhibits more spatial
noise (Figure 15, top left and bottom left); values at 412 nm
are unrealistic (e.g., sometimes negative) in the Sea of Japan.
Histograms of valid data (Figure 15, top center and bottom
center) show for the statistical technique a frequency maximum
shifted toward higher values by about 0.006 at 412 nm, with a

narrower spread. Such shift does not exist at 555 nm and 670 nm.
Variograms of valid data in a selected sub-area (150× 150 pixels)
located in the Japan Sea confirm less noisy marine reflectance
imagery derived by the statistical technique (Figure 15, top right
and bottom right), i.e., values are closer to zero as distance
becomes small, and they show a reduced spatial variability over a
60-pixel distance. The results suggest that absorbing aerosols can
be handled adequately using spectral information at wavelengths
influenced by aerosol absorption. Accuracy is expected to
improve by using observations at wavelengths in the UV (case
of PACE OCI, where molecular scattering and, therefore, the
coupling between aerosol absorption and molecular scattering
are effective. Independent information about aerosol altitude
and aerosol type, for example from the PACE polarimeter or
a transport model, may help to constrain the inversion by
restricting the domain of possible solutions.

Multi-Term Statistical Algorithm, GRASP
Retrieval
Formore than a decade amulti-term statistical retrieval approach
has been developed in Dubovik et al. (1995, 2006, 2011), Dubovik
and King (2000), and Dubovik (2004). The approach is based
on the maximum likelihood methodology and therefore it is
fundamentally close to the Bayesian optimization schemes given
by Equation (4). However, the Multi-Term emphasizes the use
of multiple a priori constraints and the Likelihood function
P

(

y
∣

∣x
)

is defined as follows:

P
(

x
∣

∣y, f1 (x) , . . . , fN (x)
)

= P
(

y
∣

∣x
)

∏

i=1,...,N
P(fi(x)|x) (5)

Here, x denotes (xw, xatm), y denotes measured multi-spectral,
-angular, and -polarized reflectances, and fi(x) denotes functions
of x that are known a priori. If we have

∏

i=1,...,N
P(fi(x)|x) = P

(

f1 (x)
∣

∣x
)

P
(

f2 (x)
∣

∣x
)

= P (xw|x)P (xatm|x)

(6)

then Equation (5) becomes equivalent to Equation (4). At
the same time, Equation (5) is evidently more general than
Equation (4) since in many situations Equation (5) cannot be
reduced to Equation (4). This aspect is rather important in many
practical situations. Indeed, using direct assumptions about xw
and xatm may lead to significant biases since it is very difficult
and nearly impossible to find correctly a direct estimate of
unknown parameters. For example, aerosol optical thickness in
some areas may change by an order of magnitude and a single
a priori climatological value cannot be used. In these regards,
using some other constraints may be more adequate for PACE
retrieval. For example, in remote sensing smoothness constraints
are known to be efficient (e.g., Twomey, 1977). Namely, if one
retrieves aerosol size distribution n (r), the limitation on the k-
th derivative can be used as a priori constraint as ∂k(n(r))/∂rk

≈ 0. In principle such smoothness constraint is less restrictive,
since it does not apply any direct limitation on the magnitude
of the retrieved parameters, but it only eliminates the solution
when the retrieved function has unrealistically strong oscillations
(see illustration by Twomey, 1977; Dubovik and King, 2000).
Once a multi-term approach is employed, multiple a priori
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constraints can be used. For example, the Dubovik and King
(2000) AERONET retrieval uses a priori constraints on aerosol
size distribution, and spectral dependencies of real and imaginary
parts of complex refractive index simultaneously. Dubovik et al.
(2011) in retrievals from Polarization and Directionality of
the Earth’s Reflectance (POLDER) onboard PARASOL derives
simultaneously both aerosol and surface properties and for
all spectrally dependent parameters of surface reflectance the
smoothness constraints are also used. Moreover, Dubovik et al.
(2011) proposed to define statistically optimized retrieval for
a large group of POLDER/PARASOL observation pixels. For
example, instead of Equation (5) for M pixels the Likelihood
function can be defined as follows:

P(x1 , . . . , xM|y1 , . . . , yM , f1(x1 , . . . , xM ), . . . , fN (x1 , . . . , xM)) =

P
(

y1, . . . , yM|x1, . . . , xM
)

∏

i=1,...,N

P(fi (x1, . . . , xM) |x1, . . . , xM)

(7)

where a priori constraints can be applied not only on the
magnitude of parameter variability within each pixel, but also on
their variability between the pixels. This allows the use of priori
inter-pixel constraints to further improve the overall accuracy
of the retrieval. For example, it is well known that land surface
reflectance changes slowly over time, while spatial variability
of aerosol parameters is also limited. Dubovik et al. (2011)
showed that using both these constraints helps to achieve stable
retrieval of aerosol properties even in such difficult situations
as over bright land surfaces. For ocean surface application
of time constraint is less critical, though applying some very
mild constraints on time and horizontal variability of ocean
surface parameters is also useful. Overall advantage of multi-
term statistical retrieval is the possibility of retrieving extended
set of unknowns. For example, Dubovik et al. (2011) retrieves
more than 40 parameters for each POLDER/PARASOL pixel
that includes aerosol size distribution, complex refractive index,
fraction of spherical particles, aerosol height and spectrally
dependent parameters of surface bidirectional reflectance and
polarization distribution functions. It is also important to note
that all a priori assumptions are general, i.e., no location-
specific assumptions with exception of water fraction (i.e., water
or land) that is assumed a priori using the pixel geographic
coordinates. Moreover, a single initial guess for aerosol and
surface parameters is used. Therefore, the results retrieved
from POLDER/PARASOL observations are fully driven by the
measured total and polarized reflectances (6 wavelengths, 16
viewing directions, and 3 polarization states, i.e., 192 data points
for each inversion). In the future, some solid climatological
information (e.g., about land surface) can be included too. All
radiative transfer calculations including calculation of Jacobians
are performed during the retrieval and the solution is sought
in continuous solution space. Therefore, the errors of the
retrievals also can be estimated using statistical approach.
Since full radiative transfer calculations are used, the retrieval
is significantly slower compare to conventional look-up-table
algorithms. Nonetheless, during the last few years the computing
routine was significantly optimized and the retrieval speed

is acceptable now for processing large volumes of data and
even for near real time retrieval. For example, the entire
POLDER/PARASOL archive of 9 years was processed by GRASP
(Generalized Retrieval of Aerosol and Surface Properties, see
Dubovik et al., 2014) code. Figure 16 illustrates the global
retrieval of aerosol optical thickness, angstrom exponent and
single scattering albedo that allow identification of different
aerosol types.

According to the Dubovik et al. (2011) concept, the surface
reflectance for both land and ocean is retrieved together
with the aerosol properties. Though, the retrieval of surface
reflectance was not the focus of initial efforts, the robust
results for aerosol retrieval may also generate accurate surface
property retrievals. Figures 17–19 illustrate the first results
for ocean surface retrieval. The reflective properties of the
ocean surface are modeled analogously to earlier POLDER
algorithm developments (Deuzé et al., 2001; Herman et al.,
2005; Tanré et al., 2011). The Fresnel’s reflection on the
agitated sea surface is taken into account using the Cox
and Munk model (Cox and Munk, 1954). The above surface
water reflectance is presumed to be nearly isotropic (Voss
et al., 2007) and modeling shows that its polarization can be
neglected (e.g., Chami et al., 2001; Chowdhary et al., 2006;
Ota et al., 2010). This term and the whitecap reflection are
taken into account by Lambertian unpolarized reflectances.
The whitecap effective reflectance is driven by the wind speed
at sea surface according to the Koepke (1984) model. The
seawater reflectance at short wavelengths is not negligible
and depends on the properties of oceanic waters. Thus, in
the present model, the wind speed and the magnitude of
seawater reflectance at each wavelength are retrieved together
with aerosol properties. Figures 17–20 illustrate the retrieval
of chlorophyll concentration, remote sensing reflectance, and
wind speed and their comparison with MODIS results and
ECMWF reanalysis.

The ocean surface reflectance model used here did not
explicitly separate the contribution from whitecap, foam, and
possible cloud contamination. Therefore, as initial approach
for deriving water reflectance ρw(λ) and estimating chlorophyll
concentrations, the PARASOL/GRASP retrieval was tuned to
the best agreement of MODIS chlorophyll retrieval for year
2008. Specifically, the chlorophyll fraction was fitted by the
power law between logarithm of chlorophyll concentration
and logarithms of ratio of water reflectance (440/565 and
490/565). The coefficients were estimated from best fit of MODIS
chlorophyll concentrations using 1-year (2008) comparisons.
The contribution of whitecap, foam, and possible cloud
contamination was subtracted from retrieved values of surface
albedo at shorter wavelengths using values at 870 and 1,020 nm.
The coefficients for this subtraction were also estimated using
the same comparisons with MODIS. Using the obtained
empirical relationships, the water reflectances and chlorophyll
concentrations were obtained from PARASOL/GRASP retrievals.
As one can see from Figure 19, the obtained values are in rather
good agreement MODIS results for both the global distribution
and for the magnitudes of obtained values. Finally, Figure 20
displays the comparison of PARASOL/GRASP retrieved values of
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wind speed with the values provided by ECMWF ERA-Interim
reanalysis data. Agreement is good between two data sets both
for contour and location of specific geographical features and the
correlation of the values. The agreement is especially encouraging
taking into account that PARASOL/GRASP retrieval did not
use any climatological or ancillary data. Thus the polarimetric
multi-angular observations allow for robust retrieval of the wind
speed. It should be noted that PARASOL/GRASP retrieval was
performed for all non-cloudy ocean pixel including those in
glint areas.

It should be noted that the above results shown for
ocean surface properties are obtained from first version of
PARASOL/GRASP processing without using quality control
and any filtering. At present, dedicated efforts are planned
for improving PARASOL/GRASP ocean surface retrieval.
Specifically, it is planned detailed evaluation and refinement
of the ocean surface model and other aspects of reflectance
modeling and inversion. Also the core scientific code was
realized in open source GRASP software (Dubovik et al., 2014,
https://www.grasp-open.com/). This software benefits from the
general flexibility of code concept and includes a number of
convenient features for users. For example, different assumptions
in forward model and inversion can be changed and tested. Also,
the GRASP code is highly versatile. It can be applied to different
types of satellite and ground-based observations. Therefore,
there is high potential for different synergy retrievals using
GRASP software or scientific approach.

Other Optimal Estimation Approaches
Other recent work in atmospheric correction (Thompson et al.,
2018) employed the Rodgers (2000) inversion framework more
directly, adapting the Optimal Estimation (OE) methodology
used by prior remote sounding missions like OCO-2, AIRS, and
TES (Cressie, 2018). OE is based on a maximum likelihood
method similar to the Dubovik et al. (2011) GRASP algorithm
(see above), while it uses direct a priori estimates of the state
vector. OE begins with an initial heuristic guess of the surface and
atmosphere state, and then performs an iterative gradient ascent
of the probability density until converging to a local maximum.
At each iteration it calculates the probability gradient based on a
local linearization under which the density can be characterized
exclusively using multivariate Gaussians.

One emphasis of OE literature that does not appear in GRASP
is the explicit treatment of unknown parameters in the models,
i.e. parameters which affect the measurement but which are not
directly retrieved. Specifically, the observation likelihood P(y|x)
incorporates an instrument measurement noise model with a
signal-dependent covariance, Sy, as well as any unknowns in
the surface/atmosphere model which are not estimated directly.
Such unknowns, represented by a covariance Sb, are treated
as random variables. Jacobian matrices Kb contain the partial
derivatives of the measurement with respect to these unknowns,
evaluated at the current estimated state. The total covariance of
the observation system, Sǫ , is therefore:

Sǫ = Sy + KT
b SbKb (8)

Given a predictive forward model of the measurement f (x), and
prior with mean xa and covariance Sa the log probability density
function leads naturally to a local cost function χ2(x) defined as:

χ2 (x)=
(

y − f (x)
)T

S−1
ǫ

(

y − f (x)
)

+ (x− xa)
TS−1

a (x− xa) (9)

At convergence, a similar linearization provides the posterior
predictive covariance Ŝ of the estimated surface and
atmosphere state.

Ŝ=
(

KTS−1
ǫ K + S−1

a

)−1
(10)

The Jacobian matrices K hold partial derivatives of the
observation with respect to the state vector. These have
conventionally been calculated at the solution state, though
Cressie (2018) points out that this is inconsistent with the delta
rule derivation of Ŝ. Consequently, it may be preferable to
calculateK from a data-independent state such as the priormean.

Posterior uncertainty distributions permit meaningful
scientific hypothesis testing about surface properties by
subsequent analyses. They can enable principled fusion of
multiple measurements across space and time, under widely
variable atmospheric conditions. This can help prevent regional
bias—due, for example, to different water and atmospheric
properties across latitudinal zones—from influencing global
maps. More fundamentally, a full uncertainty accounting
promotes a richer understanding of the observation system
and its components. Ŝ is a purely local estimate, but it has been
used successfully to create closed uncertainty accounting for
validation experiments that fully explains the discrepancies
between remote and field data. Thompson et al. (2018)
demonstrated a closed OE uncertainty budget for AVIRIS-NG,
a grating spectrometer with hundreds of bands across the
Visible/Shortwave Interval. That demonstration used terrestrial
spectra, with in-situ measurements of surface reflectance on six
diverse validation targets. The approach generalizes naturally to
the aquatic domain.

The most significant difference between terrestrial and
aquatic environments is of course the surface. Ideally, a
parameterization would be general and flexible enough to capture
both environments—this would serve for coastal investigations,
which monitor challenging Case 2 waters, as well as wetlands and
vegetation with partially-inundated pixels. The Thompson et al.
(2018) study complemented the multi-band GRASP research
with flexible surface reflectance priors modeling capable of
representing hundreds of channels. It used a collection of
multivariate Gaussians, fit using a “universal” library of diverse
spectra and designed to envelope of possible spectra that might
be encountered. At runtime, Euclidean or Mahalanobis distance
identified the component that was closest to the current state
estimate, and the result is used as the surface prior for that
iteration. Considerable shrinkage regularization (Theiler, 2012)
broadened these priors still further, ensuring that the system
could retrieve spectral shapes that were outside the span of library
spectra. A designer would be free to craft the appropriate spectral
intervals and magnitudes of this regularization depending on
the application, which is useful when generalizing GRASP
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examples to the spectroscopic case. In extreme cases, the designer
could leave priors totally unconstrained outside key spectral
windows containing atmospheric information, such as NIR
bands for water vapor and aerosols, in order to preserve precise
channel wise relationships for retrieval of very subtle absorption
shapes with high-resolution spectra (Thompson et al., 2018). In
general, the use of structured surface priors can capture many
of the same information used heuristically by typical aerosol
retrieval methods, such as a flat infrared profile, while providing
additional statistical rigor.

Multi-component surface models are easy to augment with
phenomena related to Fresnel surface effects to permit water
retrievals. Figure 21 shows the result of a transect across a
scene imaged by NASA’s PRISM airborne spectrometer. This
shows Santa Monica bay during an algal bloom event (Trinh
et al., 2017), imaged from an altitude of 20 km that is subject
to 95% of the atmosphere column (making it a good analog to
orbital measurements). Here an additional free parameter of the
surface model represents the magnitude of surface glint, which is
assumed to be completely specular to produce the spectral profile
of the direct beam. Surface models are produced using a large
library of synthetic water reflectance spectra generated using
a range of semi-analytical parameterizations (IOCCG, 2006),
with additional regularization applied. Panels A and B show
two examples of dark water spectra, with error bars indicating
95% posterior predictive uncertainties. Panels C and D show
two examples of more productive and turbid water. Remote
sensing reflectance Rrs was retrieved using the optimal estimation
approach of Thompson et al. (2018). The model incorporates
uncertainties due to measurement noise as well as the retrieval
process itself, though they are of course local linearized estimates
and may not capture all probability density maxima. The spectra
show characteristic phytoplankton absorption features as well
as solar-induced fluorescence at 685 nm, even though such
features did not appear in the initial reflectance library. The
experiment demonstrates the ability of this methodology to
retrieve novel reflectance profiles having a wide range of different
water reflectance shapes.

ENHANCEMENTS USING
MULTI-ANGULAR AND/OR
POLARIMETRIC INFORMATION

For current instruments, the atmospheric correction, and
subsequent retrieval of ocean properties, is a fundamentally
underdetermined remote sensing problem. That is, the
information contained in multi spectral observations cannot
uniquely express the geophysical state. This leads to an inability,
for example, to distinguish atmospheric from oceanic scattering,
or to identify and account for aerosol absorption (IOCCG, 2010).
While they can be mostly avoided in the open ocean, these
issues are relevant in optically complex waters or in areas with
non-maritime aerosols in the atmosphere.

One way to address underdetermined observations is to
simply gather more information. The hyper-spectral capabilities
of the OCI instrument on PACE are intended to better

resolve in-water scattering and absorption. Aerosols, however,
do not have strong spectral features, and their observation
will remain underdetermined. The PACE science team has
therefore investigated the capabilities provided by a Multi-Angle
Polarimeter (MAP). MAP, as its name implies, is devoted to
improving retrievals by also observing linear polarization at
multiple viewing angles, in addition to multi-spectral or hyper-
spectral radiometry.

The application of multi-angle polarimetry to satellite
ocean color remote sensing is an emerging field of active
research. In the previous section, the GRASP algorithm showed
potential with POLDER data. In this section, we will describe
theoretical studies exploring the information content of multi-
angle polarimetry (section Information Content Assessment),
followed by specific benefits of multi-angle observations (section
Benefit of Multi-Angular Observations) and polarimetry (section
Benefit of Polarimetric Observations) alone. Finally, we will
discuss the benefits of combined multi-angle and polarimetric
observations and provide examples of successful application of
such instruments for ocean color remote sensing (section Benefit
of Combining Multi-Angular and Polarimetric Observations).
Background for the information content assessment described
in section Information Content Assessment can also be
found in Appendix A.

Information Content Assessment
Information content assessment tools are used to explore the
capability of a measurement system, real or theoretical, in order
to find the optimal algorithm or instrument design. Such tools
rely on simulated observations, and are thus subject to the realism
of such simulations. When designed properly, these information
content assessments can provide valuable input to measurement
system design. We have used information content assessment
tools to make the case that a MAP is indeed valuable for ocean
color remote sensing, specifically in the ability to accurately
perform atmospheric correction of a scene and successfully
determine the water reflectance vector [ρw], from the reflectance
observed at the sensor.

Our methodology is based upon the Bayesian approach using
Gaussian distributions as described in Rodgers (2000), and
implemented for aerosol remote sensing by Knobelspiesse et al.
(2012) and references therein. Theoretical details can be found
in Appendix A, while the specific implementation of our study is
described here.

For this study, we used a Doubling and Adding radiative
transfer model developed at the NASA Goddard Institute
for Space Studies [see Knobelspiesse et al. (2012) for more
details]. This model uses a single parameter (Chlorophyll-a
concentration) to define the optical properties of the ocean
body (Chowdhary et al., 2012). While this is overly simplistic
for hyper-spectral systems such as OCI, it is appropriate for
the multispectral MAP, which is intended for atmospheric
correction.We simulated amaritime aerosol defined by (Smirnov
et al., 2002) at five optical thicknesses over an ocean with
three values of chlorophyll-a concentration, Chl-a, for total
of fifteen simulated scenes. Simulation details are described
in Figure 22.
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TABLE 2 | Prototype MAP characteristics.

# view angles Radiometer Polarimeter Channels (nm) Radiometric

uncertainty

Polarimetric

uncertainty

a 5: −50◦, −25◦,0◦,25◦,50◦ Yes No Visible: 443, 555, 670, 865 3% –

b 5: −50◦, −25◦,0◦,25◦,50◦ Yes No Visible + NIR: 443, 555, 670, 865, 1640, 2250 3% –

c 5: −50◦, −25◦,0◦,25◦,50◦ Yes Yes Visible: 443, 555, 670, 865 3% 0.5%

d 5: −50◦, −25◦,0◦,25◦,50◦ Yes Yes Visible + NIR: 443, 555, 670, 865, 1640, 2250 3% 0.5%

e 9: −70.5◦, −60◦, −45.6◦,

−26.1◦, 0◦, 26.1◦ 45.6◦,

60◦, 70.5◦

Yes No Visible: 443, 555, 670, 865 3% –

f 9: −70.5◦, −60◦, −45.6◦,

−26.1◦, 0◦, 26.1◦ 45.6◦,

60◦, 70.5◦

Yes No Visible + NIR: 443, 555, 670, 865, 1640, 2250 3% –

g 9: −70.5◦, −60◦, −45.6◦,

−26.1◦, 0◦, 26.1◦ 45.6◦,

60◦, 70.5◦

Yes Yes Visible: 443, 555, 670, 865 3% 0.5%

h 9: −70.5◦, −60◦, −45.6◦,

−26.1◦, 0◦, 26.1◦ 45.6◦,

60◦, 70.5◦

Yes Yes Visible + NIR: 443, 555, 670, 865, 1640, 2250 3% 0.5%

At the time this study was conducted, measurement

characteristics for the MAP had yet to be finalized. We therefore

chose to investigate a variety of prototypical MAP instrument

described in Table 2. In each observed pixel, these instruments

had either five or nine viewing angles, four visible channels or

visible plus NIR spectral sensitivity, and were either radiometers
or were sensitive to both the total and polarized radiometric
state. All instruments had a combined (systematic and random)
radiometric uncertainty of 3%, and polarimetric uncertainty of
0.005 (specified for the unitless DoLP). All instruments were
compared to OCI as defined in the PACE Science Definition
Team (SDT) report, containing 28 channels at UV, visible,
NIR, and SWIR wavelengths (channels sensitive to gaseous
absorption were omitted). Radiometric uncertainty was defined
solely by threshold SNR requirements, implying perfect vicarious
calibration and removal of systematic uncertainties. In our
analysis, the MAP instrument is not vicariously calibrated, but
OCI data are available to help the atmospheric correction (in
other words, the theoretical measurement vector contains both
MAP and OCI observations).

Figure 23 shows the Degrees of Freedom for Signal (DFS, see
Appendix A for definition) for the cases with Chl-a specified
at 0.3 mgm−3. All MAP instruments have significantly higher
DFS than OCI alone. As expected, MAP “h” (blue dashed
line), which has the most channels and viewing angles, has the
largest DFS, while even non-polarimetrically sensitive multi-
angle radiometers (a, b, e, f, red andmagenta lines) have 1–3more
DFS than OCI. Some instruments with different characteristics
produce similar results, notably instrument “d” (blue solid line,
a five angle polarimeter with visible and NIR channels) and
instrument “g” (green dashed line, a nine angle polarimeter
with visible channels only). Based on DFS alone, the capability
of those designs appears equivalent, so other factors (such as
cost or engineering difficulty) could drive the selection of the
appropriate design. However, DFS does not necessarily indicate

atmospheric correction capability, rather, the ability to determine
all parameters in state space. This is also demonstrated by
the increase in DFS with simulation aerosol optical thickness.
Obviously, increasing the aerosol load above the ocean does not
improve the ability to determine ocean properties, but it does
improve the ability to determine aerosol optical properties, and
this is shown in the increase in DFS. Finally, it should be noted
that the corresponding results for Chl-a = 0.03 and 2.0 mgm−3

are nearly identical, so the DFS is largely insensitive to ocean
color, at least as it is resolved in our simple ocean model.

The goal of atmospheric correction is not the retrieval of

all parameters in the state space, but instead determination of

water reflectance,
[

ρw

]

. For this reason, SDT report requirements

are defined in terms of
[

ρw

]

at the ocean surface. This is
also why we have derived the byproduct error covariance

matrix, Ŝb, for
[

ρw

]

. Diagonal elements of that matrix are
the square of the expected retrieval uncertainty for each

wavelength in
[

ρw

]

. Figure 24 displays the ratio of this
uncertainty to the predicted uncertainty of the OCI instrument
alone. Thus a value of 1 indicates no improvement over
OCI, while 0 is an infinite improvement. We chose this way
of representing results in order to minimize the impact of
imperfections in the radiative transfer model simulations, and
because information content assessment is better at showing
relative differences between measurement designs than absolute
uncertainty values themselves.

Like in Figure 23, we find that MAP “h” (blue dashed
line) offers the most improvement over OCI alone. Unlike in
Figure 23, however, we find that “d” (blue solid line) and “g”
(green dashled line) have different results. The nine angle visible
wavelength MAP “g” is better than the five angle visible and NIR
wavelength “d” at wavelengths less than 650 nm or so, and the
reverse above 650 nm. However,

[

ρw

]

wavelengths in the blue
and green are most important for in water retrieval algorithms,
so the “g” MAP is the preferable choice given this information.
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Also unlike in Figure 23, we find that the ratio of MAP
[

ρw

]

uncertainty to that of OCI varies with Chl-a and aerosol optical
depth. The relative improvement from one MAP prototype to
another is, however, largely maintained.

To summarize, we have found that the addition of a MAP to
PACE offers distinct atmospheric correction capability compared
to OCI alone. This is even the case for a multi-angle radiometer
without polarization sensitivity. As in all sensitivity studies, these
results are subject to the realism of the study design and require
careful interpretation. However, we now have the means to assess
and guide the development of a MAP, in terms of SDT required
values, should it be funded as part of PACE.

Benefit of Multi-Angular Observations
Multi-angle viewing provides information about aerosol
properties in several ways, as discussed by Deschamps et al.
(1994) in the context of POLDER and Diner et al. (1999, 2005)
in the context of MISR, a multi-angle, non-polarimetrically
sensitive radiometer that was launched into polar orbit in
1999 onboard NASA’s Terra spacecraft. MISR observes the
Earth at nine viewing angles in the along-track direction, and
four spectral channels centered at 447, 558, 672, and 886 nm.
Thus, each pixel has 36 different angle or spectral channel
combinations, providing significant information about the
aerosol state. First, the aerosol signal increases with increasing
viewing zenith angle as the optical path through the atmosphere
becomes longer. Second, several scattering angles are sampled
in the observations, and the dependence with scattering angle
is sensitive to aerosol type and size. This information may help
to determine the proper aerosol type in atmospheric correction
schemes, or at least to restrict the selection to a reduced set of
possible (theoretical or statistical) models.

Diner et al. (1999) showed that sulfate (accumulation mode)
and urban soot aerosols cannot be distinguished by observing at
nadir in the red and infrared, while the multi-angle MISR data
(9 geometries) in this spectral region are able to identify that
an incorrect aerosol model has been assumed in the retrieval
of optical depth. Gordon (1997), following Wang and Gordon
(1994), had earlier indicated that it is possible to atmospherically
correct MISR imagery over water bodies using a single spectral
band (near infrared), by comparing the angular distribution
of TOA radiance with predictions using aerosol models and
selecting the model that best matches the measurements.

Kaufman et al. (1997) hypothesized that aerosol single
scattering albedo could be estimated by observing in and out
of the Sun glint. In their technique, the measurements not
contaminated by Sun glint are used to estimate aerosol scattering
properties, whereas the direct transmittance measurements
at the center of the glint benefit the estimate of aerosol
extinction. Ottaviani et al. (2013) confirmed that additional
aerosol information exists in measurements containing Sun glint,
not only for single scattering albedo retrieval, but also for optical
thickness and refractive index retrieval.

Recently, Limbacher and Kahn (2017) used multi angle
MISR data in a matching algorithm to retrieve simultaneously
chlorophyll concentration and aerosol properties (model and
optical thickness). The difference between observed TOA

reflectance (not only multi angle, but also spectral) and
simulated values stored in a look-up table is minimized.
By accounting explicitly for the water body contribution to
the TOA signal, aerosol type retrievals are expected to be
more accurate. Chlorophyll concentration estimates were in
agreement with in situ measurements, although the number
of such measurements was limited. Because of this, results
were also compared against MODIS observations, and a similar
agreement was found. Chlorophyll concentration estimates were
in agreement with in situ measurements and MODIS estimates
over a wide range of geophysical conditions. This algorithm
constitutes an extension, using directional information, of a
spectral optimization scheme proposed by Gordon et al. (1997)
and Chomko and Gordon (1998) to improve water reflectance
retrievals from SeaWiFS and MODIS imagery in the presence of
absorbing aerosols.

An alternative approach is to use multi-angle measurements
to determine water reflectance using an approach analogous to
the Langley extrapolation technique used in the sun photometer
community (Shaw, 1983). The method, proposed by Thieuleux
(2002), constrains the spectral extrapolation of scattering
properties observed in the near infrared by a value of the aerosol
absorption effect obtained in the short-wavelength bands using
the multi-angular acquisitions. A separate estimation of the
aerosol absorption optical thickness and vertical distribution, i.e.,
the variables that govern the aerosol absorption effect, is not
necessary. This constitutes a great advantage, since these variables
are difficult to retrieve. First, the TOA reflectance is corrected for
molecular and aerosol scattering using spectral bands in the near
infrared and/or shortwave infrared, as in the classic (heritage)
atmospheric correction scheme. Second, the residual signal in
all viewing directions, ρabs, composed of the aerosol absorption
effect and the water signal (see section Improvements Using
“Super-sampling” in Selected Spectral Intervals, Equation 14) is
related to an absorption predictor, i.e., a function representing
the directional effect of an absorbing aerosol, namely the product
of molecular reflectance, ρr and air mass, m∗. By regressing ρabs
vs. m∗ρr (depends on geometry) one may get an estimate of
the water reflectance ρw (the value at null m∗ gives the water
reflectance). Since the relation is non-linear, in practice one may
normalize ρabs by molecular transmittance tr . One may also use
different absorption predictors, such as the absorption effect for
a typical aerosol. Figure 25 illustrates the method for fine and
coarse aerosols. The water reflectance (fixed at 0.02 in this case) is
obtained by “extrapolating” the relation between ρabs/tr and ρrm

∗

to zero air mass.
An example of application to POLDER imagery is given in

Figure 26. The determination of the aerosol model, therefore
the correction of aerosol scattering effects, was accomplished
according to IOCCG (2010), using measurements at 670 and
865 nm in all the viewing directions not contaminated by Sun
glint. The multi-angular information was only used to compute
an average spectral dependence of the aerosol scattering. After
removing the scattering effects, the residual signal at 443 and
565 nm normalized by molecular transmittance was regressed
against the product of molecular scattering and air mass, yielding
an estimate of the water reflectance. In the regression, water
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reflectance was assumed to be isotropic. The aerosol optical
thickness imagery at 865 nm is displayed in Figure 26 (top left).
Relatively high values reaching 0.35 are obtained in the Eastern
part of the Mediterranean basin. In this region, the standard
atmospheric correction algorithm gives anomalously low marine
reflectance at 443 nm (Figure 26, top right). The figure displays
the average water reflectance over the viewing directions. After
correction of the aerosol absorption effects, the water reflectance
is higher in the dust-contaminated region (Figure 26, bottom
left), which is consistent with the values in adjacent regions
not affected by dust and with our knowledge of the bio-optical
conditions in the Mediterranean Sea.

Some issues need to be examined to evaluate the feasibility of
the multi-angular method and quantify its accuracy for the PACE
mission in view of the capability of OCI and the multi-angle
polarimeter. They include specifying the optimum set of viewing
angles, investigating the influence of radiometric noise, defining
requirements for relative multi-angle calibration, transferring
the aerosol absorption information obtained by the polarimeter
to OCI, and analyzing the influence of directionality in the
water signal.

Benefit of Polarimetric Observations
Ocean Ocean color remote sensing is based on TOA
measurements of total radiance or reflectance, i.e., the first
component (I) of the Stokes vector. A major issue with this
approach is that atmospheric and surface effects dominate the
signal measured at the UV to visible wavelengths of interest
(Gordon, 1997; Zhai et al., 2017). To reduce these effects, one
may consider exploiting the polarization properties of reflected
sunlight. Because molecules, hydrosols, aerosols, and the air-sea
interface polarize incident sunlight differentially, there may exist
viewing geometries (scattering angles) for which the contribution
of the water body to the polarized or unpolarized component
of the TOA reflectance may be enhanced. For those geometries,
correction of the perturbing effects becomes easier, leading to a
more accurate retrieval of the water signal. Additionally, in some
systems the method of measuring polarization can inherently
be more accurate than measuring direct reflectance (Tyo et al.,
2006; Dubovik et al., 2019).

He et al. (2014) and Liu et al. (2017) provide evidence of the
advantages of including polarimetry for atmospheric correction
over water bodies. They describe a method for retrieving
normalized water-leaving radiance using parallel polarization
radiance (PPR = I + Q), where I and Q are the first two
components of the Stokes vector. Their results, from both
simulations and application to POLDER data, demonstrate that
using PPR enhances the ocean color retrieval in two important
ways. First, it reduces the Sun glint at moderate to large solar
zenith angles. Second, it boosts the water signal relative to the
total radiance received by satellite at large view angles. These
advantages are explained by the compensating effect between
the total radiance and the polarization. For example, as view
zenith angles increase, because of the increasing long path length
through the atmosphere, the total radiance received by the
satellite increases, causing the relative ocean color signal reaching
the satellite to decrease. Meanwhile, the magnitude ofQ increases

with path length, but in the negative sense, which offsets the
increase in I, and damps the increase in PPR with path length
through the atmosphere.

Instead of using total reflectance or PPR, one may consider
working with the unpolarized component of the TOA reflectance,
as early suggested by Frouin et al. (1994). The rationale behind
this approach is that scattering by atmospheric constituents and
reflection by the surface, i.e., the processes causing the perturbing
effects, polarizes incident sunlight. One expects, therefore, that
they will affect less the unpolarized TOA signal than the total
TOA signal. Of course, scattering by water molecules and
hydrosols also polarizes incident sunlight, but due to refraction
at the air-water interface the scattering angle in water is generally
large for typical viewing geometries, i.e., the polarization rate is
usually small. In other words, the signal from the water body
is mainly unpolarized (see Fougnie et al., 1999) and, in view
of the above, the contribution of the water signal to the TOA
signal may be enhanced. For the approach to be suitable, the
unpolarized signal from the water body must not only be strong
and contribute more to the TOA signal, but also sufficiently
sensitive to water constituents (phytoplankton, dissolved
matter, sediments).

Figure 27 displays the ratio of water bidirectional reflectance
just below the surface to TOA reflectance at 443 nm for
typical geophysical conditions, i.e., maritime aerosols of optical
thickness 0.1 at 550 nm, chlorophyll-a concentration of 0.1
mgm−3, and wind speed of 5m s−1, and solar zenith angles
of 30◦ and 60◦. The simulations were performed with the
OSOAA radiation transfer code (Chami et al., 2001). For some
combinations of viewing and solar angles, especially when
viewing zenith angle is less than 60◦, the unpolarized reflectance
ratio is larger compared with the total reflectance ratio, and
the enhancement is by a factor of 2-3 in some situations.
The enhancement is relatively small in the center of the Sun
glint region when solar zenith angle is 30◦, because scattering
angles are not favorable to reducing sufficiently the molecular
contribution to the unpolarized atmospheric reflectance, and the
most favorable viewing angles are around those corresponding
to specular reflection. The maximum enhancement is confined
to more vertical geometries (i.e., viewing zenith angles less than
45◦) when solar zenith angle is 60◦.

Since aerosols tend to polarize incident sunlight less
than molecules, the enhancement obtained using unpolarized
reflectance is reduced when aerosol optical thickness is increased,
all the more as multiple scattering decreases polarization. When
the aerosol optical thickness is 1 (Figure 28, top), there is
only a marginal gain in the relative contribution of the water
body for some viewing directions. Depending on the surface
conditions (e.g., wind speed), the Sun glint pattern may include
a wider range of viewing angles, displacing and extending the
favorable geometries (not shown here). When the chlorophyll-
a concentration is increased from 0.1 to 10 mgm−3 (Figure 28,
bottom), aerosol optical thickness remaining 0.1 at 550 nm,
the best viewing directions correspond to in air scattering
angles of about 90◦ in the forward direction. The enhancement
is also large in the Sun glint region. As scattering angle
increases, and especially in the backscattering directions, the
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water signal becomes more unpolarized, resulting in a small or
no enhancement with unpolarized observations.

Figure 29 displays the TOA unpolarized reflectance ratio
versus the TOA total reflectance ratio at 443 nm for the situations
of Figures 27, 28. Reflectance ratio refers to the ratio of water
reflectance just below the surface to TOA reflectance, expressed
in percent. Only results for viewing zenith angles less than
60◦ (typical of satellite observations) are reported. As already
mentioned, the unpolarized reflectance ratio is generally larger
than the total reflectance ratio, for most viewing angles, except
when aerosol optical thickness is large (i.e., 1 at 550 nm). In this
case, the total reflectance ratio may be smaller by a few percent,
which is practically not penalizing. Unpolarized observations in
forward scattering directions, where polarization is effective, are
most favorable to boost the contribution of the water signal.
When chlorophyll concentration is high (i.e., 10 mgm−3), the
unpolarized reflectance ratio is up to three times larger than
the total reflectance ratio. In such productive waters, for which
the water signal is usually small, using unpolarized observations
would greatly facilitate atmospheric correction, which may yield
to more accurate estimates of water constituents/properties.

Now when working with unpolarized reflectance, the
sensitivity of the unpolarized signal backscattered by the
water body (obtained after atmospheric correction) to water
composition may differ from that of the total reflectance,
due to changes in the polarization rate (Chami et al., 2001;
Chowdhary et al., 2006; Zhai et al., 2017). This sensitivity
should remain sufficient for the methodology to be effective,
since the ultimate objective is not an accurate retrieval of the
water signal, but an accurate retrieval of the properties that
affect the water signal. Figure 30 displays, for typical solar and
viewing angles, the sensitivity of the spectral ratio of water
reflectance just below the surface at 443 and 550 nm, total
or unpolarized, to chlorophyll-a concentration. This ratio is
typically used in OC4x and OC3M algorithms. The atmospheric
and surface conditions are those from Figure 27. Solar and
viewing zenith angles are fixed at 30◦ and relative azimuth
angle is 0◦, 90◦, or 180◦. In the backscattering direction, as
expected, the sensitivity to chlorophyll-a concentration remains
unchanged whether using unpolarized or total water reflectance.
In the forward scattering direction, the sensitivity is slightly
higher at low chlorophyll-a concentration when using the
unpolarized component (due to the decrease in polarization
rate as chlorophyll concentration increases). This illustrates the
potential of working with unpolarized reflectance, at least for
chlorophyll-a concentration retrieval.

In summary, one may envision using the parallel polarization
component (PPR) or the unpolarized component of TOA
reflectance instead of the total reflectance (the usual way) to
improve atmospheric correction of satellite optical imagery
and retrieve properties (optical, biogeochemical) of the water
body. The methodology only requires observations in a single
direction, like with current ocean-color sensors. The advantages
are that the water contribution to the measured signal may
be substantially enhanced for a wide range of viewing angles
and that Sun glint effects may be reduced. Also, in a classic
atmospheric correction scheme, the polarization information in

the near infrared (even in a single direction) would help to
determine a proper aerosol model. A number of issues remain
to be addressed; including radiometric calibration (polarization
accuracy may degrade data quality) and bio-optical relations
based on unpolarized component of water reflectance (need to
be established, and experimental data are lacking). Furthermore,
since molecular scattering strongly polarizes incident sunlight,
one wonders whether the enhancement of the water signal would
remain significant after removing the molecular signal (can be
computed accurately, except in the presence of Sun glint) from
the polarimetric measurements.

Benefit of Combining Multi-Angular and
Polarimetric Observations
The shortcoming of conventional atmospheric correction
methods in regions with complex marine and atmospheric
compositions suggests an opportunity for a multi-angle
polarimeter to supplement OCI remote sensing reflectance
(Rrs) retrievals, particularly at short visible-UV wavelengths
and in cases where the water surface in the NIR cannot be
considered black, and will therefore provide significant risk
reduction for meeting many PACE mission objectives. Indeed,
measurements of the wavelength and angular dependence and
polarization of the scattered radiance provide a determination
of the aerosol physical properties, i.e., size distribution and
refractive index (e.g., Hasekamp and Landgraf, 2005; Herman
et al., 2005; Hasekamp et al., 2011). This information may be
used to constrain the domain of possible aerosol types in a classic
atmospheric correction scheme or, if sufficiently accurate, to
directly compute the aerosol scattering effect. The sensitivity
of polarized radiance to aerosol type has also the potential to
improve inversion schemes that aim at retrieving simultaneously
atmosphere and ocean properties.

Observational evidence is presented in Figure 31 that shows
retrievals of ρwEs/π (otherwise known as normalized water-
leaving radiance, LwN) obtained from AirMSPI measurements
collected on February 6, 2013 over a SeaPRISM site off the coast
of California. AirMSPI is a multi-angle polarimeter flying on the
high altitude NASA ER-2 with 20 km of atmosphere between it
and the ocean below. The SeaPRISM site on an offshore platform
provides spectral Lwn measured just above the ocean surface. The
retrieval was accomplished using an optimization-based multi-
pixel retrieval algorithm (Dubovik et al., 2011). The forward
radiative transfer calculations were performed using a Markov
chain approach developed for a coupled atmosphere/surface
system (Xu et al., 2011, 2012). The water reflectance was modeled
as a depolarizing Lambertian surface reflection model, plus a
polarizing part modeled by the Cox-Munk model (Cox and
Munk, 1954; Mishchenko et al., 1997). Atmosphere and surface
properties were retrieved simultaneously, and surface reflectance
was retrieved independently at each wavelength.

The comparisons between the AirMSPI retrievals with the
SeaPRISM ground truth (Figure 31) show that LwN is retrieved
much more accurately with multi-angle and polarization
capability than when a more limited retrieval is made with just
one angle and no polarization. Current satellite retrievalsmitigate
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random and systematic errors over the open ocean by invoking
standardized models for ocean surface spectral reflectance and
aerosol scattering. However, in more complex waters, or when
aerosol absorption is present at short wavelengths, traditional
retrieval assumptions break down. The left-hand figure does
not prescribe either an aerosol model or any surface spectral
constraints, indicating that multi-angle and polarimetric imagery
provides the necessary additional information in the more
general scenario. The right hand panel does not invoke any of
the enhanced capabilities, including expanded wavelength range,
expected of the PACE OCI, and therefore suggests a worse
retrieval than could actually be obtained by the radiometer alone.

Demonstrations that show the advantages of a MAP for
atmospheric correction as applied to AirMSPI and POLDER
are extremely promising, but still do not demonstrate how
polarimeter data can be used to assist atmospheric correction
of hyper-spectral radiometer measurements in complex coastal
environments. These environments are located where traditional
atmospheric correction assumptions do not apply, and where
inherent optical properties (IOPs) can vary much more
significantly and in more complex manners than in open ocean
waters. In addition, OCI retrievals at UV and shortwave visible
wavelengths present new challenges to atmospheric correction
due to sensitivities to aerosol height in an atmospheric signal
dominated by Rayleigh scattering and the interplay between
scattering and gaseous absorption. For these optically complex
regions and at these spectral ranges, adding information from
MAP becomes most important for atmospheric correction.
Efforts to acquire andmake use of the appropriate demonstration
data are highly recommended.

These constraints can enter the atmospheric correction
procedures at a variety of levels. (1) At the simplest, they can
improve our overall understanding of aerosol properties and
distribution of aerosol type, which can be incorporated into
heritage atmospheric correction lookup table and algorithm
updates. (2) MAP based aerosol retrieval could be performed
prior to OCI atmospheric correction, and direct that algorithm
to a particular aerosol type and/or provide the aerosol optical
depth. (3) An atmospheric correction algorithm may be
performed directly with MAP observations, and after spectral
and geometric interpolation, applied to OCI. (4) Both MAP and
OCI observations are combined as inputs to a joint inversion.
Implementation of any of these approaches would require that we
overcome multi-sensor data fusion issues such as instrumental
calibration, differing spatial resolution and varied geometry.

Clouds are ubiquitous in remote sensing of the ocean, so
the ability to properly screen and remove “cloud contaminated”
pixels is an important component of successful atmospheric
correction. Such techniques must be conservative, but a
“cloud free” pixel still may contain sub-pixel clouds, or be
influenced by cloud adjacency effects such as shadows or other
“3D” phenomena. Combined multi-angular and polarimetric
observations are capable of identifying such effects, and
in some cases, minimize their impact. Bréon and Goloub
(1998) recognized that certain solar-view geometries observed
by POLDER contained distinct cloud-bow features due to
single scattering by liquid cloud drops, confirming earlier

observations by Goloub et al. (1994) with airborne POLDER
prototype observations. This was incorporated into POLDER
cloud detection, cloud property retrieval, and cloud phase
detection algorithms (Bréon and Colzy, 1999; Parol et al.,
1999; Goloub et al., 2000). A later review of these capabilities
by Parol et al. (2004) highlighted the utility of multi-
angular polarimetric observations, but also found evidence
of cloud contamination in an aggregate analysis of POLDER
data. For these reasons, subsequent multi-angular polarimetric
instruments were designed with the recognition that they
would provide valuable data in both cloud and cloud free
regions (e.g., Frouin et al., 2006; Mishchenko et al., 2007;
Fougnie et al., 2018; Hasekamp et al., 2019). Additionally,
polarimetric observations are recognized as being less sensitive
to 3D effects (e.g., Davis and Marshak, 2010) but in certain
geometries capable of detecting very optically thin cirrus
clouds (Sun et al., 2014). The information contained in multi-
angular polarimetric observations is highly sensitive to solar and
observation geometry; it increases with additional measurements
at angles containing the reflected cloud-bow. However, it can be
large enough that simultaneous retrieval of cloud and aerosol
property algorithms have been proposed for mixed cloud and
cloud free pixels (Hasekamp, 2010), indicating the utility of such
observations for properly cloud screened atmospheric correction.

IMPROVEMENTS USING
“SUPER-SAMPLING” IN SELECTED
SPECTRAL INTERVALS

The PACE OCI will have the capability to measure TOA
radiance in spectral bands 5 nm wide with sampling at finer
spectral steps (2.5, 1.25, or 0.625 nm). This fine spectral sampling
provides the opportunity to estimate Raman scattering by water
bodies and improve retrievals of phytoplankton chlorophyll
fluorescence and aerosol vertical distribution. These applications
involve the development of original techniques that exploit
spectral fluctuations in solar irradiance, the filling by inelastic
fluorescence of oxygen absorption lines in the B-band, and
the coupling between aerosol scattering and oxygen absorption
in the A-band. They require or will benefit from the high
spectral sampling.

Estimation of Raman Scattering
Raman scattering occurs when an incident photon is scattered
by water molecules excited into higher vibrational or rotational
energy levels. The scattered photon has a frequency different
from (usually lower than) that of the incident photon, i.e.,
the process is inelastic (kinetic energy of the incident photon
is not conserved). This scattering by excitation is infrequent
(1 in 10 million events), yet its contribution to diffuse water
reflectance or “remote sensing” reflectance may reach 20% in the
visible in clear oceanic areas (i.e., 40% of the world’s oceans), as
shown by Marshall and Smith (1990) and others and illustrated
in Figure 32.

The Raman signal, therefore, needs to be known to improve
the retrieval of oceanic variables (e.g., chlorophyll concentration)

Frontiers in Earth Science | www.frontiersin.org 23 July 2019 | Volume 7 | Article 145

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Frouin et al. Atmospheric Correction of Ocean-Color Imagery

from “remote sensing” reflectance. The fact that Raman
scattering at a given wavelength is influenced by the water
optical properties at shorter wavelengths provides a second
motivation to observe the Raman signal. Are the Raman
scattering measurements interpretable in terms of water optical
properties, and how can they complement other approaches?
Measurements in the near UV, for example, should be strongly
affected by CDOM absorption, while in the blue-green by
chlorophyll absorption.

Raman scattering at a given wavelength is proportional to
some integral of the solar irradiance at shorter wavelengths
and, unlike elastic scattering by water and air constituents, its
spectrum does not exhibit fluctuations in spectral solar irradiance
(Fraunhofer lines and others). The approach to estimate the
Raman scattering signal is thus to observe the TOA radiance
at sufficiently high spectral resolution in a small wavelength
interval, and to separate the part of the radiance that correlates
with the solar irradiance spectrum (the elastic scattering) from
the part that does not (the Raman scattering).

At the air-water interface, the spectral water-leaving radiance,
Lw(λ), is the addition of an elastic scattering contribution,
Lw_elastic (λ) proportional to the solar spectral irradiance, Es(λ),
and a Raman scattering contribution, Lw_raman (λ) , i.e., the
integral of the excitation by the Sun at shorter wavelengths. At
the TOA, the observed spectral radiance, LTOA(λ), includes the
signal due to atmospheric scattering and Fresnel reflection at the
interface, Latm(λ), also proportional to Es(λ). Neglecting gaseous
absorption and Sun glint effects for simplicity, LTOA (λ) can
be written:

LTOA (λ) = Latm (λ) + Lw_elastic (λ) tu(λ, θ)

+ Lw_raman (λ) tu(λ, θ) (11)

The ability to de-correlate the elastic and inelastic scattering
contributions does depend on the presence of some absorption
bands in the extraterrestrial solar spectrum over the selected
spectral interval. Figure 33 shows the spectral solar irradiance,
Es(λ), and the Raman “remote sensing” reflectance, Rrs_raman(λ)
(defined as Lw_raman(λ)/Ed (λ) where Ed is the downward
spectral solar irradiance at the surface, i.e., Es(λ)cos(θs)td(λ),
in the range 350–550 nm at a 5 nm resolution every 1.5 nm
(approximating the spectral resolution and sampling expected
from OCI). The Raman signal decreases with increasing
chlorophyll-a concentration and CDOM absorption and exhibits
fairly large spectral variations in some regions. For some
intervals, namely 398.5–412.5 nm, 436.5–452.5, 473.5–484.5 nm,
and 509.5–519.5 nm, however, the Raman signal is fairly constant
with wavelength and the Es variability with wavelength is
sufficiently high to attempt a de-correlation of the Raman and
elastic contributions to the TOA signal.

De-correlation of the two types of scattering can be
accomplished by performing a linear fit of the observed spectral
radiance (or equivalently reflectance) vs. the spectral solar
irradiance in the intervals identified. In those relatively small
spectral interval (10–15 nm wide), the spectral variation of the
scattering properties, either elastic or Raman, can be assumed
negligible, or, better, derived by a radiation transfer model with

inputs of the optical aerosol and ocean properties as determined
by the atmospheric correction algorithm. Note that themolecular
atmospheric scattering contribution, which has a strong spectral
dependence, can be subtracted from the TOA measurements.
We have:

P (λ) = P0 (λ) + Lw_elastic (λ) +
〈

Lw_raman

〉

+ F(λ)

(12)

with P0(λ) =
[

Latm (λ) − Lr(λ)
]

/t
u
(λ, θ) where F(λ) is a

spectral factor that depends on the water optical properties
(since again they may not be constant over the spectral interval
considered). The ordinate at the origin of the best linear fit P
vs. Es or downward irradiance at the surface, Ed, gives access
to

〈

Lw_raman

〉

.
The approach and methodology are simple in principle, but

to achieve useful accuracy a number of technical issues require
attention: (1) Radiometric noise of the spectral measurements
will result in an error on the water Raman scattering estimate that
is amplified by the extrapolation of the linear fit to the ordinate
axis; (2) Spectral resolution of the measurement will affect the
variability of the spectral measurement as the solar spectrum
is smoothed. A reduced variability of the solar spectrum will
increase the error due to extrapolation; and (3) The sum of
atmospheric and oceanic Raman scattering signals would be
actually determined. Although the atmospheric Raman scattering
is rather small (e.g., Vountas, 1998), it must be accounted for
and subtracted from the water Raman scattering estimate; and (4)
The Raman scattering signal can only be determined with good
accuracy in some spectral intervals where the solar irradiance
variability is large enough, namely around 390, 440, 475, and
515 nm, as indicated above. Interpolation/extrapolation to others
wavelengths, definitively feasible, may not be straightforward
since the Raman signal is not smooth spectrally.

Figure 34 illustrates the method feasibility. The various
atmospheric functions were simulated in 5 nm bands shifted
by 1.5 nm resolution for the 4 suitable spectral intervals using
a successive-orders-of-scattering code. Aerosols were assumed
of maritime type with an optical thickness of 0.2 at 550 nm,
and wind speed was 5m s−1. Sun and view zenith angles
were 30◦ and relative azimuth angle was 90◦. The water-
leaving radiance (elastic and inelastic components) was simulated
using HYDROLIGHT for Case 1 waters with a chlorophyll-a
concentration, Chl-a, of 0.03 mgm−3. Typical CDOM absorption
corresponding to biogenic particles was used. No noise was
introduced on the TOA reflectance and atmospheric Raman
scattering was neglected. Retrievals were obtained (1) assuming
F = 0 (no spectral correction), and (2) assuming F was
perfectly known.

When F = 0, large errors are obtained in the determination
of

〈

Lw_raman

〉

, i.e., the methodology is not practically applicable.
For example, in the 398.5–412.5 interval, the retrieved

〈

Lw_raman

〉

value is 0.00028 instead of 0.00079 Wm−2nm−1sr−1 when Chl-
a is 0.03 mgm−3. In the 436.5–452.5 nm and 473.5–484.5 nm
intervals, the retrieval is completely erroneous. When using F
computed assuming that Chl-a is known, the

〈

Lw_raman

〉

estimates
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are very close to the prescribed values. This indicates that
knowledge of Chl-a is essential to retrieve

〈

Lw_raman

〉

accurately.
Now Chl-a can be obtained from standard band-ratio

algorithms with a typical uncertainty of ±30%. The impact of
such uncertainty on the

〈

Lw_raman

〉

retrieval is still too large.
For the case mentioned above, the

〈

Lw_raman

〉

estimate would
range from 0.00058 to 0.00165 Wm−2nm−1sr−1, which is not
satisfactory. This means that Chl-a needs to be estimated more
accurately for the methodology to work.

To estimate Chl-a, therefore F, more accurately, one may use
the goodness of the linear fit (correlation coefficient). One expects
that the linear regression will be more accurate when the spectral
factor F corresponds to the actual Chl-a (see Figure 34). To
increase sensitivity to Chl-a, especially in the presence of noise,
the correlation coefficient may be computed for the 4 spectral
intervals combined. This provides a practical way to determine
the best F that corresponds to the observations. One could use a
look-up table of F(λ, Chl-a) for each spectral interval to find the
best F values that yield the best linear fit. As Raman scattering
also depends on absorption by other variable constituents, the
look-up table should include additional parameters (e.g., CDOM
absorption coefficient). Additional theoretical and experimental
work is needed, however, to demonstrate quantitatively the
method’s applicability to OCI imagery.

Estimation of Chlorophyll Fluorescence
Knowledge of the solar-induced chlorophyll fluorescence of
natural waters is important to understanding the physiology of
phytoplankton and investigating environmental influences on
primary production and food web structure (e.g., Behrenfeld
et al., 2009). Chlorophyll fluorescence can be remotely sensed
from space, which has been routinely accomplished by
instruments like MODIS and MERIS. The retrieval algorithms
(Letelier and Abbott, 1996; Gower et al., 1999; Huot et al.,
2005; Behrenfeld et al., 2009) involve the subtraction of a
baseline representing the shape of the water reflectance spectrum
without fluorescence. In waters containing sediments and yellow
substances (Case 2 waters), determination of the baseline may
not be accurate, yielding unacceptable uncertainties on the
fluorescence height estimates, all the more as the chlorophyll
concentration or the quantum yield of fluorescence are low.
It is desirable to improve accuracy in these waters, for which
fluorescence, unlike blue-to-green reflectance ratios, is a good
measure of chlorophyll concentration.

To improve the estimate of chlorophyll fluorescence, one
may use detailed spectral measurements in the oxygen B-
band centered on 687 nm. The method exploits the fact that
emitted fluorescence (observed at sea level) is excited at shorter
wavelengths and is not affected by the oxygen absorption,
contrary to the elastic water reflectance. As the absorption lines
are partially filled due to inelastic fluorescence emission, the
spectral change with respect to reflected solar radiance (i.e., to
the elastic component) is sensitive to the fluorescence signal.
By shifting the center wavelength in a spectral interval of 10–
20 nm, one may be able to de-correlate the fluorescence signal
from the elastic signal in the TOA measurements, therefore
obtain a fluorescence estimate more independent from elastic

scattering than the standard baseline technique. In other words,
the fluorescence signal can be much more easily differentiated
from the elastic signal when spectral measurements in the oxygen
band are included.

Neglecting Sun glint, Raman scattering by water molecules,
and assuming that in the spectral range of interest, i.e., 670–
700 nm, gaseous absorption is only due to oxygen, the radiance
L′TOA measured from space, after correction for molecular
scattering, can be expressed as:

L′TOA = LaTO2 (θs, θ ,Ha) + Lw_elastic tu (θ)TO2 (θs, θ , 0)

+Lw_fluo tu (θ)TO2 (θ , 0) (13)

where Lw_elastic is the elastic water-leaving radiance, Lw_fluo is
the radiance due to chlorophyll fluorescence, TO2 (θs, θ ,Ha) is
the oxygen transmittance associated with the path radiance,
TO2 (θs, θ , 0) is the oxygen transmittance associated with the
elastic water reflectance (affected by absorption along the
Sun-to-surface path), and TO2 (θ , 0) is the oxygen transmittance
associated with the fluorescence signal (only along the surface-
to-satellite path). The transmittances TO2 (θs, θ ,Ha) and
TO2 (θs, θ , 0)are different, the first one in particular depends
significantly on the vertical distribution of the aerosols (average
altitude or scale height Ha). In Equation (13), Lw_fluo can
be expressed as the product of the radiance at the peak of
fluorescence emission (i.e., 685 nm) and a known spectral
function, h (see, e.g., Mobley, 1994), i.e., Lw_fluo = hL

w_fluo
(685).

The variable to retrieve is Lw_fluo(685), the fluorescence line
height. This can be accomplished using a spectral optimization
scheme, in which Lw_fluo(685) is varied to obtain the best fit
between the modeled and actual (measured) TOA radiance
LTOA

′. The aerosol radiance La and the aerosol optical
thickness and model (affect transmittances) can be determined
from measurements in the near infrared and/or shortwave
infrared using standard algorithms. The oxygen transmittance
TO2 (θs, θ ,Ha) can be computed from an estimate of Ha (e.g.,
from measurements in the oxygen absorption A-band centered
on 763 nm, see Dubuisson et al., 2009 and section Estimation
of Aerosol Vertical Profile) or assuming that the aerosols are
located at an average aerosol altitude or at the surface. It is
necessary to assume that the spectral shape of the elastic water-
leaving radiance, f (λ) is rather constant, or known from a
model as a function of chlorophyll concentration, Chl-a, and
particulate backscattering.

To demonstrate the method feasibility, Case 1 and Case 2
waters containing 0.1, 1, 5, and 30 mgm−3 of chlorophyll-a
were considered. Absorption by yellow substances and sediment
concentration were null for the Case 1 waters and fixed at
0.5 m−1 (440 nm) and 2 gm−3, respectively, for the Case 2
waters. The fluorescence yield, which ranges from less than
0.01 to 0.10, was fixed at 0.05. Aerosols were of maritime type,
with optical thickness of 0.2. The vertical profile of aerosol
concentration was exponential with a scale height of 1 km. The
TOA signal, including the coupling between oxygen absorption
and aerosol scattering, was simulated with no noise using the
quasi-single scattering approximation (a sufficient treatment to
demonstrate feasibility). The HITRAN 2004 database was used to
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define spectroscopic parameters for oxygen absorption lines and
compute oxygen transmittance. Absorption by water vapor was
neglected. The simulations were performed for a single angular
geometry, i.e., solar and viewing zenith angles of 45◦, and a
relative azimuth angle of 90◦.

The spectral matching was accomplished on TOA reflectance,
ρ′

TOA = π ′LOA/[Es cos (θs)] rather than radiance, using
a function minimization scheme (Nelder and Mead, 1965)
over the range 660–720 nm. (Similar results were obtained
when restricting the range to 670–700 nm.) The aerosol
optical properties (optical thickness and reflectance) were
assumed perfectly known. The aerosol scale height Ha

was assumed to be 0.5 km. The elastic water reflectance,
ρw_elastic = πLw_elastic/[Es cos (θs) td (θs)], was parameterized as
ρw_elastic (685)

〈

f (λ)
〉

where <f> is the average spectral function
over all the water situations (Chl-a and water type). Thus the
parameters used to adjust the modeled TOA reflectance, after
correction for molecular scattering, were ρw_elastic (685) and
ρw_fluo (685) = πLw_fluo/[Es cos (θs) td (θs )].

Figure 35 displays the results obtained for Case 1 and Case 2
waters containing 5 mgm−3 of chlorophyll-a. The retrieved and
prescribed fluorescence signals agree well irrespective of water
type, with differences <5% on ρw_fluo (685). The impact of a
0.5 km uncertainty on the 1 km aerosol scale height (i.e., 50%)
is small, but increased errors may occur when the difference
between actual and specified scale height is larger. Accuracy
remains similar for all the chlorophyll-a values in Case 1 waters,
but decreases substantially with decreasing Chl-a in Case 2
waters (Figure 36).

Compared with the standard baseline technique using bands
centered on 665, 682, and 705 nm, the spectral optimization
in the spectral range of the oxygen B-band provides much
better results (Figure 36). For Case 1 waters, the errors on
estimated ρw_fluo (685) are decreased from 15 to 20% to about
5%. For Case 2 waters, the improvement is even more dramatic:
Errors are decreased from about 200% to 22% when Chl-a =

0.1 mgm−3. The two techniques provide similar performance,
however, in the presence of Case 2 when Chl-a> 5 mgm−3,
i.e., within about ±20%. Note that when Chl-a is high in Case
1 waters the influence of chlorophyll absorption at 670 nm on
the elastic reflectance makes it more difficult to determine the
baseline, which degrades the retrieval accuracy of the standard
technique (Figure 36, left). These findings, based on simulations,
were obtained in controlled conditions, and the documented
advantages may not be as important in natural conditions, which
needs to be examined in future work.

The above results, even though they demonstrate the
potential of using the oxygen B-band to improve chlorophyll
fluorescence estimates, were obtained without noise on the
TOA signal. The acceptable level of radiometric noise needs
to be evaluated to achieve useful accuracy. The wavelength
range for spectral matching may be optimized for maximum
sensitivity to fluorescence height and minimum sensitivity to
elastic water reflectance. In this respect, one may consider
differential absorption using narrow and wide spectral bands
(e.g., 5 and 30 nm, respectively) centered on 687 nm. Centering
the two bands on the same wavelength would reduce the impact

of the elastic water signal on the estimates, but sensitivity to
fluorescence height may be reduced (5 nm may be too wide
for the narrow band). Errors in the retrieval of the aerosol
optical thickness, reflectance, and scale height (supposed to be
determined separately), need also to be included to determine
realistically the expected error budget.

Estimation of Aerosol Vertical Profile
Information on the vertical aerosol profile is required for accurate
atmospheric correction of satellite ocean-color imagery at short
wavelengths (ultraviolet and blue) when absorbing aerosols are
present (Gordon, 1997; Duforêt et al., 2007). This is due to the
coupling between aerosol absorption and molecular scattering,
which depends on the location of the aerosols in the vertical.
Aerosol absorption reduces sun illumination and backscattering
in the lower atmospheric layers, all the more as molecular
scattering is large. Even if the standard atmospheric correction
algorithm works well for “pure” scattering, an additional
correction that depends on the aerosol vertical profile must be
done at short wavelengths (see section Multiple Scattering).

The effect of aerosol absorption on the observed TOA
reflectance, ρTOA, can be written as (e.g., Torres et al., 2002):

ρabs ≈ −(1− ω0a)τam
∗[ρwt + ρr(Ps − Pa)/Ps] (14)

where τa is the aerosol optical thickness, ω0a is the aerosol single
scattering albedo, (1−ω0a)τa is the absorption optical thickness,
and Ps and Pa are surface and aerosol layer pressure levels. The
observed signal, ρTOA, is reduced due to aerosol absorption, all
the more as aerosols are higher in the atmosphere, absorption
optical thickness is larger, and air mass is larger. Note that marine
reflectance exerts some influence on ρabs.

This is illustrated in Figure 37, which displays ρabs as a
function of wavelength (350 to 1,000 nm) and aerosol pressure
level (300 to 1,000 hPa) for various aerosol models, i.e.,
continental (Con), urban (Urb), desert dust (DD), and biomass
burning (BB). The calculations were made for a typical geometry,
i.e., solar and viewing zenith angles of 30◦, a relative azimuth
angle of 90◦, an aerosol optical thickness of 0.2 at 550 nm, and a
null water reflectance. The absorption effect ρabs reaches −0.004
at 400 nm when aerosols are strongly absorbing (urban type) and
located at 900 hPa (Figure 37, left), but may be as large as 0.02 in
magnitude at that wavelength when they are located higher in the
vertical, i.e., at Pa < 400 hPa (Figure 37, right). For this relatively
small aerosol optical thickness, ρabs remains significant in the
presence of less absorbing aerosols (e.g., biomass burning and
desert dust types), but would increase proportionally to optical
thickness (see Equation 14). Neglecting ρabs in atmospheric
correction algorithms, therefore, would yield unacceptable errors
on water reflectance retrievals, well above the ±0.002 accuracy
requirements for clear waters. Hence, taking into account aerosol
vertical structure, a key variable controlling ρabs, is needed when
dealing with absorbing aerosols.

As indicated above, the effect of aerosol absorption, when
aerosols are concentrated in a layer of average pressure Pa, is
proportional to the absorption optical thickness of the layer and
to the molecular thickness below the layer, i.e., Ps − Pa. In the
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more general case of an aerosol profile, Pa is replaced, in first
approximation, by an equivalent mean pressure 〈Pa〉, defined
by the integral over pressure of the aerosol optical thickness
(from top of atmosphere) normalized by the total aerosol optical
thickness. Thus 〈Pa〉 is the vertical structure parameter to
introduce for a more effective atmospheric correction in the
ultraviolet and blue (details about the vertical structure do not
need to be known). This equivalent pressure can be derived from
spectral measurements in the oxygen A-band around 762 nm.

The envisioned methodology to retrieve 〈Pa〉 exploits the
coupling between aerosol scattering and oxygen absorption. The
TOA radiance measured in the oxygen A-band depends on
the altitude of the atmospheric scatterers, especially aerosols.
The higher the aerosols, the larger the reflectance, since a
number of photons are backscattered to space instead of being
absorbed by oxygen in the lower layers. In addition, the
coupling between aerosol scattering and oxygen absorption,
which enhances absorption, is less effective in this case because
there are fewer molecules. Dubuisson et al. (2009) showed that
the ratio of measurements in a band strongly attenuated by
oxygen absorption (i.e., within the A-band) and in a band
minimally attenuated (e.g., outside the A-band) is sensitive to
aerosol altitude. Using a relatively large single band in the oxygen
A-band (case of POLDER and MERIS), retrieval accuracy was
only satisfactory when aerosol optical thickness was > 0.3.

The oxygen absorption band is a feature about 5 nm wide with
two absorption maxima separated by about 3 nm. The oxygen
transmission averaged at the spectral resolution of 5 nm, exhibits
a larger absorption peak that at a larger spectral resolution,
and some details of the spectrum are still present with a
sampling every 1.25 nm, even 2.5 nm. Such sampling, possible
with the PACE OCI, is expected to help retrieve more accurate
information about the vertical profile of aerosol scattering. In
juxtaposed 5 nm bands (or in larger spectral intervals) the
spectral details would be missed, and the information about
oxygen absorption would be too mixed with the out-of-band
signal. An analysis of the effect of spectral resolution on the ability
to use oxygen A-bands to retrieve aerosol layer height is given in
Remer et al. (2019, this issue).

The inversion scheme is schematically the following. The
objective is to retrieve the effective atmospheric pressure of
the scattering aerosol profile, 〈Pa〉. Using a single scattering
approximation, and neglecting surface reflectance, the TOA
reflectance, ρTOA, can be written as:

ρTOA (λ) = ρr,O2 (λ) + ρa (λ)TO2 (λ, 〈Pa〉) (15)

Where ρr,O2 is the molecular scattering computed in the presence
of oxygen absorption, ρa is the aerosol scattering reflectance
interpolated from the close measurements at, for example, 748
and 865 nm, i.e., out of the absorption band, and TO2 is the
oxygen transmittance at the equivalent pressure 〈Pa〉. The various
terms of Equation 15 depend on angular geometry (not shown
for simplification). A spectral fit algorithm is then applied to
retrieve 〈Pa〉. The spectral fit, i.e., the retrieval accuracy, will
definitively be better with measurements at 5 nm resolution every
1.5 nm in the oxygen A-band than with fewer measurements

in consecutive 5 nm bands. The issues to investigate include
the impact of spectral resolution and radiometric noise on the
retrieval accuracy of 〈Pa〉, and the influence of aerosol type and
amount, and surface reflectance, which may not be null in the
oxygen A-band. Note, incidentally, that the derived apparent
pressure would constitute an excellent test to detect and filter
out semi-transparent or small broken clouds in the absence of
measurements in the thermal infrared. Effort is already underway
and reported in Remer et al. (2019, this issue) to confirm that
aerosol layer top pressure can be retrieved using oxygen A-
band spectroscopy at the 5 nm bands of OCI for aerosol optical
thickness τa ≥ 0.3 for all surfaces and ≈ 0.1 for dark surfaces.
In addition these studies show that τa may also be retrieved when
angular information is added with a multi-angle polarimeter.

SIGNIFICANT ISSUES

In a seminal paper about atmospheric correction in the EOS
era, Gordon (1997) discussed approximations and issues that
remained to be addressed in developing and operating the 2-
step multi-scattering standard algorithm. The issues at the time
covered an extensive range of topics; they included whitecaps,
aerosol vertical structure, appropriateness of aerosol models,
absorbing aerosols, stratospheric aerosols, Earth’s curvature,
instrument polarization, surface roughness, in-water radiance
distribution, diffuse transmittance, and radiometric calibration.
Solutions (or approaches to solutions) were proposed to treat
many of the issues, but some could not be handled properly, in
particular those regarding aerosols. Alternative algorithms and
the use of bi-directional and polarimetric information, however,
have showed promise in difficult aerosol situations, either
directly or indirectly (i.e., estimating aerosol optical properties
separately), as demonstrated in sections Alternative Algorithms
and Enhancements Using Multi-angular and/or Polarimetric
Information. Some of the remaining issues are revisited here in
view of new knowledge (whitecaps, Earth’s sphericity), as well
as others either not considered in Gordon (1997) (horizontal
heterogeneity) or that came to the forefront with the new
PACE capabilities (complex and large atmospheric interference
in the UV).

Adjacency Effects
Evidence
Imagery of the Earth’s surface (land and ocean) obtained from
space at optical wavelengths is degraded due to the atmosphere
(e.g., Tanré et al., 1979). One of these effects is the adjacency
effect (also known as the environment or blurring effect), defined
as the change in the digital number of a pixel caused by
atmospheric scattering of radiance that originates outside of the
sensor field-of-view. Tanré et al. (1987), among others, have
provided evidence for the adjacency effect in satellite imagery of
land and ocean/lakes. They showed that over water the spectral
dependence of the aerosol scattering determined in the red and
near infrared (where the ocean can be considered black) might
differ substantially from the actual one when the environment
reflectance is high (case of green vegetation). Building on
previous work (Tanré et al., 1981), they proposed a theoretical
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formalism to describe, therefore correct the adjacency effect.
Diner and Martonchik (1985) also investigated theoretically the
influence of atmospheric scattering on blurring of surface details
in imagery acquired from space. They predicted that blurring of
a spatial boundary would be enhanced in the presence of large
particles (increased forward scattering).

The adjacency effect is generally ignored in standard
atmospheric correction schemes and operational processing of
satellite ocean-color imagery. Yet its impact on water reflectance
retrieval and derived products (e.g., chlorophyll-a concentration)
may be important, especially near land, sea ice, and clouds,
i.e., where the environment reflectance is much different from
the target reflectance (e.g., Santer and Schmechtig, 2000). These
authors reported from theoretical calculations that for a typical
contrast between land and ocean reflectance of 0.3 at 865 nm
and 0.07 at 670 nm, a chlorophyll-a concentration of 2 mgm−3

is underestimated by 25% at a distance of 10 km from a linear
coastline when the atmospheric visibility is 23 km and by 50%
when the visibility is 8 km. The underestimation becomes larger
as chlorophyll-a concentration increases, with retrieved values 5
times smaller than actual values at 10 mgm−3 when the visibility
is 8 km.

An example of adjacency effect is given in Figure 38, which
displays MERIS Level 1 imagery at 865 nm over the Zuydersee in
the Netherlands. Aerosol optical thickness is about 0.3. Higher
reflectance is generally observed near the coast (Figure 38, left),
which is attributed to scattering into the field-of-view of photons
reflected by the contiguous vegetated land, highly reflective at
865 nm. The TOA reflectance change along a section across
the Zuydersee (indicated by a black line in Figure 38, left)
reaches about 0.02 toward the coast over a 5–10 km distance
(Figure 38, right).

Figure 39 displays MERIS Level 2 imagery, i.e., water
reflectance at 560 nm, after standard atmospheric correction. A
band of smaller marine reflectance is observed all around Corsica
and Northern Sardinia (Figure 38, left), whereas anomalously
high reflectance is observed for the waters surrounded by ice in
the Beaufort Sea (Figure 25, right). This is likely the complex
result of adjacency effects at 560 nm and at the near-infrared
wavelengths used for the atmospheric correction. Depending
on the environment (vegetation or ice), the coupling between
surface reflection and atmospheric scattering may either decrease
(Corsica/Sardinia case) or increase (Beaufort Sea case) the
apparent reflectance with increasing wavelength, but this spectral
dependence is not captured by determining the atmospheric
signal from measurements in the near infrared and extrapolating
to shorter wavelengths. Other examples have been observed along
the coast of the Baltic Sea, and in Norwegian fjords.

Formulation
Over a homogeneous water body of reflectance ρw, the TOA
reflectance ρhom

TOA can be expressed approximately as [e.g., Tanré
et al., 1979; see Equation 3)]:

ρhom
TOA ≈ Tg(θs, θ)[ρatm + ρw td(θs) tu(θ)/(1− ρwSatm)] (16)

where Satm is the spherical albedo of the atmosphere and
transmittance due to aerosol and molecule scattering and aerosol

absorption. The term (1 − ρwSatm) accounts for multiple
interactions between the atmosphere and the water body. Several
approximations are used in Equation (16): (1) the surface is
Lambertian; (2) Fresnel reflectance is neglected in the multiple
interaction term, and (3) molecular absorption is decoupled from
atmospheric scattering (i.e., Tg is simply a multiplicative factor).

Over a heterogeneous surface, one has to discriminate
between the contribution of the target reflectance ρw viewed
directly through the atmosphere and its background reflectance,
ρe (Tanré et al., 1981, 1987; Santer and Schmechtig, 2000):

ρhet
TOA ≈ Tg(θs, θ)

{

ρatm + td(θs)
[

ρwexp(−τatm/cos(θ))

+ρetu−dif (θ)
]

/(1− ρeSatm)
}

(17)

where τa is the atmospheric optical thickness for
scattering and tu−dif (θ) is the diffuse component of total
atmospheric transmittance due to atmospheric scattering,
i.e., tu (θ) = Tu (θ) + tu−dif (θ). The approximation used
in this second formulation is that the target background is
homogeneous, which is of course an idealized case. Nevertheless,
Equation 17 shows that the retrieval of ρw, using an atmospheric
correction based on Equation 16 assuming a homogeneous
scene, is affected by an error 1ρTOA (i.e., the adjacency effect),
which expression can be deduced from Equations 16 and 17:

1ρTOA = ρhet
TOA − ρhom

TOA = (ρe − ρw) tu−dif (θ)T(θs) (18)

When the background is not uniform, which is the realistic case,
the many individual contributions of every pixel that surrounds
the target must be considered, and ρe becomes an average
reflectance 〈ρe 〉:

〈ρe〉 =

∫∫

f
(

x, y
)

ρe
(

x, y
)

dxdy (19)

where f
(

x, y
)

is the atmospheric point spread function (PSF),
which expresses the contribution to the measured reflectance of
surface-leaving photons at horizontal coordinates

(

x, y
)

scattered
in the field of view, and ρe

(

x, y
)

is the now spatially dependent
environment reflectance. Given the properties of the atmospheric
scattering, the PSF can be computed using a Monte Carlo code
in backward mode, i.e., photons are injected in the direction
of viewing and collected on the matrix of pixels at the surface
(Reinersman and Carder, 1995). Eventually, the bi-directional
reflectance of the pixel must be accounted for in Equation 19 (Sun
glint, vegetation), which means an integration of the probability
of viewing the given pixel from different altitudes.

For observations at nadir, 〈ρe〉 becomes (Tanré et al., 1981):

〈ρe〉 =

∫∫

rg (r) ρe (r,φ) drdφ =

∫∫ (

dF

dr

)

ρe (r,φ) drdφ

(20)

r is the distance to the target, rg (r) is equal to f
(

r(x, y)
)

, and
F (r) is the integral of rg (r) between 0 and r, i.e., F (r) =
∫

2πr′g
(

r′
)

dr′. The environment function F (r) gives the relative
contribution to 〈ρe〉 of surface points within a radius r of the
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target pixel, and normalization is obtained by integrating from
r = 0 to infinity, i.e.,

∫

2πF (r) dr = 1.
Approximate analytical expressions of F (r) are given in

Tanré et al. (1981) for molecular and aerosol scattering (typical
continental aerosol model, scale height of 2 km), i.e.,

Fm (r) ≈ 1− 0.93exp (−0.08r) − 0.07exp(−1.1r) (21a)

Fa (r) ≈ 1− 0.037exp (−0.2r) − 0.625exp(−1.8r) (21b)

where r is expressed in km. In the case of aerosols characterized
by a scale height Ha different from 2 km, Equation 21b is
simply modified by multiplying r in the two exponentials by the
weighting factor 2/Ha. For a mixture of molecules and aerosols,
F(r) becomes:

F (r) ≈ [tur−dif Fm (r) + tua−dif Fa (r)]/(tur−dif + tua−dif ) (22)

where tur−dif and tua−dif are the diffuse transmittances for
molecular and aerosol scattering, respectively. Equations (20)
to (22) allow the computation of 〈ρe〉 and therefore 1ρTOA
for any pixel in a scene observed from space at nadir (or for
nearly vertical sightings). They are helpful to understand the
variability of the adjacency effect and to estimate its impact (i.e.,
expected errors) on the retrieval of the target reflectance. In the
case of observations at slanted angles, the adjacency effect is
more complicated to formulate analytically because of the lack of
symmetry in azimuth [no simple insightful expression for 〈ρe 〉].

Variability
The adjacency effect produced by molecular scattering and
aerosol scattering is different and vary with F (r) and the
reflectance of the background/environment. These processes act
over disparate scales, i.e., about 12 km for molecular scattering
and less than 1 km for aerosol scattering (equations 21a and
21b). Pixels farther away have more influence, i.e., F (r) has
a larger spread, when aerosols are located higher in altitude
(1/Ha dependence in the exponentials of Equation 22). This also
applies to cloudy situations. Furthermore, molecular scattering
varies with wavelength and increases very rapidly in the blue, but
Fm remains about the same with a good approximation. Aerosol
scattering is less spectrally selective, but Fa given by Equation
21b is only typical. Changes in the aerosol physical properties,
e.g., size distribution, would modify its single scattering phase
function and the coefficients of the exponential decrease with
distance r. Note that depending on solar and viewing geometry
and Sun/sensor configuration with respect to the target and
its environment, Fresnel reflection by the water surface (after
scattering by the atmosphere) may contribute differently to the
TOA signal (Santer and Schmechtig, 2000).

Figure 40 gives an example of adjacency effect when observing
the ocean near the coast. The coastline is linear, the target is
5 km offshore, and the sensor is located above water or above
land, viewing perpendicularly to the coastline at 30◦ zenith
angle. The reflectance of land is 0.8 (typical value for snow) and
isotropic, chlorophyll-a concentration is 1 mgm−3, aerosols are
of maritime type with scale height of 2 km and optical thickness
of 0.3 at 550 nm, and wind speed is 5m s−1. The simulations

are performed with a Monte Carlo Code operated in backward
mode (Ramon et al., 2019). No assumptions are made regarding
interactions between the surface and the atmosphere. TOA
reflectance is higher due to the snow environment, especially at
380 nm, where atmospheric scattering is more effective (in first
approximation the adjacency effect varies like τa 〈ρe〉. For a Sun at
zenith, the reflectance increase is 0.05 at 380 nm, 0.03 at 500 nm,
and 0.01 at 800 nm. If not taken into account, these values,
by acting directly and indirectly (via atmospheric correction),
would yield unacceptable errors on water reflectance estimates.
The effect is larger when the sensor is over land due to reduced
Fresnel reflection. The degree of polarization, on the other hand,
is smaller, especially when the sensor is above land.

Correction
The TOA imagery can be corrected systematically for the
adjacency effect at the Level 1b and produce a Level 1c, so that
the processing of Level 2 products can be done by assuming
that the surface is homogeneous (i.e., using the “large target”
formalism of standard atmospheric correction schemes). This
can be accomplished using a classic de-convolution algorithm,
in which the de-convolution matrix is determined iteratively,
since the reflectance of neighboring Level 1b pixels is affected
by the adjacency effect (Reinersman and Carder, 1995; Vermote
et al., 1997; Santer and Zagolski, 2008). A single iteration should
normally be sufficient. In Vermote et al. (1997), for example, 〈ρe〉

is obtained using the surface reflectance and aerosol properties
determined assuming no adjacency effects. This allows one to
estimate the adjacency effect, correct the TOA signal accordingly,
and then iterate. One issue for operational application, however,
is processing time, i.e., de-convolution schemes need to be
optimized. The simplest option, easy to implement, is to correct
only the adjacency effects associated with molecular scattering.
A second option, more accurate, is to correct also the effects
associated with aerosol scattering. This can be done by (1)
assuming background aerosols or using aerosols with average
properties (eventually seasonally and regionally dependent), or
(2) estimating the aerosol properties (optical thickness, type, and
altitude). In the case of clouds, one can assume that they are
located at the surface, or one can estimate their altitude.

Another way to deal with the adjacency effect is to develop
atmospheric correction algorithms that minimize its influence.
In the scheme proposed by Gross-Colzy et al. (2007a), only the
principal components of the TOA signal most sensitive to the
water signal are used to estimate the water reflectance, which
reduces the impact of ρTOA in many situations. In the POLYMER
algorithm (Steinmetz et al., 2011) the atmospheric signal is
modeled as a polynomial function of wavelength with three
terms, i.e., Co +C1λ

−1 +C2λ
−4. The last term of the polynomial

takes into account the coupling betweenmolecular scattering and
reflection by a gray surface (e.g., sea ice and clouds), which varies
in λ−4, but the polynomial may also account for other types of
surface/atmosphere coupling.

Correcting systematically Level 1b imagery for the adjacency
effect, either explicitly or implicitly via proper atmospheric
correction schemes, is definitely recommended. For coarse
resolution sensors, it may be sufficient to account for the effect
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due to molecular scattering (the spread function associated with
aerosols is effective over a relatively small distance, typically
1–2 km). As a result, the accuracy, quality, and daily coverage
of ocean-color products should be improved substantially
over water surfaces contiguous to land surfaces, sea-ice, and
clouds, and in the open ocean where spatial variability may
be large (e.g., upwelling regions). Otherwise, non-negligible
errors would affect the retrieval of water reflectance, with a
significant change in spatial structure and correlation scales
(may alter the interpretation of mesoscale variability patterns,
see Doney et al., 2003).

Whitecaps
Importance
Whitecaps generated by breaking waves, generally composed
of surface foam (large bubbles separated by a thin layer of
water) and underwater bubbles, have a pronounced effect on
the intensity and shape of visible light diffusively reflected by
the ocean surface (e.g., Frouin et al., 1996; Moore et al., 2000;
Stramski and Tegowski, 2001; Terrill et al., 2001; Zhang et al.,
2002; Randolph et al., 2014). They may enhance dramatically
water-leaving radiance on temporal scales of seconds to minutes
(Frouin et al., 1996; Randolph et al., 2017) and affect large
areas such as the windy Southern oceans. This is illustrated in
Figures 41, 42, which display, respectively, pictures of seas with
whitecaps and a time series of surface reflectance affected by
whitecaps. In the presence of whitecaps, the dark ocean appears
much brighter (Figure 41). At a local scale, the water reflectance,
about 0.08 in the blue in the absence of whitecaps, is increased to
0.4–0.7 (i.e., by a factor of 5–11) depending on the breaking event,
and variability is large over time scales of 5 to 10 s (Figure 42).
The frequency and intensity of such breaking wave features over
a 1-km pixel would determine the enhanced reflectance observed
by the PACE sensor.

When present, the enhanced reflectance fromwhitecaps needs
to be removed in order to produce estimates of water reflectance
suitable for standard ocean-optics applications. From space, since
whitecap reflectivity is high, even a small fraction of whitecaps
within the instrument’s elementary field of view (i.e., within
a pixel) may be problematic. The pixel reflectance is affected
directly, but more importantly the spectral dependence of the
whitecap reflectance skews the extrapolation to the visible of
the aerosol signal determined in the near infrared, which may
lead to water reflectance errors much larger (i.e., by an order of
magnitude) than the requirements (Frouin et al., 1996).

Whitecap corrections are conducted as part of the overall
“atmospheric correction” process, even though the signal does
not originate in the atmosphere and can be considered a
component of the water signal. The aim is to remove the signal
due to actively breaking waves (Stage A), which includes surface
foam (i.e., large bubbles separated by a thin layer of water)
and underwater bubbles injected in the water column. It is
not designed to remove enhancements due to the quiescent
or mature phase of the whitecap (Stage B), when surface
foam has dissipated, but bubbles are still present in the upper
layer. In practice, much of the whitecap and the bubble plume
signal is removed as part of the aerosol correction, since both

foam and bubbles act to enhance near infrared reflectance and
the current aerosol routines (heritage atmospheric correction)
cannot distinguish between different sources of near infrared
reflectance. However, some problems may arise due to the
spectral dependence of whitecaps (mentioned above) and the
coupling between molecular and aerosol scattering processes,
which may differ significantly (since the amount of aerosols is
artificially increased).

Current Approach to Whitecap Correction
The current approach is designed to remove the reflectance
due to the actively breaking wave or bright white portion
of the wave (Monahan, 1993) within each pixel. As part of
that effort, an estimate of the fraction of the sea surface
covered by whitecaps is generated for each pixel based on
ancillary wind speed data. Whitecap fractions are commonly
estimated using automated processing of digital photography of
the sea surface (Brumer et al., 2017). However, comparisons of
digital photography with radiometric approaches have shown
that photographs capture primarily Stage A whitecaps and
miss much of the Stage B bubble plumes that also enhance
the surface reflectance. Many relations between whitecap
fraction and wind speed have been developed over the last
three decades for different ranges of wind speeds (Anguelova
and Webster, 2006; Brumer et al., 2017). However, whitecap
coverage can vary by several orders of magnitude at the
same wind speed. At different locations in the world ocean,
various environmental and meteorological factors act in concert
but with different strengths and form a composite effect
that either enhances or suppresses the effect of wind alone.
These other factors include fetch and duration and the wind,
water temperature, air temperature and stability of the lower
atmosphere defined by the air/water temperature differential,
salinity, current shear and long wave interaction, wave age, and
the presence of surfactants such as organic films (reviewed in
Scanlon and Ward, 2016). Hence, wind speed parameterizations
should be viewed as “climatological” and cannot represent
the instantaneous whitecap field required by remote sensing
applications. In addition, other factors not related to wind
speed could cause foam on water surfaces. High concentrations
of the phytoplankton Phaeocystis globosa, for example, are
associated with foam formation in coastal waters and on beaches
(Armonies, 1989).

Satellite ocean color algorithms currently employ an
expression for undeveloped seas based on wind speed at 10m
(U10) where fwc = 8.75 × 10−5(U10 − 6.33)−3 (Stramska and
Petelski, 2003), see Figure 43. This correction produces negative
values below 6.33m s−1 and is much higher than with other
parameterizations at high wind speeds. To avoid overestimation,
NASA implements a lower threshold of 6.33m s−1 and an upper
threshold equivalent to the whitecap fraction at 12m s−1 in the
operational code (Figure 43). Hence the highest fraction of the
sea surface covered by whitecaps that is currently used is 1.6%.
Although this range may cover the average conditions, whitecaps
can occur at wind speeds as low as 3–4m s−1 and the fractional
whitecap coverage can approach 10% at wind speeds greater than
12m s−1 (Brumer et al., 2017).
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Measurement of the spectral reflectance of whitecaps is
challenging due to the many types and stages of whitecaps,
the rapid time scale on the order of seconds, determining
the contribution of foam and background water, and potential
contamination from reflectance of sun and skylight. Reflectance
of whitecaps varies with the type of breaking wave (e.g., rolling
breakers and plunging breakers) and the layers of foam produced.
From historic data (Whitlock et al., 1982; Koepke, 1984), an
age-averaged effective reflectance, ρwc, of 22% is used in the
NASA standard whitecap algorithm for visible wavelengths up to
550 nm. Frouin et al. (1996) studied the visible and near infrared
reflectance of sea foam found in the turbulent surf zone. Sea
foam reflectance was found to monotonically decrease into the
near infrared wavelengths due to enhanced water absorption in
these wavelengths. The spectral dependence was confirmed from
aircraft measurements of whitecaps in the open ocean (Nicolas
et al., 2001). From this work, a reduction factor is applied for
red and near infrared wavelengths such that whitecap reflectance
is 0.889, 0.760, and 0.645 at 670, 765, and 865 nm respectively
and interpolated between these values. Whitecap reflectance can
be approximated for wavelengths between 555 and 865 nm as:
ρwc (λ > 555) = 0.22(−1.162 × 10−3λ + 1.653). For MODIS
bands, this translates to whitecap reflectance of 22% from 412
to 555 nm and 19.3, 19.0, 17.2, and 14.1% at 667, 678, 748, and
869.5 nm, respectively.

Following the discussions above, the standard reflectance
for actively breaking waves, ρwc, is multiplied by the estimated
fraction of the sea surface covered by whitecaps, fwc, to generate
the within-pixel reflectance attributable to whitecaps. An
important distinction must be made at this point. Whitecap
reflectance is not treated as an “augmented” reflectance above
the background reflectance, as is commonly interpreted.
Because whitecaps are so bright, the signal is believed
to dwarf the contributions from water reflectance and
surface reflectance (skylight and glint). The estimate ρwc
represents the total upwelling signal above the sea surface
of a breaking wave, Eu(0

+), normalized to the downwelling
irradiance incident on the sea surface, Ed(0

+). Hence, the
ρwc used in this context is considered invariant of the
water reflectance and sky conditions. However, the actual
enhancements due to whitecap reflectance can be influenced
by many other factors including the intensity of the wave
breaking and the concentrations of optical constituents in
the water.

This whitecap contribution to reflectance is propagated
through the atmosphere to estimate the enhancement ρTOA

wc at
the satellite. Assuming that whitecap reflectance is isotropic,
we have:

ρTOA
wc = fwc ρwctd(θs)tu(θ) (23)

The at-sensor signal due to whitecaps (ρTOA
wc ) is then subtracted

from the TOA reflectance measured at the satellite. This
effectively accounts for the reflectance from the area of the sea
surface that is covered by whitecaps. The whitecap-free area
should also be weighted by (1-fwc) following Gordon (1997).
Ignoring this weighting term is generally not important in

the currently implementation of the whitecap correction where
whitecap fractions are <2%, but area-weighting the whitecap-
free sea surface would be important if higher whitecap fractions
were modeled like in the Southern Ocean or for applications to
high spatial resolution satellites.

Future Possibilities
Several issues must be considered going forward into the
PACE era. The algorithm discussed above is a very crude and
inaccurate representation of the impact of foam and bubbles
on water-leaving radiance. Data collected to date show that
wind speed can only roughly approximate the whitecap coverage
in a climatological sense and cannot provide accurate real-
time estimates of fractional whitecap coverage. The current
wind speed thresholds used in the whitecap approach provide
a minimal and largely inaccurate estimate of whitecap fraction
that can be an order of magnitude lower or higher in the
environment. Furthermore, use of a single reflectance value for
all whitecaps does not represent the large amount of variability
in the types of breaking waves and foam that can occur on the
sea surface. Reflectance of whitecaps is variable based on the
strength of the wave breaking and is not necessarily invariant
of water reflectance signal. The bubbles plume or Stage B also
serves to enhance reflectance substantially above background
reflectance and this component is not explicitly treated in the
model. Finally, the PACE mission is proposed to be hyper-
spectral from the ultraviolet (350 nm) to near-infrared (885 nm)
and have shortwave infrared bands at 940, 1,038, 1,250, 1,378,
1,615, 2,130, 2,260 nm. The current simplified spectral model
of whitecaps will need modification to account for the spectral
variability of whitecap reflectance in the near and shortwave
infrared (see below).

The PACE mission aims to provide a better separation
of atmosphere and ocean processes. Currently, much of the
whitecap and bubble correction, particularly during high wind
conditions, is inaccurately modeled as an aerosol. Whitecaps and
bubble serve to enhance reflectance across the near and short
wave infrared and cannot be easily separated using the current
aerosol routines. Aerosol modeling assumes that water-leaving
radiance at two near infrared wavebands are zero or can be
estimated with sufficient accuracy using a bio-optical model. The
presence of foam and bubbles is not explicit to this formulation
and can lead to errors in retrievals when incorrectly treated as
spectrally dependent backscattering from waterborne hydrosols
or from airborne aerosols.

With more spectral information, the contribution of
whitecaps may be measurable in the hyper-spectral signal and
removed as part of the data processing scheme without relying
on wind speed measurements and single reflectance values (see
Dierssen, 2019, this issue). Measured reflectances of whitecaps
and generated foam reveal identifiable spectral features from
visible to short wave infrared (Figure 44). These new values
are largely consistent with the diminishing reflectance in NIR
wavebands measured by Frouin et al. (1996), but also reveal
many features in the signal that cannot be dealt with as a simple
linear decrease into the near infrared. Reflectance dips occur
particularly at 750, 980, and 1,150 nm that have enhanced liquid
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water absorption, a result of multiple scattering in and around
the bubbles and foam.

A potential approach for PACE and other missions is to
identify spectral features associated with whitecaps that are
unique from atmospheric and oceanic spectral properties. Water
absorbs differently based on whether it is in vapor, liquid or
solid form. As discussed above, unique peaks and dips occur
in the near infrared portion of the reflectance spectrum that
are associated with weak absorbing features of liquid water. The
measured spectrum of intense foam and bubbles at the sea surface
associated with the wake of a ship with a peak reflectance of 40%
in visible wavelengths, As derived in Dierssen (2019, this issue),
the general shape of this reflectance can be modeled from the
logarithm of water absorption.

The overall shape of whitecap reflectance is directly related to
liquid water absorption from visible through shortwave infrared.
Some divergence at ultraviolet and violet wavelengths is apparent
and likely due to colored substances such as absorption due
to colored dissolved organic matter in these coastal waters.
However, the overall shape can be used to assess the contribution
of whitecaps into the near infrared and shortwave infrared.
Parameterizations based on other physical considerations (e.g.,
vertical structure) should be contemplated to allow a direct
estimation of the whitecap effect on water reflectance.

One approach would be to measure the depth of a liquid
water absorption feature (e.g., 980 nm) to estimate the “effective”
contribution of whitecaps to the total pixel reflectance. If we
presume that the water reflectance does not contain this liquid
water feature, then the line-depth of the water-absorption feature
at 980 nm, for example, can be related to a linear mixing
of unaffected sea surface with different intensities and areas
with foam and bubble plumes. If the background water is
highly scattering due to sediments or floating vegetation, for
example, then this water absorption feature may also be present
in the background signal and such water types would need
to be identified prior to assessing the whitecap contribution
(Dierssen, 2019, this issue). Candidate algorithms to model the
whitecap factor, Awc, from the hyper-spectral radiance rather
than the area-weighted whitecap fraction derived from wind
speed are provided in Dierssen (2019, this issue). The whitecap
factor is the fraction of a standard whitecap reflectance that
accounts for enhancements in spectral reflectance of the sea
surface above the background reflectance. Since Awc is optically
derived, it is better suited for atmospheric correction techniques
because it specifically incorporates different levels of foam and
bubbles associated with breaking waves and requires no implicit
spatial scale.

In summary, decades of data have shown that wind speed
models will not be able to predict the whitecap fraction
with sufficient accuracy to use in daily remote sensing
imagery. Use of other ancillary parameters such as fetch,
air, and water temperature, and currents may have utility
in further refining estimates of whitecap fraction. In the
least, the Stramska and Petelski (2003) model should be
replaced with a more recent parameterization that better
fits both high and low wind speed conditions (e.g., Brumer
et al., 2017). However, it is unlikely that the whitecap

fraction and particularly the associated bubble plume will be
predictable from wind speed data for any given image to
within an order of magnitude (see scatter of data points in
Figure 43 above).

We should continue to refine spectral models of foam and
bubbles to understand their impact on upwelling irradiance
at the pixel level. As part of that effort, more hyper-
spectral datasets are critical that provide a means to estimate
reflectance of whitecaps over time and space under a wide
variety of water types and whitecap conditions. New methods
that seek to use the measured spectral information in near
infrared wavelengths to estimate the contribution of whitecaps
directly will provide a means to separate whitecaps from
aerosols and other conditions where near infrared reflectance
is non-negligible. Preliminary results have been conducted at
the sea surface and more research is warranted to model
the transmission of hyper-spectral reflectance from whitecaps
through the atmosphere. Moreover, uncertainties need to be
assessed when aerosol products are derived from at-sensor
radiance that is “contaminated” by whitecaps and bubble plumes.
Continuing to propagate such errors impacts the selection of
spectral aerosol model and magnitude of aerosols, as well as
impacts the spectral shape and magnitude of retrieved water-
leaving radiance and associated ocean color products. Until
correction methods with sufficient accuracy are found and
tested widely across ocean provinces, we recommend that
PACE images collected under high wind conditions, which may
contain significant whitecap coverage, be flagged such that users
will recognize higher uncertainty in the water reflectance and
aerosol retrievals.

Finally, breaking waves on the ocean surface are areas of
significant importance to air-sea interaction. Whitecaps foster
climate-relevant physical and chemical processes in the ocean,
including the production of sea salt aerosols, mixing processes,
and the exchange of gas (e.g., CO2, CH4, DMS, water vapor) and
heat with the atmosphere (Monahan and Spillane, 1984; Woolf,
1997; Asher and Wanninkhof, 1998; Woolf et al., 2007). Wave
breaking generates turbulent kinetic energy in the surface ocean,
driving upper ocean mixing, and transferring energy to currents
and longer waves (Cavaleri et al., 2007). Visible manifestations of
breaking waves (i.e., foam and bubbles) are related to the energy
injected into the surface ocean. Using imagery to assess whitecaps
directly will open up new science directions.

Earth’s Curvature
It was mentioned in section From Multi-Spectral to Hyper-
Spectral Remote Sensing that assuming a plane-parallel
atmosphere might introduce significant atmospheric correction
errors for Sun zenith angles > 70◦. This was also the conclusion
of Ding and Gordon (1995), who suggested that for those
angles a sufficient treatment would be to compute the molecular
reflectance with a spherical-shell atmosphere RT code. It is
important to emphasize, however, that the effect of Earth’s
curvature is not only to increase intensity at grazing Sun zenith
angles due to the smaller attenuation of the direct solar beam, but
also to lower intensity at low Sun zenith angles due to a smaller
illumination volume (e.g., Chowdhary et al., 2019, this issue;
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Ramon et al., 2019). This second effect is generally understated,
but critical for accurate atmospheric correction. Figure 45

displays, as an example, Monte Carlo simulations of molecular
reflectance, ρr , and aerosol reflectance, ρa, at 446, 558, 672,
and 867 nm as a function of Sun zenith angle for a view zenith
angle of 15◦ and a relative azimuth angle of 90◦. Aerosols are of
maritime type with optical thickness 0.1 at 550 nm. In the 0–75◦

Sun zenith angle range, differences between plane-parallel and
spherical-shell calculations are relatively small (0.3–0.5%) for
ρr , and reach 1.5% for ρa. However, since molecular scattering
may be large and dominate the TOA signal, especially in the
blue and UV, even a small fraction of 1% error in ρr would affect
the water reflectance retrieval significantly (i.e., with resulting
uncertainty above requirements). On the other hand, the impact
of 1.5% differences in ρa is comparatively inconsequential for the
aerosol loading considered (relatively small aerosol signal). But
one expects non-negligible effects for higher view zenith angle
and aerosol optical thickness. Thus Earth’s curvature should be
taken into account in generating at least Rayleigh LUTs (it is also
recommended to use spherical-shell RT code for aerosol LUTs),
and this for all solar and viewing geometries, not only large Sun
zenith angles.

Multiple Scattering
Although the atmosphere is relatively thin optically compared
with the water body, multiple scattering effects are not negligible
in the atmosphere, especially at wavelengths for which scattering
is effective (blue and UV). These effects are taken into account
in atmospheric correction schemes, but their dependence on
aerosol altitude is often neglected (case of the heritage algorithm
in particular). It is generally assumed that aerosol altitude has
a significant effect on the TOA signal only when aerosols
are absorbing, which was discussed in section Estimation of
Aerosol Vertical Profile. The coupling between scattering by
molecules and aerosols, however, depends on their relative
vertical distribution.

This is illustrated in Figure 46, which displays the coupling
term of the aerosol reflectance at 443 nm for two very weakly
absorbing models, i.e., Maritime with 98% humidity (M98)
and Tropospheric with 70% humidity (T70). These models
are part of the Shettle and Fenn (1979) suite used in early
two-step atmospheric correction algorithms (e.g., Gordon and
Wang, 1994; Gordon, 1997). Aerosol optical thickness is 0.1
at 865 nm, and aerosol concentration decreases exponentially
with increasing altitude with scale height from 2 to 8 km.
Sun zenith angle is 36.2◦, and the results are presented as a
function of viewing zenith angle (0 to 75◦) in the principal
plane of the Sun. Note that the coupling term can be negative
since computed as the difference between the total atmospheric
reflectance and the molecular component (i.e., with no aerosols)
and the aerosol component (i.e., with no molecules) (Deschamps
et al., 1983). It would always be positive if the molecular and
aerosol components were computed for molecules only but in the
presence of aerosols and for aerosols only but in the presence of
molecules (Antoine and Morel, 1999). For some remote sensing
geometries the effect of aerosol scale height reaches 0.002 (M98)
and over 0.01 (T70) in amplitude, which in the case of T70 is

one order of magnitude larger than the required accuracy on
water reflectance. Thus it is important to include the effect of
aerosol altitude when correcting the TOA signal for atmospheric
effects, even when aerosols are little or not absorbing. This can
be done using PACE observations at 5 nm resolution in the
oxygen A-band, especially using the sub-5nm spectral sampling
capabilities of the OCI, which allow an estimate of aerosol
altitude or scale height (see section Estimation of Aerosol
Vertical Profile).

UV Observations
Observing in the UV is important to separate absorption by
CDOM and phytoplankton pigments, to distinguish hydrosol
types (e.g., sediments from organic particles) in optically complex
waters, to allow the discrimination of functional, taxonomic, and
harmful algal groups, and to improve atmospheric correction
in the presence of absorbing aerosols. Hence measurements
in the UV (from 350 nm) constitute a key PACE mission
requirement. Retrieving accurately the water signal in the
UV, however, presents a number of specific challenges that
originate chiefly from the large optical thickness of the
atmosphere. These challenges are emphasized in the following;
see also Chowdhary et al. (2019, this issue) for a discussion
of the UV regime in the context of RT modeling for
atmospheric correction.

(1) The water reflectance contribution to the TOA signal is
small in the UV, often much smaller than in the visible, especially
when CDOM absorption is strong. This can be exploited in some
situations (i.e., when the water signal is negligible) to constrain
the aerosol signal estimated from NIR to SWIR wavelengths
in a classic atmospheric correction scheme, but in general the
water reflectance retrieval is more difficult. In addition, errors
in estimating the spectral shape and magnitude of reflected sky
radiance off of wind-roughened seas are enhanced in the UV.
Currently this component is modeled as part of the Rayleigh
LUTs for wind-roughened surfaces and is not validated with
field data. A further complication is that aerosol and CDOM
absorption may act similarly, i.e., their effects on the TOA signal
may not be easy to separate. Also the steep decrease of solar
irradiance due to absorption bands in this spectral range makes
radiometric calibration difficult.

(2) Multiple scattering and coupling processes between
molecular scattering and aerosol absorption are effective, and
the resulting effect strongly depends on the relative vertical
distribution of molecules and aerosols. This significantly
complicates the atmospheric correction problem, for which
knowledge of aerosol altitude becomes necessary. This will
be possible with OCI (see section Estimation of Aerosol
Vertical Profile and Remer et al., 2019, this issue). In one-step
deterministic and statistical schemes, however, aerosol altitude
can be variable, i.e., taken into account in determining the
best solution.

(3) The influence of the environment, and in general spatial
heterogeneities in the atmosphere, surface, and water body
properties, is substantial (since depending on atmospheric
transmittance, which itself depends exponentially on optical
thickness see section Adjacency Effects and Figure 40, left), and
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the “large target” formalism may not yield acceptable water
reflectance retrievals in coastal oceanic regions and water bodies
surrounded by land (lakes, ponds, rivers).

(4) The spherical albedo of the atmosphere becomes large
(e.g., 0.37 at 350 nm for a clear atmosphere) and neglecting the
multiple interactions between the water body and the atmosphere
may introduce errors of up to 2% (case of oligotrophic waters) on
water reflectance estimates.

(5) Errors in the spectral dependence of aerosol scattering
in the NIR and SWIR, by propagating through the standard
algorithm,may translate into large errors in the UV (since further
away than the visible). This and the complex RT processes in the
UV make it difficult to achieve via “system” vicarious calibration
(Franz et al., 2007) radiometric accuracy within a small fraction
of 1%.

Figure 47 displays various components of the TOA signal
and their relative importance for typical conditions, i.e., a
WMO maritime atmosphere (aerosol optical thickness of 0.2
at 550 nm) over waters with chlorophyll-a concentration of
0.1 mgm−3 and CDOM absorption of 0.02 m−1 at 440 nm.
Spectral range is 350–400 nm, Sun and view zenith angles
are 30 and 15◦, respectively, relative azimuth angle is 90◦,
aerosol scale height is 2 km, and wind speed is 7m s−1.
The water signal represents only 3 to 5% of the TOA
signal and 34 to 42% of the TOA signal corrected for
molecular scattering effects, with the lower values at 350 nm
and the higher values at 400 nm. For waters with the
same chlorophyll concentration but zero CDOM absorption,
however, the contribution of the water signal would be larger,
i.e., 8 to 12% and about 62%, respectively. For smaller
aerosols, e.g., tropospheric type, the relative importance of
the water signal would be reduced at shorter wavelengths.
The small contribution of the water signal to the TOA signal
stresses the importance of accurate radiometric calibration
and modeling of molecular effects. In the case of Figure 47,
an error as small as 0.1% on the TOA reflectance would
already translate into a 3.3% error on the water reflectance
at 350 nm.

Figure 48 displays the absorption effect of a continental
aerosol with scale height of 2, 5, and 8 km on the TOA
signal and the effect of CDOM absorption (0.01, 0.02, and
0.1 m−1 at 440 nm) on the water signal observed at TOA.
The absorption effect is the difference between the atmospheric
reflectance at TOA in the presence of aerosol absorption and
without absorption (see section Estimation of Aerosol Vertical
Profile and Equation 14). Chlorophyll-a concentration is 1
mgm−3. Spectral range, angular geometry, wind speed, and
aerosol optical thickness are the same as in Figure 47. For
the CDOM absorption effect, i.e., the difference between the
water signal with and without CDOM absorption, aerosol
scale height (slightly affects the atmospheric transmittance)
is 2 km. The spectral dependence of the aerosol and CDOM
absorption effects is comparable, making distinction of the
two signals difficult in some one-step atmospheric correction
schemes (e.g., spectral-matching). For example, 0.01 m−1 of
CDOM absorption has nearly the same effect as aerosol

absorption when scale height is 2 km, i.e., about −0.002
over 50 nm.

STRATEGY FOR ATMOSPHERIC
CORRECTION

The standard, 2-step approach to atmospheric correction of
satellite ocean-color imagery has been used operationally by
space agencies since the CZCS was launched in 1978 to process
data from major large-scale ocean color missions into water
reflectance. The approach has proved to be robust, sufficiently
accurate, and useful for many applications, scientific and societal
(IOCCG, 2008). Its chief advantage over a variety of alternatives,
as pointed out in sections Heritage Atmospheric Correction
Algorithm and Alternative Algorithms, is that essentially
minimal assumptions about water reflectance, the signal to be
retrieved, are made. Algorithms have evolved and improved to
account for new capabilities (e.g., observations in the shortwave
infrared to deal with turbid waters) and take advantage of new
knowledge (e.g., aerosol optical properties, whitecap reflectance),
but have followed the same principle of using a spectral region
where the water body is not or little reflecting to isolate the
perturbing influence of the atmosphere and surface. In view of
the success of this heritage approach, and the fact that it has
been selected and applied systematically to correct imagery from
most ocean color sensors, it is highly desirable to continue its
usage in current and future processing lines, in particular for the
PACE OCI. The adaptation to hyper-spectral OCI would address
the challenges associated with observing in the ultraviolet and
dealing with strong gaseous absorption bands; see section From
Multi-Spectral to Hyper-Spectral Remote Sensing. Observing in
the UV, even with hyper-spectral capability, continues to be
an open question and area of active research, but does not
negate the overall benefit of proceeding with a heritage 2-step
retrieval for OCI. This continuity would maintain a certain
level of consistency across sensors from different missions,
allowing for a long-term record of water reflectance relatively
free of algorithm-related discrepancies and biases. Furthermore,
new methodologies may not be applicable to some sensors,
complicating the generation of accurate long-term time series.

The heritage algorithm, however, has important limitations,
as discussed in section Procedures. In particular it cannot
handle properly situations of absorbing aerosols (i.e., dust,
biomass burning and pollution particles), which are encountered
over large oceanic regions and the coastal zone, reducing the
spatiotemporal coverage of ocean color products, therefore their
utility for scientific investigations and operational oceanography.
It also does not work in Sun glint regions and in the presence
of clouds, resulting in a typical 10–15% daily spatial coverage.
To resolve these issues, one needs to move to further explore
and implement alternative algorithms, deterministic or statistical,
such as those described in section Alternative Algorithms. These
algorithms exploit observations in the entire set of available
spectral bands and eventually include, depending on the sensor,
bidirectional and polarization information, either directly or
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indirectly (e.g., to constrain the set of possible aerosol models).
So far only a few new algorithms have been checked thoroughly
and applied systematically (i.e., at the scale of a satellite mission),
notably the Steinmetz et al. (2011) spectral matching POLYMER
algorithm and the Schroeder et al. (2007) neural network
algorithm. Neural network atmospheric correction including
sun glint correction was part of MERIS standard processing
for Case 2 waters during the whole lifetime of the mission.
Most of the advanced algorithms have been only tested on a
few images, and they need to be further evaluated theoretically
and experimentally and examined for robustness, reliability,
and general applicability in an operational context. Their
potential, however, as demonstrated in the examples presented in
section Alternative Algorithms, is undoubtedly great to improve
atmospheric correction in difficult situations (i.e., absorbing
aerosols, turbid waters, Sun glint, whitecaps, land proximity,
sea ice, thin clouds), offering the opportunity to generate more
accurate ocean color products with wider coverage (i.e., less gaps)
that will allow a better description of ocean properties (IOPs,
concentrations) and biogeochemical phenomena.

In view of the above, a suitable strategy for atmospheric
correction during the PACE era would be to continue performing
atmospheric correction with the standard, 2-step heritage
algorithm, adapted/adjusted as necessary, but at the same time
applying the best advanced algorithm that fits the characteristics
and capabilities of a given sensor, or a suitable combination of
sensors. In the case of PACE, it is expected (by mission design)
that OCI and polarimeters will be used synergistically. The
selected methodology may be different, indeed, for a sensor that
only measures spectrally total TOA radiance and a sensor that
also measures directionally polarized TOA radiance. Whenever
possible satellite data from previous missions would be re-
processed with the new algorithm. An elaborate flagging system,
although not easy to define and validate, is necessary to warn
the user about doubtful algorithm performance. The quality
of the atmospheric correction processors, therefore selection of
the best one, could be assessed following procedures developed
by Müller et al. (2015a,b) for the ESA Ocean Color-Climate
change Initiative (OC-CCI), which include in a straightforward
fashion not only comparisons with in situmeasurements, but also
analysis of image quality and processor behavior along scan line
(e.g., spatial and temporal homogeneity and consistency in water
reflectance retrieval). Since individual advanced algorithms may
lead to improved products (or may perform similarly) in some
situations, or have advantageous features, their implementation
in data analyzing systems such as SeaDAS would provide the
user community with best options depending on the study or
application. This strategy would generate two separate water
reflectance products, which is not a problem as long as respective
advantages and limitations are understood and uncertainties
specified, preferentially on a pixel-by-pixel basis. Thus we
would end up with a continuity product and an advanced
product that fully exploits the mission capabilities, which for
PACE will combine hyper-spectral radiometry and multi-angle
polarimetry. The two products could be merged optimally, at
the Level 3 highest resolution possible, i.e., native resolution,
taking into account their uncertainties (bias and standard

deviation). Various merging procedures exist (see IOCCG, 2007
for a review), and choosing the best procedure will depend
critically on the representation of algorithm performance and
uncertainties (expected to be better and smaller, respectively, for
the advanced algorithm).

CONCLUSIONS

Substantial progress in atmospheric correction of ocean-color
imagery has beenmade since the proof-of-concept CZCSmission
that demonstrated the feasibility of retrieving water reflectance
from space and led to the first generation of operational ocean-
color sensors (SeaWiFS, MODIS, MERIS, VIIRS, etc). Compared
with CZCS, the new sensors have higher radiometric sensitivity
and they measure in more and better-defined spectral bands in
the visible. They also have spectral bands in the near infrared
and (for some sensors) shortwave infrared, facilitating the
removal of atmosphere and surface effects. This has generated
a flurry of activities aimed at developing efficient atmospheric
correction algorithms that exploit the new capabilities, which
has contributed to a better understanding of the problem and
resulted in significant improvements and new avenues.

Since the first attempts, the approach to atmospheric
correction has essentially remained a 2-step process, in which
the perturbing effects of the atmosphere and surface are
determined in spectral bands where the signal from the water
body can be considered negligible (i.e., in the near infrared
and/or shortwave infrared) and propagated or extrapolated to
the shorter spectral bands. Definite improvements to algorithms
based on this approach have been made, notably in the
specification of the aerosol models (based on AERONET
measurements), the correction of gaseous absorption (e.g.,
nitrous oxide influence in the blue), and the processing of
imagery over optically complex waters, where the water-leaving
signal in the near infrared (or even SWIR) is not negligible
and must be estimated through iterative bio-optical modeling. A
number of approximations and issues have been identified and
studied, such as whitecaps, Sun glint, aerosol vertical structure,
polarization, sea surface roughness, Earth curvature, in-water
radiance angular distribution, diffuse transmittance, absorbing
atmospheric gases, absorbing aerosols, stratospheric aerosols,
optically thin clouds, highly turbid waters, and adjacency
effects. For some of these issues, satisfactory solutions have
been proposed and implemented operationally, but not for
others (e.g., absorbing aerosols, whitecaps, adjacency effects).
In the absence of satisfactory solutions for a given observing
condition, the operational approach has been to allow the
atmospheric correction to fail, or to flag the water reflectance
retrievals as suspect quality. This has resulted in large data gaps
in some regions, preventing the efficient utilization of ocean
color products.

Alternative approaches, deterministic and statistical, which
aim at inverting the top-of-atmosphere signal (i.e., retrieving the
water reflectance) in a single step, have been developed with
varied degrees of success. The information in all available spectral
bands is generally used, which is advantageous in some situations
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(e.g., absorbing aerosols), but the main drawback is that water
reflectance, i.e., the signal to retrieve, is often constrained by
a model (which may not represent well the environmental
conditions of a given observation). Some algorithms have been
able to handle situations of Sun glint and thin clouds, increasing
significantly the daily coverage of ocean color products. All
the proposed methods, however, have been based on multi-
spectral observations, the information generally available; few
attempts have been made to exploit the polarized and/or
directional properties of reflected sunlight (available for some
sensors, e.g., POLDER and MISR), but the potential of these
properties to improve atmospheric correction (e.g., to enhance
the contribution of water reflectance, to deal effectively with Sun
glint, and to determine absorption effects) has been recognized
and, to some extent, demonstrated. The improvements revealed
in the selected examples, however, need to be confirmed (e.g., by
analyzing other situations) before drawing final conclusions.

The PACEmission, which will carry into space a spectrometer
measuring at 5 nm resolution in the UV to NIR with additional
spectral bands in the SWIR and two multi-angle polarimeters,
has great potential for improving estimates of water reflectance
in the post-EOS era. The improved instrument capabilities offer
opportunities, but retrieving a continuous water reflectance
spectrum at 5 nm resolution in the UV to NIR, a chief mission
objective, poses new challenges. First, measurements in the
UV, where molecular scattering is effective (and may dominate
the signal), are strongly affected by the vertical structure of
atmospheric scatterers, and adjacency effects are large. Second,
correcting measurements in spectral regions where gaseous
absorption is strong may be difficult when absorbers are located
in lower atmospheric levels (e.g., water vapor) due to coupling
between scattering and absorption. Observing in the UV to
SWIR, however, is adapted to the problem since observations
in the UV are sensitive to absorbing aerosols, those in the
SWIR to coarse aerosols (and they allow a better separation
of the atmospheric/surface signal), and those in the oxygen-
A band (763 nm) to aerosol altitude, a parameter controlling
aerosol absorption effects. This is especially useful for inversion
schemes that incorporate all the available information to retrieve
water reflectance. Polarized and multi-angular measurements,
sensitive to aerosol type, increase the information content in
the inversion process and, therefore, are expected to yield more
accurate retrievals, but the possibilities and improvements have
yet to be fully investigated.

During the PACE era one may envision an approach to
atmospheric correction that is based primarily on the heritage
2-step algorithm, taking into account and extending past
accomplishments, yet exploiting as much as possible new
capabilities (observations in the UV and in oxygen-A band)
and multi-angular polarimetry (e.g., to constrain the aerosol
model ensemble or estimate directly aerosol absorption effects).
It should be clear that polarized and directional measurements
are essential here, due to the inherent limitations of the heritage
algorithm, in particular its inability to handle absorbing aerosols,
which may affect large oceanic areas. This strategy, aimed at
ensuring continuity with previous ocean-color missions, should
be complemented by the development and implementation of

more sophisticated inversion schemes (deterministic, Bayesian)
that, by the nature of their construction, their robustness, and
their generalization capabilities, have the undeniable potential to
become the new standard in the near future.

Despite the progress made and the major improvements
in atmospheric correction expected during PACE, important
gaps/issues still remain to be filled/tackled. They include (1)
improving the accuracy of whitecap corrections, for which
coverage and optical properties are highly variable and difficult to
model, (2) accounting for Earth curvature effects in atmospheric
radiative transfer, which may be significant even at small zenith
angles, (3) correcting for adjacency effects (influential near
land, sea ice, and clouds) and cloud shadows, (4) accounting
for the coupling between scattering and absorption (especially
important in the UV where the molecular scattering signal
is large), (5) modeling accurately water reflectance, including
polarization (too little is known about the polarization properties
of hydrosols), and (6) acquiring a sufficiently representative data
set of water reflectance in the UV to SWIR to describe the
variety of water bodies (such prior information is needed in
Bayesian approaches). Dedicated efforts, experimental as well as
theoretical, are in order to gather the necessary information and
resolve inadequacies. Ideas and solutions exist and have been
put forward to address the unsolved issues, thanks especially
to the new capabilities provided by PACE, which will mark
the beginning of a new era of accurate ocean-color radiometry
from space.
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APPENDIX A: METHODOLOGY FOR
INFORMATION CONTENT ASSESSMENT

The information content assessment described in section
Information Content Assessment uses a Bayesian approach with
Gaussian distributions as described in Rodgers (2000), and
implemented for aerosol remote sensing by Knobelspiesse et al.
(2012) and references therein. This method estimates retrieval
uncertainty given an observational configuration and uncertainty
with the Equation:

Ŝ−1 = KTSǫK + S−1
a

where Ŝ is the retrieval error covariance matrix, Sǫ is the
observation error covariance matrix, Sa is the a priori error
covariance matrix, K is the Jacobian (forward model sensitivity)
matrix, T denotes the transpose, and −1 denotes the inverse. The
observation error covariance matrix represents measurement
uncertainty and is square, with the dimension of the number
of measurements [m x m], made with each observation. The
retrieval error covariance matrix, Ŝ, has a similar structure, but
represents the uncertainty in parameters retrieved from the data
and has the dimension of the number of retrieved parameters
[n × n]. Essentially, it is the projection of observational
uncertainties into state (parameter) space. The Jacobian matrix,
K , expresses the sensitivity of the atmosphere/ocean radiative
transfer model to changes in the parameters to be retrieved,
and has the dimension [m x n]. Radiative transfer simulations,
indicated by the function F (x)= y (where x is a vector
atmospheric and surface optical parameters, often called the state
space, and y is the measurement vector), are used to estimate the
Jacobian matrix

Ki,j(x) =
∂Fi(x)

∂xj
≈
Fi

(

x
′
)

−Fi(x)

x′j−xj

where the partial derivative of the radiative transfer model for the
simulated set of parameters, x, is computed for each observation,
i, and each parameter, j. We approximate the Jacobian using the
forward difference technique, where the radiative transfer model
is rerun with a perturbed parameter x′j, and the forward model is
assumed linear over that perturbation.

This method provides the means to relate measurement
characteristics to expected retrieval success. Instrument
capability is defined by the contents of the measurement
vector, y, and the measurement uncertainty defined in Sǫ .
The a priori error covariance matrix, Sa, describes what we
know about state parameters x prior to a measurement. The
Jacobian, K, is the product of a radiative transfer model and thus
computationally expensive to generate. It is, however, crucial
since it links parameter to measurement space. In practice, we
generate a Jacobian matrix for a very large measurement vector,
encompassing all possible measurement spectral sensitivities,
geometries, and polarimetric states, and then make a subset
corresponding to the instrument system in question. Since the

atmosphere/ocean system is highly nonlinear, we also need to
repeat this analysis for a variety of states, and express the results
as an aggregate of many states. For example, we might expect the
ability to determine ocean properties decreases as the amount
of aerosol loading increases, so we must test with a variety of
aerosol amounts.

The averaging kernel matrix, A (also known as the model
resolution matrix), is a useful reformulation that is an identity
matrix for perfect retrieval ability. It is calculated as:

A =
[

KTSǫK + S−1
a

]−1
KTSǫK

where a null matrix indicates no ability to determine the
state parameters beyond what is already known from the a
priori matrix. The Degrees of Freedom for Signal is a scalar,
representation of measurement system capability, calculated
as DFS=trace(A), and has the property 0 ≤ DFS ≤ n.
We use DFS to compactly show system capability for many
simulated states.

We used a forward model that defines the measurement
state with ocean and atmospheric physical and optical
properties. However, PACE SDT requirements were
expressed as the water reflectance [ρw], which is instead
a byproduct of the model. We must therefore project the
results Ŝ into this space. To do so, we first determine the
Jacobian matrix, J, for water reflectance in the same manner
as K:

Jl,j(x) =
∂Ml(x)

∂xj
≈
Ml

(

x
′
)

−Ml(x)

x′j−xj

where λ corresponds to each wavelength in [ρw], and M is the
forward model component that produces the water reflectance.
To project the retrieval error covariance matrix we therefore use

Ŝ−1
b =JTKTSǫKJ+JTS

−1

a J

Where Ŝb is the byproduct error covariance matrix. The indirect
nature of this matrix may mean that it is has an implicit
regularization. Comparison of Ŝband the projection of the a

priori error covariance matrix JTS
−1
a J can provide clues to the

intermediate step constraints.
section Information Content Assessment contains an

implementation of these techniques for several prototypical
MAP designs for a variety of geophysical conditions.
In practice, this means we construct Jacobian matrices
to include all possible measurement spectral channels
and geometries, and subset the Jacobian to represent
the measurement system of interest. This is repeated for
a variety of geophysical cases, and results presented in
aggregate. In section Information Content Assessment
we show the DFS as an overall metric of measurement
capability, and Ŝb for water reflectance to show atmospheric
correction capability.
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