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ABSTRACT  

Hourly measurements of pollen near-surface concentration and lidar-derived profiles of particle backscatter coefficients 

and of volume and particle depolarization ratios during a 5-day pollination event observed in Barcelona, Spain, between 

27 – 31 March, 2015, are presented.  Maximum hourly pollen concentrations of 4700 and 1200 m-3 h-1 were found for 

Platanus and Pinus, respectively, which represented together more than 80 % of the total pollen.  Everyday a clear 

diurnal cycle caused by the vertical transport of the airborne pollen was visible on the lidar-derived profiles of the 

backscatter coefficient with maxima usually reached between 12 and 15 UT.  A method based on the lidar polarization 

capabilities was used to retrieve the contribution of the pollen to the total signal.  On average the diurnal (9 – 17 UT) 

pollen aerosol optical depth (AOD) was 0.05 which represented 29 % of the total AOD, the volume and particle 

depolarization ratios in the pollen plume were 0.08 and 0.14, respectively, and the diurnal mean of the height of the 

pollen plume was found at 1.24 km. 

The dispersion of the Platanus and Pinus in the atmosphere was simulated with the Nonhydrostatic Multiscale 

Meteorological Model on the B grid at the Barcelona Supercomputing Center with a newly developed Chemical 

Transport Model (NMMB/BSC-CTM).  Model near-surface daily concentrations were compared to our observations at 

two sites: in Barcelona and Bellaterra (12 km NE of Barcelona).  Model hourly concentrations were compared to our 

observations in Barcelona. 
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1. INTRODUCTION

Atmospheric pollen, a biogenic particle, commonly causes allergenic reactions when inhaled.  Many people in European 

megacities suffer from allergies linked to the presence of atmospheric pollen.  In the industrialized countries of central 

and northern Europe, up to 15% of the population is sensitive to pollen allergens[1][2]. 

Pollen is produced by plants, flowers, trees, shrubs, etc. and is particularly harmful for humans in large cities close to 

woods and forests and/or with a significant quantity of ornamental trees and parks.  In Europe the most common types of 

pollen are Ambrosia, Alnus, Artemisia, Betula, Corylus, Chenopodiaceae, Cupressaceae/Taxaceae, Olea, Platanus, 
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Poaceae, Quercus, and Urtica/Parietaria (Skjøth et al., 2013). Although their concentration is monitored daily at ground 

level by aerobiological networks[3][4], very little is known on their vertical distribution and their long/short-range 

transport[5]. 

In the Mediterranean city of Barcelona, Spain, the most abundant pollen taxa are Quercus (27.4%of the total pollen), 

Pinus, Platanus, Cupressaceae, Olea, Urticaceae, Poaceae, Chenopodiaceae, Plantago, Moraceae, Fraxinus, Castanea, 

and Populus (1 %) according to the Aerobiological Network of Catalonia (http://lap.uab.cat/aerobiologia) and based on 

pollen concentrations measured in the period 1994–2015.  In this contribution we relate for the first time in Barcelona, 

Spain, (i) pollen near-surface and columnar measurements, as well as (ii) pollen near-surface measurements and 

modelling of its dispersion in the atmosphere.  The study is based on a recent 5-day pollination event that occurred in 

Barcelona between 27 and 31 March, 2015. 

2. INSTRUMENTATION AND MODELLING 

Pollen grain concentration was measured by the Aerobiological Network of Catalonia in the city centre of Barcelona 

(2.165º E, 41.394° N, 67 m a.s.l.) and in Bellaterra (2.108º E, 41.501º N, 245 m a.s.l.), a city situated approximately 14 

km to the northwest of the Barcelona city centre.  Profiles of particle backscatter coefficient and linear volume and 

particle depolarization ratios were acquired at the Remote Sensing Lab (RSLab) in the North Campus of the Universitat 

Politècnica de Catalunya (2.112º E, 41.389º N, 115 m a.s.l.), approximately 4.4 km to the west of the Barcelona pollen 

sampling instrumentation.  Meteorological data (pressure, temperature, relative humidity, wind speed and direction) were 

recorded near the RSLab. 

2.1 Pollen near-surface sampling instrumentation 

Pollen samples are obtained using volumetric suction pollen-spore trap based on the impact principle[6], the standardized 

method in European aerobiological networks. The Hirst sampler (Figure 1a) is calibrated to handle a flow of 10 litre of 

air per minute, thus matching the human breathing rate. Pollen grains are impacted on a cylindrical drum covered by a 

melinex film coated with a 2-% silicon solution as trapping surface. The Melinex film is made of 7 bands, each one 

being 48-mm long and corresponding to 24 hours. The drum is changed weekly and the exposed tape is cut into seven 

pieces, each one corresponding to one day. Pollen grains are counted under light microscope, at 600X magnification. 

Daily average pollen counts are obtained following the standardized Spanish method[7], consisting in running four 

longitudinal sweeps along the 24 h slide for daily data, identifying and counting each pollen type found. To obtain the 

hourly concentrations, twenty-four continuous transversal sweeps separated every 2 mm along the daily-sample slide are 

analyzed, since the drum rotates at a speed of 2 mm per hour. Daily and intra-diurnal (hourly) pollen and spore 

concentrations are obtained converting the pollen and spore counts into particles per cubic meter of air, taking into 

account the proportion of the sample surface analyzed and the air intake of the Hirst pollen trap (10 l min-1). 

(a) (b) 

Figure 1. (a) Picture of a Hirst collector used to collect the pollen samples; (b) Picture at dusk of the Barcelona Micro Pulse 

Lidar system. 



 

 

 

 

 

 

2.2 Pollen columnar measurements 

The profiles of the particle backscatter coefficient and the volume and particle depolarization ratios were measured with 

the Barcelona Micro Pulse Lidar (MPL) system, model MPL-4B (Figure 1b).  The system is part of the MPLNET (Micro 

Pulse Lidar Network, http://mplnet.gsfc.nasa.gov/) network. The MPL system is a compact, eye-safe lidar designed for 

full-time unattended operation[8][9].  It uses a pulsed solid-state laser emitting low laser pulse energy (~6 μJ) at a high 
pulse rate (2500 Hz) and a co-axial “transceiver” design with a telescope shared by both transmit and receive optics. The 
Barcelona MPL optical layout uses an actively controlled liquid crystal retarder which makes the system capable to 

conduct polarization-sensitive measurements by alternating between two retardation states[9]. The signals acquired in 

each of these states are recorded separately and called “co-polar” and “cross-polar”.  In nominal operation the raw 

temporal and vertical resolutions are 30 s and 15 m, respectively.  The total lidar signal, P, as a function of the altitude, z, 

is reconstructed from the “co-polar”, Pco, and “cross-polar”, Pcr, signals as[9]: 
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The particle backscatter coefficient, βp, was retrieved with the two-component elastic algorithm with a constant lidar 

ratio of 50 sr. 

By adapting the notations of Flynn et al. (2007)[9] to ours one can formulate the linear volume depolarization ratio, δV, 

for the MPL system as: 
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The linear particle depolarization ratio, δp, can then be determined by [10]: 
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where δm is the molecular depolarization ratio and R is the backscatter ratio which is defined as: 
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where βm and βp denote the molecular and particle backscatter coefficient, respectively, of the total lidar signal.  For the 

Barcelona MPL lidar, a value of δm = 0.00363 was used[11]. 

Finally we also calculated the vertical height, hpol, up to which the pollen plume extends.  As it is shown in [11], the 

pollen plume is characterized during the whole pollination event by a near-constant or slightly decreasing profile of βp.  

From this aspect the structure of the pollen plume is much simpler than the ABL structure usually found in Barcelona[18] 

and allows us to use a simple threshold method[11].  To further compare surface concentrations to lidar-derived products, 

we also define column-integrated lidar-derived parameters such as 
V  and 

p , obtained by averaging the profile of 
V  

and 
p  from the ground up to hpol, thereby limiting the averaging to the pollen plume.   

2.3 Pollen dispersion modelling 

The dispersion of the airborne pollen in the atmosphere was modelled with the NMMB/BSC-CTM model 

(Nonhydrostatic Multiscale Meteorological Model on the B grid (NMMB) from the Barcelona Supercomputing Center 

(BSC) with a newly developed Chemical Transport Model(CTM)).  It is the online air quality forecast system developed 

at BSC[12][13].  Meteorology and transport schemes are the ones from [14].  For the pollen simulations, the output of the 

model were configured as follows: 

 Horizontal Resolution: 1 km x 1 km 

 Vertical Resolution: 48 hybrid sigma-pressure 

 Top Atmosphere: 50 hPa 

 Time step: 2 s 



 

 

 

 

 

 

The two pollen types largely predominant during the pollination event were Pinus and Platanus (see Section 3).  For this 

reason the aerosol scheme was set to bulk Pinus and Platanus aerosols.  The main parameters were taken from the 

literature and local and regional databases and are reported in Table 1. 

 
Table 1. Pollen parametrization used in the aerosol scheme. 

 
 Pinus  Platanus 

 Value Source  Value Source 

Geographical 

distribution  

- Cartography of 

habitats of Catalonia 

 - Barcelona's City Hall 

Open Data Service 

Tree density 

(tree/ha) 

650 Forest Inventory of 

Catalonia 

   

Emission factor 

(g/day/tree) 

81 Williams et al. (2009)  2.48 Brichi et al. (2000) 

Grain diameter 

(μm) 

59 Zhang et al. (2014)  19 Zhang et al. (2014) 

Grain density 

(kg/m3) 

560 Jackson and Liford 

(1999) 

 920 Zhang et al. (2014) 

 

3. EVIDENCE OF POLLEN RELEASE AND DISPERSION 

In addition to pollen daily concentration measurements which are performed routinely at the stations of the 

Aerobiological Network of Catalonia, hourly concentrations were also retrieved for the period of interest between 27 and 

31 March, 2015.  Figure 2 shows the time series of 1) the total pollen, Pinus and Platanus concentrations and 2) the 

volume depolarization ratio as a function of height.  One sees that Platanus and also Pinus are the two dominant species.  

Indeed together they represent more than 80 % of the total pollen concentration[11].  With the exception of 31 March, the 

pollen number concentration at ground level follows a clear diurnal cycle. On 31 March, no clear difference is observed 

between day and night. Platanus and Pinus concentration reaches maximum peaks of ~4700 m-3 on 31 March and 1200 

m-3 on 30 March, respectively. Maximum peaks of the total pollen concentration higher than 5000 and 6000 m-3 are 

reached on 30 and 31 March, respectively. They are associated with absolute peaks of Platanus and relative peaks of 

Pinus. Interestingly a release cycle is visible each day: the diurnal variation is marked with several relative peaks along 

the day that are usually distant in time by 2 to 4 h. Platanus and Pinus peaks are not necessarily correlated. The fact that 

Platanus variations are shaper than Pinus ones may be explained by the size difference between both pollen types: while 

Platanus longest diameter (on the polar axis) varies between 21 and 28 μm, it varies between 60 and 74 μm for Pinus 

(https://www.polleninfo.org/AT/en/allergy-infos/aerobiologics/pollen-atlas.html?letter=P). Pollen size is known to be a 

factor affecting not only pollen release but also pollen settlement to the ground (McCartney, 1994). 

The green color code volume depolarization ratio (Figure 2, bottom) indicates values of δV near 0.02 – 0.03.  It is the 

usual value of δV for background, local aerosols near the surface in Barcelona.  Everyday around 08 UT a plume with δV 

> 0.08 (yellowish) appears, raises up to 1.0 – 1.7 km in a few hours and starts decreasing before 16 UT at a lesser rate 

than it raised.  This diurnal pattern of δV is observed on each single day of the pollination event.  On the first four days 

values of δV larger than 0.08 are no longer detected after 18 – 20 UT.  Toward the end of the event on 30 and 31 March 

when the pollen concentrations were the highest, values of δV > 0.08 are still detected until 21-24 UT.  The highest 

values of δV are detected on 30 March and are of the order of 0.22.  This maximum value is higher than the peak value of 

0.15 observed by [16] for Pinus and Quercus pollen in South Korea and lower than δV = 0.30 measured by [17] for birch 

pollen plumes from the boreal forest of Alaska. 

To gain an insight into the meteorological conditions yielding to pollen release we have plotted together the total pollen 

concentration and the meteorological parameters as a function of time in Figure 3.  One sees a clear positive correlation 

between the total pollen concentration and temperature and wind speed and less pronounced negative correlation 

between concentration and relative humidity.  The correlation coefficient between the daily mean temperature (wind 

speed) and the daily total pollen concentration is 0.95 (0.82), indicating a strong dependence of pollen release upon 

temperature and wind speed. The correlation coefficient between the daily mean relative humidity and the daily total 

pollen concentration, -0.18, is negative and much lower (in absolute value) than the one for temperature. 



 

 

 

 

 

 

To further investigate the relationship between surface concentration and columnar properties we plot in Figure 4 the 

volume depolarization profile as a function of time and height together with the concentrations of total pollen, Platanus  

 

Figure 2. (top) Hourly airborne pollen concentration measured at the surface; (bottom) volume depolarization profile as a 

function of time and height.  The bottom plot has a five-minute time resolution. 

 

 

Figure 3. Total pollen concentration (red, right axis) superimposed on (black, left axis) (top) relative humidity, (center) 

temperature and (bottom) wind speed.  The vertical orange line indicate for each day the time with the highest concentration 

value. 



 

 

 

 

 

 

and Pinus.  For each day we also report in Figure 4 the correlation coefficient between hourly surface concentration and 

V .  For both pollen types, Platanus and Pinus, the release (concentration) and dispersion (δV) are well correlated on 27 

and 29 March.  The highest correlation coefficients are reached on those days.  For 28, 30 and 31 March, a nocturnal 

surface activity is visible on the concentration while δV remains low.  The nocturnal pollen activity seems to be linked to 

strong wind speeds (see Figure 3).  The highest correlation coefficients are in general found for the total pollen, which 

suggests that the relationship between surface concentration and columnar δV does not depend on a single pollen type but 

on the whole. 

 

 

 

Figure 4. Volume depolarization profile as a function of time and height on which the concentrations of (top) total pollen, 

(center) Platanus and (bottom) Pinus have been superimposed. On each plot and for each day the correlation coefficient, r, 

calculated between hourly concentrations and hourly 
V  is reported in red. 

4. MODELLING OF THE POLLEN ATMOSPHERIC DISPERSION 

This section presents the results of the very first simulation of pollen dispersion performed in the Catalonian region.  The 

pollen (Pinus and Platanus) parametrization used in NMMB/BSC-CTM can be found in Table 1.  By combining the 

different sources of geographical distribution and tree density maps showing the tree location and density were generated 

and are shown in Figure 5.  The spatial distribution of Pinus and Platanus trees was limited because of our sources 

themselves, respectively the Cartography of habitats of Catalonia and the Barcelona's City Hall Open Data Service.  This 

limitation results in a spatial distribution of Pinus in a region around Barcelona not further than 50 km from the city 

center, and in a spatial distribution for Platanus strictly limited to the Barcelona metropolitan area (the distribution of 

Platanus trees outside of the city is not known).  The pollen concentrations at ground level estimated by NMMB/BSC-



 

 

 

 

 

 

CTM are first compared to the observations in terms of daily concentration at both Barcelona and Bellaterra (Figure 6) 

and then in terms of hourly concentration in Barcelona (Figure 7). 

(a) (b) 

Figure 5. (a) Pinus and (b) Platanus geographical distribution and density.  On each plot a circle of radius 50 km (Pinus) and 10 

km (Platanus) centered on the Barcelona city center is represented. 

Daily concentrations of Pinus are relatively well retrieved by NMMB-BSC/CTM as all points fall between the 1/3 and 

3/1 ratio lines (Figure 6).  The concentration in Bellaterra seems a little overestimated while it seems underestimated in 

Barcelona.  Explanation…  Platanus concentration is clearly underestimated at both sites.  It is partly due to two reasons: 

(i) the limitation mentioned earlier of the Platanus tree spatial distribution map used in emission and (ii) an 

underestimation of the emission factor 2.48 g/day/tree used.  We are currently working on a better tuning of this 

parameter.  Interestingly model and observed concentrations agree exceptionally well (differences less than 20 %) on the 

same day, 27 March, the day for which surface concentration and columnar δV correlates the most (r-values ≥ 0.57). 

 

Figure 6. Model vs. observed daily concentration in Barcelona and Bellaterra for Pinus and Platanus during the five days of the 

pollination event period, 27-31 March, 2015.  Dotted lines represent either 3/1 or 1/3 ratios.  The two points of Barcelona 

corresponding to 27 March are indicated with a vertical arrow 

The analysis of the hourly concentrations in Barcelona (Figure 7) gives a further insight into the model behaviour at fine 

temporal scale.  For both types of pollen, we observe (Figure 7a and Figure 7b) that approximately half of the points fall 

within the 1/3-3/1 ratio lines and the other half below the 1/3 ratio lines, suggesting a general tendency of the model to 

underestimate the concentration of pollen.  We have plotted separately the nighttime and daytime concentration (not 

shown) and roughly found the same spreading of the points, suggesting that the performance of the model are 

independent of the period of the day.  This result is reinforced by Figure 7c and Figure 7d which show agreements and 

disagreements between model and observations equally during daytime than during nighttime.  In Figure 7a and Figure 

7b the points for 27 March are stressed by red dots in order to check if the good agreement found for the daily 

Barcelona 

Bellaterra 



 

 

 

 

 

 

concentration was also true for the hourly ones and it appears that for the hourly concentrations the agreement is not as 

good.  For Pinus roughly half of the points are overestimated (first half of the day, see Figure 7c) while the other half are 

underestimated (second half of the day).  This result points out that on 27 March the good agreement found on the daily 

concentration is circumstancial, as it is not reproduced on the hourly concentrations.  For Platanus on 27 March, the 

model estimates relatively well the nighttime concentration while it underestimates the diurnal ones. 

The comparison of the temporal evolution of the model and observed hourly concentrations (Figure 7c and Figure 7d) 

allows to identify the periods of the event when model and observations agree the best.  As expected from the analysis of 

the daily concentration, Platanus concentrations are largely underestimated by the model.  Except on the first half of 27 

March when the model overestimates the Pinus hourly concentration, the simualtions seem to have two main behaviors: 

they either underestimates the observed concentration (all the periods with a model concentration < 10μg/m3) or they 

agree relatively well with the observations.  Two periods show specially good agreements: the day of 28 March and the 

first half of 30 March.  On both cases the strong increase of the concentration at the beginning of each period is related to  

(a) (b) 

(c) (d) 

Figure 7. Model vs. observed hourly concentration in Barcelona for (a) Pinus and (b) Platanus during the five days of the 

pollination event period, 27-31 March, 2015. Dotted lines represent either 3/1 or 1/3 ratios. The red dots correspond to 27 

March. Temporal evolution of both model and observed concentration of (c) Pinus and (d) Platanus. 

(a) (b) 
Figure 8. Pinus surface concentration (a) on 28 March at 06UT and (b) on 29 March at 18UT. 

28 March / 29 March / 

Barcelona 



 

 

 

 

 

 

strong nighttime winds (see Figure 3).  This point reveals the importance of the meteorological scheme used by the 

meteorological model for the modelization of airborne pollen.  To put the emphasis on that conclusion we extract from 

the hourly simulations the maps of the spatial distribution of Pinus concentration at ground level on 28 March at 06UT 

(good agreement, Figure 8a) and on 29 March at 18UT (bad agreement, Figure 8b).  On 28 March at 06UT the 

predominant northwesterly winds are visible on the map.  The progressive decrease of the concentration from dark green 

inland to light yellow over the sea reveals the importance as well, in addition to the meteorology, of the localization and 

the right quantification of the emission.  Figure 8b is a clear example that if the meteorology scheme is not reproducing 

the real conditions (here the model forecasts rather winds from south, i.e. driving the pollen plume away from the city 

center), then the model is unable to reproduce the right pollen concentration. 

5. CONCLUSIONS 
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