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Abstract

CO2 released from combustion of fossil fuels equilibrates between the various carbon

reservoirs of the atmosphere, the ocean, and the terrestrial biosphere on time scales of a

few centuries.  However, a sizeable fraction of the CO2 remains in the atmosphere,

awaiting a return to the solid earth by much slower weathering processes and deposition

of CaCO3. Common measures of atmospheric CO2 lifetime, including the e-folding time

scale, disregard the long tail.  Its neglect in the calculation of global warming potentials

leads many to underestimate the longevity of anthropogenic global warming.  Here we

review the past literature on the atmospheric lifetime of fossil fuel CO2 and its impact on

climate, and we present initial results from a model intercomparison project on this topic.

The models agree that 20-35% of the CO2 remains in the atmosphere after equilibration

with the ocean (2-20 centuries).  Neutralization by CaCO3 draws the airborne fraction

down further on time scales of 3-7 kyr.

Introduction

The fate and lifetime of fossil fuel CO2 released to the atmosphere is not inherently

scientifically controversial, but the packaging of this information for public consumption

is strewn with such confusion that Pieter Tans proposed in print that the entire concept

should be “banished“(Tans et al 1990).  How long is global warming from CO2 going to

last, policymakers and the public would like to know.  If there is a trade-off possible

between emissions of CO2 versus emissions of other greenhouse gases, how shall they be
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compared?  The lifetimes of greenhouse gases are incorporated into the construction of

global warming potentials, the time-integrated climate impact of each gas relative to CO2.

The question of the atmospheric CO2 lifetime is also important for predicting the

impact of human activity on slowly-responding aspects of the climate system such as the

major ice sheets (Archer & Brovkin in press), permafrost (Gavrilov et al 2003, Lawrence

& Slater 2005), and geochemical impacts of changing the temperature of the deep sea

(Archer et al 2004).  Many of the most profound changes in the Earth’s surface, such as

sea level, take place on time scales of thousands of years and longer.

There is a strong consensus across models of global carbon cycling, as exemplified by

the ones presented here, that the climate perturbations from fossil fuel CO2 release extend

hundreds of thousands of years into the future.  This is consistent with sedimentary

records from the deep past, in particular a climate event known as the Paleocene Eocene

thermal maximum, which consisted of a relatively sharp increase in atmospheric CO2 and

ocean temperature, followed by a recovery, which took perhaps 150,000 years (Kennett

& Stott 1991, Pagani et al 2006) .

The gulf between the widespread preconception of a relatively short (hundred-year)

lifetime of CO2 on the one hand, and the evidence of an much longer climate impact of

CO2 on the other, arguably has its origins in semantics.  There are rival definitions of a

lifetime for anthropogenic CO2.  One is the amount of time it takes until a substantial

portion, say 50% or perhaps 1-1/e which is about 63%, of the excess CO2 goes away.

Another is the average lifetime, or transit time, of the individual carbon atoms before they

leave the atmosphere.  The misinterpretation which has plagued the question of the
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atmospheric lifetime of CO2 seems to arise from confusion of these two very different

definitions.

In the simplest of worlds, the decay of a perturbation might follow first-order linear

kinetics.  Radioactive decay is an example of this.  The resulting concentration trajectory

through time will follow an exponential decay function.  In this case the mean lifetime of

the carbon atoms in the atmosphere is closely approximated by the “most of it goes

away” criterion; the mean lifetime is in fact equal to the e-folding time scale, the time at

which only 1/e, about 37%, of the original pulse remains.  If fossil fuel CO2 in the

atmosphere was expected to diminish according to linear kinetics, then it would be

possible to calculate the lifetime simply using the present-day excess CO2 concentration

in the atmosphere (about 100 ppm or 200 Pg C) and the natural uptake rate, currently

about 2 Pg C / yr each into the oceans and into the land biosphere.  Dividing the

inventory by the flux yields an apparent lifetime of 50-100 years, depending on whether

you count the terrestrial uptake in addition to the oceanic.  This calculation has been most

recently re-done by Jacobson (2005), who determined an “atmospheric lifetime” of 30-95

years.  For the nonlinear CO2 uptake kinetics as predicted by carbon cycle models,

however, this apparent lifetime would increase with time after the CO2 is released.  Some

CO2 from the release would remain in the atmosphere thousands of years into the future,

and the atmospheric lifetime calculated at that time would be thousands of years.

The most fundamental problem with the linear-kinetics formulation is that even the

simplest atmosphere / ocean carbon cycle models decay to a different atmospheric CO2

level, higher than the concentration before the spike was released.  If the ocean and

atmosphere were held in a non-reactive container, that excess CO2 would remain in the
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atmosphere forever, an eternal airborne fraction of the CO2 slug of 15-40% (Archer

2005).  If the ocean were infinitely large or caustic (high-pH), the airborne fraction might

approach zero, but given the size and chemistry of the ocean, an airborne fraction of tens

of percent can be calculated from simple thermodynamics, as if the ocean were a bucket

of homogeneous seawater in equilibrium with about two buckets-full of a gas phase.

In the real world, the leftover CO2 in the atmosphere after ocean invasion interacts with

the land biosphere, and is taken up by pH-neutralization reactions with calcium carbonate

(CaCO3) and the CaO component of igneous rocks.  The time scales for these processes

range from thousands to hundreds of thousands of years. Keeling and Bacastow (1961)

predicted that it would take at least 10,000 years for atmospheric CO2 to return to

preindustrial levels. Walker and Kasting (1992) reached a similar conclusion but

extended the duration of the long tail to hundreds of thousands of years.  Broecker and

Takahashi (1978) described the neutralization reaction with CaCO3.  Many other carbon

cycle models of a variety of configurations and resolutions (Archer 2005, Caldeira &

Kasting 1993, Lenton & Britton 2006, Montenegro et al 2007, Ridgwell & Hargreaves

2007, Sundquist 1990, Tyrrell et al 2007), and essentially all of them have found the

same result. The mean lifetime (or transit time out of the atmosphere) of fossil fuel CO2

molecules has been calculated to be tens of thousands of years (Archer et al 1997), not at

all similar to the 50-100 year lifetime calculated using the linear approximation based on

fluxes immediately following a release of CO2 to the atmosphere.  Clearly the linear

approximation, using a single characteristic time scale for the removal of CO2 from the

atmosphere, is a poor representation of the way we think the carbon cycle works. An

analogy can be drawn with radioactive waste, for which the decay of its radioactivity as a
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whole will not conform to any single measure, since it is composed of a variety of

different radionuclides with a wide range of half-lives.

As the ocean is acidified, its ability to hold more CO2 decreases, so that the airborne

fraction of a kilogram of CO2 is higher if lots of CO2 has been released previously.  The

change in buffering provided by seawater can be readily calculated and is encapsulated in

the ‘Revelle Factor’ (Zeebe & Wolf-Gladrow 2001). For a system in which CO2 re-

partitions only between ocean and atmosphere, an analytical expression can be derived

for the CO2 concentration in the air as a function of time (Goodwin et al 2007).  To

include ocean-sediment interactions, Khesghi and Archer (2004) developed an analytical

Greens-function type approximation to the results of an ocean and sediment carbon cycle

model. These formulations had an explicit accounting of the change in carbon buffer

chemistry with ocean acidification.  The buffering capacity and pH of the ocean are

ultimately restored by dissolution of CaCO3 (Broecker & Takahashi 1978, Ridgwell &

Zeebe 2005). Even for linear uptake kinetics, the decay time scale from an impulse CO2

release is different from the decay time scale after ongoing emissions are stopped

(Caldeira & Kasting 1993, Gaffin et al 1995a), or in other words, the decay time for an

additional kilogram of CO2 depends on the state of the system into which that CO2 is

released.

As more and more CO2 is emitted, the airborne fraction increases because of the

depleted carbon buffer chemistry of the ocean, while the radiative impact of a further

kilogram added to the air decreases, because of the absorption band saturation effect.

Caldeira and Kasting (1992) find that these two effects largely counteract each other, so

that the radiative impact of a kilogram of CO2 is nearly independent of whether that
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kilogram is released early or late in the fossil fuel era.  Montenegro et al (2007) find that

the logarithmic dependence of radiative forcing on CO2 concentration acts to extend the

long tail of the radiative forcing from the CO2 to a longer time scale than they calculate

from the CO2 concentration itself.

The extent and longevity of the climate impact from CO2 release will also depend on

transient uptake by the terrestrial biosphere, taking up 2 Pg C / year today and shortening

the apparent lifetime of CO2, but which could become saturated in the coming decades,

leaving pCO2 to follow the slower uptake kinetics of the ocean (Moore & Braswell 1994).

If the terrestrial biosphere including soil carbon turned into a new source of CO2 to the

atmosphere at some point in the future (Friedlingstein et al 2006), then it would act to

prolong the apparent lifetime of CO2. In addition, high plant primary productivity in a

high CO2 world may also act to enhance the rate of weathering of soil minerals and

bedrock, leading to an acceleration of the longest term, silicate weathering process

(Lenton & Britton 2006).

An appropriate appreciation of the lifetime(s) of CO2 is important because the benefits

of mitigating different types of greenhouse gases are compared using global warming

potentials (“GWP”), which are time integrals of the radiative impacts of the different

gases.  The long tail of the CO2 lifetime is a problem for calculating the global warming

potentials of all gases, since CO2 is taken to be the reference case against which other

gases are compared.  Most of the linear-kinetics studies (Caldeira & Kasting 1993, Gaffin

et al 1995a, Moore & Braswell 1994) explicitly acknowledge that they are not

considering the long lifetime of the CO2 that remains in the atmosphere after initial

equilibration with the ocean.  This initial decay time scale is a useful and helpful quantity
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to measure, but it is not by itself appropriate for calculating the global warming potential,

because it doesn’t represent the entire climate impact.  In practice, the tail is generally

thrown out of GWP calculations by truncating the integral at 100 years, a time scale that

arises from our own lifetimes, we would argue, rather than anything intrinsic about the

carbon cycle.

The 1990 IPCC report included in its Summary for Policymakers a table showing the

properties of various greenhouse gases, including an atmospheric lifetime of CO2 listed as

50-200 years, with a footnote caveat that “the way in which CO2 is absorbed in the ocean

and biosphere is not simple and a single value cannot be given….”.  It was carefully

explained in technical Chapter 1, Greenhouse Gases and Aerosols, that on human time

scales CO2 really has no sinks, it just equilibrates between the atmosphere, ocean, and

biosphere, with some residual remaining in the atmosphere after the equilibration is done.

The time scale of 50-200 years was based on a pair of ocean carbon cycle model

responses to a pulse CO2 input (Maier-Reimer & Hasselmann 1987, Siegenthaler &

Oeschger 1987).  This 50 to 200 years represents a time scale for equilibration with the

ocean, a process which leaves a significant fraction of CO2 in the atmosphere.  This time

scale is not equivalent to the mean transit time of the CO2 molecules before they are

removed from the system, nor is it a statement about how long the climate impacts of

CO2 release will last.  But this distinction was confused in the Summary for Policymakers

where the time scale is referred to as an atmospheric lifetime, which is incorrect, and it is

used to calculate global warming potentials, which is inappropriate.  The footnote quoted

above explains why a range of lifetimes is given, rather than a single value as for

methane and other gases, but gives no indication of the new equilibrium or the long tail.
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On this question, Gaffin (1995b) wrote that “the  door to misunderstanding had been left

open.  Others have and continue to walk through it.”

Subsequent IPCC reports in 1995 and 2001 compounded the mistake, revising the

lower limit of the lifetime estimate down to only 5 years.  Presumably the lower end of

the range was a reflection of CO2 exchange with the atmosphere or the terrestrial

biosphere, although short-term uptake and release, or exchange of one carbon for another,

have no impact on the altered climate.  Finally the 2007 IPCC report removed the table

from the summary, and wrote a bullet point that “Carbon dioxide cycles between the

atmosphere, oceans and land biosphere. Its removal from the atmosphere involves a range

of processes with different time scales. … The remaining 20% may stay in the

atmosphere for many thousands of years.”  This change encountered significant

resistance in internal IPCC deliberations.

To summarize, with few exceptions (Jacobson 2005) there has been no disagreement

within the carbon cycle scientific community about the long tail to the fossil fuel CO2

lifetime.  But there has been considerable divergence on the way in which the behavior of

that carbon pulse should be expressed and evaluated.  The result has been an erroneous

conclusion throughout much of the popular treatment of the issue of climate change that

global warming will be a century-time scale phenomenon.   Simple thermodynamics of

CO2 dissolved in seawater, plus paleo-evidence from 55 million years ago (the PETM)

tell us otherwise.

A Model Intercomparison Experiment

We have assessed the range of possibilities for the long-term fate of fossil fuel CO2 in

the atmosphere, ocean, and terrestrial biosphere by means of a model intercomparison
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experiment that we call LTMIP (for Long Tail Model Intercomparison Project). Model

intercomparisons have proven extremely useful in climate dynamics (such as the AR4

climate forecast simulations) and paleoclimate modeling (PMIP (Weber et al 2007)), and

this project takes as its template the intercomparison ocean carbon and nutrient cycling

models called OCMIP (Orr 1999).  In the intercomparison results we present here, we

limit the time scale of our model simulations to 10,000 years, which is arguably not as

long as we would like, but is still too long for primitive-equation atmosphere circulation

codes.  Hence most of the models in our group are streamlined in some computational

way.

Models

CLIMBER-2  consists of a fully climate-responsive two-dimensional atmosphere

coupled to a two-dimensional 3-basin dynamic ocean, a terrestrial biosphere model

(VECODE), an oceanic biogeochemistry model, and a phosphate-limited model for

marine biota (Brovkin et al 2002, Brovkin et al 2007, Ganopolski et al 1998).  The

sediment model resolves the diffusive pore-water dynamics, assuming oxic-only

respiration and 4.5-order CaCO3 dissolution kinetics (Archer 1996, Brovkin et al

2007). Weathering rates scale to runoff on the land surface grid cells, with separate

carbonate and silicate lithological classes.

CC_SED was described by (Archer 2005), and uses the HAMOCC2 stationary annual

mean flow field code to advect geochemical tracers.  The sediment model is the same

as in CLIMBER (Archer 1996).  The temperature of the ocean is offset uniformly

with a 1000-year response time, relaxing to a target temperature determined by a

deep-ocean climate sensitivity of 3°C.  A weathering feedback has been added to the
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code since its description (Archer 2005), scaled to CO2 according to Berner and

Kothavala (2001), with some of the parameters as described by Berner (2004).

GENIE (Ridgwell & Hargreaves 2007) consists of a 3-D non-eddy resolving frictional

geostrophic ocean circulation model, and 2-D sea-ice and energy moisture balance

atmospheric models (Edwards & Marsh 2005). GENIE incorporates a representation

of the marine geochemical cycling of carbon and other biologically mediated tracers

and a representation of sedimentary stratigraphy and preservation of carbonates in

deep-sea sediments  (Ridgwell et al 2007). The sediment diagenesis zone at each

ocean grid point is treated as a single (1cm) box and is coupled to an accumulating

column below. CaCO3 dissolution in the diagenesis zone is calculated based on the

model of (Archer 1996) modified as described in (Ridgwell 2007). Carbonate and

silicate weathering rates are parameterized as a function of mean global surface air

temperature over land, following (Berner & Kothavala 2001) and (Lenton & Britton

2006) and are initially equal in magnitude. A fixed CO2 out-gassing rate balances the

baseline silicate weathering rate.

GENIE16 is similar to GENIE8, except it has 16 (rather than 8 depth levels in the

ocean) and is seasonally insolation forced. The climate model component is described

in (Singaraye et al in press).

GEOCYC is an on-line zero-dimensional descendent of the Berner and Kothavala

(2001) GEOCARB III model, with the addition of time-dependent equilibration of the

atmosphere and a homogeneous ocean using a time constant of 1 Pg C yr-1 per 300

ppm difference in surface ocean pCO2, and with time-resolved CaCO3 neutralization

where the burial rate of CaCO3 is a linear function of ocean CO3
= concentration using
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a dependence of 3 E-3 Pg C yr-1 for every micromolar change in ocean CO3
=

concentration, from the model results of Archer et al (1997).  This model was

designed for educational purposes, and can be run interactively on the web at

http://understandingtheforecast.org/Projects/geocarb.html.

LTCM is a derivative of the HILDA (Shaffer & Sarmiento 1995) box advection /

diffusion model with the inclusion of an OCMIP-type geochemical component.  The

sediment model is similar in formulation but of different origin to that used in

HAMOCC and CLMBER.  Weathering rates interact with climate following Berner

and Kothavala (2001).

MESMO (Matsumoto et al 2008) is based on GENIE-1. In the dynamical ocean model,

there are 16 vertical levels on a 36 x 36 equal area horizontal grid. In addition, there

are energy-moisture balance model of the atmosphere and dynamic-thermodynamic

model of sea ice. Ocean production occurs in the two layers within the top 100m and

has dependence on, among other factores, the diagnosed mixed layer depth.

MPI-UW (Mikolajewicz et al 2007) consists of a coupled coarse-resolution

atmospheric general circulation model ECHAM3 (Roeckner et al 1992), an updated

version of the Large Scale Geostrophic ocean model (LSG) (Maier-Reimer et al

1993) which drives HAMOCC3 ocean biogeochemistry (Winguth et al 1994).  The

land biosphere is simulated using the dynamic vegetation model LPJ (Sitch et al

2003).  In order to reduce the amount of computer time required the model has been

run in periodically-synchronous mode (Mikolajewicz et al 2007) for the periods

without rapid changes in atmospheric CO2 concentration. Ensemble simulations have

been performed for some experiments to average out the effect of natural variability.
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The simulations have been initialized with different states (1000 years apart) of the

control simulation.

UVIC2.8 is the University of Victoria Earth System Climate Model, consisting of a

vertically integrated, energy/moisture balance, atmospheric model with dynamic

feedbacks, coupled to the MOM2 ocean general circulation model and a

dynamic/thermodynamic sea-ice model (Weaver et al 2001). The horizontal

resolution is 1.8x3.6 degrees and the ocean model has 19 vertical levels. The

terrestrial carbon model is a modified version of the MOSES2 land surface model and

the TRIFFID dynamic vegetation model (Meissner et al 2003). Ocean carbon is

simulated by means of an OCMIP-type inorganic carbon-cycle model and a marine

ecosystem model solving prognostic equations for nutrients, phytoplankton,

zooplankton and detritus (Schmittner et al 2008). Sediment processes are represented

using an oxic-only model of sediment respiration (Archer 1996). Isopycnal mixing

and flux corrected transport were used in the ocean model with diapycnal diffusion

specified as a horizontally constant profile. The sea-ice model is a simple, single

layer, thermodynamic version, with elastic-viscous-plastic dynamics.

Methodology

The heart of the intercomparison is a series of fossil-fuel neutralization experiments.

The CO2 release is instantaneous, to simplify the analysis of the resulting atmospheric

CO2 trajectory.  Pulses of 1000 and 5000 Pg C are considered, round numbers that have

been used in the past.  The base case calls for invasion into the ocean with no feedbacks

or sediments. This provides a baseline against which the impacts of various feedbacks

can be evaluated and could be regarded as a control experiment.  The chemistry of the
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ocean responds to the CO2 invasion, limiting the amount of the released CO2 slug that the

ocean ultimately holds.  The CO2 drawdown trajectories tend to follow quasi-exponential

decay functions toward new long-term values within the first millennium of the

simulations, representing equilibration between the ocean and sediments (but not with the

minerals). This response time and final state are well resolved by our simulations.  We

also drove the models with the historical rate of atmospheric CO2 rise (designated Hist),

to obtain a snapshot of CO2 invasion pathway and to compare the present-day uptake rate

of fossil fuel CO2 with observations.

When possible in each model, we included the impacts of various feedbacks to the CO2

system, including feedbacks from climate, from sediment dissolution, from enhanced

weathering, and from uptake by vegetation and release by soils.  The feedbacks were

added cumulatively in that order, and the impact of each feedback is gauged as the

difference in the drawdown of atmospheric CO2 that results.  Our definitions of feedback

strength are thus experiment-dependent; we might have gotten different answers if we

had layered the feedbacks in a different order.  The order we chose to some extent

reflects the relative certainties of the feedbacks as well as their expected magnitudes.  Not

all of the models in our pool have the capacity to do all of the simulations.

First, the climate feedback is added in the 'C' case.  The chief impact of changing

climate is via the solubility of CO2 gas in seawater, which decreases with warming.

There may also be changes in ocean circulation or ventilation patterns and rates that

impact CO2 invasion.

Sediment feedbacks are neglected in the base case, but they are added in 'S' and 'CS'.

The sediment response is composed of two components, a fast pH-neutralizing reaction
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of CO2 with CaCO3 on the sea floor (a process called chemical erosion) followed by a

longer time-scale reaction of CO2 with carbonates on land (weathering) (Archer et al

1997, Ridgwell & Hargreaves 2007).  The amount of CaCO3 on the sea floor available to

dissolve is limited by the formation of a clay layer on the sea floor, the nonreactive

leftover material after CaCO3 dissolves which impedes further CaCO3 dissolution (Archer

et al 1997, Broecker & Takahashi 1978).  The 5000 Pg C CO2 release is close to enough

to deplete the available CaCO3 stock of the ocean, leaving excess weathering over CaCO3

burial to drive the CO2 neutralization.

A weathering feedback 'W' is included in the 'CSW' case, reflecting a climate impact

on the rate of chemical weathering on land, driven by excess runoff in a wetter high-CO2

world as well as faster rates of dissolution in a warmer more acidic environment (Berner

et al 1983).  The weathering feedback pertains to CaCO3 dissolution, as well as the

dissolution of igneous rocks that ultimately controls atmospheric CO2: the silicate

weathering thermostat with its CO2-regulating time constant of hundreds of thousands of

years (Walker et al 1981).

Vegetation feedbacks are indicated by the 'V' in the simulation 'CSWV'.  The impact of

vegetation is to absorb carbon into biomass and soil organic matter in response to

changes in atmospheric CO2 concentration or climate.

Results

In the first millennium after the instantaneous CO2 release the trajectory of atmospheric

CO2 is dominated by CO2 dissolution into the ocean and transport to depth.  Figure 1

illustrates this for the ocean-only base case, and together with the climate and sediment

feedbacks.  The equilibration time scale for ocean invasion, calculated by by a least
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squares fit of an exponential to the CO2 concentration trajectory, is about 250 ± 90 years

for the 1000 Pg C release spike, and 450 ± 200 years for the 5000 Pg C release (Figure

2a).  These equilibration times are conceptually the same as what IPCC called their

“atmospheric lifetime” which they found to be 50-200 years, based on the modoel

response to an instantaneous doubling of atmospheric CO2 (590 Pg C).  Our results here

show that the equilibration time scale depends on the magnitude of the CO2 slug, and is

longer for larger slugs.  The climate feedback (grey bars) increases the diagnosed

equilibration time in the 5000 Pg C release cases, but had mixed impact on the 1000 Pg C

model runs.  In general there is less model agreement for the base case when the emission

slug is large (5000 Pg C) than when it is small (1000 Pg C).  The impact of the climate

sensitivity however is more consistent between models when the emission slug is large.

One check on the predicted rate of CO2 uptake in the future is to compare the historical

forcing (Hist) model runs with the present-day CO2 uptake rate of around 2.2 Pg C / year

observations (Denman 2006).  These are presented in Figure 2d,  showing reasonable

values for all models except GEOCYC, which assumes a homogeneous ocean and

therefore misses nonlinearity in CO2 uptake into a more realistic ocean.

The final equilibrium airborne fraction of the released CO2 is shown for the ocean-only

base model and for the climate feedback C model runs in Figure 2b.  Without the climate

feedback, the 1000 Pg C release experiments asymptote to an airborne fraction of about

20%, while the 5000 Pg C experiments equilibrate with about 35% of the CO2 released

remaining in the atmosphere.  For large CO2 release of 5000 Pg C, the airborne fraction is

therefore considerably higher than the 20% claimed in the 2007 IPCC Summary for

Policymakers.  Primarily because CO2 is less soluble in warmer seawater, the climate
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feedback increases the airborne fraction by about 15%.  Since the climate impact of the

CO2 persists as long as the CO2 does, the climate feedback affects atmospheric CO2 for

the entire duration of the long tail.

The magnitude of the climate feedback is presented as the difference in atmospheric

CO2 concentration with the feedback and without it, in Figures 3a and 4a.  The climate

feedback generally diminishes after the atmosphere equilibrates with the ocean in the first

millennium, but persists at a lower level for the entire 10,000 year duration of the runs.

The magnitude of the climate feedback varies greatly, with the UVic2.8 model showing

by far the largest feedback. Much of this appears to be due to the complex ocean

biological response in this model (Ridgwell & Hargreaves 2007), with as much as half of

the climate feedback attributed to changes in ocean biology (results not shown). The

UVic2.8 model also shows abrupt changes in CO2 for the 1000 Pg C experiment. Abrupt

warming, and accompanying increase in CO2, is caused by flushing events in the

Southern Ocean, which in this model have been shown to be dependent on the level of

atmospheric CO2 (Ridgwell & Hargreaves 2007)

The sediment feedback is primarily driven by excess dissolution of CaCO3 on the time

scales of these model simulations, although imbalance between the dissolution

(weathering) of CaCO3 on land and burial in marine sediments is equally important on

slightly longer time-scales (Lenton & Britton 2006, Ridgwell & Hargreaves 2007).  The

impact of the sediment feedback is generally small over the first thousand years, but

grows over the 10,000 years of the simulations to result in generally more drawdown to

the equilibrium state than we saw from the climate feedback (Figure 3b and 4b).  The

CO2 drawdown from CaCO3 dissolution follows a trajectory which is similar to an
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exponential decay, with time constants derived by regression shown in Figure 2c.  The

Lenton and Britton model (2006) had a much faster neutralization response than this, of

just 500 years, but none of our models do that.  Other previous studies (Archer et al 1997,

Ridgwell & Hargreaves 2007, Tyrrell et al 2007) predicted CaCO3 neutralization time

scales of millennia and longer, consistent with our results. It should be noted that because

of the computational constraints that some of the LTMIP ensemble models are subject to,

the experiments presented here are not ideal for determining the equilibrium airborne

fraction after CaCO3 compensation from these runs, because the ocean burial of CaCO3

has not yet reached steady state with respect to weathering after 10,000 years.

The weathering feedback, an acceleration of the dissolution on land of CaCO3 and

calcium-bearing silicate minerals resulting from the warmer climate (Berner et al 1983,

Ridgwell & Zeebe 2005), generally increases its impact on atmospheric CO2 with time in

our model runs, although the CC_SED model shows a strong peak in CO2 drawdown in

the first millennium, the time when atmospheric CO2 is highest.  By the end of the

simulations, the weathering feedback has decreased atmospheric CO2 by about half as

much as the sediment feedback alone did.  The global CaCO3 burial rates are plotted in

Figure 5, showing considerable disparity in the model results.

The vegetation feedback operates on annual to century time scales - substantially faster

than the ocean feedbacks.  The productivity of terrestrial plants increases instantaneously

with elevated atmospheric CO2 concentration because a physiological response of the

plant stomata leads to higher water use efficiency and consequent increase in plant

biomass (Denman 2006). Enhanced respiration of plant tissues and accelerated

decomposition of soil organic matter due to elevated temperatures counteract this effect,
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but a net result of projected changes in CO2 and climate is an increase of the land carbon

storage in most of vegetation models (Cramer et al 2001, Friedlingstein et al 2006). This

is reflected in the Figure 3 and 4: a presence of vegetation feedback in the simulations

substantially reduces an airborne CO2 fraction especially during the first hundred years.

After this period, the ocean carbon uptake gains control over the atmospheric CO2

concentration because of much larger buffering capacity of the ocean in comparison with

the land.

While these results are in line with expected long-term vegetation feedback (Bala et al

2005, Plattner et al 2008), many uncertainties in the representation of long-term land

biogeochemistry make the land feedback story more comprehensive.  Modeling of soil

carbon dynamics is still in its infancy: many important mechanisms, for example the

priming effect of addition of fresh organic material to the soils (Fontaine 2003) or

processes of anaerobic decomposition of organic matter (Frolking et al 2001) are not yet

accounted for in the coupled global models. Nitrogen and phosphorus balance is ignored

in most of the models (Reich et al 2006), and changes in carbonate storages in dryland

soils are neglected (Lal et al 2000). Models of vegetation (forest) dynamics on a global

scale are extremely simplified and difficult to validate because of long time scale

involved (Purves & Pacala 2008). Finally, changes in the land carbon uptake due to

future alteration of land use by humans are almost impossible to foresee. All these

limitations of the land model assumptions make the simulations of the land carbon

response to the CO2 pulse presented here rather illustrative than predictive.

The mean lifetime, or CO2 transit time back to the solid earth, depends strongly on the

assumption of the time scale for the silicate weathering feedback, which is not resolved
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by the duration of these model experiments or the primary focus of the modeling

exercise.  If we assume however that 10% of the fossil fuel remains in the atmosphere

until it is neutralized by silicate weathering on a time scale of 100,000 years, then the

mean lifetime of fossil fuel CO2 for both CO2 release scenarios, 1000 and 5000 Pg C, is

about 12 - 14 kyr.  Assuming a 400,000 year time constant for the silicate weathering

feedback would result in mean CO2 lifetimes of about 45 kyr.  These exceed the IPCC-

quoted "atmospheric lifetime" by a factor of 50 or 100, and would change the Global

Warming Potentials of the other greenhouse gases by this factor.  We do not argue that

other greenhouse gases are unimportant by their lack of a comparable geological-time

scale tail to their atmospheric residence.  It makes sense to base the calculation of GWP

on the time scale of the human lifetime.  However, the calculation should be transparent

and based on the true behavior of CO2 in the Earth system, rather than on a

misunderstanding.

Conclusions

The models presented here present a broadly coherent picture of the fate of fossil fuel

CO2 released to the atmosphere.  Equilibration with the ocean will absorb most of it on a

time scale of 2-20 centuries.  Even if this equilibration were allowed to run to

completion, a substantial fraction of the CO2, 20-40%, would remain in the atmosphere

awaiting slower chemical reactions with CaCO3 and igneous rocks.  The remaining CO2

is abundant enough to continue to have a substantial impact of climate for thousands of

years.  The changes in climate amplify themselves somewhat by driving CO2 out of the

warmer ocean.   The CO2 invasion has acidified the ocean, the pH of which is largely

restored by excess dissolution of CaCO3, from the sea floor and on land, and ultimately
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be silicate weathering on land.  The recovery of ocean pH restores its buffer capacity to

absorb CO2, tending to pull CO2 toward lower concentrations over the next 10,000 years.

The land biosphere has its greatest impact within the first few centuries, the time of the

CO2 peak.  Nowhere in these model results or in the published literature is there any

reason to conclude that the effects of CO2 release will be substantially confined to just a

few centuries. In contrast, generally accepted modern understanding of the global carbon

cycle indicates that climate effects of CO2 releases to the atmosphere will persist for tens,

if not hundreds, of thousands of years into the future.
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Figure Captions

Figure 1.  Atmospheric CO2 trajectories for the 10,000 year duration of the model

simulations.  Note the split scale, expanding the action in the first 1000 years.  Different

line types designate the base (ocean only) simulation, the climate feedback (C), the

climate + sediment feedback (CS), the climate + sediment + weathering feedback (CSW),

and the climate + sediment +weathering +vegetation feedback (CSWV) cases.

Figure 2.  a) Equilibration time for CO2 invasion into the ocean.  b) Equilibrium

airborne fraction of CO2 after ocean invasion, for cases with no sediment interaction.  c)

CaCO3 dissolution response time.  d) Predicted present-day CO2 uptake rates when the

models are subjected to historical (Hist) atmospheric CO2 concentration trajectories.  The

real ocean took up about 2.2 Pg C / year between the comparable time interval, 1990-

2000.

Figure 3.  Impacts of feedbacks to atmospheric CO2 concentration, expressed in terms

of atmospheric CO2 difference when the feedback is applied.  Results from 1000 Pg C

release experiments.   The physically impossible positive weathering feedback for

CC_SED in the first millennium is an artifact of different initial conditions for the two

versions of the model.

Figure 4.  As Figure 3 but for 5000 Pg C release experiments.

Figure 5.  Global rates of CaCO3 burial from the models.
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