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Atom- and field-state evolution in the Jaynes-Cummings model for large initial fields
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An asymptotic result is derived for the Jaynes-Cummings model of a two-level atom interacting with a
quantized single-mode field, which is valid when the field is initially in a coherent state with a large aver-
age photon number. It is shown that for certain initial atomic states the joint atom-field wave function
factors into an atomic and a field part throughout the interaction, so that each system remains separately
in a pure state. The atomic part of the wave function displays a crossing of trajectories in the atom Hil-
bert space that leads to a unique state for the atom, independent of its initial state, at a specific time to
(equal to half the revival time). The field part of the wave function resembles a crescent squeezed state.
The well-known collapses and revivals are investigated from this perspective. The collapse appears to be
associated with a "measurement" of the initial state of the atom with the field as the measuring ap-
paratus. The measurement is not complete for finite average photon number: the system is instead left in
a coherent superposition of macroscopically distinct states. At the half-revival time to this superposition
of states is entirely in the field part of the state vector, so that the (pure) state of the field at that time is of
the form sometimes referred to as a "Schrodinger cat." The revivals of the population inversion are seen
to be entirely due to the fact that the linear superposition of the two macroscopically distinct field states
is coherent (i.e., a pure state), as opposed to an incoherent mixture.

PACS number(s): 42.50.—p, 03.65.Bz, 42.52.+x

I. INTRODUCTION AND OVERVIEW

The Jaynes-Cummings model (JCM) [1] is one of the
simplest of quantum-electrodynamical systems: a two-
level atom interacting with a single mode of the quan-
tized radiation field, in the so-called rotating-wave ap-
proximation (RWA). In addition to its being exactly
solvable, it has become increasingly well approximated by
recent experiments involving the passage of single atoms
through superconducting microwave cavities [2]. In spite
of its apparent simplicity, it has provided theorists with
many nontrivial and unexpected results through the
years, beginning with the well-known phenomena of col-
lapses and revivals of the atomic population inversion
[3,4]. Much of the recent research has focused on the
squeezing of the field predicted by the model [5,6).

One of the most interesting features of the JCM is that
it involves two systems in interaction, with every feature
of the interaction and of each system described quantum
mechanically: there are no external, c-number-type
forces or potentials. (In fact, one reason why the model
was originally introduced [1] was to find out in which
way the quantization of the field affected the predictions
for the evolution of the atom, that is, to compare with the
semiclassical theory, where the field is not treated as a
quantized variable. ) It is therefore possible to use the
JCM to investigate many issues of interest involving in-
teracting quantum systems, quantum correlations and en-
tanglement, and perhaps even state preparation and mea-
surernent. Especially noteworthy is the fact that one of
the two systems, namely, the field, has a well-defined clas-
sical limit, which is usually taken to be a Glauber
coherent state [7] with a very large number of photons.

Not many previous studies have emphasized this as-
pect of the JCM [8,9]. Among them, as especially
relevant to the present paper, one must note the research
of Phoenix and Knight [10], who used the entropy to
study the correlations between the field and atom as well
as the "purity" of the state of each. They showed that
the field in the JCM was essentially a two-state quantity
[11]. Their numerical calculations with states with not-
too-large numbers of photons also show that the field
(and hence the atom) most closely returns to a pure state
somewhere within the so-called "collapse region. "

It was recently shown by the present author [12] that
for a large average number of photons, if the initial state
of the field is a coherent state, the states of the atom and
field become in fact arbitrarily pure at a specific time to
equal to one-half the conventionally defined "revival
time" t~; that is, the atom and field spontaneously be-
come disentangled at this time. Moreover, it was found
that the state of the atom at the time to is completely in-
dependent of the initial atomic state. One of the purposes
of the present paper is to investigate the consequences of
this result, as well as to present a more detailed and care-
ful proof than could be given in Ref. [12]; this is done in
Sec. II and Appendix A, respectively.

It turns out that for large numbers of photons the most
convenient basis of atomic states is not provided by the
energy eigenstates but by special states ~+ ) and

~

—),
defined in Sec. II, which are eigenstates of the semiclassi-
cal interaction Hamiltonian (assuming, as. will be done
throughout this paper, exact resonance between the atom
and the field). These states, as shown in this paper, have
the remarkable property that if the atomic system is ini-
tially prepared in one of them, the state vector for the
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atom-field system at later times factors out, to a good ap-
proximation, into an atom part and a field part; that is,
the two systems do not become entangled but remain
each in an approximately pure state. In spite of this
property, however, the evolution of each (atomic or field)
part of the wave function under these circumstances is
decidedly nontrivial, and in particular nonunitary, in the
sense that initially orthogonal atomic states do not
remain orthogonal in the course of their evolution. (The
total wave function for the joint atom-field system does
evolve unitarily, of course, since this is taken to be a
closed system. ) The result is like a "crossing of trajec-
tories" in the atom Hilbert space at t =tp. This is dis-
cussed and explored in Sec. II.

The field part of the wave function that evolves when
the initial atomic state is one of the states ~+ ) or

~

—)
also has interesting properties, which are studied in some
detail in Appendix B; it corresponds to a field state which
(always in the limit of very large number of photons) has
a large amplitude and becomes squeezed, as time passes,
in a way analogous to the "crescent states" discussed by
Yamamoto and co-workers [13,14]. The field state corre-
sponding to an initial atomic state

~
+ ) (~

—) ) has a ma-
croscopically well-defined phase which grows (decreases)
with time; in the field's phase space the two states are
represented by counterrotating phasors. This
phenomenon underlies the recent observations of Eiselt
and Risken [15,16] (see also Refs. [17]and [18])regarding
the quasiprobability distribution for the field in the JCM
when the atom is prepared in a state (such as the energy
eigenstates) which is a linear superposition of ~+ ) and—). When this fact is taken together with the observa-
tion that all initial atomic states lead to the same atomic
state as tp, it follows that the state of the Geld at this
time, for an initial atomic energy eigenstate, is in fact a
coherent linear superposition of macroscopically distinct
states (states of opposite phase); such a superposition has
been dubbed a "Schrodinger cat" [19]. It is analyzed in
Sec. IV, where it is shown that the signature of the mutu-
al coherence between the two macroscopically distinct
parts of the field wave function at the time tp is none oth-
er than the well-known revival of the population inver-
sion at the later time tz.

Section III deals with another interesting question. As
said above, the two orthogonal initial atomic states ~+ )
and

~

—) lead to two field states which become in time
macroscopically distinct. Hence, information about the
initial state of the atom becomes stored in the field, which
is a potentially macroscopic system with a classical limit.
Does this mean that a measurement of the initial state of
the atom has been carried out? The analysis in Sec. III
points to a number of interesting analogies between this
process and some aspects of the quantum theory of mea-
surement; it is shown, for instance, that at the time of the
well-known JCM collapse the reduced density operator
for the atom becomes diagonal in the basis of the states
~+ ) and

~

—), and that this collapse takes place as soon
as the two field states associated with ~+ ) and

~

—) be-
come macroscopically distinguishable. Whether it is con-
sistent or not to postulate that a "collapse of the wave
function, " in the sense of quantum measurement theory,

takes place at the traditional collapse time is a question
dealt with briefly in Sec. III also. In any case, for a finite
number of photons in the field it is clear that one could
have at most a sort of "incomplete measurement, " that is,
the total system is left in a coherent superposition of ma-
croscopically distinct states. The spontaneous disentan-
glement of atom and field that takes place at tp causes
this superposition to afFect only the field part of the state
vector at this time, which results in the Schrodinger cat
discussed in Sec. IV.

In addition to the results that have been summarized
above, the present work brings together, in a special lim-
it, many observations made by a large number of people
over the years, showing how in this limit all these obser-
vations Inay be derived from a simple expression for the
atom and field evolution. It is quite possible that the re-
sults of this paper might lead to further insights in other
aspects of the JCM not covered here, as well as in the
general study of the dynamical and coherence properties
of "open" quantum systems, and possibly also in quan-
tum measurement theory. A brief outlook on some possi-
ble directions in which further research might proceed is
presented in Sec. V.

II. NONUNITARY, QUASI-PURE-STATE
EVOLUTION IN THE JCM

A. General results

This section introduces the JCM and presents the main
analytical result of the paper. The JCM evolution turns
out to be very simple, for large average number of pho-
tons, if one looks at special initial states of the atom, cor-
responding to well-defined values of the dipole moment
amplitude. The evolution of any other initial state may
be understood as a linear superposition of these.

The JCM involves only two interacting quantum sys-
tems: a two-level atom, whose upper and lower states
may be written, respectively, as ~a ) and ~b ), and a single
mode of the quantized electromagnetic field, whose an-
nihilation and creation operators are denoted by a and
a . Assuming exact resonance, and performing the
rotating-wave approximation, the interaction Hamiltoni-
an adopts the simple form

Ht =fig(~a )(b~a+a" b )(a ~),

where g=d(co/RVeo)' is a coupling constant (d is the
atomic dipole matrix element for the transition, co is the
transition frequency, and V the mode volume).

The exact solution for an initial atomic state
~g(0))„, =n~a )+P~b) and field state ~i/'(0))„„~
=y.„",C„~n) is

~g(t))= g [[aC„cos(g&n+lt)
n =p

i/3C„+, sin(g&—n + lt )]~a )

+[ iaC„, sin(g&—n t)

+PC„cos(gv'n t ) ] ib ) ] ~
n ) . (2)
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In general the state described by (2) is a highly entan-
gled state of the field and the atom. For an initial
coherent state field with large photon number, however,
the result simplifies considerably if one looks at the evolu-
tion of the initial atomic states

~
+ & and

~

—
&, defined by

~+&= —(e '~la &+lb &),
2

(3)

where P is the phase of the initial field coherent state
~
v &:

(4)

(the average number of photons is clearly n =
~
v

~
).

Formally, what is special about the states ~+ & is that
they are eigenstates of the "semiclassical (sc) Hamiltoni-
an" which is obtained when replacing the operators a (a )

in (1) by the c-number field amplitude v (v *):

H, =A'g(~a &(b~v+v*~6 &(a~) . (5)

~+&~v&~, =,~ —(e '&e ''" "~a&+~b&)
2

—n/2—n /2 ~ —I'np —Igt+n I

„~, &n| (6a)

and the corresponding equation for the evolution of a sys-
tem prepared in the initial state

~

—
& v &:

Therefore, in the classical limit, these states do not really
evolve at all (except for an overall phase). With a quan-
tized field, as in the Hamiltonian (1), they are found
indeed to evolve, but in a way which, in the limit of large
n, is very simple, as will be shown presently.

Physically, the states ~+& correspond to well-defined
values of the atomic dipole amplitude which are either in
phase or 180' out of phase with the applied field, which is
the reason why, classically, no exchange of energy with
the field takes place. The fact that these states do not
evolve in the semiclassical theory was pointed out by Puri
and Agarwal [20], who suggested that they could be used
as sensitive probes of the differences between semiclassi-
cal or neoclassical and fully quantized theories [21];
Zaheer and Zubairy [22] referred to them as "trapping
states" and studied the emission spectrum for an atom in-
itially prepared in one of these states. [Other "trapping"
states in the JCM for other (not coherent) initial field
states have been studied in Ref. [23].]

This paper s main analytical result is the following ex-
pression for the time evolution of the atom-field system,
when the initial state is ~+ &

~
v & [with

~
v & given by (4)],

in the limit as n —+ ~:

The result holds for any finite time, and even for t~ ~,
provided, as the derivation in Appendix A shows, that t
go to infinity slowly enough to have t/n~0. This last
provision is important, because, as one can see from Eq.
(6), as n ~ oo the evolution of the atomic part of the wave
function becomes "infinitely slow"; in particular, it is well
known [3,4] that the relevant time scale for the JCM re-
vivals is tie

=2v—r+n jg. Since, however, t~ In~0 as
n ~ oo, the result (6) holds accurately over an arbitrarily
large number of revivals, provided n is large enough.

In practice, for a finite time, the results in Appendix A
may be used to estimate how large n has to be in order
for the asymptotic solution to be a good approximation
over that time. For atomic operators, whose expectation
values are typically of the order of unity, the error in the
expectation values calculated using the asymptotic ap-
proximation should not be greater than the norm of the
terms neglected. In fact, numerical calculations (to be
presented elsewhere) show this to be a rather conserva-
tive estimate, and that the asymptotic approximation is
remarkably good over one revival time even for photon
numbers as small as, say, n =25 (compare also the results
in Ref. [12] for n =49). This is fortunate from the point
of view of the possibility of eventually observing some of
these results experimentally, which is being studied
presently and will be discussed at length in a later publi-
cation. One may note in particular that for such low

photon numbers the Rabi frequency g+n is typically
much smaller than the atomic transition frequency ~
(e.g., for the recent micromaser experiments of the Mun-
ich group [2], g/2m. =44 kHz and c/02m. =21. 5GHz),
which means that the RWA used to write the Hamiltoni-
an (1) would be quite appropriate to describe the atom-
field interaction (for a treatment of the atom-field interac-
tion without the RWA, see Ref. [24]).

The main restriction to the usefulness of Eq. (6) stems
from the fact that some of the terms neglected corre-
spond to vectors whose norm squared may go to zero
only as fast as 1/n If the s.tate vector (6) is used to calcu-
late expectation values of field operators, the result may
not be quite reliable if for some reason the leading order
in n vanishes; thus ( a & and ( a &, for instance, will be
correct to leading order in n, but the difference
(a &

—(a & may not be given correctly by (6) if the lead-
ing order in n cancels, as is the case when calculating
squeezing. In spite of this, the vectors

~ n/2
~@+(t)&=e n/2 y —e inge+igtVn~n

&, &n)

~

—
&~v &~ ~ (e '&e'~' "~a &

—
~b &)

1

2
—n/2

Xe ""y " '"&e'' "~n&.
, &n! (6b)

The proof of Eqs. (6) is found in Appendix A. The result
is rigorous in the following sense: the difference between
the exact solution (2) and the right-hand side of (6a) [or
(6b)] is a vector whose norm vanishes in the limit n ~ oo.

appearing in Eq. (6) are useful to predict, at least qualita-
tively, many properties of the field in the JCM in the
large IT limit. This is further discussed in Appendix B.

Since the states ~+ & and
~

—
& form a basis set for the

atom, the evolution of any other initial state can be ex-
pressed as a simple linear combination of (6a) and (6b).
For instance, if the atom is initially in the excited state
~a & =e'~(~+ &+

~

—&)/&2 the total state vector evolves
into
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—(e 's' " a )+e'~Ib ) )le+(r))
2

(8)

are rather special themselves, i.e., far from generic. It
will be shown in Sec. III that this may not necessarily be
the case.

B. Atomic-state preparation at t = f p

As will be shown later, the field states I@+(t)), given by
Eq. (7), correspond to a macroscopic field rotating, in the
phasor plane, clockwise and counterclockwise, respec-
tively. Thus Eq. (8) exhibits the splitting of the field
quasiprobability distribution found in Refs. [15—18]. This
point will be discussed at length in the following sections.

Returning to the evolution equations (6), their most re-
markable property is that the states appearing in them
are product states [unlike, e.g. , the general form (1) or the
special case (8)]. This means that, in the limit of large n

in which (6) is valid, both the field and the atom remain in

pure states throughout the interaction if the atom is ini-
tially prepared in one of the states I+ ). Clearly, no other
atomic states have this property.

Equation (6) implies that one can at all times assign a
well-defined state to the atom prepared in one of the
states I+ ); yet the evolution of such a state is nonunitary.
This is seen in its most extreme instance at the special
time to= t~ /2=m+—n Ig, where the atomic wave func-
tions in (6a) and (6b) become, in fact, identical (except for
an overall minus sign) and equal to

lou&= -(—ie '~la &+lb&),

Thus atomic systems prepared initially in the orthogonal
states

I
+ ) and

I

—) find themselves in the same atomic
state at the time to, while remaining throughout their
evolution, to a good approximation, in a pure state. This
is in contrast with normal unitary evolution, which
preserves orthogonality between states. Here neither the
field nor the atom separately evolve unitarily, even
though a state vector for each of them is well defined at
all times. [The total wave function, naturally, does evolve
unitarily, since the atom-field system is assumed to be
closed. This means, in particular, that the orthogonality
lost by the atomic state must be taken up by the field
state at the time to, i.e., that the states l@+(to)) and

(to) ) must be orthogonal, which, in the limit n ~ oo,
they are. ]

Clearly, the nonunitarity arises from the fact that nei-
ther the atom nor the field alone is a closed system; the
remarkable fact is that, in spite of this, a well-defined
state vector for each of them exists at all times. One is

tempted to consider an analogy with classical mechanics:
there, the trajectories of a conservative system cannot
cross, whereas for a dissipative system, on the other
hand, it is quite common for trajectories to, e.g. , con-
verge to a point attractor (or to more complicated attrac-
tors). What the present example illustrates is an instance
of "crossing of quantum-mechanical trajectories" for an
open quantum system. The analogy is intriguing, and it
might be worth investigating whether this kind of
phenomenon might be common in open quantum systems
in general.

One might think that the atomic "trajectories" that
have the special states I+) and

I

—) as starting points

Since atomic systems prepared initially in either of the
two basis states evolve towards the same state at t = to,
this means that in every case, regardless of the initial
atomic state, at the time t =to the atom wi11 be in a pure
state, and that state, independent of the initial conditions,
is I/0) given by (9). This was recently pointed out by the
present author [12]. (As mentioned in the Introduction,
Phoenix and Knight [10] had previously noticed, in cal-
culations involving not-too-large values of n, that if the
initial states of the atom and field were both pure, they
were both closer to pure again around the time to.)

This means that the JCM could be used to prepare a
specific atomic state, at a given time, in a way which is
completely independent of what the initial state of the
atom might be. It is perhaps worth emphasizing the no-
velty of this result. Semiclassically, a state such as lgo)
could be prepared by a ~/2 pulse, beginning with an
atom in the ground state; but if the atom is initially in the
upper state instead, the same m. /2 pulse would yield not
the state lgo) but one orthogonal to it (by unitarity). For
the quantized-field system considered here, however, the
ground and excited states, as well as any linear combina-
tion of them, all evolve towards

I i)'jo) at t = to.
In fact, the state of the atom at t =to is the pure state

I/0) even if initially the atom was not prepared in a pure
state at all. Suppose in fact that the initial atomic state is
described by a density operator p„(0), which, without
any loss of generality, may be taken to be diagonal in
some basis [lg, ), lg2)]. Then, the total initial state for
the system will be

p...(0)=p„lq, &lu &&ul&q, l+p„ly, &lv &&ul&y, l
. (10)

But, since the states I@i) lu ) and If@)lv ) must evolve,
respectively, toward states

I @0)I/i ) and
I @0)I Pz) at time

to (where
I P, ) and I /2 ) are some orthogonal field states),

the total state for the system at to will be

p .( to ) = I pi & & &OI (p i i I pi & & p i I
+p22I &~ & & &2I ),

which again shows the atom to be in the pure state
I go),

and the field, incidentally, in a mixed state. In terms of
entropy, one could say that all the entropy of the atom at
the time t =0 is transferred to the field at t =to.

One can think of the following optical analogy. The
polarization states of a photon may be described in a
two-dimensional state space entirely analogous to that of
the two-level atom. In terms of photons, the present de-
vice might be likened to an ideal polarizer that would
transmit every photon with unit probability and, regard-
less of their initial polarization, place them all in the
same polarization state upon transmission. No such de-
vice exists for photons, yet the present study shows how
for a two-level atom one could conceivably be built.

Note also that this hypothetical ideal polarizer would
work even if the initial photon did not have a definite po-
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larization at all; for instance, if it were a member of a pair
in an entangled polarization state, such as those used in
the experimental tests of the Bell inequalities [25]. For
the atom in the JCM, this is also easy to verify explicitly
from the results presented so far: Even if at t =0 the
atom is an entangled state with some other system, at the
time to it is in a pure, nonentangled state; all the entan-
glement is transferred to the field.

Consider, for instance, the evolution of the initial state

le(0) &= —(l~ &I & &+ Ib &I& &)e IU &,
2

(12)

where
~
A & and ~8 & are states of some hypothetical third

system, which may even be infinitely distant. At t =0 no
pure state exists for the atom, yet at to, the state of the
total system (including the field) is naturally

le(ro) &=lgo& —(IP. &l~ &+IN &I& &),
2

(13)

where ~P, & and ~Pi, & are the (pure) field states which are
obtained at to when the atom is initially prepared in ~a &

and ~b &, respectively. Equation (13) indeed shows the
atom in a pure state and the field entangled with the dis-
tant system.

From these examples one can see that the JCM in the
limit n ~ ao becomes an ideal device to perform a state
preparation on a quantum system (the atom), regardless
of this system s initial state or previous entanglement his-
tory. This is a unique example, to the best of this
author's knowledge. One must mention in this context
the work of Meystre and co-workers [9],who showed in a
system also evolving according to the JCM dynamics
how a pure state might be prepared under certain condi-
tions. Their system is, however, the quantized elec-
tromagnetic field, whose space of states is much larger
than the two-level atom's, and thus a specific state can be
prepared only for initial states which satisfy some ap-
propriate conditions. For many initial states, in fact,
convergence to a pure state does not occur in the
Meystre-Slosser-Braunstein system.

To conclude this section, one may remark again that
even though all the initial atomic states evolve towards
the pure state

~ $0 & at t = to, only when the initial state is
one of the special states ~+ & and

~

—
& does the atomic

system remain in a pure state throughout its evolution.
For all other states, a total or partial "collapse of the
state purity" takes place at the conventional JCM "col-
lapse time" t, —1/g of the Rabi oscillations, as was illus-
trated in Ref. [12] (Fig. 1; see also Ref. [10]). One is
tempted to inquire, in view of the apparent loss of
memory exhibited by the atom, at t = to, regarding its ini-
tial state, whether a collapse of the wave function in the
sense of the quantum theory of measurement takes place
around t = t„with the information about the initial state
of the atom being stored in the field. In fact, one may
wonder whether in some sense a measurement of the ini-
tial state of the atom can be said to be carried out by the
field at the time of collapse t„' the field, from this per-
spective, would be the "apparatus" which does the
measuring and stores the information. This intriguing

hypothesis is thoroughly explored in the following sec-
tion, where the analogies with quantum measurement
theory will indeed be seen to be many and remarkable.

III. THE JCM COLLAPSE
AS A QUANTUM MKASURKMKNT

A. The measurement analogy

gti/n =gr v' tT + — t —— r+. . . .g n n—g (n n)—
2 Q„— 8

(14)

For all the number states having an appreciable weight in
the sum (7), one expects (n n) to—be of the order of, or
smaller than, n; hence, as long as t « tz =2m'1/n /g. , the
third term on the right-hand side of (14) and all the
higher-order terms may be ignored to yield

oo —n /2
~Ct+(t) & =e " g e '"~e+'g' "

~n &, i/n!
—n/2

=e +igt t/ n /2 —n/2 ~ n —in(p+gt/2"(/ n )

„~, &n!

e TigtV n /2! Ue
Tigt/2V n g (15)

where, as in Eq. (4), U ="t/n e '~, and the notation in the
last line means a coherent state with the complex ampli-
tude shown. It follows, then, from Eq. (6) that, for the
time considered, the evolution of a system prepared ini-
tially in one of the states ~+ & ~U & may be written as

~+&~ &
Tigt n/2

~ ( e T igt /2+ n
( t2 &

+.
~
b & )

~
Ue V igt /2 +n

&

Tigt t/n /2(+
& (

+igt/2i/n
& (16)

The phase factor neglected in going from the first line to
the second line of Eq. (16) is very close to unity for times
t « tz. Around the collapse time t„ the phase in ques-
tion is of the order of gt, /2n '/ —I/n '/, and thus, for
large average photon number, negligible. The same

phase factor e +' ' " cannot, however, be neglected in
the field coherent state in (16), due to the large (propor-
tional to +n ) amplitude of that field, as will be explained

It has long been known [3,4] that for an atom prepared
initially in one of the energy eigenstates the JCM predicts
Rabi oscillations of decreasing amplitude, which all but
vanish around the so-called collapse time t, —1/g [more
precisely, the oscillations have a Gaussian envelope

2t2
which decays as e g '; see below, Eq. (20)]. Partial re-
vivals of these oscillations take place around the revival
time tlt =2m')/ n /g introduced in the preceding section.
Note that for large n the collapse and revival involve
completely di8'erent time scales, with t, « tz.

The short-time evolution of the JCM, where short
means t « t~, but, possibly, t )&t„can be easily ob-
tained from the expressions (6a) and (6b). The field states
~@+(t)& [see Eq. (7)] are in this limit, to a good approxi-
mation, very similar to coherent states: one has
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presently.
Equation (16) shows that, over times of the order of the

collapse time, the states I+ ) remain approximate eigen-
states of HI, i.e., approximately unaffected by the evolu-
tion. The field, on the other hand, while remaining ap-
proximately a coherent state, picks up a phase factor
which grows with time and has opposite sign for the ini-
tial state I+) than for the initial state

I

—). (As men-
tioned earlier, this splitting of the field probability distri-
bution into two counterrotating peaks appears to have
been first pointed out by Eiselt and Risken [15]. It will be
featured prominently in Sec. IV as well. )

Equation (16) also leads immediately to an understand-
ing of what happens to a system, initially prepared in any

state other than I+ ) I
u ), at the time of the collapse.

Consider, for instance, a system prepared in an initial
state (yl+)+5I —))Iu), where y and 5 are arbitrary
coefficients (in particular, the energy eigenstates ~a ) and
b ) are given by y=e'~/V'2, 5=e'~/&2 and y= 1/&2,5= —1 v'2, respectively). By the linearity of the problem,

and according to Eq. (16), this must evolve as

( I
+ ) +5

I ) )
I )

—gtv i /2I + ) I

—igt /2v 7r )

+5eigi g /2I ) I

ueigt/2+n ) (17)

This is in general no longer a pure state for the atom or
the field; the corresponding reduced density operator for
the atom is

v. «)=lyl'I+&&+I+I51'I —
&&

—I+(y5*e '" "&ue"'" "lue "'" "&I+&&—I+H. c. ) (18)

& u'I u & =exp[ —( Iu'I'+ Iu I')/2+ u'*u ], (19)

which, for the scalar products appearing in Eq. (18),
yields

l&ue '"/' "lue'' ' ")I'
212=exp( 4n sin gt/2—v' n )=e g ', (20)

where the last approximation holds for the times we are
considering, namely, t « tlat. Clearly, when (18) becomes
diagonal the oscillations in the population inversion
disappear; i.e., the inversion "collapses" to zero.

The analogies with a measurement being carried out on
the atom should by now become evident. In the limit
n~~, and for times t &&t'ai, the states I+ }and

I

—) are
approximate eigenstates of the interaction; any other ini-
tial atomic state is promptly (in a time of the order of the
collapse time t, = 1/g) reduced to a mixture which is di-
agonal in the basis [ I+ ), I

—) ]; the weights of the states
in the mixture, lyl and I5I, correspond to the probabili-
ties to find the atom in state I+ ) or state

I

—), respec-
tively, upon such a measurement. Moreover, the infor-
mation on the initial state of the atom is stored in the
field: as Eq. (17) indicates, to the initial atomic state I+ )
corresponds a field state which is approximately the ini-
tial coherent state shifted in phase by an amount
P+=gt/2+n, and to the initial atomic state

I

—) a
coherent state shifted by the amount P = gt/2)/ n . —

To all this, one may add the following observation: the
collapse occurs as soon as the two field states become ma-
croscopically distinguishable.

To support this contention, recall that the quantum"
or "shot-noise" limit to a precise phase measurement is
given by

This density operator becomes diagonal to a good ap-
proximation, as soon as t is somewhat larger than the col-
lapse time. To see this, note that the scalar product of
two coherent states is given by the general formula [7]

(21)

bP- e
1

2 l1
(22)

where r is a squeezing parameter: r )0 for a phase-
squeezed state, r =0 for a coherent state, and r (0 for an
amplitude-squeezed state [which, as Eq. (22) shows, has
therefore a larger phase uncertainty than a coherent
state]. If the collapse takes place at the time when the
phase difference p+ —p =gt /')/n is just resolvable,
then by (22) one expects the collapse time for a squeezed
state to scale as

1t ——e
8

(23)

Hence the collapse would take place faster (relative to a

when the field is in a coherent state [26]. The phase
difference p+ —p =gt /')/ n becomes therefore just
resolvable when gt/')/n ~ I /"(/n, i.e., when t & 1/g. It
is at this point that one may claim to have a "macroscop-
ic" record of the initial state of the atom, as quantum
measurement theory demands. The phase of the field
would play the role of the "pointer observable" (cf.
Zurek's approach to quantum measurement theory [27]).

This approach offers an interesting interpretation of an
old result of Milburn [29] regarding the JCM evolution
when the field is initially prepared in a squeezed, rather
than a coherent, state. The shot-noise limit just discussed
may be understood in terms of the intrinsic phase uncer-
tainty of a coherent state [30]. Quantized field states
which exhibit a greater or smaller phase uncertainty are
called squeezed states [31], and the connection between
phase uncertainty and JCM collapse is nicely illustrated
if one considers, as Milburn did, the field to be initially
prepared in a "bright" squeezed state (that is, one with a
large coherent amplitude). For moderate amounts of
squeezing, such a state may have a coherent amplitude

+tT and -a phase uncertainty [32]
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coherent state) for an initial phase squeezed state (whose
phase is better defined), and more slowly for an amplitude
squeezed state (r (0), whose phase is less precisely
defined. This is indeed what Milburn found [29]. (This
result, of course, may also be understood, in what one
might call a complementary way, from the traditional ar-
gument [3] which relates the collapse to the spread in
photon number in the field state: see Milburn for the de-
tails. )

It would appear from the foregoing that the JCM may,
quite fortuitously, offer a paradigm of a quantum mea-
surement. There is a complete orthogonal set of atomic
states (I+) and

I

—)) which are, in the limit n))1,
essentially unaffected by the interaction over the time
scale considered; nonetheless, the interaction does estab-
lish a strong correlation between each one of these states
and specific states of the field which for sufficiently long
times, and large numbers of photons, become macroscop-
ically distinct. This last statement is true, even though
the restriction t « t~ prevents the phase difference

gt I+n between the states lve' ' " ) and Ive
' ' " )

from ever being larger than a radian, because even such a
small phase difference is amply resolvable for a
sufficiently intense field [see Eq. (21)]; in particular, the
change in intensity associated with such a phase
difference in a hypothetical interference experiment could
easily be made observable. It is especially interesting in
this problem that the "measuring apparatus, " i.e., the
field, is described fully quantum mechanically and yet
possesses a well-defined classical limit; in particular, it is
only in this classical limit n ~ Qo that the reduced density
operator for the atom (18) is seen to become diagonal in
the basis [ I+ ), I

—) ].
Pursuing this interpretation, it is natural to ask what is

the observable being measured. The eigenstates of the
measurement are clearly I+ ) and

I

—). Since the out-
come of the measurement (the field phase) is positive for
one of these states and negative (and equal in magnitude)
for the other, it follows that the observable being mea-
sured is proportional to

I+ &&+
I

—
I

—
&&

—l=e '~la &&bl+c'~lb &&a l, (24)

which is the component of the atomic dipole moment in
phase with the field. As pointed out in Sec. II, the eigen-
states I+ ) and

I

—) are just those states of the atom in
which the atomic dipole is exactly in phase with (or in
opposition to) the field, which are the states in which, in
the rotating-wave approximation, no exchange of energy
between dipole and field takes place.

All of this leads naturally to an inevitable question: if
this is, indeed, a model of a quantum measurement, what
does it have to say about the most problematic issue in
quantum measurement theory, namely, the collapse of
the wave function (or reduction of the state vector)? Is
there anything in the formalism developed-so far that
suggests that such a reduction has taken place?

B. Reduction of the state vector

The postulate of the reduction of the state vector ap-
plied to the present case would state that, after the mea-

surement is over, the combined atom-field system is left
in either one of the two possible "outcomes": atom in

state I+ ), field in state lve + ), or atom in state I

—),
field in state

I
ve ). The difficulty is that the

Schrodinger dynamics leads instead to the state (17) for
the total system, where both alternatives appear to be
simultaneously present.

It is by now well known that it is in general not legiti-
mate to think of a system represented by a state vector
such as (17), which is a coherent superposition of two dis-
tinct states, as being actually in either of the two states at
any given time. There are by now many experiments on
many systems from photons and electrons to neutrons
and even whole atoms which show that such an interpre-
tation is in general incorrect: it is essentially like thinking
of a particle in a double-slit interference experiment as
actually passing through a specific slit (and not through
the other), when its state is in fact a coherent superposi-
tion of the two states "passage through slit 1" and "pas-
sage through slit 2."

The possibility of experimentally disproving the notion
that the system described by (17) is actually, at any given

time, in one of the states I+ ) lve + ) or I

—) lve )
l f+ l f

hinges, therefore, on the possibility of setting up an ex-
periment which would reveal interference between the
two parts of the wave function (the two "alternate
paths") I+ )Ive +) and

I

—)Ive ). That is, for-
mally, such a refutation depends on the possibility of
measuring an operator which has a nonvanishing matrix—i/+
element between the states

I
+ ) I

ve + ) and—ip
I

—)Ive ). But what if such an operator cannot be
found, or simply cannot be measured? If it is the possibil-

ity of observing interference between I+ ) lve
' + ) and

I

—) lve ) that forbids one from thinking of the sys-

tem as being either in I+ ) Ive + ) or in
I

—) Ive ),
if interference becomes impossible to observe does it
thereby become legitimate to believe that one (and not
the other) of the possibilities

I
+ ) I

ve + ) and
—i/+

I

—) lve ) has in fact become actualized for the sys-
—ip

tern, i.e., that the reduction of the state vector has taken
place? —i/+If indeed no interference between

I
+ ) I

ve + ) and—ip
I

—) lve ) could be observed, then it would be entire-
ly justified, for an ensemble of identically prepared sys-
tems, to replace the pure-state description provided by
(17) by the mixed-state description provided by the densi-
ty operator

=Iyl I+)(+l@lve 's' +")(ve

+lfil I

—)( —l@lve' ' +" )(ve's' +"
I (25)

The reason for going from a single-system description to
an ensemble description is simply that, according to our
hypothesis, for an individual system we cannot know—if+which of the two possibilities

I
+ ) I ve + ) or

I

—) I
ve ) has become actualized. This is expressed

by the operator p;„,. Formally, we have replaced the
coherent superposition of states (17) by an incoherent one,
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namely, (25).
The statement that no physical observable (however

one defines "physical observable, " which may not be a
trivial task) has any matrix elements between some two
states amounts to a superselection rule. Some resolutions
of the quantum measurement problem along the lines just
sketched, i.e., involving superselection rules, have been
proposed; the best known is probably Zurek's proposal
[27] of "environment-induced superselection rules, " but
the earlier work of Pfeifer [28] is also of special interest as
it involves two-level systems with Hamiltonians closely
related to the present one.

It seems, in fact, at first sight that for the problem at
hand one could prove a sort of "superselection rule" (and
that without having to invoke an "environment") as fol-
lows: in the limit

t~ ~, n~~, ~0gt
'&n (26)

every field operator which involves Pnite powers of
creation and annihilation operators has vanishing matrix
elements between the states Iue' ' ") andlue ' ' '), pro-
vided that n does not go to infinity faster than any power
of t.

To show this, it is enough to consider normally ordered
field operators, and, for example, the matrix element of
a~, which, according to Eq. (20), has magnitude

I (Ue
—i / V

lap IUeig& /2 n ) I n P/2e g t /2 —
(27)

which goes to zero in the limit (26) (with the restriction
on n mentioned above), for any finite power p.

This is a somewhat intriguing result. Clearly it leaves
open a number of questions, such as whether operators
involving an infinite number of powers of field operators
(e.g. , e'") ought perhaps to be regarded as nonmeasurable.
It also hints at the possibility that the macroscopic nature
of the apparatus itself, without having to resort to an
external environment, might suffice to provide a super-
selection rule and with it a justification for the collapse of
the wave-function postulate.

Yet, interesting as all this seems, it may unfortunately
not be applicable to the real JCM, for the following
reason: Eq. (17) is really only the leading term in a hy-
pothetical expansion of the state of the system in powers
of 1/n The ter.ms neglected, while going to zero in the
limit n —+ ~, may well make finite contributions to expec-
tation values of such field operators as, e.g., n, which
neither the postulated density operator (25) nor, for that
matter, the state (17) would account for. Unless these
terms can be quantified somehow, the precise relevance of
the result (26) and (27) to the question of the state reduc-
tion in the JCM will remain questionable: the possibility
has to be allowed for that one could find an operator
whose measurement would disclose the fact that (25) is
not the true state of the system (and, more to the point,
that the true state is not a mixture but a coherent super-

position), even in the limit (26).
It might be worthwhile to pursue these ideas in some

formally simpler models (such as, e.g. , the so-called
Raman-coupled model) where an exact solution in closed
form (as opposed to just an asymptotic expression) is
more readily obtained than in the JCM. In the end,
perhaps the best assessment of the situation at this point
is that this model offers some intriguing suggestions on
the possible meaning of the reduction of the state-vector
hypothesis for a quantum measurement, but that it is not
clear at present whether one can really defend the notion
that such a reduction does take place in the present sys-
tem, even in the limit (26).

When the limit (26) is not taken, on the other hand,
that is, for finite n, or for times comparable to +n /g,
the incoherent mixture (25) may still be a very good ap-
proximation to the coherent superposition (17), but the
two are most definitely not equivalent. This turns out to
be dramatically illustrated by the well-known revival
phenomenon, as will be shown in the following section.

IV. THE SCHRODINGER CAT
AT HALF-REVIVAL TIME

Beyond the collapse time scale t, —1/g lies the revival
time scale governed by the time of the first revival

tii =2n+n /g. Clearly, for these times neither the ex-
pression (17) nor (25) continue to be good approximations
to the state of the system. One must return to the origi-
nal expressions (6a) and (6b), and write, for the state at
time t of a system initially prepared in the state
(yl+ &+&I —&)IU &,

l@(t) &
=y(e-'~e-'g'" "la &+lb &)le, (t) &

+fi« '~e'"" "Ia &
—Ib&)I@ (t)&, (28)

with I@+(t)) and I@ (t)) given by Eq. (7). Then, the
fact that at the time to the two atomic states appearing in
(28) become identical means that the state of the field at
that time is a (coherent) linear superposition of the states
I@+(to)) and IC& (to)) which, as will be shown present-
ly, are macroscopically distinct states; i.e., the state of the
field at t =to is what has come to be called a Schrodinger
cat.

Nonetheless, it is interesting to pursue for a while the
line of thinking introduced in the preceding section, ac-
cording to which, as long as the states I@+(t) )
andi@ (t)) have negligible overlap, that is, as long as
most operators one could think of measuring have negli-
gible matrix elements between I4+(t)) and I@ (t))
(which, as shown in the preceding section, happens al-
ready some time after the conventional collapse time t, ),
it may be a good approximation to represent the state of
an ensemble of identically prepared systems, not by the
pure state (28) but by the incoherent mixture

(e
—

Pe
—i ~ 2g/nla )+ lb)) e('hei +"(al+(bl)gllve —i ~/2 n )(Ue

—igt/2 nl

(e
—igeig&/2 n la ) lb ) )(eire —ig& 2/n ( a

I ( b I ) I

ig&/2 n ) ( ig /2 n
I

(29)
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Q (a, &)=l(al+ (t)&l'. (30)

The density operator (29) [a time-evolved version of (25)]
lends itself to the interpretation that the original ensem-
ble of identically prepared systems has broken up into
two, in each of which the individual systems are evolving
in time just as if their initial states had been ~+ & ~U &

and~ —
&~v&, respectively. If, indeed, (29) can be shown

to be approximately correct under appropriate cir-
cumstances, this is an interesting result, because it means
that, far from being special cases of limited interest, the
product-state trajectories (6a) and (6b) can be taken as
generic, in the sense that, as long as the approximation
(29) holds, it is legitimate to think of an ensemble of sys-
tems, regardless of in which state they are originally
prepared, as being reduced, after the collapse time, to two
subensembles each of which evolves along one of the tra-
jectories (6a) and (6b). A study of these trajectories,
therefore, holds the key to many of the properties of the
JCM, regardless of the initial state of that atom, after the
collapse time. [For example, it is obvious that as long as
(29) holds the population inversion is zero, since both
atomic states appearing in (29) correspond to equal popu-
lation of the levels ~a & and ~b &.]

To assess the goodness of (29) as well as its limitations,
it is necessary to look at the field states

~ 4+( t ) & and
(t) & in more detail. The approximate result (15),

which identifies them with coherent states with counter-
rotating phases, holds only for times short compared to
the revival time tR and hence short compared to the
half-revival time to=tz/2. The reason is that for these
long times, of the order of +n Ig, the quadratic term in
the expansion of the square root in Eq. (14) can no longer
be neglected, since (n n) can —be of the order of n for
the Poisson distribution, which makes
gto(n n) l—8n —1.

The higher-order terms may still be neglected, but the
quadratic term is enough to make the states ~0&+(t) & and

(t)& look rather different from coherent states for
large t. It is clear, however, that they have a number of
properties in common with coherent states. (In fact, as
mentioned in Appendix B, they are members of a class of
states which have been called "generalized coherent
states" and which have been the subject of some, rather
general, theoretical studies [33].) For one thing, from the
definition (7) they are immediately seen to have exactly
the same photon-number distribution as the initial
coherent state ~U & (note, however, that this is not at all
true for their linear superpositions). The expectation
values of field operators in the states ~4+(t) & are also to
leading order in n what one would expect from the
coherent states (15). (See Appendix B, where these and
other properties of these states, including squeezing, are
studied in greater detail. ) One way to describe them
which illustrates quite clearly the main differences with
coherent states, and also makes contact with the work of
previous authors, is by plotting the quasiprobability dis-
tribution called the Q function,

Im(n)

to

t0

Re(n)
F7G. 1. Contour plots of the Q function for the states

~4+(r) & (solid lines) and ~C& (t) & (dashed lines). The first,
which moves clockwise, is shown for the times t=0, tR/4,
to=t~ /2, 3t& /4, and t~; the second (counterclockwise) is plot-
ted only for the times t =0 (where the two coincide), t~ /4, and
to —= t~ /2. The average photon number is 49.

shown by Eiselt and Risken [16]. These authors predict-
ed the basic behavior, with Q+ rotating clockwise and
Q counterclockwise, in maximum opposition (fields
180' out of phase) at half-revival time to and overlapping
again at the revival time tz. This is also consistent with
the study of phase properties in the field in the JCM in
Ref. [17];see also Ref. [18] for the Raman-coupled mod-
el. It does not appear to have been noticed, however, in
the previous studies that in the JCM in the limit n ~ 00

these plots describe in fact pure field states, i.e., that
along either the clockwise or the counterclockwise
branch the Q function, which is generally given by
Q—:( a

~ pa, &d ~
a &, is of the special pure-state form

](a~@+(t)&[ given in Eq. (30), with ~4+(t) & being the
states defined in Eq. (6).

Most interesting of all is perhaps what happens at the
half-revival time in this limit: if the initial atomic state is
a linear superposition of ~+ & and

~

—
&, the Q function

for the field at time to will exhibit contours widely apart
in the phase plane, like the top and bottom ones (marked
to) in Fig. 1. Yet this superposition of widely different
field states, ~N+(t) & and ~@ (t) &, is in fact a pure state,
because of the identity of the atomic states in the super-
position (28) at t = to.

Suppose, for definiteness, that the initial state of the
atom is the upper energy state

~
a &

=e'~( ~+ &+
~

—
& )/&2; then at t -to we have

Contour plots of this function for different times are
shown in Fig. 1, and they may be compared with those

l@(t, ) &=e'~l@,&e —[[@+(r,) &
—I@ (t, ) &]

2
(31)
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[with the atomic state I/0& given by Eq. (9)], that is, a
pure field state which is a linear superposition of two ma-
croscopically distinct states (described by the top and
bottom quasiprobability distributions in the phasor space
of Fig. 1). As mentioned above, such states have been
dubbed Schrodinger cats. (It may be worth mentioning,
however, that the state (17), discussed at some length in
Sec. III, is in fact much closer to the spirit of
Schrodinger's original [34] cat, being an entangled state
in which two alternative states of a microscopic system
(the atom) are correlated with two macroscopically dis-
tinct states of a macroscopic system (the field, which
therefore plays the role of the cat). )

It is interesting to notice the similarity between the
present "cat" and the one proposed by Yurke and Stoler
[19],which also may be viewed as a superposition of two
states of opposite phase. There is in fact a formal analogy
between the states l@+(t)&, when the quadratic approxi-
mation for v'n in the exponent is used, and the states re-
sulting from the evolution of an anharmonic oscillator
[35] or a field interacting with a Kerr medium [14]; see
Appendix B for further details.

There have been other proposals to produce
Schrodinger cat field states, in the sense of (31), which
also rely on JCM dynamics: see the papers quoted in
Ref. [9]. The present results indicate that a single atom,
initially in the ground or excited state, interacting with a
micromaser-cavity field in an initially coherent state, pro-
duces by itself a Schrodinger-cat-like state after an in-
teraction time t0= tz l2. Experimentally, the main
difficulty may be in producing an initial coherent-state-
like field in the cavity; a good possibility might be to use
an appropriate cotangent state [9], which can be very
close to a coherent state for the right choice of parame-
ters. Of course, it might be argued that if one were able
to prepare a single-peaked cotangent state in the cavity,
one might probably just as easily prepare a doubly-
peaked, Schrodinger-cat-like one [9].

One of the questions that is often asked about such su-
perpositions of macroscopically distinct states is how
they could be observed; that is, given the very small (in
the macroscopic limit, infinitesimal) overlap between the
states I@+(t0)& and I4 (t0) &, what kind of experiment
could reveal that the state (31) is really a coherent super-
position, rather than an incoherent mixture such as

p,„,(t, )=lp, &&&,le-,'[I& (t, ) &&c,(t, )l

+le (to)&&e (to)I] (32)

This is, of course, just a special case of the question of
to what extent is the mixed state (29) a good approxima-
tion to the "real" pure state (28), in general, and in fact
whether it is so good as to be, for practical purposes, in-
distinguishable. It is also the same question (coherent su-
perpositions versus incoherent mixtures) which was asked
in the context of the reduction of the state vector hy-
pothesis in Sec. II. There it was asserted that in a certain
limit, given by (26), the two descriptions were for all
practical purposes indistinguishable. It is interesting to
notice that, in effect, what the limit (26) does is to push
the revival time infinitely into the future, so as to make it

inaccessible.
If that limit is not taken, a very simple way to observe

the difference between the coherent linear superposition
(31) and the incoherent mixture (32) is, in fact, to wait un-
til the revival time t~. At that time, always according to
the evolution equations (6), the state (31) has evolved into

+I+&&+Is l~ (t, )&&~ «, &I]. (34)

The crucial, observable difference between these two
states is that an ensemble described by (33) exhibits oscil-
lations of the population inversion (the well-known JCM
revival) whereas one described by (34) does not. This fol-
lows immediately from a consideration of the population
difference operator

la &&a
l

—Ii &&& =I+ &&
—I+I —&&+

I
. (35)

The operator (35) always has zero expectation value in
the state (34), while its expectation value in the state (33)
is proportional to the scalar product

(36)

which is not at all zero, and in fact is quite significant.
An extrapolation of the upper part of Fig. 1 (dashed
curves) to the revival time tz already suggests the large
overlap between the states I4+(t~ ) & and IC& (t~ ) & at
this time. If the approximation (15) is used, in fact, one
obtains easily &N+(tz)I@ (t„)&=1,which would imply
perfect revivals; in reality, the quadratic terms neglected
in the exponent in (15) bring the value of
&4+(t~)I4 (t~)& down to about 0.55, and the revival,
though substantial, is not quite perfect [3,4].

The implication of this result is that the replacement of
(31) by (32), which might appear to be totally justified at
to in view of the small overlap between the states
I@+(t0)& and IN (t0) &, leads to a quite wrong predic-
tion for the behavior of the system at time t~; in fact, to a
total absence of revivals. The very small overlap between
the states IN+(t0)& and l@ (t0)& (two macroscopically
distinct states of the field, as far apart as they can possi-
bly be in phase) is thus essential to the revival
phenomenon. The mutual coherence between the two
pieces of the wave function (31), which appears all but
lost at the time t =t0, is in fact the basis for the popula-
tion inversion revivals. Or, to put it another way: the re-
vival phenomenon is an indirect observation of the mac-
roscopic coherent superposition (Schrodinger cat) which
was the state of the system at the earlier time t = t0.

Various authors have dealt with the question of how
the cavity losses affect the JCM revivals [36,20]. The
conclusion is that even a small amount of losses suffices
to wipe out the revivals completely. In view of the fore-
going, it is not hard to understand why: the revival is en-

I@(tg)&=—e'~ —[I —&IC+«g &&+ + &IC' —«~) &] (33&
2

[note how, according to (6), at t =t~ =2vr+n /g, the ini-
tial atomic state I+ & has turned into

I

—
&, and vice ver-

sa], whereas the density operator (32) becomes

p;„,(t, )=-,'[I —
&&

—Iel+ (t, )&&c (t, )
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tirely due to the very small coherence between the ma-
croscopically distinct states ~@+(to)) and ~@ (to)), and
it is well known [37] how easily such macroscopic super-
positions are destroyed (i.e. , made incoherent) by the in-
teraction with the environment. (See also Ref. [19] and
references therein. )

Indeed, some authors have seen in this fact a possible
resolution to the difficulties inherent in the postulate of
the collapse of the wave function: according to this
viewpoint (see, e.g. , Ref. [27]) it is the interaction with
the environment that renders essentially inobservable the
coherence between the two macroscopically distinct parts
of the wave function, and thus ensures the replacement of
a state vector such as (31) by a mixed-case density opera-
tor such as (32) is justified for all practical purposes. Re-
turning for a moment to the discussion in Sec. III on the
collapse of the wave function, it might be argued, along
these lines, that it is only after the cavity losses make the
revivals unobservable that one may, for all practical pur-
poses, regard the collapse of the state vector and hence
the measurement, as having "really taken place": the
evolution of the system would then be given by an ap-
propriately modified (to include the effect of the losses)
version of the mixed ensembles (25) or (at a later time)
(29). Without losses one would have a sort of "incom-
plete measurement, " or an "incomplete collapse of the
wave function" at the collapse time, which is undone at
the revival time.

This argument may be combined with the macroscop-
ic, "thermodynamic" limit of Sec. III, in the following
way: in the limit in which n —+ ~, the revivals are pushed
infinitely far in the future. To observe them, that is, to
have evidence for the coherence of the two macroscopi-
cally distinct parts of the wave function, one must ensure
that the system remains isolated for an increasingly long
time; this, of course, becomes impossible as tR ~ ~.

The above description, however, may not be entirely
applicable to the JCM, because, as was pointed out in
Sec. III, it cannot be entirely ruled out that one might
perhaps be able to tell that the state of the system is not
the mixed ensemble (25) or (29) by some other, conceiv-
able measurements [rather than having to wait (for an
infinite time) for the revival] because of the asymptotic
nature of the results (6a) and (6b), on which all these con-
siderations ultimately rest. It seems that these points,
i.e., the relative importance of the ro1es played by the
macroscopic limit and the coupling to the environment,
might be clarified further by looking at some other mod-
els, perhaps physically less realistic but with simpler alge-
bra than the JCM, where the problem of the inAuence of
the neglected terms in the asymptotic form (6), men-
tioned in Sec. III, might not arise. It is also a question
for the future to determine in which way the use of the
asymptotic states ~@+(t)) and ~@ (t)) may or may not
simplify a calculation of the infiuence of losses in the
JCM.

V. CONCLUSIONS AND OUTLOOK

The results presented in this paper may have some
relevance to some areas beyond the usual scope of quan-
tum optics and the JCM. This section brieAy summarizes

some possibilities for further research.
The result that for an interacting quantum system an

approximately pure state description may hold in spite of
the interaction, and that the resulting trajectory is not
constrained to satisfy the expectations arising from the
usual unitary evolution of closed systems (in particular,
such things as the crossing of trajectories become possi-
ble) may have some relevance to studies of quantum dy-
namics in general, especially for open (dissipative) sys-
tems, and perhaps even for chaos. It is significant that
these trajectories are "generic" in the sense indicated at
the beginning of Sec. IV, namely, in that an ensemble of
systems initially prepared in any state will, after some ini-
tial evolution (in this case, after the collapse time), be ap-
proximately well described by a mixture of subensembles
of systems evolving precisely along these pure-state tra-
jectories. In other words, every system may, in this ap-
proximation, be regarded as evolving along either (6a) or
(6b) after the collapse time, regardless of what state it was
initially prepared in. (The limitations of such a viewpoint
have been explored in Sec. IV; in particular, as pointed
out there, this approximation entirely misses the revival
of the population inversion oscillations. Nonetheless, for
times between the collapse and revival time it may be a
very good approximation indeed. )

It seems, therefore, that some progress could be made,
in general, in the study of the dynamics of a quantum sys-
tem coupled to a large, "quasiclassical" system by search-
ing for approximate solutions of the product form such as
those found here for the JCM. These correspond to ini-
tial states which retain their purity as they evolve and
which may therefore be called "long-lived" states of the
system; they may change with time but in a predictable
manner, not becoming a random ensemble after a short
time unlike most other initial states or doing so only on a
much longer timescale.

From the point of view of the quantum theory of mea-
surement, the JCM has been shown to be "almost" a
paradigm: there is, at the collapse time, a strong correla-
tion between the initial state of the atom and macroscopi-
cally distinct states of a "pointer" system or apparatus,
namely, the quantized electromagnetic field; and a sort of
superselection rule holding in the limit of an infinitely
large apparatus (n —+ oo) could almost be proven. The
world "almost" here refers to the fact that these results
could only be established for the asymptotic solutions,
Eqs. (6), and there is some uncertainty as to how they
might be modified by the inclusion of the terms neglected
(which go to zero as n ~ ~, but might make contribu-
tions to the expectation values of operators involving
high powers of n, the photon number).

It seems that it might be worthwhile to investigate pos-
sible measurement analogies and state reduction in other
similar, related systems where an exact closed-form solu-
tion, not depending on an asymptotic limit, were avail-
able. Some of the questions suggested by the JCM when
seen from the point of view of quantum measurement
theory are intriguing: in particular, one may mention the
connection between the size of the apparatus and the su-
perselection rule, and the fact that it would seem to be
possible to obtain such a rule without invoking the in-
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teraction with the environment; the fact that the limit
n ~~, which is essentially a thermodynamic limit where
the number of particles (photons) becomes infinite, has
the effect of pushing the quantum revivals (recurrences?)
infinitely far into the future; the possibility of imperfect
or incomplete measurements for finite n, with the attend-
ing Schrodinger cats; the revival as a manifestation of the
fact that the collapse of the wave function is not altogeth-
er complete; and no doubt many others, such as the ac-
tion of the environment when cavity losses are included.
It seems especially interesting that here one has a
measuring apparatus which may be described fully quan-
tum mechanically, for which a classical limit exists, but
for which the opposite limit (small n) can also be en-
visioned.

Finally, there may be interesting applications of the re-
sults presented here in pure quantum optical research. It
would be interesting, for instance, to see whether use of
the special solutions (6) may simplify the calculations
when the cavity losses are included in the model. The ex-
tension of these results to the case of finite atom-field de-
tuning is in preparation. The search for similar solutions
for the many theoretical variations on the JCM (e.g.,
Raman-coupled [38], two-photon [39], Buck-Sukumar
model [40]) might yield interesting results. Also, though
not explicitly shown here, it is possible to extend the
basic asymptotic results to the case where the initial field
is a highly excited, moderately squeezed state. Finally,
there is also, from a more formal point of view, room for
further research into the properties of the generalized
coherent states ~Ci+(t)) and ~@ (t)).

ter. Thanks are also due to S. J. D. Phoenix and P; L.
Knight, for bringing to my attention their Ref. [10],
whose considerable relevance to the research reported
here and in Ref. [12] had originally escaped my notice.
This research has been supported by the Arkansas Sci-
ence and Technology Authority.

APPENDIX A: DERIVATION
OF THE ASYMPTOTIC SOLUTION

The exact solution for the state vector of the atom-field
system in the Jaynes-Cummings model is [Eq. (1)]

~f(t)) = g [[aC„c os(g&n+ lt)
n=0

ipC—„+,sin(gv'n + lt )]~a )

+ [ i aC„—, sin(g&n t )

+PC„cos(g&n t)]~b ) I ~n ), (Al)

/@(0) &f„id= /v & =e " ' y —In ),field (A2)

one has

where the initial state of the atom is
~p(0))„, =a~a )+p~b ) and the initial state of the field
is ~p(0))„,id=+„OC„~n ). The purpose of this appen-
dix is to derive some approximate expressions for the
state (Al) which hold in the limit in which n, the average
number of photons in the field, approaches infinity.

When the initial state of the field is a coherent state
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' 1/2n+1n=e n+1
n

where v =+n e '~. One can therefore write

(A3)

1/2

~g(t) ) = g C„+, ae'~
n=o

[
n

cos(g&n + lt ) ip sin(g—&n + lt ) ~a )

1/2
n—ice'~
n

sin(g&n t)+Pc so(g& tn) ~b ) ~n ) . (A4)

It seems intuitively obvious that in the limit as n ~ co one should be able to replace the factors of (n ln )' by unity,
since the spread b, n of the Poisson distribution about the mean n is only of the order of Vn . In fact, it is not hard to
prove that the difference between the vector (A4) and the vector

~
g'(t) ) = g [ C„+i [ae '~ cos(g &n + 1 t ) ip sin(g &n +—1 t ) ] ~

a ) +C„[ i ae'~ sin(g &n t )
—+p cos(g &n t ) ] ~

b ) ] ~
n ),

n=0

has vanishing norm in the limit n ~~. Indeed, the difference
1/2n+1 —1 c s(go&n+lt)~a)~n )

(AS)

-in
+ae'~ g C„

n=o ' n
L

—1 sin(g+n t)
~

b) ~n ) (A6)
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and each one of the sums on the right-hand side of Eq. (A6) defines a vector of vanishing norm in the limit n ~ ati.
Consider the first sum, for instance,

ae'~ g C„+,
n=0

1/2n+1 —1 cos(g&n+lt)la &ln &

2 (&n —(/n ) ~
—

~ 2 (&n +—n )

n

Ic. l'
'

n —n

&n +&n
~ n n —n

n
(A7)

where the last inequality follows from &n +1+ t/n ~ (/n for all n Cl. early the right-hand side of (A7) goes to zero as
n ~ oo, since ((n —n ) ) =n. The same proof applies to the second sum on the right-hand side of (A6).

In the limit n ~ ao, therefore, one may replace the exact solution (Al) by the approximation (A5). Consider then the
evolution of the initial atomic state I+ ) defined by

I+&= (e '~Ia&+lb)).v'2

Substitution of a =e '~/&2 and P= I/V2 in (A5) yields

(AS)

I1('(t)&= y (c„+,e-" "+"la&+c„e-'" "lb&)ln&
n=0

C e 'g' " e
2 0

n

n+1

1/2
—ig(vn+) —vn)tla)+lb)

I ) (A9)

In the limit n ~ ao, the term in square brackets on the second line of Eq. (A9) becomes to a good approximation in-
dependent of n This ma. y be seen as follows. First, note that the term [n/(n +1)]'~ may be replaced by unity along
the same lines as with the vector (A4). We have

1/2 2
—igt&n —t'i))

(p (v'n+1 —+n ), , C (2 (&n+ I —(/n )

n
(A 10)

which clearly is bound by 1/2n, just as Eq. (A7) was. Therefore, in the limit n ~ 0(t, the difference between the vector
I
f'( t) ) [Eq. (A9)] and the vector

(t)) g c e
—igt n(e —ice —ig( n+1 — n ) la )+lb ) )ln )

l
&z „

(A 1 1)

becomes negligible.
Next, consider the difference &n + 1 &n in the e—xponential in (Al 1). One can show that this is approximately in-

dependent of n by using the equality

&n +1=&n + 1 &n
&n +1+&n

r

1 1 2t/ n vn &—n +1-
2&n 2&n &n +1+&n

=&n+ + — — +
2V n 2+n +n + I++n V n +v n (t/n +V n + I

(A12)

The idea is to show that the third term in Eq. (A12) becomes negligible as n ~ co, under certain restrictions on t. The
complicated appearance of Eq. (A12) is due to a desire to avoid direct use of a Taylor-series expansion, so as not to have
to worry about the magnitude of any neglected higher-order terms.

Introducing the two angles



5926 JULIO GEA-BANACLOCHE

gt n n 1

2V n &n+1+&n V n +
+ 1

V'n +&n+1
(A13a)

gt 1 1

2V n (V n +1+&n ) (V'n +V n +1)
one can write Eq. (A11) as

(A13b)

~g"(t)) = — g C e 'g' "Ie '~e 'g' "[(e 'e ' e—')+(e ' —1)+1]~a)+~b)]n), (A14)

where the terms in parentheses inside the square brackets (e and 1 have been added and subtracted) define two vec-
tors whose norm goes to zero as n ~ ~. This can be shown easily for the first one:

2
—ig +n —i$ —ig +n( ~ '~ ~

)~a ) ~n )
n=0

Qo
1 1=2 g /C„/ sin (cP~/2) ~

—,'gfC„/ (Pi= gfC„/
=o

" ' "
8n ( "+1+ ") ( n +Vn+1)
2t2

(A15)

The right-hand side of Eq. (A15) goes to zero when n ~ oo, for any t; one may contemplate the limit t~ ~ provided
that t go to infinity more slowly than n.

The proof that the second term in (A14) also has vanishing norm is somewhat more involved. One has

C„e ' ' "e '~e ' ' "(e ' —1)~a ) ~n ) =2 g ~C„~ sin (Pi/2) . (A16)&2.=o
"

n=0

An upper bound for the right-hand side of Eq. (A16) may
be obtained as follows. The summation range is broken
up at no, some suitable value of n to be specified later.
From n =0 to no, the upper bound chosen for sin (P, /2)
can be just unity, whereas from n =no to infinity the
upper bound sin (Pi/2) ~(P&) /4 is used. The value of
no is chosen so that the total probability g„~C„~ be-
tween n =0 and no be sufficiently small. The following
result (a variation of Tchebycheff's inequality; see Ref.
[41]) applies in general: if x is a random variable with
mean m, standard deviation 0., and fourth moment about
the mean m4, the probability to find x a distance ro. away
from the mean (where r is any positive number) is

r )(1+V 2n —1 —1/n )' (A18)

Then choose

no=n Vn (1+V 2—n )'~

to have

(A19)

"o

g ~C„~ (PrI ]n n~ ) n no] &———
n=0

(A20)

For the Poisson distribution, with mean m =n, one has
m ~ = ( (n n) ) —= n +3n . Using this, together with
0. =n, it is easy to see that to make the right-hand side of
Eq. (A17) smaller than 1/n, it suffices to have

2

PrI ~x —m
~

) rcr]
Pl4+T 0 2T 0

(A17) With the choice (A19) for no, therefore, the upper bound
for the right-hand side of (A16) may be written as

n&

2+ ~ C„~ sin ( P i /2 ) ~ 2 g ~ C„ I

'+ —,
'

n=0 n =n
0

n 8n „=„(&n+1+Vn ) V n +v n V n +v n+1

2

(A21)

[where the definition (A13a) for P, has been used]. An upper bound for the last term in readily obtained by replacing
the term in large parentheses (squared) by 1/4n and noting that 1/(&n +1+&n ) (1/4no when n runs from no to
infinity; after which, the summation may be extended down to n =0 again:
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y ICI' (" "' ' +
8n „=„, (&n+ I+i n ) 1/n +v'n V n +v n+1

t
IC„ I (n n) —& g I C„ I (n —n) =

128n On „=n 128n() n „=0 128n o0

(A22)

I+&Iv&i, =,~ —(e '~e 'g'" "Ia)+Ib&)
2

X g C„e 'g' "In), (A23)

which shows that in this limit the states of both the atom
and the field remain pure throughout. It is easy to verify
that one has analogously, for the state

(A24)

-(e '~e'"" "Ia& —Ib&)
2

This term, therefore, goes to zero as n~~, for all t;
again, one may contemplate the limit taboo, provided
that t go to infinity more slowly than (non )'/ . Note
that, by Eq (A. 19), no goes to infinity essentially as n it-
self, so that even if t goes to infinity as n~o, where p (1,
this term will be negligible for no sufticiently large.

In conclusion, then, in the limit n ~~, the whole term
in square brackets in Eq. (A14) may be replaced just by
unity, and therefore the evolution of the state I

+ ) I
v ) is

just given by

would not yield an accurate result for something like the
degree of squeezing in the field, since that quantity in-
volves the difference (a ) —(a ), in which (if there is to
be any squeezing at all) the leading-order term in n must
cancel. It is of course also possible that there are further
cancellations among the neglected terms which might
make this result, calculated using the states I4&+(t)),
more accurate than, based on these considerations, one
would appear to have a right to expect. In any case, at
present it is not possible to claim that all the results to be
derived for the states IC&+(t) ) in this appendix are direct-
ly relevant to the JCM, which is in fact the reason why
these results are relegated to the appendix instead of be-
ing part of the main text. But these are states of the
quantized field that are interesting in their own right and
which do not appear to have been studied previously, and
people have published papers for less than this.

The first obvious thing about the states (81) is that
their photon-number distribution is exactly Poissonian,
since their coefticients in the number state basis are iden-
tical to those of the coherent states except for a phase
factor. In fact, the states (81) are a special example of a
general class of states known as generalized coherent
states I33] and characterized by this property. Thus we
have

X g C„e'g' "
In ) . (A25) (b, 'n & =(n & =n . (82)

APPENDIX B: SOME PROPERTIES
OF THE ASYMPTOTIC FIELD STATES

The coherent state approximation to the states (81) has
also been mentioned in the text ISec. III, Eq. (15)]. For
short times, t « (/ n /g, one has

As discussed in the text, and shown in Appendix A, the
asymptotic field states ( t ) ) e + igt +n /2

I
ve + igt /2+ n ) (83)

oo —n /2
(t) ) —e

—n/2 y e
—inde T 'g&v n

In ), v'nt (81)

IEq. (7) of this paper] represent the field in the JCM in
the limit as n~~. As already mentioned in Sec. II,
these states will yield results for the expectation values of
field operators which are correct to leading order in n;
however, in Appendix A it was only possible to prove the
asymptotic results (A24) and (A25) up to terms whose
norm squared might go to zero only as fast as 1/6, which
means that it is entirely possible that the expectation
values calculated using the states I@+(t)) might not be
accurate beyond the leading order. In particular, the
terms neglected in Appendix A might quite possibly
make a finite contribution to an expectation value such as
( a ) (which to leading order is expected to grow like n as
n ~ oo).

This means that it is possible that the states IN+(t) &

where v =)/ n e '~, and the notation on the right-hand
side means a coherent state with the complex amplitude
shown. This shows that the states I4+(t)) evolve in a
circle in phase space, keeping a constant amplitude while
the phase grows as P+ =+gt /2')/n .

For longer times, as discussed in Sec. IV, the approxi-
mation (83) breaks down and the quadratic terms in the
expansion of the square root of n about n have to be tak-
en into account. For large n, this yields the next-order
approximation,

(t) ) e+igt+g /2e

—n/2 —in ((f+gt/2+n )—e„~, &n!
+i(n —n) gt/8nXe—
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which is good provided t «n /g; in fact, it may be ex-
pected to hold asymptotically even for t ~ ~ provided
gt/'(/n remains finite. Since the largest JCM time scale
considered in this paper is the revival time scale given by
tR =2vri/ n /g, this approximation (84) may be useful for
most practical purposes, in the limit of large n, even over
a large number of revivals.

The state (84) is no longer as simple as a coherent
state. A calculation of ( a p) (p ) 1) based on (84) yields

oo —nj p x —n —p/p ~ n —lgt("(/n +p —(/ Ig )

0 n, .

where, to the desired accuracy,

V'n +p 3/—n = — — (n —n )
p p

8
—3/2 4n 3/2

16n

(86)

(87)

( p )
—n ip—P p—/2 +ipgi/2 n+—-e

oo —n

X g, expt+i[2p(n n)+—p ]gt/Sn„,nt

—I'pP —p/2 +ipgt/2 nv'-

The guiding principle here is that (n n—) is of the order

of t/ n and t is of the order of +n /g (or possibly small-
er, of course). The terms kept in (87) are those which
when multiplied by gt do not go to zero faster than 1in.

Substituting (87) into (86) and expanding the exponent
in powers of the small terms yields the result

2

X 1+
4n 2&n 8n

gt

2&n

2

(85)

2
P Q —P/2 —'Pgt/2v

1 + .P gt . 3P gt
qa y+—-n e

«2&n «2&n
2

(88)
Sn

where the terms kept inside the square brackets go to
zero, for gt/+n finite, as 1/n, but clearly result in an
overall finite contribution to ( a p ) for p )2, and to ( a ),
because of the factor of n P

The leading term in n in Eq. (85) is in fact identical to
what one would have calculated based on the coherent
state approximation (83), which reinforces the interpreta-
tion of the state ~4+(t) ) as a "quasicoherent" one having
amplitude t/ n and phase P+gt /2)/n (the convention
used here is that a "positive" optical field phase iI) corre-
sponds to a phasor like e '~). The smaller terms in
square brackets are "squeezing" terms, and, as a matter
of fact, they are incorrect as given in Eq. (85) (which
nicely illustrates, in fact, the danger of relying on asymp-
totic expressions to provide much information beyond
the leading order); that is, the approximation (84) used to
derive (85) already predicts the wrong magnitude for
these correction terms, when compared with a more ac-
curate expansion based directly on (81), as will be shown
present [see Eq. (88), below]. Nonetheless, somewhat re-
markably, due to a cancellation the squeezing predicted
from (85) agrees with the result of the more accurate cal-
culation.

This more accurate calculation of (ap) proceeds as fol-
lows. Let /=0 to simplify the equations and also, for
typographical convenience, concentrate on the state
~4+(t) ). We have

as= —'(ae ' +ate' ) .0 (89)

For a coherent state the variance of az is equal to —,
' for

all 0. A state is said to be squeezed if there is some angle
0 for which (b, ae) (—,'. En general, for any angle 0 one
must have (b, ae)(b, as+ /2) —,'„minimum-
uncertainty squeezed states are those for which this rela-
tionship holds with an equal sign

One has in general

&&'ae) —= &ae) —&ae)2

—1 + i [((a2) (a )2) —2ie

(810)+(a a) —~(a)~'+c.c. ]

and therefore, using (88) [with (82) for (a "a )—:( n ) ],

The result for ~4 (t) ) is obtained from (88), formally, by
changing the sign of t. Equation (88) is seen to differ
from the approximate result (85) by a term proportional
to p which, to the order considered, cancels out when the
difference (a ) —(a ) is taken. Hence, either (85) or
(88) may be used to calculate the squeezing.

Squeezing [31]may be defined rather generally in terms
of the (Hermitian) quadrature operator ae,

(6 ae)+= —+— — cos +28 + sin +201 1 (gt) (gt) gt gt . gt
4 4 8n Sn 2&n &n

1 (gt)' (gt)' (gt)' gt
4 4 Sn 4n 64n

(811)
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where the angle Oo is defined by

cot&p- gt

4 n
(812)

crescent squeezed states of Ref. [14] (which are squeezed
in photon number) in spite of their formal resemblance.

The maximum squeezing grows (i.e., (5 a() ) decreases)
as t grows. In fact,

Equation (811)shows that, for all times t )0, the states
~)C&+(t)) are, in fact, squeezed. The direction of max-

imum squeezing corresponds to 0= g—t/2 t/n —Op/2

for the state ~4+(t) ), and to O=gt/2(/n +Op/2 for the
state ~@ (t)). As t grows, this direction is more and
more along the direction of the average field (a ), i.e.,
Op~0 for large t [recall that ( a )+ goes as

exp(+igt/2)/n )]; this means that the states become
squeezed in amplitude, but one must remember that the
actual intensity fiuctuations, given by (82), always have
their Poissonian value n, in spite of the squeezing going
on. In this important respect these states differ from the

(ba) = —+—1 1 (gt)
0 min 4 4

(gt) (gt)
4n 64n ~

(813)
goes to zero for large t.

These features are illustrated by the contour plots in
Fig. 1. Note that the fact that the states ~tI&+(t) ) are at
all times squeezed indicates that their Glauber P repre-
sentation [7] is probably singular (at the very least, it
must be non-positive definite). A convenient alternative
is provided by the Q function defined in the text [Eq.
(30)]. Figure 1 shows contour plots for the Q function
calculated using the approximation (84). We have

Q (a, t)=((a~+ (t)))
oo —sn—n —r2 y ( t —in(gtV n /2 —t(t)+igt(n —n ) /8n

nf
(814)

where a=re'~ (this angle P is a variable, not to be mis-
taken for the initial field phase P used elsewhere in the
paper; that phase has been set equal to zero for conveni-
ence in what follows). The sum may be approximated by
an integral for large n, using the Gaussian approximation
to a Poisson distribution,

(r)t/n )"
nf

r n —(n —rVn) /2rVn

&2 .&n
This yields the simple result

( „ i/ „—)
2 —r n [P —$p( t ) ] /s ( t )

s(t)
(816)

where

and

3gt rgt

4&n 4n
(817)

s (t)—:1+
4n

(818)

(For Q, merely reverse the sign of t. ) This is a better
approximation to the actual state of the field in the JCM
than the lowest-order approximation of Eiselt and Risken
[Eq. (A8) of Ref. [16]], whose contour lines are just el-
lipses; the contour lines of (816), plotted in Fig. 1, appear
to be very close to the ones calculated numerically by
Eiselt and Risken and plotted in their Fig. 1(a).

The states ~@+(t)) are the states of the field in the
JCM when the initial atomic state is

~ ), respectively. If

the initial atomic state is instead a superposition of ~+ )
and

~

—) (such as, e.g. , the energy eigenstates ~a ) and

~
b ) ), the field state is in general a mixture of ) @+(t)) and

(t)). Such a mixture will not in general be a pure
state, nor will it in general be a squeezed state because the
phases of ~@+(t)) and ~@ (t)), as has been shown,
evolve in opposite directions, so that at almost any time
t )0 the spread (uncertainty) in the field real and imagi-
nary parts, relative to any axes, is very large. At half-
revival time [t=(2q+1)m"(/n Ig, q =0., 1, .. . ], the field's
state is pure, a coherent superposition of ~C&+(t)) and

(t) ); these are macroscopic fields 180' out of phase,
and hence the total state of the field shows no squeezing
at all (in fact, it shows the maximum spread for (b, a() ),
of the order, as Fig. 1 illustrates, of n itself, because of
the uncertainty in the direction in which the phasor is
pointing (straight up or straight down?), in spite of the
fact that the states being superposed are squeezed.

The situation is different at the revival times
(t =2qrr"t/ n Ig, q =0, 1, . . . ), since at these times the
states

~ Ct+( t) ) and
~

N ( t) ) overlap appreciably, i.e., their

Q functions are concentrated to a large extent in the same
region of the phase space, and moreover, according to
(811) and (812), they are both squeezed along more or
less the same direction (as the angle Op decreases with
time). Hence one expects the total field to show squeez-
ing at this point [note in passing that, if the initial state is
one of the energy eigenstates, the field at the revival time
is not a coherent superposition, but an incoherent mix-
ture of ~)C&+(t)) and ~C) (t))]. In fact, since the squeez-
ing, as (813) indicates, increases with time, and the angle
Oo approaches zero, one expects greater and greater
squeezing for successive revivals.

These predictions are at least in qualitative agreement
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with the results of Kuklinski and Madajczyk [6] for
squeezing in the JCM; which is perhaps more than one
had a right to expect, given the reservations expressed at
the beginning of this appendix on the reliability of a cal-
culation of squeezing in the JCM based on the asymptotic
states 4+(t)) and ~N (t)). Doubtless these states do
provide a good approximation to the field in the JCM; it
may be worth pursuing the question of to what extent
they may be used as a first step for a quantitatively accu-
rate calculation of the squeezing in the JCM.

Finally, to return to the properties of the states
~4+(t) ) and @ (t) ) themselves, it is worth mentioning
the connection between the approximation (84), which
leads to the curves in Fig. 1, and the "number-phase

minimum-uncertainty states" or "crescent states" investi-
gated by Yamamoto and co-workers [13,14]; indeed, Eq.
(814) is essentially equivalent to Eq. (3.17) of the paper of
Kitagawa and Yamamoto [14], which concerned a state
generated in a nonlinear Kerr-type medium. A study of
Q(r, g, t ) for long times shows that the distribution even-
tually does adopt a nicely shaped, almost symmetric,
crescent form. The main difference (and a major one) is
that the states ~4+(t)) and ~4 (t)), according to Eq.
(82), never exhibit any photon-number squeezing. This is
probably due to the fact that for the states ~4+(t)) and

(t) ) the axis for squeezing and the direction of the
coherent amplitude are tilted at a different angle, in phase
space, than for the states of Ref. [14].
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