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We discuss localization and center-of-mass wave-function measurement of a quantum particle using multiple
simultaneous dispersive interactions of the particle with different standing-wave fields. In particular, we con-
sider objects with an internal structure consisting of a single ground state and several excited states. The
transitions between ground and the corresponding excited states are coupled to the light fields in the dispersive
limit, thus giving rise to a phase shift of the light field during the interaction. We show that multiple simulta-
neous measurements allow both an increase in the measurement or localization precision in a single direction
and the performance of multidimensional measurements or localization. Further, we show that multiple mea-
surements may relax the experimental requirements for each individual measurement.
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I. INTRODUCTION

Initiated by the discussion on Heisenberg’s famous micro-
scope, precise spatial measurement of quantum objects has
been a subject of considerable interest. In general, such mea-
surements on quantum objects face problems similar to mea-
surements on classical objects, for example, the diffraction
limit. Due to the large range of applications of high-
resolution microscopy, e.g., in biology, nanosciences, or
chemistry, a number of approaches to imaging have been
developed to overcome these limitations �1�. A particularly
promising ansatz is near-field imaging, where the distance
between object and measurement device is small enough that
so-called evanescent electromagnetic waves originating from
the object can be picked up by the microscope �2�. The re-
quirement of a very small distance between object and im-
aging system, however, restricts the range of potential appli-
cations.

Somewhat complementary to these efforts, recently
schemes have been developed which allow one to perform
precision measurements on quantum objects in the far-field
region. One approach is to modify the effective focal spot,
e.g., by using interference of two overlapping light beams
�3�, or by selectively suppressing fluorescence from parts of
the diffraction-limited focal spot, resulting in an effective
focal spot smaller than predicted by Abbe’s diffraction limit
�4�. Another approach is to encode the desired spatial infor-
mation in an observable that is not affected by the usual
diffraction limitations �5–13�. For example, the interaction of
the quantum particle with a standing-wave laser field has an

interaction strength that depends on the position of the par-
ticle with respect to the nodes of the standing wave �5,6�. If
an observable is chosen that depends on this interaction
strength, then the position in the standing wave can be re-
constructed from the measurement result. Apart from this
near-resonant interaction between quantum particle and field,
also nonresonant interaction can be used. For example, the
phase shift on the standing-wave field due to a dispersive
interaction with the quantum object can be measured to give
spatial information �7–10�.

The schemes that facilitate a spatially modulated light
field as a reference for the position measurement, however,
face a common problem. The far-field measurements typi-
cally only allow one to reconstruct the interaction strength
between quantum object and field. But, due to the periodicity
of the standing-wave intensity modulation, the mapping be-
tween coupling intensity and spatial position is not unique.
Rather, there is a large number of potential positions within
the standing-wave field that gives rise to equal coupling
strength. Therefore, such measurements typically have to be
accompanied by a conventional position measurement that
allows one to pinpoint the position ideally to about � /2,
where � is the wavelength of the incident light field. The
far-field measurement then is used to refine this conventional
position measurement to a small set of narrow potential po-
sitions within the classical range of � /2.

To relax the requirement of an ideal conventional mea-
surement, different approaches can be used. For example,
sub-half-wavelength localization has been achieved by
means of electromagnetically induced transparency in a more
advanced control scheme �11�. Here, the potential positions
from the localization measurement are restricted to one-half
of each wavelength, and therefore allow for better localiza-
tion with the same conventional measurement resolution. An
alternative ansatz is to use multiple measurements. For ex-
ample, in �12�, the measurement of the atom-field interaction
was combined with a Ramsey-type measurement on the in-
ternal state of the quantum particle. This gives rise to addi-
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tional interference effects which modulate the spatial prob-
ability distribution for the localization, but typically does not
relax the requirements for the conventional measurement.
Another approach is to apply a sequence of different mea-
surements, e.g., by letting the atom pass several standing-
wave fields �5,7–9�. This does allow one to improve the lo-
calization, but increases the total interaction time of atom
and measurement fields. Furthermore, typical approxima-
tions used in the analysis, such as a negligible transverse
velocity of the atom, become worse if several sequential
measurements are applied. Finally, it is typically assumed
that the quantum particle remains unchanged between the
different measurements, which is questionable, in particular,
if the atom is in an excited state.

To overcome these limitations, in this paper, we discuss
setups that allow one to perform multiple simultaneous spa-
tial measurements on a single quantum particle. In particular,
we discuss the dispersive interaction of a quantum particle
with several independent standing-wave field modes. The in-
ternal structure of the quantum particle is modeled as a four-
level scheme with one ground state and three excited states,
which for an atom could be Zeeman sublevels. Our analysis
encompasses up to three simultaneous measurements, from a
single spatial dimension up to three-dimensional position
measurements. We show that both the localization and the
measurement of the center-of-mass wave function of the par-
ticle can be improved by multiple simultaneous measure-
ments. Finally, we show that multiple measurements may
relax the experimental requirements for the individual mea-
surements.

II. ANALYSIS

A. System Hamiltonian in the dispersive limit

We consider a four-level scheme with ground state �g� and
three excited states �ej� �j� �1,2 ,3�� as the internal structure
of the quantum particle �see Fig. 1�. For example, for an
atom, the ground state could be an S state �angular momen-
tum l=0�, and the excited states could be Zeeman sublevels
of a P state �l=1�. In the following, we discuss this case of
three independent fields coupling to the particle. Note that,
since we work off-resonantly in the dispersive limit, the re-
striction to three transitions is meaningful since they can be
distinguished by different polarizations of the laser fields. If

two of the transitions are to be driven by fields with equal
polarization, then the frequencies of these two fields should
be very different in order to treat the interactions indepen-
dently. In this case, the generalization of our analysis to more
than three transitions is straightforward. An example setup is
shown in Fig. 2. In this example, two cavity fields are used
for a two-dimensional localization of a quantum particle fly-
ing through the cavity field intersection area.

Each of the three dipole-allowed transitions is coupled to
an individual cavity mode described by the creation and an-
nihilation operators aj

† ,aj �j� �1,2 ,3��. The energy of the
ground state is ��g, the excited state j has energy �� j, and
the frequencies of the cavity fields are � j. The total Hamil-
tonian H=Hat+Hcav+Hint consists of the free atomic part Hat,
the free cavity field part Hcav, and the interaction part Hint
given by �14,15�

Hat = ��g�g�	g� + 

j=1

3

�� j�ej�	ej� , �1�

Hcav = 

j=1

3

�� jaj
†aj , �2�

Hint = 

j=1

3

��� jaj�ej�	g� + � j
*aj

†�g�	ej�� . �3�

In the dispersive limit, the applied laser fields do not transfer
population between the atomic states due to the large laser
field detunings. Rather, they induce a phase shift on the in-
volved states �5,7,8,16–19�. In the following, we adopt the
method of unitary transformation introduced in �19� to obtain
the effective Hamiltonian describing the dispersive atom-
field interaction. To this end, we define the following unitary
transformation of an operator X, which effectively decouples
the excited states from the ground state in the dispersive
limit:

|g〉

|e1〉
|e2〉

|e3〉

λ1 λ2 λ3

∆1

∆2

∆3

FIG. 1. �Color online� Internal structure of the quantum particle
considered. � j �j� �1,2 ,3�� are the coupling constants between
transition and laser field; � j are the detunings, which are considered
large such that the interaction is dispersive.

x

y

z

FIG. 2. �Color online� One of the setups discussed in this paper.
Here, a quantum object flies through the intersection area of two
cavity field modes. The cavity fields couple off-resonantly to differ-
ent transitions between internal states of the quantum object and
thus acquire a phase shift during the interaction due to its dispersive
nature. Quadrature measurements of the cavity fields then allow a
two-dimensional localization of the particle.
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X → eSXe−S, �4�

where

S = 

j=1

3
− 1

� j
�� jaj�ejg

− � j
*aj

†�gej
� . �5�

We have introduced the detunings � j =� j − �� j −�g�. Apply-
ing this transformation to the Hamiltonian Eqs. �1�–�3�, and
expanding up to second order in the coupling constants, the

transformed Hamiltonian H̄ evaluates to

H̄ = Hat + Hcav + Hshift + Hc, �6�

Hshift = − 

j=1

3

�
�� j�2

� j
�ejej

�aj
†aj + 1� + 


j=1

3

�
�� j�2

� j
�ggaj

†aj ,

�7�

Hc = − ��
�1�2

*

2
� 1

�1
+

1

�2
a2

†a1�e1e2
+ H.c.�

− ��
�1�3

*

2
� 1

�1
+

1

�3
a3

†a1�e1e3
+ H.c.�

− ��
�2�3

*

2
� 1

�2
+

1

�3
a3

†a2�e2e3
+ H.c.� . �8�

Note that the phase shifts in Eq. �7� are consistent with re-
sults obtained from second-order perturbation theory. For ex-
ample, the energy shift of the ground state �g ,n1 ,n2 ,n3� with
energy E0=���g+
 j=1

3 nn�n� and nj photons in laser field
mode j, respectively, can be evaluated using second-order
perturbation theory to give

�g,n1,n2,n3�Hint
1

E0 − H
Hint�g,n1,n2,n3� = �


j=1

3
�� j�2

� j
nj .

�9�

Similarly, the perturbation for an initially excited state �ei�
evaluates to

�ei,n1,n2,n3�Hint
1

E0 − H
Hint�ei,n1,n2,n3� = − �

��i�2

�i
�ni + 1� ,

�10�

where the additional constant shift −���i�2 /�i is the sponta-
neous energy shift due to the vacuum.

Further, it can be seen from Eq. �8� that, as compared to
the case of a single transition, in general there are additional
terms, which correspond to a coupling of the upper states via
the cavity modes. Depending on the atomic state, these will
modify the internal dynamics.

If one assumes large detunings � j in the dispersive limit

and that the atom initially is in the ground state �g�, then H̄
reduces to a much simpler effective Hamiltonian given by

Ĥ = ��g�gg + Hcav + 

j=1

3

�
�� j�2

� j
�ggaj

†aj . �11�

Thus, the unitary transformation Eq. �4� has effectively de-
coupled the excited states from the dynamics as desired. In a
suitable rotating frame, this Hamiltonian, which will be used
in the further analysis, reads

V = 

j=1

3

�
�� j�2

� j
�ggaj

†aj . �12�

B. Atom-field interactions

We now turn to the time evolution of the combined atom-
field system under the influence of the interaction Hamil-
tonian Eq. �12�. For this, we assume the initial state to be

���t = 0�� = �g,�,	,
� = e−����2+�	�2+�
�2�/2

� 

l,m,n=0

�
�l	m
n

�l!m!n!
�g,l,m,n� , �13�

which denotes a state where the atom is in the ground state
�g�, and the three cavity fields are in coherent states
��� , �	� , �
�, respectively. Applying the time evolution opera-
tor under Hamiltonian Eq. �12�

U�0,t� = e−�i/��Vt �14�

then yields

���t�� = �g,�ei1t,	ei2t,
ei3t� , �15�

where

 j = −
�� j�2

� j
= −

�� j
0�2

� j
cos2�kjx + � j� . �16�

Here and in the following, for the sake of notational simplic-
ity, we specialize the analysis to localization in the x direc-
tion. The generalization to the multidimensional case is
straightforward. A result of the form Eq. �16� can only be
expected if the atom initially is in the ground state, and, due
to the dispersive nature of the interaction, remains in the
state throughout the whole evolution. In this case, the addi-
tional terms in the Hamiltonian Eq. �8� which couple the
different upper states with each other do not contribute, and
thus the time evolutions of the three field phases are inde-
pendent.

Starting from these results, two routes to fix the actual
phase shifts are possible. First, one may derive the total
phase shift when the particle flies through a Gaussian inten-
sity distribution with a certain speed and a certain width of
the field mode. Second, one may assume as in �7� that the
parameters are such that the maximum phase shifts  jt oc-
curring if the particle flies through an antinode is �. This
involves an appropriate choice of field strengths according to
the particle velocity, and is favorable since it represents the
optimum choice in terms of localization. Thus in the follow-
ing we choose this latter option.
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C. Field quadrature measurements

In this section, we focus on the spatial properties of the
wave function. For this, note that the coupling constants � j
are position dependent in the standing-wave field:

� j = � j
0 cos�kjx + � j� . �17�

Here, kj is the wave number of the field in cavity j, and � j is
the phase of the standing-wave field. Thus, the phase shift
acquired by a particle passing through the standing wave
depends on the position. We assume the particle wave func-
tion to be a pure state,

���0�� =� dx g�x��x,g� , �18�

where g�x� is the normalized spatial center-of-mass ampli-
tude of the particle. This ensures that the measurement of the
phase shift of the cavity fields can be interpreted as a quan-
tum localization, or collapse of the wave function. The inter-
nal state is chosen as the ground state �g�. The time-
dependent total wave function for internal and external
degrees of freedom of the particle, as well as the field states
is thus given by

���t�� =� dx g�x�e−�i/��Vt�x,g,�,	,
� . �19�

Using Eq. �15�, this can be evaluated to give

���t�� =� dx g�x��x,g,�ei1t,	ei2t,
ei3t� , �20�

where each of the phases i depends on the position of the
particle in the corresponding cavities; see Eq. �16�. We as-
sume now that the particle has passed through the cavity, and
perform a quadrature measurement on the fields. The mea-
surement is characterized by the angle � j in the Wigner
plane. For example, � j =0 corresponds to the amplitude
quadrature, whereas � j =� /2 denotes the phase quadrature.
Suppose the outcome of the measurement of field ��� with
angle �1 is the field quadrature state ���1

� �. Then the state of
the system after this measurement is given by

���t�� = N�� dx g�x�	��1

� ��ei1t��x,g,	ei2t,
ei3t� ,

�21�

where N� is a normalization constant. One should note here
that we have chosen the coherent field modes such that their
polarizations are mutually orthogonal, so that they can be
measured individually, and such that the corresponding cre-
ation and annihilation operators commute. Similarly, a mea-
surement of the other two field modes with angles �2 ,�3 and
results ���2

	 � , ���3


 � finally creates a state

���t�� = N� dx g�x�	��1

� ��ei1t�

� 	��2

	 �	ei2t�	��3


 �
ei3t��x,g� , �22�

with overall normalization N=N�N	N
. The probability am-

plitude distribution for the position of the particle in the x
direction after the three measurements thus is

��x,t� = 	x,g���t�� = Ng�x�	��1

� ��ei1t�	��2

	 �	ei2t�

� 	��3


 �
ei3t� . �23�

From this, the conditional probability for the particle to be at
position x given that the three field measurements had the
results ���1

� � , ���2

	 � , ���3


 � can be written as

P�x���1

� ,��2

	 ,��3


 � = ���x,t��2 = N2�g�x��2

� �	��1

� ��ei1t��2�	��2

	 �	ei2t��2�	��3


 �
ei3t��2.

�24�

In this sense, the three measurements can be seen as inde-
pendent, even though each of the three field phases is corre-
lated with the position of the particle. The expression �24�
also confirms the intuitive picture one may have from the
setup, namely, that each of the three fields acquires an inde-
pendent phase shift, which determines a set of potential po-
sitions of the particle. The true position of the atom is then
bound to the intersection of these three possible sets.

We now proceed by evaluating the overlap integral of the
coherent field states in the cavities with the measured
quadrature field eigenstate. For this, we make use of the ex-
plicit expression �7�

���� = �2��−1/4e−�a†ei� − ���2/2+��
2/4�vac� , �25�

where �vac� denotes the vacuum state with zero photons in
the cavity mode. We obtain, using a���=����,

A�����x� = 	����ei1t�

=
1

�4 2�
	vac�e−��ei�1t−�� − ���2/2+��/4��ei1t�

=
1

�4 2�
e−��ei�1t−�� − ���2/2+��/4e−���2/2, �26�

and thus

P�����x� = �	����ei1t��2 =
1

�2�
e−2��R − ��/2�2

, �27�

where

�R = Re��ei�1t−��� . �28�

Similarly, the overlap integrals and probabilities
P	��� �x� , P
��� �x� corresponding to the other two cavity
field modes can be evaluated.

D. Conditional probability

We now analyze the conditional probability Eq. �27� with
the aim of identifying particle positions with maximum prob-
ability for a given measurement result ��, or vice versa. For
this, we differentiate with respect to the position x and obtain
as necessary condition for extrema
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0 =
d

dx
P�����x� =

− 4
�2�

e−2��R − ��/2�2��R −
1

2
�� d

dx
�R

= − 4P�����x���R −
1

2
�� d

dx
�R, �29�

which, since P���� �x��0, splits into two cases

0 = ��R −
1

2
�� , �30a�

0 =
d

dx
�R. �30b�

We also need to evaluate the second derivative in order to
distinguish minima and maxima, and obtain

d2

dx2 P�����x� = − 4�P������x���R −
1

2
���R� + P�����x���R��2

+ P�����x���R −
1

2
���R�� , �31�

where a prime denotes differentiation with respect to x.
We proceed with the first case Eq. �30a�. Writing it out

explicitly yields

cos�� cos2�kix + �i� − �� =
��

2�
. �32�

Therefore, this root occurs only if ��� / �2����1. We denote x
values that satisfy Eq. �32� by xmax

�1� . For any of these xmax
�1�

values, one obtains for the conditional probability

P�����xmax
�1� � =

1
�2�

, �33�

which is the maximum possible probability. Thus, a further
analysis in terms of minima or maxima of P���� �x� is not
required in this case.

The second case Eq. �30b� in explicit form is

0 = ��ki sin�� cos2�kix + �i� − ��sin�2�kjx + �i�� . �34�

Again, there are two nontrivial possibilities,

0 = sin�� cos2�kix + �i� − �� , �35a�

0 = sin�2�kjx + �i�� . �35b�

Note that the two conditions Eqs. �35a� and �35b� are equiva-
lent for �=0.

The first condition Eq. �35a� is satisfied if � cos2�kix
+�i�−�=n�, where n is an integer number. Then, �R

= �−1�n�. We denote the x satisfying this equation by xext
�2a�,

since it is not clear yet whether there is a minimum or a
maximum. The second derivative evaluates to

d2

dx2 P�����xext
�2a�� = − 4P�����xext

�2a����− 1�n� −
1

2
���R�

= 4�kj
2�2P�����xext

�2a��sin2�2�kjxext
�2a� + � j��

� �� −
�− 1�n

2
�� . �36�

The second derivative needs to be negative for xext
�2a� to be a

maximum, and this is only possible if �−1�n���2�. We de-
note these maxima by xmax

�2a�. The probability for the extrema
xext

�2a� evaluates to

P�����xext
�2a�� =

1
�2�

e−2�� − ��− 1�n/2����2
, �37�

which is smaller than 1/�2� for all maxima xmax
�2a� since then

�−1�n���2�.
The second condition Eq. �35b� is satisfied if �kjx+�i�

=n� /2, and the x are denoted by xext
�2b�. Then, �R

= �−1�n+1� cos, and

d2

dx2 P�����xext
�2b��

= 4P�����xext
�2b����− 1�n� cos � +

1

2
���R�

= 8�kj
2�P�����xext

�2b��sin ���− 1�n� cos � +
1

2
�� .

�38�

The complete discussion to separate the maximum values
xmax

�2b� out of the extremal values xext
�2b� is straightforward, but

rather lengthy, because it involves higher-order derivatives as
well. Thus, we do not present this analysis, since it is not
vital for the following. The probability for the extremal xext

�2b�

values is

P�����xext
�2b�� =

1
�2�

e−2�� cos � + ��− 1�n/2����2
. �39�

From the extremal probabilities Eqs. �33�, �37�, and �39�,
we find that a conditional probability close to the maximum
value can be obtained only if Eq. �30a�, or equivalently Eq.
�32�, is satisfied. A numerical analysis confirms that the im-
plicit Eqs. �30a� or �32� are an excellent approximation for
the positions of the maxima of the conditional probability
function. A typical example for this is shown in Fig. 3.
Therefore, in part of the following, we can simplify our ana-
lytical calculations by working with the condition Eq. �32�
rather than the full conditional probability Eq. �27�.

III. PARTICLE LOCALIZATION

A. One-dimensional localization

To set the stage, we first recover previous results using a
single cavity to localize the particle �7�. Suppose the particle
flies through a cavity which supports a coherent light field
with average photon number ���2, wave vector k, and
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standing-wave phase �. The particle imprints a phase shift on
the cavity field that can be detected with a quadrature mea-
surement with measurement angle � and result ��. This al-
lows us to calculate the filter function P���� �x� �see Eq.
�27��. Second, one needs to approximately measure the po-
sition distribution �g�x��2 of the particle, e.g., using a lens-
based system. The product of the coarse measurement with
the filter function then allows one to precisely localize the
particle to one of the narrow position peaks given by the
filter function. An example of a filter function for a single-
phase measurement is shown in Fig. 4. These results are
similar to other schemes involving a single measurement re-
ported previously �7�.

If the measurement result is ��, then the particle locations
with maximum probability are determined by the conditions
Eqs. �30a� or �32�. Let xmax be a solution to Eq. �32�, i.e., a

position with maximum probability for the particle localiza-
tion. From Eq. �32� it follows then that any position x̄max
with k�x̄max−xmax�=n�, or �x̄max−xmax�=n� /2, where n is an
integer, is also a solution. This is the usual periodicity of
cos2�·�. Therefore, within a spatial range of one wavelength,
several potential positions are possible with maximum prob-
ability for a given measurement outcome ��. For example, in
Fig. 4, depending on the measurement outcome, two ��blue�
dashed curve� or three �dash-dotted �green� curve� wider po-
tential positions or four �solid �red� curve� narrow potential
positions are predicted within one wavelength. Therefore, it
is in principle desirable to have a conventional coarse mea-
surement of �g�x��2 with accuracy down to the diffraction
limit, which is hard to achieve. Different solutions have been
suggested to overcome this limitation by reducing the set of
potential positions within one wavelength, for example, to
use more complicated level schemes �11�.

In the following, we show how several simultaneous
particle-cavity interactions with subsequent quadrature mea-
surements can improve the particle localization. Possible set-
ups for one-dimensional particle localization include a single
two-mode cavity, or several �near-�parallel cavities that are
arranged such that the supported fields overlap at the region
in space that the particle flies through. Consider the case of
two measurements, giving rise to two different filter func-
tions which both obey Eq. �32� with the respective field pa-
rameters. Since the two measurements occur simultaneously,
both filter functions must be nonzero at the actual position of
the particle. As explained above, however, the filter functions
predict potential positions other than the actual position with
a certain period in space. But if the spatial period of the two
filter functions is different, then for suitable parameters there
is only a little overlap between the two filter functions at
other positions within one wavelength. Then the product of
the two filter functions effectively reduces to at best a single
peak per wavelength corresponding to the actual position. An
example for such a configuration is shown in Fig. 5. It can be
seen that the two individual filter functions shown as dashed
�blue� and dash-dotted �green� lines overlap only at certain
positions within one wavelength. The solid �red� line in Fig.
5 shows the product of the two conditional probabilities,
which corresponds to the filter function for the case of two
simultaneous measurements. Figure 5�a� shows the case
where the actual position of the particle is around −0.2�. To
create this figure, the parameters for the two fields were
fixed, and the measurement outcome for the first field was
assumed to be ��1

=0. This allows us to calculate the filter
function for the first field. Then it was assumed that, among
the potential positions indicated by the first filter function,
the peak at around x=−0.2� corresponds to the actual posi-
tion. A possible measurement outcome for the second field
was then evaluated using Eq. �30a� such that also the filter
function for the second field has a peak at the actual position
of the particle. This fixes the second filter function. The
product of the two filter functions now allows one to evalu-
ate the predictive power of the actual measurement. It can be
seen that the dual measurement filter function in Fig. 5�a� has
a maximum at the actual position x=−0.2�, together with
two smaller maxima at x�−0.45� and x�0.05�. Thus, the
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FIG. 3. �Color online� Density plot of the conditional probabil-
ity P���� �x� for �=0, �=3, �=0. Bright colors indicate low prob-
ability, dark colors high probability. The solid �red� line at the cen-
ter of the dark maximum region indicates the solution to the
implicit conditions Eq. �30a� or �32� for the maximum of the
probability.
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FIG. 4. �Color online� Example filter functions for different re-
sults of a single measurement. This corresponds to the probability
that a certain value for �� is measured for an actual position x of the
quantum particle. The parameters are �=0, �=3, �=0. The solid
�red� line shows the case ��=0, the dashed �blue� line is for ��

=2�, and the dash-dotted �green� line shows ��=−2�.
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number of potential positions is only three, as compared to
four or five for the two single-mode measurements. In addi-
tion, the two-mode measurement maxima are not of equal
height; the maxima not corresponding to the actual position
are smaller. Thus, the dual measurement considerably im-
proves the localization.

For a meaningful comparison of the predictive power of
single and dual measurements, different positions of the par-

ticle need to be considered for the same field parameters. The
reason for this is that, in the actual experiment, the field
parameters have to be chosen without knowledge of the ac-
tual position of the particle. Thus, Figs. 5�b� and 5�c� show
results for the same field mode parameters as in Fig. 5�a�, but
for different actual positions of the particle. In Fig. 5�b�,
again the number of potential positions predicted from the
measurement is reduced to three. In this case, however, two
peaks of approximately equal height are present, one of
which corresponds to the actual position at about x=0.05�.
The third peak is much smaller. In Fig. 5�c�, the actual posi-
tion is at about x=0.3�. Here, near-perfect results are ob-
tained from the dual measurement. The filter function re-
duces to a single narrow peak located at the true particle
position. This would allow us to unambiguously locate the
particle within the region of a wavelength.

If the dual measurement reduces the set of potential posi-
tions, then the desired accuracy of the additional conven-
tional measurement is reduced, thus relaxing the experimen-
tal requirements. For example, in Fig. 5�c�, an accuracy of
�� is sufficient to localize the particle to a single narrow
position in space with width well below � /10, as indicated
by the solid �red� line. Note that, independent of the number
of phase shift measurements, for each spatial dimension only
a single conventional measurement is required, but with dif-
ferent accuracy depending on the number of phase shift mea-
surements.

B. Multidimensional localization

The generalization of the above considerations for the lo-
calization in more than one spatial dimension is straightfor-
ward. Different cases can be distinguished. For example, two
cavities orthogonal to each other could be used to measure
the position in two spatial dimensions with a single quadra-
ture measurement per direction. This setup is shown in Fig.
2. No additional theoretical considerations are required, since
the two measurements are independent. Additionally, the lo-
calization in each of the directions can be improved by ap-
plying several simultaneous measurements in a single direc-
tion �for example by using a multimode cavity�, as discussed
in Sec. III A. Note that also for multiple independent quadra-
ture measurements only a single conventional measurement
is required per direction. Similarly, the localization can also
be extended to all three spatial dimensions.

IV. WAVE-FUNCTION MEASUREMENT

In previous work, it was shown that atomic center-of-
mass �c.m.� wave-function measurement is possible using
schemes similar to atom localization setups �20�. Despite the
similar setup, this type of measurement is rather different
from the localization described so far. In order to explain this
and to discuss why simultaneous measurements as discussed
in this paper allow one to improve wave-function measure-
ments, we need to discuss in detail how localization schemes
enable one to measure a wave function. For simplicity, we
start with the case of a single quadrature measurement. From
Eqs. �24� and �27�, we find in this case
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FIG. 5. �Color online� Example filter function for two simulta-
neous measurements. The dashed �blue� curve shows P����1

�x�, the
dash-dotted �green� line shows P	���2

�x�, and the solid �red� line
the product P����1

�x�P	���2
�x�. This product corresponds to the

filter function in the dual-measurement case. The parameters for the
first field mode are �1=0, �=3, �1=� /6, and ��1

=0. The param-
eters for the second mode are �2=� /2, 	=3, and �2=� /2. The
wavelength of the second field is chosen smaller than the wave-
length � of the first field by a factor of 1.2. In �a�, the measurement
outcome ��2

for the second mode is chosen consistent with an ac-
tual position of the particle at about −0.2� ���2

�0�. For �b�, the
position is about 0.05� ���2

�0.56��, and for �c� it is about 0.3�
���2

�1.69��.
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P�x���
�� = N2�g�x��2P����

��x� . �40�

In the particle localization discussed so far, the aim is to
obtain P�x ���

��, that is, to obtain the precise position of the
particle flying through the measurement apparatus. For this,
the field quadrature is measured in order to evaluate
P����

� �x�, and a coarse-grained measurement of the particle
position with accuracy within the fundamental limitations
yields �g�x��2. Thus, here the filter function P����

� �x� allows
one to boost the accuracy of the measurement of �g�x��2.

In the wave-function measurement, however, both
P�x ���

�� and P����
� �x� are directly measured in the experi-

ment, with the aim of extracting g�x�, i.e., both the amplitude
and phase of the c.m. wave function.

To show how the filter function allows us to improve the
wave-function measurement, consider first the case without
this additional measurement. Then, P�x�= �g�x��2. Thus, a di-
rect measurement does give information on the wave-
function modulus, but only up to the fundamental limitations
of a position measurement such as the diffraction limit. We
now turn to the case with the additional quadrature measure-
ment, and proceed by approximating P����

� �x� by its maxi-
mum probabilities as discussed in Sec. II D. Then the func-
tion P����

� �x� is characterized by Eq. �32�, and we define the
set of positions x that satisfy Eq. �32� for a given measure-
ment outcome � as M���. Then Eq. �40� can be written as

P�x���
�� = N̄2 


y�M���
��

�g�y��2��x − y� , �41�

where the normalization N̄ follows from N by incorporating
the maximum amplitude of the filter function, and ��·� is the
Kronecker delta function. This approximation is rather good
if the measurement outcome ��

� is close to 0, but becomes
worse if ���

�� approaches its maximum possible value. This
can be seen from Fig. 3. For example, in this figure a hori-
zontal cut at ��

�=0 yields a set of four small intersection
regions with the conditional probability, and thus a well-
defined set M���

��. For ��
�=6, however, the intersection con-

sists of two rather wide regions around x= ±0.25. In this
case, the choice of M���

�� cannot be made accurately. In an
experiment, this problem can be avoided by dropping mea-
surements with large values of ��

� from the analysis.
Thus, the field quadrature measurement implies via the

filter function that the particle can only be at specific posi-
tions given by the filter function. Thus, the typically smooth
and continuous c.m. wave-function distribution is reduced to
a discrete set of potential positions. Then, even if the position
measurement accuracy is limited, the measured position can
be attributed to a rather precise position out of the set of
potential positions given by the filter function. This enables
one to directly extract �g�x�� at this particular position in
space. A series of measurements with different field configu-
rations and thus different filter functions then allows recon-
struction of the full wave-function modulus �g�x�� for all val-
ues of x.

For this scheme to work successfully, the position mea-
surement should have a resolution that exceeds the distance
of the individual peaks of the filter function. Since a filter

function obtained via a single measurement in general has
several potential positions per wavelength, this is rather chal-
lenging. Several simultaneous measurements allow reduction
of the number of potential positions per wavelength as
shown in Sec. III A, and thus relax the required resolution of
the position measurement. It is in this sense that multiple
simultaneous quadrature measurements can improve the
wave-function measurement.

To completely determine the wave function, also the
phase information of g�x� needs to be recovered. In contrast
to the modulus �g�x��, this is not possible using a simple
position detector. It was shown in previous work, however,
that a localization scheme also allows one to obtain the phase
information to recover the full wave function �20�. For this,
we consider the projection of the wave function Eq. �22�
after the particle has passed the standing-wave fields on mo-
mentum eigenstates �p� and electronic ground state �g�, using
the relation 	p �x�= �2���−1/2 exp�−ipx /��. We obtain

	p,g���t�� = N� dx g�x�	��1

� ��ei1t�	��2

	 �	ei2t�	��3


 �
ei3t�

�	p,g�x,g�

=
N

�2��
� dx g�x�A���1

� ,��2

	 ,��3


 ,x�e−�i/��px, �42�

where we have defined, using Eq. �26�,

A���1

� ,��2

	 ,��3


 ,x� = 	��1

� ��ei1t�	��2

	 �	ei2t�	��3


 �
ei3t�

= A����1

� ,x�A	���2

	 ,x�A
���3


 ,x� .

Note that A����1

� ,��2

	 ,��3


 ,x� is the amplitude corresponding
to the combined filter function arising from three simulta-
neous measurements. From this, the conditional momentum
probability follows as

P�p,��1

� ,��2

	 ,��3


 �

= �	p,g����2 =
�N�2

2��
�� dx g�x�A���1

� ,��2

	 ,��3


 ,x�e−�i/��px�2

=
�N̂�2

2��
�� dx 


y�M
g�x�A���1

� ,��2

	 ,��3


 ,y�

���x − y�e−�i/��px�2

=
�Ñ�2

2��� 

y�M

�g�y��A���1

� ,��2

	 ,��3


 ,y�ei��y�−�i/��py�2
. �43�

We again have approximated the filter function by a set of
discrete points M=M���1

� ,��2

	 ,��3


 �, similar to the case in

Eq. �41�, and N, N̂, and Ñ are normalization constants. One
difference, however, is that Eq. �43� depends on the ampli-
tude A���1

� ,��2

	 ,��3


 ,x� rather than the probability
P����1

� �x�P	���2

	 �x�P
���3


 �x� as in Eq. �41�. Therefore, here
we have replaced
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A���1

� ,��2

	 ,��3


 ,x� →
N̄

N



y�M
A���1

� ,��2

	 ,��3


 ,y���x − y� ,

�44�

where the fraction N̄ /N corresponds to the normalization
change due to the introduction of the Kronecker delta func-
tion. This extended replacement is required since the ampli-
tude A���1

� ,��2

	 ,��3


 ,x� contains phase information, unlike the
probability in Eq. �41�. Further, we have defined g�x�
= �g�x��exp�i��x��. A measurement of the conditional prob-
ability distribution P�p ,��1

� ,��2

	 ,��3


 �, together with measure-
ments on the field states thus in principle, give all entities
occurring in Eq. �43� but the desired phase ��x�. As dis-
cussed in �20�, a sample of measurements with different field
configurations yields a set of equations of the type of Eq.
�43�, which can be solved for the phase difference between
adjacent points in the set M. Since the overall phase of the
c.m. wave function is irrelevant, this suffices to recover the
phase information of the wave function approximately.

After this brief outline of the method, we now turn to a
discussion of how multiple simultaneous measurements can
improve this scheme. Similar to the measurement of the
modulus, an identification of a discrete set of potential posi-
tions M via the filter function is the key to the wave-
function phase measurement. Simultaneous measurements
allow us to reduce the number of potential positions, i.e., to
minimize the set M. This in turn lessens the experimental
and computational complexity, and therefore improves the
phase measurement.

In addition to the one-dimensional wave-function recov-
ery discussed so far, obviously a multidimensional localiza-
tion measurement �see Sec. III B� also allows one to obtain
the c.m. wave functions in more than one dimension simul-
taneously.

V. DISCUSSION AND SUMMARY

We have discussed particle localization and wave-
function measurements using several simultaneous field
quadrature measurements of independent cavity modes. The
measurement of the different cavity mode quadratures re-
veals the phase shift that is imprinted on the cavity fields due
to a dispersive interaction with the particle during its flight
through the cavity fields.

Thus, the setup consists of two parts. The first part in-
volves the simultaneous passage of the atom through

standing-wave fields. Several experiments of this type have
been performed with a single mode, both in the Raman-Nath
�21� and in the Bragg deflection regime �22�. Our scheme
requires an extension either to multimode cavities or to sev-
eral perpendicular cavity fields in order to allow for simulta-
neous measurements. Ideally, the frequencies of the different
modes should be different, but since we consider dispersive
interaction, the cavity fields do not need to be in resonance
with the different atomic transitions, which simplifies the use
of multimode cavities. The second part is the detection of the
phase shifts imprinted on the cavity fields. Measurements of
these type are common, e.g., in entanglement detection, and
can be realized via homodyne detection �23�. In �9�, two
possible schemes are suggested. Either Q switching of the
cavity field could be used to extract the cavity field to the
detection system after the atom has passed, or the cavity
could be placed in one arm of an interferometer such that
phase shifts due to the passage of the atom could be mea-
sured via a change of the interference pattern. For the
Q-switching case, the different cavities could be measured
one after another using the same detector if the Q switching
is applied sequentially to the different cavity fields. It may
also be possible to measure the different phases simulta-
neously using setups as required for the detection of
squeezed light �24�.

In general, measurements such as the field quadrature de-
termination give rise to so-called filter functions. These filter
functions can be used to refine a conventional position mea-
surement to a localization of the particle to a few potential
subwavelength regions in space. We have shown that several
simultaneous measurements give rise to an improved filter
function, which allows us to relax the requirements for the
classical coarse position measurement, and to reduce the
number of potential subwavelength localization regions.
Similar improvement is possible for the measurement of the
center-of-mass wave function of the particle. Also in this
case, we have shown that an improved filter function can be
obtained that relaxes the conditions on the required measure-
ments. In addition to the improvement of the measurements
in one spatial dimension, multiple measurements can also be
used to localize or to measure the wave function in two or
even three spatial dimensions.
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