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Abstract 

Scanning transmission electron microscopy (STEM) data with atomic resolution can contain a large amount of infor-
mation about the structure of a crystalline material. Often, this information is hard to extract, due to the large number 
of atomic columns and large differences in intensity from sublattices consisting of different elements. In this work, we 
present a free and open source software tool for analysing both the position and shapes of atomic columns in STEM-
images, using 2-D elliptical Gaussian distributions. The software is tested on variants of the perovskite oxide structure. 
By first fitting the most intense atomic columns and then subtracting them, information on all the projected sublat-
tices can be obtained. From this, we can extract changes in the lattice parameters and shape of A-cation columns 
from annular dark field images of perovskite oxide heterostructures. Using annular bright field images, shifts in oxygen 
column positions are also quantified in the same heterostructure. The precision of determining the position of atomic 
columns is compared between STEM data acquired using standard acquisition, and STEM-images obtained as an 
image stack averaged after using non-rigid registration.
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Background

Scanning transmission electron microscopy (STEM) 
together with correction of geometric aberrations in the 
probe forming optics allows routine acquisition of atomic 
resolution images with sub-Å resolutions [1, 2]. �ese 
images contain a wealth of information about the crystal 
structure of a material. Specifically:

1. �e position of the atom columns in high angle annu-

lar dark field (HAADF) images can be determined 

quantitatively and used for structure solution [3–6], 

and the determination of the structure of defects [7].

2. �e position of the atom columns can be used to get 

local changes of lattice parameters [8].

3. In HAADF-STEM, the intensity of an atomic column 

is related to the atomic number of the elements in the 

atomic columns and the number of atoms in the col-

umns [9]. Simulations are often needed to interpret 

the intensity quantitatively as there are complicating 

effects from sample orientation [10], material phase 

[10], defects [11], and strain [11] in the material. By 

combining HAADF-STEM with simulations, one can 

extract compositional and thickness information, in 

some cases even counting all the atoms [10].

4. Even information about the structure parallel to the 

electron beam can be inferred from the shape of the 

columns [13].

With the wealth of information in these images, having 
robust and quantitative methods for analysing them is 
just as important as acquiring them.

�e work in this paper is performed using the perovs-
kite structure, although the principles could be used for 
many other crystal structures. �e perovskite structure 

Open Access

*Correspondence:  magnunor@gmail.com 
2 SUPA, School of Physics and Astronomy, University of Glasgow,  
Glasgow, UK
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-7981-5293
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40679-017-0042-5&domain=pdf


Page 2 of 12Nord et al. Adv Struct Chem Imag  (2017) 3:9 

derives from the mineral CaTiO3 and the generic formula 
of a perovskite oxide is ABO3; the simplest form of the 
structure is a primitive cubic structure with the A-sites 
at the corners, the B-sites at the body center, and the 
O-sites at the face centers of each cell.

IIn addition to the aforementioned STEM-HAADF 
imaging, which is best for heavier elements, it is also 
important to be able to image and quantify the positions 
of lighter elements. For example, in perovskite oxides it is 
vital to be able to accurately map the position of the oxy-
gen columns [14]. In recent years, STEM imaging using 
either bright field (BF) [8, 15, 16] or annular bright field 
(ABF) [17, 18]  conditions has been useful for revealing 
oxygen atom columns in such oxides.

Of special interest is the oxygen structure across inter-
faces in heterostructures [19], since this is very hard to 
probe with other techniques. In perovskite oxides, the 
oxygen positions can be used to infer the oxygen octa-
hedral tilting pattern [20], which is important for under-
standing the macroscopic functional properties of the 
material, and may well be affected by constraints from 
coherent interfaces [8, 18].

A commonly used method for quantifying changes in 
lattice parameter is geometrical phase analysis (GPA) 
[21]. GPA is based on Fourier transforming atomic 
resolution images and placing masks around two non-
collinear Bragg spots. Historically, this method has 
been used with high-resolution TEM (HRTEM) [21, 
22]. However, with the advent of STEM aberration cor-
rectors, it has also seen extensive use on STEM-images 
[5, 6, 23]. While this is a fast and easy way to calculate 
deformation of a lattice, it can introduce artefacts [24] 
and the spatial resolution is limited to 1 unit cell [23] 
due to it being based on Fourier transforming the image 
data. Ideally, it would be preferable to use real space 
methods, which do not require the use of Fourier trans-
forms. One possibility is to use the center of mass for 
each bright column which is usually robust [25], but this 
has the limitation that it only gives the center positions 
of the atomic columns. Alternatively, the fitting of a 2-D 
Gaussian to the bright column will give the width, ellip-
ticity, amplitude, and more precise center position [25]. 
However, for this to work successfully, reasonable initial 
values are needed.

Several software tools for real space analysis exist: 
Ranger [26], qHAADF [27], iMtools [28], StatSTEM [29], 
and Oxygen octahedra picker [30]. �ese methods have 
been used in several works: using center of mass com-
bined with principal component analysis (PCA) [13], pat-
tern matching [31], iMtools using 2-D Gaussians [4, 32], 
and MATLAB with the Image Processing Toolbox [10]. 
Recent work has also used computer vision-based tech-
niques to characterize the local structure [33].

Since STEM-images can show several thousand atomic 
columns, automation is an important aspect for analysis 
methods. Ideally, such methods should require as lit-
tle manual input as possible, since this allows analysis 
of large images containing several thousand atomic col-
umns. �is is important for three reasons: (i) the more 
information, the better, (ii) researcher time is valuable, 
computing time is cheap, (iii) large sample sizes allows 
for a more statistical approach to data analysis. �e 
automation should ideally do the peak finding and posi-
tion refinements. In addition, it should also construct 
relations between the atoms. For example, for an image 
of a monocrystalline material, the atoms belonging to 
the same monolayer should automatically be identified. 
�is enables rapid analysis of parameters like distances 
between monolayers, and changes in lattice parameters.

In addition, this framework should be free and open 
source [34]. �is avoids the processing steps being hid-
den in a “black box”, and allows for other researchers to 
improve and extend the functionality.

In this work, we present Atomap, a new free and open 
source software package for automatic analysis of the 
position and shape of atomic columns in STEM-images. 
Using a variety of peak finding and position refinements, 
even light elements, such as oxygen, can be accurately 
quantified. We start by outlining the method by show-
ing the different processing steps on a SrTiO3 (STO) 
substrate. Next, the method is applied to extract struc-
tural information from different perovskite oxide het-
erostructures. In particular, the position of sublattices in 
the crystal structure, the shape of atomic columns, and 
superstructures in oxygen atomic planes are determined.

Computational and experimental methods

�e focus of this work is the analysis of atomic resolu-
tion STEM-images of perovskite oxides. As mentioned 
earlier, these materials are in the form of ABO3. �e 
A-site is a larger cation like strontium or lanthanum, the 
smaller B-site is typically a transition metal like manga-
nese or titanium, and the O is oxygen. A-site cations are 
usually the heaviest element in the structure, the B-site 
cations the second heaviest, and oxygen the lightest. �e 
heterostructures studied were La0.7Sr0.3MnO3 (LSMO) 
on LaFeO3 (LFO) on (111)-oriented Nb-doped STO and 
LSMO on (111)-oriented Nb-doped STO. TEM samples 
were prepared as thin sections perpendicular to the [11
0]-direction of the STO. Deposition [35, 36] of the films 
and the preparation of the TEM specimens [37] are 
described in more detail elsewhere.

An example of a typical STEM image is shown in 
Fig. 1 (top left). �e first aim of the method is to extract 
the position and shape for all the different atomic col-
umns in these kinds of images. Second, we want to find 
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Fig. 1 Processing steps for locating and fitting 2-D Gaussians to every atomic column in a perovskite oxide using STEM-ADF and STEM-ABF data 
acquired with the electron beam parallel to the [110] direction
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the relations between the different atomic columns. 
In essence, the process of fitting one sublattice can be 
summed up in three steps: (i) Find the positions of all 
the atomic columns you want to examine. (ii) Refine the 
positions using center of mass until they are close enough 
for the 2-D Gaussian fitting to work robustly. (iii) Fit the 
atomic columns using a 2-D elliptical Gaussian function 
I(x, y). �is is defined by the following:

where I0 is the background, A the amplitude, x0, y0 the 
center positions, σx, σy the standard deviations, and θ 
the rotation. �e background I0 is set to the minimum 
intensity value of the region around the atomic column. 
�is way of setting the background value is easy and 
robust. However, it has some drawbacks in that a single 
pixel with low value due to some kind of artefact can 
lead to the background varying greatly between the dif-
ferent atomic columns. One way of improving this is by 
having the background as a parameter while fitting the 
2-D Gaussians; however, this reduces the robustness as 
the chance of poor fitting increases. �erefore, in this 
work, the simpler minimum value method was used, as 
it worked well in practice. More advanced forms of back-
ground subtraction will be implemented in Atomap in 
the future.

Additional sublattices are found by having a priori 
crystallographic knowledge on where they are located in 
relation to the first sublattice, as explained below.

Initial positions and re�nements

To exemplify this, we show the procedure to find the 
positions of all sublattices in an STO crystal projected 
along the [110]-direction. While this demonstrates 
the use of this method on a specific crystal structure 
along a specific projection, the software should work 
for any kind of atomic structure or projection, as long 
as the atomic columns are clearly resolved. Comments 
on how to adapt this for other structures and projec-
tions are outlined in "Adapting for other structures and 
projections".

(1)

I(x, y) = I0 + A exp
(

−

(
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2
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A-cations

First, the original ADF image (Fig. 1, top left) is filtered. 
�is involves doing a local averaging, where a Gaussian 
convolution of the image is made and subtracted from 
the original image. Next, 1-D PCA [38] denoises the 
modified image to reduce random noise. �e outcome 
is a filtered ADF image with smaller intensity variations 
and less noise. �e A-cations in the filtered ADF image 
are located using a peak finding method which finds the 
most intense local features, where each feature has to 
be separated by a minimum distance. �is filtered ADF 
image is only used for the initial peak finding, all sub-
sequent position refinement is done using the original, 
unfiltered, ADF image.

Next, these initial A-cation positions are refined using 
the original ADF image. �is is done by finding the 
center of mass for a circular area centered at the current 
position with a radius of 40% of the distance to the clos-
est A-cation neighbor. �e result of this refinement is 
shown in the “A-cation positions” image in Fig. 1. �ese 
A-cation positions are used as the initial values for fitting 
2-D Gaussians to every A-cation atomic column in the 
original ADF image.

�e refined positions of the A-cations are the input 
parameters to further study the average 2-D atomic 
arrangement of the structure. For each A-cation, the 
distance and direction to the ten nearest neighbors are 
calculated. Next, using a similar peak finding process as 
explained earlier, all the repeating nearest neighbors are 
found. �e “Nearest neighbor statistics” to the bottom left 
in Fig.  1 shows the real space nearest neighbor distance 
and direction, which gives information similar to an FFT: 
the average 2-D arrangement of atoms in a small repeating 
unit of this specific projection of the 3-D crystal structure. 
Using different planes visible in the image (i.e., perpendic-
ular to the beam direction), atom columns which belong 
to the same atom planes are grouped. �ese atom planes 
are defined in the software by the vector perpendicular to 
the trace of the plane in the image. �us, the atom planes 
shown in Fig.  1 (bottom left) are the (110) atom planes. 
�e traces of these atom planes run in the [001]-direction.

B-cations

Fitting Gaussians to the B-cations is more challenging, 
due to the A-cations being more intense. To get robust 
fitting of the B-cations, the intensity from the A-cations 
is removed from the original ADF image before start-
ing the B-cation fitting. �is is done by subtracting the 
2-D Gaussians fitted to the A-cations. �e original ADF 
image with the A-cations subtracted is shown in the top 
center of Fig.  1. �is leaves the B-cations as the most 
intense feature in the ADF image.
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�e initial positions of the B-cation atomic columns 
are placed between each A-cation pair in the (110) atom 
planes. �is is shown for one A-cation atom plane in 
Fig.  1 (bottom left), with the B-cation initial positions 
marked with red circles.

With the initial B-cation positions and the ADF image 
with the A-cations removed, the B-cation positions are 
refined using center of mass the same way as for the 
A-cations. �e refined positions are used as the initial 
values when doing Gaussian fitting for the B-cations. �e 
2-D repeating units and atomic planes for the B-cations 
are constructed in the same way as for the A-cations. �is 
process is shown in the middle column of Fig. 1, where 
the resulting B-cation (001) atom planes are shown.

Oxygen

�e rightmost column in Fig.  1 shows how the oxy-
gen positions are determined. �e oxygen initial posi-
tions are placed between each pair of B-cations in the 
(001) atom planes, shown with the blue circles in the 
lower center image in Fig.  1. In ADF imaging, the oxy-
gen is much less intense compared to the heavier A and 
B cations, so ABF imaging is utilized. Such an image is 
shown to the top right in Fig.  1 (original ABF), which 
has been acquired simultaneously with the ADF image. 
In the ABF image, the oxygen is visible, but still the least 
intense of the atomic columns. Using the initial A and B 
cation positions from the ADF image, 2-D Gaussians are 
fitted to the A and B cations in the ABF image and sub-
tracted. �e image contrast is further inverted, to create 
a modified ABF image where the oxygen columns are the 

most intense features in the image. Using this modified 
ABF image and the initial oxygen positions, the posi-
tions are refined using the center of mass, further refined 
using 2-D Gaussians, 2-D repeating units found, and the 
atomic planes constructed.

�e end result gives the location of all the atom col-
umns in the image, as shown to the lower right in Fig. 1.

Finding distances between atomic columns

Having an accurate position for all the atomic columns is 
the first step toward making measurements of distances 
between columns or interplanar spacings. Having already 
grouped the atom columns into atomic planes, it is trivial 
to find the spacings in the (001)- and (110)-planes. �e 
distances between neighboring atomic columns in the 
(001)-planes correspond to the (110) interplanar spacing 
as these are orthogonal (Fig. 2a). Similarly, the interpla-
nar distances for the (110)-planes are found using the dis-
tances between the atomic columns in the (001)-planes. 
�e case is less straightforward for (111)-planes, as 
neighboring atomic columns (of the same cation type) 
along the orthogonal (112)-plane will be three monolay-
ers apart. �e interplanar spacing is the distance between 
one monolayer and its neighbor. To find this, a line is 
interpolated through the atomic columns in a (111)-
plane. From an atomic column in the neighboring (111)-
plane, the shortest distance from the atomic column to 
this line is found. �is is the (111) interplanar spacing 
at this point, as shown to the bottom right in Fig.  2a. 
Repeating this for every atomic column and its neighbor 
atom plane gives a 2-D map of the monolayer distances.

Fig. 2 Quantifying distances between atomic planes. a Distances between Sr atomic planes in different directions. Showing how finding the 
distance between atomic planes is straightforward for the [001] and [110] directions, but not for the [111] direction. b Calculating displacement 
(D) from a centrosymmetric position between atomic columns, here shown on oxygen columns. The inset shows how the distance difference is 
calculated for oxygen atoms in the [001]-direction for an LFO film. The distance to the next (N) and previous (P) atom is calculated, as shown with 
the green and red double headed arrows
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In the perovskites, a common structural change is unit 
cell doubling along a specific direction as a result of oxy-
gen octahedral tilting [20]. Depending on the tilt pattern, 
this will result in the oxygen columns shifting. An exam-
ple of this is shown in Fig.  2b, where there is an obvi-
ous oxygen superstructure along the black line signified 
by alternating distances between the oxygen columns in 
the [001]-direction. One useful way of quantifying this 
is finding how much the oxygen atom deviates from the 
centrosymmetric position in a cubic perovskite structure. 
�is displacement, D, is found by determining the dis-
tance from an atom to the next (N) and the previous (P) 
atoms in the atom plane, and divide the difference (N−P) 
by 4. �is gives the distance the oxygen atom deviates 
from a centrosymmetric position, and is shown in the 
inset in Fig.  2b. For a cubic perovskite structure D is 0, 
while for bulk LFO D is 0.39 Å.

Atomic column shape

Having fitted every atomic column with an elliptical 2-D 
Gaussian (Eq.  1) where the rotation of the major axis 
from the vertical is one of the fit parameters (i.e., the 
direction of the σx,y can change), one can extract infor-
mation about the shape of the atomic column. �is shape 
can reveal information about the structure parallel to the 
electron beam [19], and, in some materials, the position 
of light elements using the shape of the heavier atomic 
columns [13]. With the six parameters defined in Eq. 1, 
one can use the σx and σy to calculate the ellipticity for 
the atomic column which is a measure of how elongated 
the atomic column is. We define the ellipticity (ǫ) as 
follows:

giving an ǫ which is always greater or equal to 1. An ǫ of 1 
would be a perfectly circular atomic column, while ǫ = 2 
is an atomic column where one side is twice as long as the 
other side.

Similarly, one can use θ to find the direction of the 
ellipticity. We define this direction as ρ,

which means that ρ will be the angle between the posi-
tive x-axis and the longest σ. In addition, ρ will always 
be between 0 and π due to the symmetry of the 2-D 
Gaussian.

The software implementation

�is program is implemented in the Python (3.x) program-
ming language, and both the source code and instructions 

(2)ǫ =

{

σx
σy
, if σx > σy

σy

σx
, if σy > σx

(3)ρ =

{

θ , if σx > σy
θ +

π
2
, if σy > σx

on how to install it is available at http://atomap.org.  
It relies heavily on the fitting and modelling routines 
implemented in HyperSpy [39]. Currently, the program 
is optimized for analysing STEM-images of perovskite 
oxide materials projected along a 〈110〉 direction. How-
ever, it is trivial to adapt it for any structure as discussed 
below in "Adapting for other structures and projections". 
Extending the code should be easy, and requests for both 
new features and assistance in adapting for other struc-
tures are welcome on the issue tracker (linked from 
http://atomap.org/) or by e-mail to the corresponding 
author. �e software and source code are distributed 
under the free and open source GNU General Public 
License v3.0.

�e program is sorted into several classes: atom_posi-

tion, atom_plane, sublattice, and atom_lattice. atom_

position is the position of a single atomic column, and 
contains variables like position, σ, θ, and other informa-
tion about the shape of the atomic column. atom_plane 
contains all the atom_positions which belong to the 
same atomic plane. sublattice contains all the atom_

positions and atom_planes belonging to the same 
sublattice, like the A-cations in Fig. 1. atom_lattice con-
tains all the sublattices, so in Fig. 1, this would include 
the A-cations, B-cations, and oxygen sublattices. �e 
atom_lattice class can be saved and loaded, saving all the 
atom_position parameters.

One current limitation is that the whole image given 
to the program must have a similar crystal structure. For 
example, a perovskite heterostructure shown in Figs. 4, 5, 
and 6 works fine, due to the structures being sufficiently 
similar. A perovskite oxide film grown on Si would, how-
ever, not work. Similarly, if there are any amorphous 
parts in the image, local bright features could be identi-
fied as atomic positions by the peak finding function. One 
simple solution is to crop the images, so only the same 
crystal structure is within the image given to the pro-
gram. �is could probably be automated, which would 
allow for automatic determination of regions with differ-
ent structures. For example, in an aluminum alloy, one 
would be able to automatically figure out which regions 
are aluminum matrix and which are precipitates.

When fitting a single sublattice, the fitting is done on 
individual atomic column using a single 2D Gaussian. 
One obvious improvement would be to make a model 
containing all the atomic columns, and fitting them all 
simultaneously. While this is more computationally 
demanding, it could reduce the effects from neighbor-
ing atomic columns and, therefore, increase the accu-
racy of the fitting. �e amount of improvement would be 
related to the degree of overlap between the atomic col-
umns. With a very large separation between the atomic 
columns, this improvement would be zero or very small. 

http://atomap.org
http://atomap.org/
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With a very small separation, this improvement would 
be substantial. Quantifying the limits of fitting a single 
atomic column vs. including the neighboring atomic col-
umns is interesting, but outside the scope of this work 
as the separation between the atomic columns was suf-
ficiently large.

Atomap implements a version of this by removing the 
most intense sublattice before fitting the less intense sub-
lattices. �is is equivalent to having a model where the 
most intense atomic columns are fitted first, then locked, 
and afterwards fitting the second most intense atomic 
columns. Fitting 2D Gaussians to all atomic columns in 
a data set simultaneously will be experimented with in 
Atomap in the near future, using the aforementioned 
process to find reasonable initial values first.

Adapting for other structures and projections

�e first step in using the program is finding a value for 
the smallest atomic separation for the first sublattice. 
It is important to find a good value for this variable, as 
having either too many or too few atoms in the first sub-
lattice will lead to the wrong repeating unit being iden-
tified. �is then results in incorrect identification of the 
sublattice. In the example, discussed in "Initial posi-
tions and refinements", this value is half the separation 
between the A-cations in the [110]-direction. �e pro-
jected (110) spacing is 2.76 Å for STO. However, half the 
value (1.38 Å) did not work very well, which is caused by 
the scanning distortions and sample drift during image 
acquisition. By trial and error, a value slightly less than 
half the smallest separation was found to work reliably. 
For the STO in Fig. 1: approximately 1.3 Å. �is value is 
used for the atom column separation in the peak finding 
function. For only fitting a single sublattice, this will be 
enough for the program to work.

Finding a second sublattice requires some a priori 
knowledge. For a perovskite oxide in the [110]-projection 
(Fig. 1), one would specify that the atoms in the second 
sublattice are found between the atom columns in the 
(110)-atomic planes for the first sublattice.

�ese procedures are documented on the webpage 
(http://atomap.org/).

Results and discussion

To test the processing method, data sets from epitaxial 
perovskite oxide heterostructures are used. First, the 
effects of imaging conditions and image registration on the 
results are tested. �en, a comparison is made between the 
method outlined in this article and GPA. Finally, the fitting 
of non-circular elliptical columns is tested.

All directions and atom planes are given in the pseudo-
cubic coordinate system.

Uncertainty and reducing scanning distortions

It is clear that the reliability and the uncertainty of the 
peak fitting technique will be connected to how clearly 
the different atomic columns can be resolved. An impor-
tant aspect of this is scanning distortions, as the elec-
tron probe is susceptible to both mechanical, electrical, 
and magnetic disturbances, both from noise within the 
microscope system, as well as extraneous disturbances 
from the surrounding environment, and these will have 
some influence, even in the best designed microscope 
rooms [40]. One way to reduce the effects of these dis-
tortions is to acquire several fast images of the same 
area, register them, and sum them afterwards [40]. In 
earlier studies, this was simply performed by rigid regis-
tration of the images, which takes out the effect of any 
drift, and simply averages out any local distortions (at 
the cost of a slight deterioration of the resolution) [3]. 
A better approach is to perform rigid registration to 
remove the effects of drift, followed by non-rigid regis-
tration to remove the effects of short period instabilities 
in the scanning system [41, 42]. To investigate the effect 
of short acquisition and alignment, as opposed to record-
ing a single scan at a longer dwell time, we analysed two 
different STEM-ADF images from the same session taken 
along the [110] cubic direction of a sample of STO: (i) 
acquired as a single image using a pixel dwell time of 
38.5 µs (line synced) with the image shown in Fig.  3a. 
(ii) Acquired as an image stack of 20 images with dwell 
time of 2 µs per pixel (i.e., almost the same total acquisi-
tion time per pixel) which is then processed using Smart 
Align [42]. �is aligned stack is shown in Fig. 3b. Clearly, 
the aligned stack appears a little sharper and less noisy 
than the single long acquisition image, but to quantify the 
effects of this difference on atom spacing measurements, 
the images were quantified as set out above in "Finding 
distances between atomic columns", and some compara-
tive results are shown in Fig. 3c–h. A distribution of dis-
tances between the atoms parallel to the [111] (vertical in 
image) and [112] (horizontal in image) crystallographic 
directions of STO is shown in Fig. 3c, d: these directions 
are parallel to the slow and fast scan directions, respec-
tively. As these data are from a region of a pure STO 
sample far away from any interfaces, there should be no 
variations in the distance between the planes. �ere-
fore, these plots should be essentially a measure of the 
uncertainty in the measurements, which we define as one 
standard deviation in the spread of the distances. �e dif-
ference between the single scanned image and the Smart 
Align image is very obvious, especially for the slow scan 
direction. In this case, the uncertainty is reduced from ≈
16 p.m. to 7 p.m. For the fast scan direction, the reduc-
tion in uncertainty is much less: from 7.5 to 5.9 p.m.

http://atomap.org/
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Similar measurements for distances between the atomic 
planes in the slow and fast scan directions are shown in 
Fig. 3e and f, respectively. Compared to c and d, this is in 
effect averaging over many atomic columns. �e uncer-
tainty in the slow scan direction for the single scanned 
image is clearly much larger, and comparing the normal 
and Smart Align data sets, there is a massive reduction in 
the uncertainty from about 7 p.m. to 1 p.m. For the fast 
scan direction, the uncertainty in the single scan image is 
less, as might be expected, although there is a big negative 
spike at one point, which is typical for the kind of local 
disturbance that often arises in atomic resolution images. 
In this case, the uncertainty is reduced from about 5 p.m. 
to 1 p.m. �us, it should be possible using non-rigid reg-
istration to make measurements of A-site (or other heavy, 
bright atom) plane spacings with about 1 p.m. precision.

One interesting effect is the decrease of uncertainty 
between the individual atomic columns and atomic 
planes for the single scanned image and the Smart Align 
image. For the fast scan atomic column uncertainty there 
is a small improvement for the aligned stack (7.5 to 5.9 
p.m.), while for the atomic plane uncertainty there is a 
much larger improvement (5 to 1 p.m.). �is is most likely 
due to the scanning distortions being correlated when 
acquiring a single scanned image using line synchroniza-
tion. When acquiring an image stack with a short pixel 
dwell time of 2 µs, these scanning distortions are much 
less correlated. Since finding the distances between the 

atom planes consists of averaging the positions of many 
atomic columns, these uncorrelated local distortions in 
the image stack are averaged out.

Finally, the interplanar spacings for the different sublat-
tices are shown in Fig. 3g, h. Here, a similar STO Smart 
Align ADF data set has been used to estimate the A- and 
B-cation uncertainty levels, and an ABF data set has 
been used to estimate the oxygen uncertainty levels. �e 
average distances between the interplanar spacings are 
calculated for the A-cations, B-cations, and oxygen. For 
all atom types in both fast and slow scan directions, the 
uncertainty is about 1.0–1.4 p.m.

In view of the fact that the non-rigid registration 
method gives clearly superior results, all data sets in the 
following sections are acquired as image stacks and pro-
cessed using Smart Align, and then processed using the 
method outlined in "Initial positions and refinements".

Strain analysis: comparison to GPA

As stated in the introduction, GPA is a commonly used 
technique for characterizing distances between atomic 
columns in atomic resolution (S)TEM images [21]. Fig-
ure 4 shows a comparison between GPA and the method 
explained in this work, for an epitaxial LSMO/STO-(111) 
heterostructure. Figure  4a shows a STEM-ADF image 
and FFTs from the LSMO (top inset) and STO (bottom 
inset). �e fast Fourier transform (FFT) of the LSMO 
region has extra 

{

1

2

1

2

1

2

}

 spots (circled in red) which are 

Fig. 3 Quantifying the uncertainty in measurements of atomic spacings as a consequence of image acquisition methodology: a conventional 
HAADF-STEM image acquisition and b image constructed from a rapidly acquired image stack by rigid and non-rigid registration. Distribution of 
distances between Sr atoms along the c slow scan direction ([111]), and d fast scan direction ([112]), comparing the images from a and b. e Sr plane 
spacings along: e slow scan direction (111), and f fast scan direction (112). g and h: similar to e and f, but comparing uncertainties for the different 
sublattices from a different data set processed using Smart Align
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not present in the STO region. �ese superstructure 
spots indicate doubling of the unit cell along the [111]- 
and [111]-directions in the LSMO. GPA is performed 
using the {111} and {112} FFT spots utilizing the STO 
substrate far away from the interface as a reference. 
�ese data are then summed in the [111]-direction, giv-
ing the average out-of-plane distance as a function of 
distance from the LSMO/STO interface (Fig.  4b, green 
dashed line). Using the method explained in "Finding 
distances between atomic columns", the average distance 
between the A-cation monolayers in the [111]-direction 
is calculated as a function of the distance from the inter-
face (Fig. 4b, blue line). Comparing the two line profiles, 
they both show the same general trends: larger lattice size 
in the STO, and smaller in the LSMO, with a slight lat-
tice size increase at about 8 nm into the film. However, 
the unit cell doubling observed in the FFT is only visible 
in the real space method. �is is due to the choice of the 
mask in the GPA, since the one used to get the data in 
Fig. 4 did not include the superstructure spots. It could be 
possible to use the 

{
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2

1

2

1

2

}

 spots to do the GPA, instead of 
the {111} and {112}. �is could show the presence of the 
unit cell doubling, but the regions where these peaks are 
not present would not yield any information, for exam-
ple, the STO substrate and the regions in the LSMO film 
without the unit cell doubling.

Mapping oxygen octahedral tilting

Figure 5a shows an ABF image of the LSMO/LFO/STO-
(111) heterostructure, where there is a “zig-zag” pattern 
of the oxygen columns along the [110]-direction in the 

Fig. 4 Comparison of geometrical phase analysis (GPA) and the 
method outlined in this work for determining the out-of-plane 
lattice parameter. a STEM-HAADF image of an LSMO film grown on 
STO-(111). Top inset is an FFT of the LSMO region, showing a clear 
superstructure compared to the STO substrate FFT in the lower inset. 
b Average interplanar distance for the A-cation (111) atom planes as 
a function of distance from the LSMO/STO interface. The blue solid 

line shows the result from the method outlined in this paper, and the 
dashed green line from GPA

Fig. 5 Finding the displacement, D, of oxygen atomic columns in the [001]-direction, compared to centrosymmetric positions in a cubic structure. 
a STEM-ABF image of LSMO/LFO/STO-(111) heterostructure. b Map of the deviation of oxygen positions from those for a primitive cubic perovskite 
calculated using the method outlined in "Finding distances between atomic columns". c Average value of the displacement for each plane as a 
function of distance from the LFO/STO-interface
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LFO layer. �is displacement from the centrosymmetric 
position can be quantified using the method discussed in 
"Finding distances between atomic columns". An exam-
ple of this is shown in Fig. 5b, where the [001]-direction 
displacement is calculated for all the oxygen columns. �e 
displacement in the LFO layer takes the form of an alter-
nating long and short displacement in the [001]-direc-
tion. To give a better visualization, the displacement is 
set to zero at the A-cation positions, leading to the check-
erboard pattern shown in Fig. 5b. An average of the dis-
placements as a function of distance from the LFO/STO 
interface is shown in Fig.  5c. �is shows both a clear 
superstructure and the variation in the displacement 
across the film. �is can then be used to infer parameters, 
such as the octahedral tilting pattern and bond angles.

One important caveat with using ABF imaging is the 
relationship between real and measured atom column 
positions is not always intuitive [43]. For example, if the 
sample is slightly tilted off the zone axis, the atomic posi-
tions can shift. �is effect varies with respect to thick-
ness, atomic number, collection angle, and convergence 
angle [43]. �us, to properly analyse the atomic positions, 
image simulations coupled with careful considerations 
of the experimental parameters are required. However, 
the measured atomic positions are still useful as the first 
approximations, even if further work with image simula-
tions is required to ensure that the conclusions are robust.

Ellipticity

As discussed in "Atomic column shape", one can 
also use the shape of the atomic columns to extract 

structural information [12]. An example of this is 
seen in Fig. 6a, which shows A-cation ellipticity in the 
LSMO/LFO/STO-(111) heterostructure imaged using 
STEM-ADF. In the LFO layer, there is a clear elonga-
tion of the A-cation sites, annotated with the blue 
ellipses. By fitting elliptical 2-D Gaussians (Eq.  1) to 
every A-cation, this elongation can be quantified with 
ǫ (Eq.  2) and ρ (Eq.  3). Where ǫ is 

σLongest

σShortest
, and ρ is the 

angle between the positive x-axis and σLongest. Having 
these values for every A-cation, one can visualize these 
in a vector plot (Fig. 6b). Here, the length of the arrows 
is given by ǫ, and the direction by ρ. �ere is a clear dif-
ference in the LFO layer, which has an elongation close 
to the [111]-direction. �is is even more apparent with 
the vector plot in Fig. 6c and the ǫ plot in Fig. 6d, which 
takes the average of the data as a function of distance 
from the interface. �e ellipticity is constant in the 
STO substrate until the LSMO/STO interface, where it 
increases to its maximum about 2 nm into the film, and 
decays gradually in the LSMO film to the same level as 
in the STO substrate.

As discussed in "Atomic column shape", there are 
many variables which can affect ellipticity of the atomic 
columns. �erefore, for the vector plots in Fig.  6b, c, a 
systematic average ǫ and ρ “background” have been sub-
tracted. �is noise level was determined from the STO 
substrate (≈0.12 ǫ in the [111]-direction), where the ellip-
ticity should be 1. �is systematic background is most 
likely due to a variety of factors: sample drift, astigma-
tism, misalignment, having the sample slight off-axis, 
and residual scanning distortions. Especially, the latter 

Fig. 6 Mapping ellipticity (ǫ) and rotation (ρ) of A-cation atomic columns in the LSMO/LFO/STO-(111) heterostructure. a STEM-ADF image of the 
heterostructure. There is a clear elongation of the A-cation atomic columns in the LFO layer (blue ellipses), compared to the STO and LSMO. b ǫ and ρ 
of the individual A-cations plotted as arrows. c Same as in b, but summed as a function of distance from the LFO/STO interface. d ǫ as a function of 
distance from the LFO/STO interface.
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is present in this data set, as horizontal “streaks” visible 
in some of the atomic columns (Fig.  6a). �ese are still 
present, even though the image was made by averaging 
an image stack. �is is due to the fast scan being in the 
same direction for all the images in the image stack. One 
solution is rotating the fast scan direction by 90° in every 
second image in the image stack, which will average out 
this scanning distortion. Another effect can be the 2-D 
Gaussian fitting itself, where overlap from the neighbor-
ing atomic columns can influence the fitting. For exam-
ple, in Fig. 6, the B-cations might add a slight component 
towards the [001]-direction.

Conclusion

In summary, we have developed a free and open source 
software package for automatically quantifying the posi-
tions and shapes of atomic columns in atomic resolution 
STEM-images. By utilizing a model-based approach with 
2-D Gaussians, the most intense atomic columns are sub-
tracted, and all the sublattices in a STEM image can be 
analysed separately. Furthermore, the projected average 
2-D atomic arrangement is automatically extracted by 
finding the atomic planes with the largest spacings. �is 
is used to organize the atomic columns in atomic planes, 
which facilitates the analysis of interplanar distances. 
Using images where the scanning distortions had been 
reduced using non-rigid registration, a precision of 6p.m. 
could be obtained for distances between single atomic 
columns, and 1.2 p.m. for distances between atomic 
planes.

�e software has been tested on HAADF and ABF 
STEM images of perovskite oxide heterostructures. �e 
displacement of oxygen columns in ABF images was 
quantified. Using elliptical 2-D Gaussians, the projected 
shape of the A-cation atomic columns was extracted. 
�e software should be easily adaptable for any atomic 
resolution STEM image, as long as the atoms are clearly 
resolved.
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