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We describe a general approach for refining protein structure 
models on the basis of cryo-electron microscopy maps with 
near-atomic resolution. The method integrates Monte Carlo 
sampling with local density-guided optimization, Rosetta 
all-atom refinement and real-space B-factor fitting. In tests 
on experimental maps of three different systems with 4.5-Å 
resolution or better, the method consistently produced models 
with atomic-level accuracy largely independently of starting-
model quality, and it outperformed the molecular dynamics– 
based MDFF method. Cross-validated model quality statistics 
correlated with model accuracy over the three test systems.

Recent developments in direct electron detectors as well as 
improved image data analysis have led to vast improvement in the 
resolution achievable by single-particle cryo-electron microscopy 
(cryo-EM)1,2. Tools for automatic structure determination, model 
rebuilding, all-atom refinement and model validation are needed 
for single-particle reconstructions with near-atomic resolution. 
Currently available X-ray crystallographic tools3–5 perform rela-
tively poorly with density-map resolutions worse than 3 Å, failing to 
converge on an accurate atomic model5. Methods have been devel-
oped specifically for building and refining structures into cryo-EM 
density maps, including tools to fit crystal structures into density6–8,  
to fit secondary-structure elements and assign sequence and then 
perform all-atom refinement9,10, and to rebuild missing regions of 
protein backbone on the basis of experimental density data11,12.  
However, these methods rely on the existence of a high-quality 
starting model or known secondary-structure assignment.

Here we present a unified approach to model building, refine-
ment and model validation using near-atomic-resolution cryo-EM  
reconstructions. Starting from homologous structures, and using 
density maps over a wide range of resolutions, we show that when 
the resolution is better than 4.5 Å, the approach converges on 

Atomic-accuracy models from 4.5-Å cryo-electron 
microscopy data with density-guided iterative  
local refinement
Frank DiMaio1,12, Yifan Song1,2,12, Xueming Li3,11, Matthias J Brunner4–7, Chunfu Xu8, Vincent Conticello8, 
Edward Egelman9, Thomas C Marlovits4–7, Yifan Cheng3 & David Baker1,10

accurate all-atom models largely independently of starting-model 
accuracy. The approach could automatically correct sequence reg-
istration errors and has a substantially better radius of conver-
gence than the widely used molecular dynamics flexible fitting 
(MDFF) method13.

RESULTS
We sought to develop a cryo-EM model-refinement protocol  
that follows experimental density as much as possible while main-
taining the physicochemical accuracy of the model. We integrated 
approaches from crystallographic refinement, ab initio structure 
prediction, and segment rebuilding and refinement in compara-
tive modeling to enable progression from a poor starting model—
having correct topology but large local backbone deviations—to 
an atomically accurate model in one seamless protocol.

We adapted to density-guided model building a sampling strat-
egy previously developed for comparative modeling14. In this 
strategy, backbone fragments collected from the Protein Data 
Bank (PDB)15 are inserted via superposition onto the current 
model, and Cartesian-space minimization against a low-resolution 
energy function ‘stitches closed’ the broken peptide bonds 
(Supplementary Fig. 1). To sample more effectively, before stitching  
we optimize each fragment to fit the density in the region.  
A Monte Carlo trajectory is carried out with trial moves consist-
ing of replacement of a region that fits the density poorly with a 
backbone fragment from the PDB preminimized to fit the den-
sity. In the preminimization step, coordinate constraints at the 
fragment end points maintain proper peptide-bond geometry, 
and Ramachandran and rotameric constraints maintain reason-
able backbone and side-chain geometry. Because the fragments 
are minimized in isolation, testing of a large set of fragments 
at each position is computationally feasible, quickly identifying 
backbone conformations consistent with both local sequence and 
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the experimental data. All steps of modeling take into account 
the native symmetry of the complex, with all subunits present in 
multisubunit complexes.

Because cryo-EM maps are frequently better in resolution in 
some regions than others, atomic B factors are fit against cryo-
EM density data to maximize the real-space correlation between 
model and map. The protocol alternates between B-factor refine-
ment and model rebuilding until the correlation between the map 
and the model converges. Finally, because the fit of a model to 
experimental data alone provides little information on model 
quality (as the model was refined against that same experimental 
data), we developed a cross-validation metric using independ-
ently collected data that provides a map quality–independent 
assessment of model accuracy.

Model building and refinement
To evaluate the new refinement protocol and compare it to alter-
nate approaches, we used three recently collected experimental 
data sets: the 20S proteasome at 3.3-Å resolution2; PrgH and PrgK 
(PrgH/PrgK), the periplasmic domains of the needle complex, at 
4.6-Å resolution; and a peptide fiber assembly at 4.3-Å resolu-
tion16. To test the dependence of the method on the number of 
images used in the reconstruction and map resolution, we gener-
ated reconstructions of 20S at resolutions of 4.1, 4.4, 5.0 and 6.0 Å, 
and reconstructions of PrgH/PrgK at 5.4 and 7.1 Å, using subsets 
of the particle images to realistically evaluate the challenges aris-
ing from limited data. At the highest resolution, much side-chain 
density is visible; at 4.0- to 4.5-Å resolution, limited side-chain 
density is observed, but individual strands and the pitch of helices 
are visible; and at 5 Å and worse, individual β-strands and the 
pitch of helices are indistinguishable.

We focused first on the 20S proteasome, as the large amount 
of collected data and the wide range of structural variation in 
homologs allows for systematic investigation of the dependence of 
the method on the resolution of the map and the accuracy of the 
starting model. We refined the 20S crystal structure (PDB code: 
1PMA) into the highest-resolution reconstruction to generate a 
reference model for comparison; to allow for evaluation of the 
refined model versus the crystal structure, we first split the particle 
images into two sets and generated two independent reconstruc-
tions. We set atomic B factors to uniform and refined coordinates 
and B factors iteratively into the reconstruction. After refinement, 
the B factors fit to the reconstruction showed very good agree-
ment with those of the crystal structure (R2 = 0.74; Fig. 1a,b).  
Refinement of the crystal structure led to subtle changes in the 
backbone in several loops (Fig. 1c) that increased agreement 
with the independent reconstruction, a result suggesting that the 
refined model represents the structure on the electron microscopy 
grid more accurately than does the crystal structure.

To explore the effect of starting-model accuracy on model 
refinement, we constructed comparative models from 11 
homologs of 20S with sequence identity ranging from 12% to 
40% (PDB codes: 1G0U, 1G3K, 1IRU, 1M4Y, 1Q5Q, 1RYP, 2X3B, 
3H4P, 3NZJ, 3UNF and 4HNZ) and another crystal structure 
with 100% sequence identity (PDB code: 1YAR). Errors in these 
starting structures are diverse and cover challenges commonly 
seen in structure refinement, including rigid-body movement of 
helices and strands, missing residues from the template, changes 
in loop conformation and misaligned residues. Compared to  

the reference model, input models had 15–96% of Cα atoms with 
1 Å and r.m.s. deviations of 1.0–7.1 Å.

To simultaneously evaluate (i) the dependence of refined-model 
accuracy on starting-model quality and map resolution and  
(ii) the accuracy of model-validation metrics, we generated inde-
pendent training and testing maps at 3.3-, 4.1-, 4.4-, 5.0- and 6.0-
Å resolution and refined each of the starting models into each of 
the training maps (Fig. 2). In all calculations, peptide fragments 
from structures with higher sequence identity than that of the 
worst starting model (12%) were excluded. For comparison to 
a widely used current method, we built full-length comparative 
models from each starting model using Modeller17 and refined 
them using the MDFF protocol13. As above, the refined models 
were evaluated by determining the fraction of residues with Cα 
atoms within 1 Å of those in the refined crystal structure.

Although the accuracy of the starting models fell dramatically with 
decreasing sequence identity, the accuracy of the refined Rosetta mod-
els for the 3.3-, 4.1- and 4.4-Å maps was quite good, even with dis-
tant starting models (Fig. 2a–e and Supplementary Fig. 2). For the 
majority of input templates, the refined models were over 75% accu-
rate, with errors primarily in surface loops. However, at 5- and 6-Å 
resolution, the performance of the method was less good. The exten-
sive backbone sampling carried out during refinement is a double- 
edged sword: it allows dramatic improvement of starting models at 
high resolution, but it can degrade starting models when the experi-
mental data provide insufficient restraints. The dramatic decrease in 
performance going from 4.4 to 5.0 (and 6.0) Å may reflect the blurring 
of β-strands in β-sheets or the difficulty placing Cβ atoms in helices. 
Because resolution alone does not provide a perfect picture of map 
quality, this approach should not be used on maps lacking features 
such as resolution of individual strands or the pitch of helices.

The widely used MDFF method was much less sensitive to the 
resolution of the density map but more sensitive to the accuracy  
of the starting model, likely owing to stronger tethering to the  
starting model; this reduces model degradation at low resolution, 
but at high resolution makes it difficult to improve distant starting 
models. To increase the range of motion in MDFF, we tried reducing  
the restraints to the starting model and incrementally increasing  

a b c

Figure 1 | Refinement of 20S proteasome crystal structure into high-
resolution cryo-EM density. (a,b) The crystal structure (a; PDB code: 
1PMA) and the cryo-EM model (b) refined against the 3.3-Å map.  
The model is colored by the B factor in the crystal structure (a) and by 
the Rosetta real-space B-factor fit to the cryo-EM map (b). (c) Example 
of a loop region (red box in a,b) adopting a different conformation in the 
cryo-EM model: green, crystal structure; magenta, Rosetta-refined model; 
remaining colors indicate noncarbon atoms. The independent map density 
(not used in refinement) is shown. 

http://www.pdb.org/pdb/explore.do?structureId=1PMA
http://www.pdb.org/pdb/explore.do?structureId=1G0U
http://www.pdb.org/pdb/explore.do?structureId=1G3K
http://www.pdb.org/pdb/explore.do?structureId=1IRU
http://www.pdb.org/pdb/explore.do?structureId=1M4Y
http://www.pdb.org/pdb/explore.do?structureId=1Q5Q
http://www.pdb.org/pdb/explore.do?structureId=1RYP
http://www.pdb.org/pdb/explore.do?structureId=2X3B
http://www.pdb.org/pdb/explore.do?structureId=3H4P
http://www.pdb.org/pdb/explore.do?structureId=3NZJ
http://www.pdb.org/pdb/explore.do?structureId=3UNF
http://www.pdb.org/pdb/explore.do?structureId=4HNZ
http://www.pdb.org/pdb/explore.do?structureId=1YAR
http://www.pdb.org/pdb/explore.do?structureId=1PMA
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the density weight. With lower restraint weight and higher den-
sity weight, the models moved further to better fit the density, 
but overall model geometry was compromised as indicated by 
increased MolProbity18,19 scores (data not shown). In contrast, 
models could move substantially in Rosetta to fit the density 
while maintaining good MolProbity scores. Errors in the starting 
models are largely retained through MDFF refinement but are 
often reduced in Rosetta-refined models (Fig. 2f). When starting 
from distant models, Rosetta generated superior-quality models 
(Fig. 2a–e) on all but the 5.0- and 6.0-Å maps.

The Rosetta refinement protocol was able to correct the majority 
of errors from the input structure for 3.3- to 4.4-Å maps because 
the rebuilding procedure can quickly overcome local barriers. 
Density data are used to select and then optimize individual frag-
ments, making backbone conformational sampling focused and 
efficient. In many cases, the starting models are incorrectly fit 
into the density with errors in sequence registration and mis-
placed secondary-structure elements (Fig. 2g). With map reso-
lutions better than 4.5 Å, most of these errors were fixed in the  
Rosetta-refined models (Fig. 2h). These errors are not fixed using 
previous published protocols (Supplementary Table 1). On the 
other hand, with lower-resolution maps, density information was 
not enough to guide correct placement of fragments, and many 
incorrect sampled models fit the density equally well.

Model validation
The fit of a refined model to an independent test map provides 
an unbiased measurement of model quality. We found previously 
that the medium-resolution Fourier shell correlation (FSC) was 
a better predictor of model accuracy than real-space correla-
tion20. Although the entire model-map FSC curve is informative, 
when many models are generated, it is valuable to have a single 
number that reflects model quality; thus, we integrate the FSC 
over the medium-resolution range. This integrated FSC on an 
independent map (or free FSC) correlated well with model accu-
racy, particularly at high resolution (Fig. 3a–e). Furthermore, 
the real-space correlation between models and the independ-
ent testing map over segments of the chain correlated with the 
local accuracies of models. In high-resolution maps, as the local 
correlation decreased, the fraction of incorrectly modeled resi-
dues increased (Supplementary Fig. 3). This allowed for the 
identification of local errors that were not eliminated by the 
automated protocol.

Testing on other systems
For the PrgH/PrgK ring and the peptide fiber, there were no crys-
tal structures of the complexes in the same multimeric configura-
tion to use as gold standards, so we relied on the FSC against an 
independent reconstruction to evaluate model accuracy.
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Figure 2 | Dependence of model accuracy on starting-model quality and map resolution. For a series of comparative  
models of 20S, Rosetta and MDFF refinement was initiated from comparative models based on templates indicated  
on the x axis. The templates are arranged from best to worst starting model according to the fraction of Cα atoms  
within 1 Å of the reference model. Percent sequence identity of the template and r.m.s. deviation from the reference  
model are beneath the PDB ID. Models were refined against 20S maps reconstructed using 120,000 (a) 5,000 (b)  
3,000 (c) 1,200 (d) and 1,000 particles (e), yielding 3.3-, 4.1-, 4.4-, 5.0- and 6.0-Å resolution, respectively.  
(f) Deviations from the reference model of the starting model based on 1G3K, MDFF-refined model and Rosetta-refined  
model for each residue. (g,h) Structure and electron density of the regions indicated by the red arrow in f are shown  
for MDFF models (g) and Rosetta models (h).

http://www.pdb.org/pdb/explore.do?structureId=1G3K
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The first system, PrgH/PrgK, is a C24 symmetric ring, with data 
to 4.6-Å resolution (M.J.B., F.D. and T.C.M., unpublished data).  
We also utilized lower-resolution reconstructions made with sub-
sets of the entire data set, which had estimated resolutions of 5.4 
and 7.1 Å. The starting model is a hybrid derived from two sources: 
one subunit comes from a crystal structure in a different multimeric 
conformation, and the second subunit comes from a homologous 
structure. At each resolution, we fit Rosetta and MDFF models 
against a training map reconstructed from half of the images, and 
we measured the FSC against a testing map. As with 20S, there were 
substantially better fits to the independent data with the Rosetta 
models than with the MDFF models at 4.6- and 5.4-Å resolution, 
but at 7.1 Å the MDFF-generated model had better FSC than the 
Rosetta-generated model (Fig. 3f).

In the fiber case, the map was of a repeating helical fiber structure. 
The challenge was not in identifying the backbone conformation but 
rather determining the orientation and sequence registration of the 
helix in the two density maps. The 4.3-Å map had a single copy of the 
helix in the asymmetric unit. Even at this resolution, the nearly palin-
dromic nature of the sequence made sequence registration difficult. 
Instead of using fragment-based assembly, we enumerated the 14 

possible sequence registrations and refined each model. There was a 
clear signal for one particular sequence registration (Fig. 3g), with an 
independent map–agreement improvement of over 0.02 compared to 
the next-best registration. With MDFF, the overall independent-map 
agreement was worse for this registration, and there was little signal 
for this registration relative to other possible registrations. A more 
recent higher-resolution reconstruction had strong signal for this 
registration (Fig. 3g), further suggesting that it is correct.

Estimated phase error
Even at high resolution, the integrated model-map FSC, although 
very effective at evaluating the relative accuracy of multiple models 
to a single map, does not provide a measure of absolute accuracy of 
models in different maps (Fig. 3a–e and Supplementary Fig. 4).  
FSC also has a number of weaknesses that make it somewhat 
undesirable as an evaluation metric: (i) different resolution ranges 
are summed over for different maps, so the values are not com-
parable, and (ii) it does not take into account the signal-to-noise 
ratio in each shell, which may vary even in maps at the same 
resolution. An absolute measure assessing the accuracy of a model 
in a map is thus desirable.
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Figure 3 | Model evaluation using independent maps. (a–e) For each Rosetta-refined model  
of 20S at 3.3- (a), 4.1- (b), 4.4- (c), 5.0- (d) and 6.0-Å resolution (e), the integrated  
Fourier shell correlation (FSC) between the model and testing map is plotted against the  
fraction of residues within 1 Å of the reference model. (f) Evaluation of input models,  
MDFF-refined models and Rosetta-refined models for PrgH/PrgK and fiber based on the  
independent map–integrated FSC. (g) Fiber models following Rosetta refinement (green);  
the MDFF models also identify the correct threading but with much weaker signal. Different  
sequence-threading possibilities were refined in MDFF (red) and Rosetta (green).  
The correct threading is distinguished by the highest integrated FSC in the Rosetta-refined  
model (green). The integrated FSC between Rosetta models refined in this study and a  
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reconstructed maps of 20S proteasome (h) and with maps of PrgH/PrgK (i) at the indicated resolutions. The expected phase error tracks absolute model  
quality better than does the integrated FSC (Supplementary Fig. 4).
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We sought to develop a likelihood-based measure for evaluat-
ing the agreement between model and map that gives reason-
able accuracy measures independent of map. As described in the 
Online Methods, we developed a measure of expected phase error 
(EPE) in reciprocal space. Although it is not perfect, the EPE is 
more comparable between different-resolution maps (Fig. 3h,i) 
than is the integrated FSC (Supplementary Fig. 4). Obtaining an 
absolute scale measure of model quality that is less sensitive to 
noise remains an important area of research.

DISCUSSION
Starting from experimental density maps with 4.5-Å resolution 
or better, we have shown, for three different systems, that it is 
possible to consistently generate models with near-atomic-level 
accuracy. As there is not a standard definition of map resolution, 
we also provide a more qualitative description of the map quality 
necessary for our method to be usefully applied: inspection of 
the maps in our test set (Supplementary Fig. 5) suggests that the 
pitch of helices, individual strands and some large aromatic side 
chains should be at least in part visible.

By using ideas from crystallographic refinement, such as inde-
pendent model validation and atomic B-factor fitting, we have 
improved model generation from cryo-EM maps. These methods 
should prove useful when used in conjunction with automated 
de novo chain tracing methods21 for fully automated structure 
determination from cryo-EM density. A next step is to use mod-
eling to reduce map error, as is done in crystallography through 
map rephasing and density modification. Although single-
 particle reconstructions contain equally accurate amplitude and 
phase information, we may still use modeling to reduce errors in 
the image reconstruction process. For example, using intermedi-
ate models rather than heuristic scaling factors (as in ref. 22) to 
rescale map intensities as a function of resolution should more 
accurately recapitulate high-resolution details. Models may also 
be used to reduce errors in determining particle orientation or 
particle conformation in heterogeneous systems. Such methodo-
logical advances could substantially improve the determination 
of atomic models from cryo-EM reconstructions.

All the refinement tools prevented in this manuscript are freely 
available for academic use through the Rosetta software suite 
(weekly releases after 15 February 2015), available at https://www.
rosettacommons.org/.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. EMDataBank: map of fiber, EMD-6123;  
lower-resolution maps of 20S, EMD-6245, EMD-6246, EMD-6247 
and EMD-6248.

Note: Any Supplementary Information and Source Data files are available in the 

online version of the paper.
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ONLINE METHODS
An overview of the model-building process is illustrated in 
Supplementary Figure 1. Initial models are derived from a  
crystal structure of an alternate state (PrgH), a crystal structure 
of a homolog (20S), a manually built comparative model based 
on a low-resolution structure (PrgK) or an idealized helix (fiber). 
When starting with an alignment to a known structure, rather 
than using a full-length model, we used RosettaCM14—guided by 
the experimental data12—to rebuild gaps in the alignment. For the 
proteasome, 200 comparative models were generated from each 
starting point; for the fiber, ten models were generated. Rosetta 
forcefield used for optimization, including fit-to-density, was  
used to select the best model.

Map generation. For all data sets, ‘gold-standard’ independent  
reconstructions23 were made using maximum-likelihood  
reconstruction24. The reported resolutions in the manuscript  
correspond to the FSC = 0.143 value of the two half maps. One 
of these reconstructions was used only for rebuilding and refine-
ment (the ‘training’ map), whereas the other was used only for  
validation (the ‘testing’ map). Subsets of the complete particle 
set were selected and split into two halves; each half-set was used 
to create lower-resolution training and testing maps. In all cases, 
B-factor correction22 was applied to the map before refinement 
to amplify data in high-resolution shells.

MDFF. Models were initially built with Modeller17,25 in the 
cases where no crystal structure was available. For each starting 
homolog, five Modeller models were built, with unaligned termi-
nal residues removed. Each of these starting points was used as 
input for MDFF. MDFF modeling was carried out using the proto-
col described by Schulten and coworkers26. Energy minimization 
was used to optimize bond geometries and remove clashes in the 
input model; a molecular dynamics simulation was carried out for 
100 ps and followed by a final energy minimization. The MDFF 
electron density term was used in all three steps with a weight of 
1, 0.3 and 10, respectively.

Density-guided model building. Multiple independent Monte 
Carlo trajectories are carried out, each consisting of several hun-
dred of the density refined fragment moves described below; 
trajectories begin with 17-residue fragments and then shift to 
9-residue fragments. At each step of the trajectory, a random posi-
tion in the protein is chosen, with frequency weighted by local 
density agreement: residues with a local correlation less than 0.6 
are sampled frequently (4× base), those with correlation 0.6–0.8 
are sampled occasionally (base), and those with correlation above 
0.8 are sampled rarely (0.04× base). A set of 25 fragments of 17 
or 9 residues in length is selected on the basis of the sequence 
identity to the target structure. Each fragment is then superim-
posed on the current model so that the two N- and C-terminal 
residues overlap with the corresponding residues in the current 
model. Then, for each fragment, we: (i) rigid body–minimize the 
fragment into density; (ii) optimize side-chain rotamers to best 
fit the density; and (iii) minimize all torsions against a forcefield 
assessing agreement with density, agreement of the terminal resi-
dues of the fragment with the corresponding positions in the cur-
rent model, and backbone and side-chain torsional probabilities. 
Because this optimization is done with small fragments, ignoring 

interactions with the remainder of the protein, it is very quick, 
allowing the 25 fragments to be optimized and evaluated in about 
1 CPU-second. At each position, the fragment with best fit to 
the density that has an r.m.s. of less than 0.5 Å over the terminal 
residues is selected. Backbone atomic positions from the selected 
fragment then replace the corresponding backbone in the current 
model, and the entire structure is minimized in Cartesian space 
(as in ref. 20) to regularize backbone geometry at the stitching 
site. The minimization is done using a smooth version of the 
Rosetta centroid level energy function14, which primarily con-
sists of sterics and backbone hydrogen bonding supplemented 
with density agreement. For each input, 200 trajectories were 
chosen. The amount of sampling was considered converged as 
additional calculations do not increase the maximum FSC found 
in the resulting models.

Real-space B-factor refinement. To better model the density 
maps and generate more accurate models, we refined atomic  
B factors against the maps optimizing the real-space correlation 
between model and map. Given that atom i has a B factor Bi, we 
calculate the density of the model as
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Here, f is a scattering factor fit to each element. Our implementa-
tion makes use of a single-Gaussian scattering for each atom type, 
but it is straightforward to extend this to a standard five-Gaussian 
scattering model27.

B-factor refinement is carried out using quasi-Newton opti-
mization, with the gradient of the B factor of atom i (located at 
coordinates xi) given in real space by
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Here, ρc and ρo are the calculated and observed density, σc is 
the s.d. of the calculated density, the observed density has been 
standardized to mean = 0 and s.d. = 1 over a mask around the 
protein, and sums are over the density map. Then
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To prevent overfitting of B values, we also use restraints so that 
nearby atoms have similar B values, using the same formulation 
as phenix.refine28 
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As atomic-coordinate errors can lead to artificially high B values  
in refinement, which leads to reduced forces acting on these 
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(incorrect) atom positions in subsequent rounds of coordinate 
refinement, we perform several rounds of refinement with uni-
form B values before our first cycle of B-factor refinement.

Atomic refinement. Atomic refinement is based on the Rosetta 
‘relax’ protocol, where cycles of discrete side-chain optimization 
are alternated with cycles of quasi-Newton optimization. In all 
cases, the relevant symmetry was included in the Rosetta refine-
ment to model the full biological unit. An additional term assesses 
agreement to density. For speed considerations, we use approxi-
mate model-map correlation as our metric: an atom’s density is 
convoluted over the entire map, with spline interpolation used 
to quickly compute the Σρcρo term in the correlation, with ρc 
the computed map and ρo the experimental map. With proper 
normalization of ρc and ρo, this approximation differs from a 
real-space correlation only by the term Σρc

2; assuming this is 
constant is equivalent to assuming a constant atom density, which 
is not unreasonable.

B-factor optimization is carried out using a similar approxima-
tion for computational efficiency. Our fast density formulation 
precomputes a three-dimensional (3D) grid where f(x) = Σzρc 
(z + x), that is, the overlap between calculated and observed den-
sity when a single atom is placed at x; this was extended to a 4D 
grid where f(x, B) = Σzρc(z + x). Grid spacing was uniform in 1/B2, 
which allows for 8–12 grid points in the B dimension to accurately 
approximate this space.

Using this approximation, B factors can be very quickly fit by 
refining atoms along the B dimension of the 4D surface. However, 
when refining along the B dimension, the assumption of a  
relatively constant Σρc

2 is violated. To remedy this, we compute  
the exact correlation at a number of fixed values of Bmean  
(corresponding to each discrete sample in the B dimension). 
These values are used as a scaling factor for the spline coefficients 
of each B slice. This allows us to use 4D interpolation to both fit  
B values and refine atomic coordinates taking into account  
atomic B factors. All of our refinement steps are followed by exact 
B-factor refinement at the end, which tends to further improve 
real-space correlation by about 0.01–0.02.

Finally, previous work has shown that relaxing bond ideality is 
important for both structure prediction and refinement against 
crystallographic data28. Thus, the final two cycles of refinement 
are carried out in Cartesian space, allowing for bond-angle and 
bond-length deviations to slightly improve energetics and fit to 
the experimental data.

Validation metrics. Following previous work20, models were  
validated against an independent reconstruction using the  
integrated FSC of the model and independent reconstruction in 
high-resolution shells. Additionally, an alternate likelihood-based 
model validation metric was explored. This metric is formu-
lated on the basis of the probability of the data given the model. 
Assuming each structure factor is independent,
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Here, Emodel and Eobs are the model and map structure factors (with 
lowercase e referring to individual structure factors), normalized  
in resolution bins so that Σ|E(ri)|2 = 1. The term etrue represents 
the (unknown) ground-truth structure factors. In the integral, the  
first term accounts for errors in the reconstruction and the sec-
ond accounts for errors in the model. Although fully exploring 
this formulation remains an important topic of future research, 
parameterization of each of these terms is not straightforward 
and is out of the scope of this manuscript.

Instead, in this work, we explore a more computationally  
tractable formulation of model error: the expected phase error 
(EPE). By computing errors in phase space, we no longer need to 
worry about integration over different resolution ranges because 
the EPE goes to 90° in the limit of completely random data. We 
can integrate over all resolutions—independent of estimated map 
resolution—and have a reasonable measure of model quality com-
parable between different maps. Our measure assumes phase 
errors are normally distributed in phase space with deviation σk 
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These deviations are estimated from the independent  
reconstructions and are computed separately for each resolution  
bin by calculating deviations in model phase error between  
different bins.

Under this assumption, given the phase error δ = αmodel – αmap 
between model and test map, we can compute
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In bins where the two maps agree (for example, in low- 
resolution bins), the error is simply the difference between 
model phase and the independent-map phase. As the agreement 
drops in higher-resolution bins, the error is smoothed out; at  
the extreme—at resolutions that contain no information—the 
error is uniformly 90° given the model-map agreement.

Structural data sets. PrgH/PrgK map reconstruction. Cryo-EM  
image data for the PrgH/PrgK sample have been recorded pre-
viously29,30 on a Polara transmission electron microscope 
equipped with a field emission gun (FEG) operated at 300 kV 
and a 4K camera (Gatan Ultrascan 4000 UHS, physical pixel size 
of 15 µm) with a total electron dose of 25–35 e−/Å2. Defocus 
values were determined using CTFFIND3 (ref. 31). From a total 
of >70,000 particles (pixel size, 1.33 Å/pixel), random subsets 
containing 40,000, 30,000, 20,000, 10,000, 3,000 or 1,000 parti-
cles were extracted. 3D maps were independently generated using 
gold-standard reconstructions in RELION (v1.2).

20S map reconstruction. The 3D density maps of Thermoplasma 
acidophilum 20S proteasome used in this study were determined 
using a subset of the particle images from a full data set described 
previously2. Therefore, the sample preparation, data acquisition 
and image processing were identical to those of this previous 



©
2
0
1
5

N
a
tu

re
 A

m
e
ri

c
a
, 
In

c
. 
 A

ll
 r

ig
h

ts
 r

e
s
e
rv

e
d

.

doi:10.1038/nmeth.3286NATURE METHODS

study. Briefly, T. acidophilum 20S proteasome was expressed  
and purified from Escherichia coli according to the established 
protocols32. A drop of 2 µl of purified 20S proteasome at a con-
centration of ~0.9 µM sample was applied to glow-discharged 
Quantifoil holey carbon grids (Quantifoil, Micro Tools) and 
plunge frozen by using a Vitrobot Mark III (FEI). Grids of frozen 
hydrated samples were imaged using a FEI TF30 Polara electron 
microscope (FEI) equipped with a field emission electron source 
and operated at an accelerating voltage of 300 kV. Images were 
recorded at a nominal magnification 31,000× using a Gatan K2 
Summit camera operated at super-resolution counting mode 
with a calibrated physical pixel size of 1.22 Å at 31,000×. A 10-s 
exposure time at a dose rate of ~10 counts/pixel/s leads to a total 
dose ~30 e−/Å2. The defocus was in the range of ~0.8–1.9 µm. 
CTFFIND3 (ref. 31) was used to determine the defocus values. 
Side-view particles of 20S proteasome were picked automatically 
by using FindEM33. All picked particles were first subject to stand-
ard procedure of multiple rounds of multireference alignment and 
classification. Particles within bad 2D classes were removed. All 
remaining particles were subject to further manual inspection, 
and more bad particles were removed. The complete data set con-
tains 126,729 particles.

Maps were constructed using subsets of full data set containing 
the first 5,000, 3,000, 1,200 and 1,000 particles from the full set. 
For each subset, GeFREALIGN34 was used to refine and deter-
mine the 3D reconstructions with a D7 symmetry following a 
frequency-limited refinement procedure2,24. The atomic structure 
of archaeal 20S proteasome (PDB code: 2C92) filtered to 15 Å 
was used as the initial model. The final 3D reconstructions have 
resolutions of 4.1 Å, 4.4 Å, 5.0 Å and 6.0 Å using Fourier shell 

correlation 0.143 criteria35. Structure features in the amplitude-
sharpened maps confirm these claimed resolutions.
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