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ATOMIC AND MOLECULAR DECOMPOSITIONS
OF ANISOTROPIC TRIEBEL-LIZORKIN SPACES

MARCIN BOWNIK AND KWOK-PUN HO

Abstract. Weighted anisotropic Triebel-Lizorkin spaces are introduced and
studied with the use of discrete wavelet transforms. This study extends the
isotropic methods of dyadic ϕ-transforms of Frazier and Jawerth (1985, 1989)
to non-isotropic settings associated with general expansive matrix dilations
and A∞ weights.

In close analogy with the isotropic theory, we show that weighted anisotropic
Triebel-Lizorkin spaces are characterized by the magnitude of the ϕ-transforms
in appropriate sequence spaces. We also introduce non-isotropic analogues of
the class of almost diagonal operators and we obtain atomic and molecular
decompositions of these spaces, thus extending isotropic results of Frazier and
Jawerth.

1. Introduction and statements of main results

Many function spaces arising in harmonic analysis admit decompositions into
simpler building blocks, often called atoms or molecules, that have some additional
desirable properties. Perhaps the best known is the atomic decomposition of the
Hardy spaces Hp(Rn), 0 < p ≤ 1, which was first shown by Coifman [17] and was
later extended to many other directions by a number of authors [19, 24, 29, 38].

One of the possible directions, where decomposition techniques are very useful,
is the study of a large class of general Triebel-Lizorkin spaces Ḟα,q

p (homogeneous)
and Fα,q

p (inhomogeneous), α ∈ R, 0 < p, q ≤ ∞, which includes many well-known
classical function spaces. In particular, Lp ≈ Ḟ0,2

p ≈ F0,2
p when 1 < p < ∞ and

Hp ≈ Ḟ0,2
p when 0 < p ≤ 1. The atomic and molecular decomposition results for

isotropic Triebel-Lizorkin spaces were first obtained by Frazier and Jawerth [27]
with the help of the ϕ-transforms, which are now more often called discrete wavelet
transforms.

The other possible direction of extending classical function spaces arising in har-
monic analysis is the study of Euclidean spaces equipped with non-isotropic dilation
structures. One of the first studies of this sort was accomplished by Calderón and
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Torchinsky [14, 15] who introduced and studied parabolic Hardy spaces associ-
ated with certain one parameter groups of dilations on Rn. Folland and Stein [24]
extended this study to Hardy spaces defined on a class of homogeneous groups,
which includes an important example of the Heisenberg group, where non-isotropic
characteristics come naturally due to non-commutativity of a group action.

The non-isotropic variants of Triebel-Lizorkin and Besov spaces have been stud-
ied by Besov, Il’in, and Nikol’skĭı [4] and Schmeisser and Triebel [39, 42]. These
studies were concerned mostly with Euclidean spaces associated with one-parameter
groups of diagonal dilations of the form⎛⎜⎜⎝

2ta1 0 · · · 0
0 2ta2 · · · 0

. . . . . . . . . . . . . . . . . . . . .
0 · · · 0 2tan

⎞⎟⎟⎠ ,

where t ∈ R and a = (a1, . . . , an) is a given anisotropy. More recently, Farkas [21]
obtained atomic decomposition for Besov and Triebel-Lizorkin spaces associated
with the above anisotropy. Furthermore, Berkolăıko and Novikov [2, 3] constructed
interesting Meyer-type wavelets adapted to any given anisotropy a = (a1, . . . , an)
and showed that the constructed wavelets form unconditional bases for the corre-
sponding classes of Besov and Triebel-Lizorkin spaces.

Finally, there is also significant interest in the study of weighted function spaces
associated with general A∞ weights. This direction of research was carried over by
Bui, Paluszyński, and Taibleson [8, 9, 11, 12] for Besov and Triebel-Lizorkin spaces.
The weighted Hardy spaces were studied by Strömberg and Torchinsky [40].

The goal of this work is to combine these developments into one coherent theory
of weighted anisotropic Triebel-Lizorkin spaces on Euclidean spaces with the use of
the discrete ϕ-transforms of Frazier and Jawerth. The main novelty of our approach
is that we allow a fairly general discrete group of dilations, motivated by their role
in the multidimensional theory of wavelets. More precisely, we introduce and study
Triebel-Lizorkin spaces associated with an expansive dilation A, that is, an n × n
real matrix all of whose eigenvalues λ satisfy |λ| > 1. Our formulation includes the
previously-studied classes of Triebel-Lizorkin spaces that corresponded to diagonal
dilations. In what follows we summarize the results obtained in this work.

The starting point in the theory of discrete ϕ-transforms of Frazier and Jawerth
is a basic representation formula for tempered distributions f =

∑
Q〈f, ϕQ〉ψQ,

where the sum runs over all dyadic cubes Q in Rn, and ϕQ and ψQ are translates
and dilates of ϕ and ψ localized to a dyadic cube Q. Lemma 2.8 generalizes this
formula to a non-isotropic setting, where the dyadic cubes Q are replaced by a
collection of dilated cubes

Q = {Q = Aj([0, 1]n + k) : j ∈ Z, k ∈ Z
n}

adapted to the action of a dilation A. Naturally, the functions ϕ and ψ have to
satisfy support conditions (2.9) and the Calderón reproducing formula (2.10). In
particular, ϕ̂ and ψ̂ have to be smooth and compactly supported.

Following Frazier and Jawerth, we then define the ϕ-transform, which maps the
distribution f to the sequence of its wavelet coefficients Sϕf = {〈f, ϕQ〉}Q∈Q. For
any sequence s = {sQ}Q∈Q of complex numbers, we formally define the inverse
ϕ-transform, which maps s to a distribution Tψs =

∑
Q∈Q sQψQ. To guarantee
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meaningfulness and boundedness of these transforms, we need to introduce quan-
titative assumptions on distributions f and sequences s. We will assume that f
belongs to anisotropic Triebel-Lizorkin space Ḟα,q

p and s belongs to its discrete
variant ḟα,q

p .
Given α ∈ R, 0 < p < ∞, 0 < q ≤ ∞, and a dilation A, we introduce the

anisotropic Triebel-Lizorkin space Ḟα,q
p as the collection of all tempered distribu-

tions f (modulo polynomials) such that

‖f‖Ḟα,q
p

=
∥∥∥∥( ∑

j∈Z

(| detA|jα|f ∗ ϕj |)q

)1/q∥∥∥∥
Lp

< ∞,

where ϕ ∈ S(Rn) satisfies certain support conditions (3.2) and (3.3), and ϕj(x) =
| detA|jϕ(Ajx). In Corollary 3.7 we show that this definition is independent of
the choice of ϕ in a more general weighted setting, where Lp(Rn) is replaced by
Lp(Rn, wdx) with a weight w in the Muckenhoupt A∞ class.

In the standard dyadic case A = 2Id we have detA = 2n and the factor | detA|jα

in the above definition would be 2jαn instead of the usual 2jα. Thus, our conven-
tion amounts to rescaling the smoothness index α, which in the traditional case is
thought of as the number of derivatives.

The discrete Triebel-Lizorkin sequence space, ḟα,q
p , is defined as the collection of

all complex-valued sequences s = {sQ}Q∈Q such that

‖s‖ḟα,q
p

=
∥∥∥∥( ∑

Q∈Q
(|Q|−α|sQ|χ̃Q)q

)1/q∥∥∥∥
Lp

< ∞,

where χ̃Q = |Q|−1/2χQ is the L2-normalized characteristic function of the dilated
cube Q.

Our basic result, Theorem 3.5, is the following generalization of the fundamental
result of Frazier and Jawerth [27, Theorem 2.2].

Theorem 1.1. The ϕ-transform Sϕ : Ḟα,q
p → ḟα,q

p and the inverse ϕ-transform
Tψ : ḟα,q

p → Ḟα,q
p are bounded, and Tψ ◦ Sϕ is the identity on Ḟα,q

p .

Theorem 1.1 can then be exploited to obtain applications for the Ḟα,q
p spaces by

proving corresponding assertions for ḟα,q
p as it was done in [27]. This is because

the ḟα,q
p norm is generally easier to work with, since it is discrete and depends only

on the magnitude of the sequence elements. Therefore, following the approach of
Frazier and Jawerth, we will study operators on Ḟα,q

p by considering corresponding
operators on ḟα,q

p . One of the most useful sufficient conditions for the boundedness
of operators on ḟα,q

p is the almost diagonal condition studied in great detail in [27].
We extend this notion to a non-isotropic setting and we show that the expected
boundedness result, Theorem 4.1, holds for anisotropic Triebel-Lizorkin spaces.

In Section 5 we introduce the notion of smooth molecules for anisotropic Triebel-
Lizorkin spaces extending familiar isotropic molecules introduced in [27]. A smooth
molecule supported near the dilated cube Q ∈ Q must satisfy appropriate smooth-
ness, decay, and vanishing moments properties. In Theorem 5.5, we establish the es-
timate ||

∑
Q sQΨQ||Ḟα,q

p
≤ C||s||ḟα,q

p
, where {ΨQ}Q are smooth synthesis molecules.

Likewise, in Theorem 5.6, we show ||{〈f, ΦQ〉}Q||ḟα,q
p

≤ C||f ||Ḟα,q
p

, where {ΦQ}Q are
smooth analysis molecules. Both of these results generalize the boundedness of the
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ϕ-transform and the inverse ϕ-transform in Theorem 1.1 to situations when neither
{ΦQ}Q nor {ΨQ}Q are necessarily obtained by translates and dilates of a particular
function in S. These results are then used to show the smooth atomic decomposi-
tion of the anisotropic Ḟα,q

p spaces. In Theorem 5.8 we show that every f ∈ Ḟα,q
p

can be decomposed as f =
∑

Q sQaQ with ||{sQ}Q||ḟα,q
p

≤ C||f ||Ḟα,q
p

, where aQ’s
are smooth atoms. That is, each aQ is compactly supported near the dilated cube
Q and satisfies appropriate smoothness and vanishing moments conditions. This
result is again an extension of [27] to the weighted anisotropic Triebel-Lizorkin
spaces.

Finally, we also study inhomogeneous anisotropic Triebel-Lizorkin spaces Fα,q
p

and we outline analogous decomposition results for these spaces. Section 6 includes
the proofs of some of more technical and longer auxiliary results needed in this
work.

2. Some background tools

We start by recalling basic definitions and properties of non-isotropic spaces
associated with general expansive dilations.

2.1. Basic facts about expansive dilations and Ap weights. A real n×n ma-
trix A is an expansive matrix, sometimes called shortly a dilation, if minλ∈σ(A) |λ|>1,
where σ(A) is the set of all eigenvalues (the spectrum) of A. A basic notion in our
study is a quasi-norm ρA associated with A, which induces a quasi-distance making
R

n a space of homogeneous type. For rudimentary facts about spaces of homoge-
neous type we refer the reader to [18, 19, 29].

Definition 2.1. A quasi-norm associated with an expansive matrix A is a measur-
able mapping ρA : Rn → [0,∞) satisfying

ρA(x) > 0, for x �= 0,

ρA(Ax) = | detA|ρA(x) for x ∈ R
n,(2.1)

ρA(x + y) ≤ H(ρA(x) + ρA(y)) for x, y ∈ R
n,

where H ≥ 1 is a constant.

In the standard dyadic case A = 2Id, a quasi-norm ρA satisfies ρA(2x) = 2nρA(x)
instead of the usual scalar homogeneity. In particular, ρA(x) = |x|n is an example
for a quasi-norm for A = 2Id, where | · | represent the Euclidean norm in Rn.

For a list of properties of quasi-norms associated with expansive dilations we refer
the reader to [6, 32]. Here, we only recall a few basic facts needed in this work.
One can show that all quasi-norms associated to a fixed dilation A are equivalent;
see [6, Lemma 2.4]. Moreover, there always exists a quasi-norm ρA, which is C∞

on Rn except the origin; see [33]. However, for our purposes it is enough to restrict
to a quasi-norm ρA given by

(2.2) ρA(x) =
∞∑

k=−∞
| detA|kχOk

(x),

where Ok = Ak(B(0, 1)) \
⋃k−1

j=−∞ Aj(B(0, 1)), and B(0, 1) = {x ∈ R
n : |x| < 1} is

the unit ball. Equivalently,

(2.3) ρA(x) = | detA|k, where k = inf{j ∈ Z : A−jx ∈ B(0, 1)}



ANISOTROPIC TRIEBEL-LIZORKIN SPACES 1473

for x �= 0 and ρA(x) = 0 for x = 0. It is then clear that ρA given by (2.2) satisfies
(2.1) with the constant H = | detA|j0 , where j0 is the smallest integer such that⋃

j≤0 Aj(B(0, 2)) ⊂ Aj0(B(0, 1)). Moreover, one can show that the above quasi-
norm satisfies

(2.4) |{x ∈ R
n : ρA(x) < r}| ≈ r for any r > 0.

Since all quasi-norms associated to a fixed dilation A are equivalent, (2.4) holds for
any quasi-norm ρA associated with A.

It should be remarked that the quasi-norm ρA given by (2.2) might produce
ρA-balls {x ∈ Rn : ρA(x) < r}, which are not convex. Despite this, it is possible to
modify the above construction to guarantee that ρA-balls are convex. To achieve
this, one must replace the ball B(0, 1) in (2.3) by an appropriate ellipsoid ∆ sat-
isfying ∆ ⊂ r∆ ⊂ A∆ for some r > 1. For more details, we refer to [6, p. 5].
Therefore, we will simply assume that ρA-balls are convex.

We also need the following basic facts about the quasi-norm ρA; see [6, 33].

Proposition 2.1. For any expansive matrix A, there exists a constant c > 0 such
that |Ok| = c| detA|k for any k ∈ Z. Consequently, for any ε > 0,∫

B(0,1)

ρA(x)ε−1dx < ∞ and
∫

Rn\B(0,1)

ρA(x)−1−εdx < ∞.

Lemma 2.2. Suppose A is expansive matrix, and λ− and λ+ are any positive real
numbers such that 1 < λ− < minλ∈σ(A) |λ| and λ+ > maxλ∈σ(A) |λ|. Let

ζ+ :=
ln λ+

ln | detA| , ζ− :=
ln λ−

ln | detA| .

Then for any quasi-norm ρA there exists a constant C such that

C−1ρA(x)ζ− ≤ |x| ≤ CρA(x)ζ+ if ρA(x) ≥ 1(2.5)

and

C−1ρA(x)ζ+ ≤ |x| ≤ CρA(x)ζ− if ρA(x) ≤ 1.(2.6)

Furthermore, if A is diagonalizable over C, then we may take λ− = minλ∈σ(A) |λ|
and λ+ = maxλ∈σ(A) |λ|.

We will also need the following easy estimates

(1/c)λj
−|x| ≤ |Ajx| ≤ cλj

+|x| for j ≥ 0,(2.7)

(1/c)λj
+|x| ≤ |Ajx| ≤ cλj

−|x| for j ≤ 0,(2.8)

for some constant c > 0, where λ− and λ+ are the same as in Lemma 2.2; see [41,
p. 40]. It is also easy to verify that we have the following proposition.

Proposition 2.3. (Rn, ρA, | · |) is a space of homogeneous type, where ρA is a
quasi-norm associated with an expansive dilation A, and | · | is Lebesgue measure
on Rn.

We also need some basic results about Muckenhoupt Ap weights on spaces of
homogeneous type. The main tool needed in this work is the weighted vector-
valued Fefferman-Stein inequality for the Hardy-Littlewood maximal operator. For
basic facts about weighted norm inequalities, we refer to [29, 38].
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Definition 2.2. We say that a function w : Rn → (0,∞) belongs to the Mucken-
houpt class Ap = Ap(Rn, ρA), p > 1, if there is a constant C > 0 such that(

1
|B|

∫
B

w(y)dy

)(
1
|B|

∫
B

w− 1
(p−1) (y)dy

)p−1

≤ C,

for any ρA-ball B ∈ B. Here, B = B(ρA) is the collection of all ρA-balls

BρA
(x, r) = {y ∈ R

n : ρA(y − x) < r} x ∈ R
n, r > 0.

For p = 1, we say w ∈ A1 if(
1
|B|

∫
B

w(y)dy

)(
sup
B

w−1

)
≤ C,

for any ρA-ball B ∈ B. Finally, A∞ =
⋃

p>1 Ap.

For any locally integrable function f on Rn, we define the Hardy-Littlewood
maximal operator MρA

to be

MρA
f(x) = sup

x∈B∈B

1
|B|

∫
B

|f(y)|dy,

where B is the collection of all ρA-balls B.
We will use the following two standard results on weighted norm inequalities.

Theorem 2.4. The Hardy-Littlewood maximal operator MρA
is of weak type (1, 1)

on L1(w) if and only if w ∈ A1 and MρA
is bounded on Lp(w) for 1 < p < ∞ if

and only if w ∈ Ap.

Theorem 2.4 is an immediate consequence of Proposition 2.3 and standard results
on weighted norm inequalities; see [29, Chapter IV] or [38, Chapter V]. In fact,
Theorem 2.4 is a special case of a more general Theorem 2.5, which is the Fefferman-
Stein vector-valued inequality [22] in the weighted setting.

Theorem 2.5. Suppose that 1 < p < ∞, 1 < q ≤ ∞, and w ∈ Ap. Then there
exists a constant C such that∥∥∥∥( ∑

i

|MρA
fi|q

)1/q∥∥∥∥
Lp(w)

≤ C

∥∥∥∥( ∑
i

|fi|q
)1/q∥∥∥∥

Lp(w)

holds for any (fi)i ⊂ Lp(w).

For a direct proof of this result for Rn with the usual isotropic distance metric
we refer to [1]; see also [29, Remark V.6.5]. By Proposition 2.3 and [30, Section
6.6], Theorem 2.5 also holds for Rn in the anisotropic setting.

2.2. Discrete wavelet transforms. Suppose that ϕ, ψ are test functions in the
Schwartz class S(Rn) such that

supp ϕ̂, supp ψ̂ ⊂ [−π, π]n \ {0},(2.9) ∑
j∈Z

ϕ̂((A∗)jξ)ψ̂((A∗)jξ) = 1 for all ξ ∈ R
n \ {0},(2.10)

where A∗ is the adjoint (transpose) of A. Here,

supp ϕ̂ = {ξ ∈ Rn : ϕ̂(ξ) �= 0},
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and the Fourier transform of f is

f̂(ξ) =
∫

Rn

f(x)e−i〈x,ξ〉dx.

For any j ∈ Z and k ∈ Zn, let Qj,k = A−j([0, 1]n + k) be the dilated cube, and
xQj,k

= A−jk be its “lower-left corner”. Let

Q = QA = {Qj,k : j ∈ Z, k ∈ Z
n}

be the collection of all dilated cubes. For ϕ ∈ S(Rn), define

ϕj(x) = | detA|jϕ(Ajx) for j ∈ Z,

ϕQ(x) = | detA|j/2ϕ(Ajx − k) = |Q|1/2ϕj(x − xQ) for Q = Qj,k ∈ Q.

It is not hard to show that the conditions (2.9), (2.10) imply that the wavelet
systems {ϕQ : Q ∈ Q} and {ψQ : Q ∈ Q} form a pair of dual frames in L2(Rn).
This means that {ϕQ : Q ∈ Q} and {ψQ : Q ∈ Q} are Bessel sequences, i.e., there
exists a constant C > 0 such that

(2.11)
∑
Q∈Q

|〈f, ϕQ〉|2,
∑
Q∈Q

|〈f, ψQ〉|2 ≤ C||f ||2L2 for all f ∈ L2(Rn),

and

(2.12) f =
∑
Q∈Q

〈f, ϕQ〉ψQ for all f ∈ L2(Rn),

where the above series converges unconditionally in L2. Indeed, using (2.9) and a
standard periodization argument (see for example [5, Lemma 3.1]), it is not hard
to show that∑

Q∈Q
|〈f, ϕQ〉|2 =

∑
j∈Z

|f̂(ξ)|2|ϕ̂((A∗)jξ)|2dξ for all f ∈ L2(Rn),

and the similar identity for ψ. This together with (2.9) shows (2.11). Applying
analogous periodization arguments such as [5, Theorem 3.2 and Theorem 4.2] and
using (2.10) yields (2.12). We remark that (2.12) also follows from more general
considerations in [16].

Since our interest lies beyond L2 theory of wavelet decompositions, we will need
the following two lemmas providing basic reproducing identities (2.14) and (2.23)
used subsequently in the study of ϕ transform. Lemma 2.6 shows that any distri-
bution f admits a kind of Littlewood-Paley decomposition adapted to an expansive
dilation A, whereas Lemma 2.8 provides the fundamental reproducing identity for
distributions by means of discrete wavelet transforms. Both of these results are
anisotropic modifications of their well-known dyadic analogues; see [25, 27, 28].

Lemma 2.6. Suppose that A is an expansive matrix and ϕ ∈ S(Rn) is such that

(2.13)
∑
j∈Z

ϕ̂((A∗)jξ) = 1 for all ξ ∈ R
n \ {0},

and supp ϕ̂ is compact and bounded away from the origin. Then for any f ∈ S ′(Rn),

(2.14) f =
∑
j∈Z

ϕj ∗ f,

where ϕj(x) = | detA|jϕ(Ajx), and the convergence is in S ′/P, where P ⊂ S ′ is
the class of all polynomials in Rn.
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More precisely, there exist a constant d depending only on the order of the dis-
tribution f̂ , a sequence of polynomials {Pk}∞k=1 ⊂ P with deg Pk ≤ d, and P ∈ P,
such that

(2.15) f = lim
k→∞

( ∞∑
j=−k

ϕj ∗ f + Pk

)
+ P,

where the convergence is in S ′.

To show Lemma 2.6 we will need to use the following proposition, which is of
independent interest.

Proposition 2.7. Suppose {fi}i∈N is a sequence of distributions in S ′(Rn) and
d ≥ 0 is an integer. Assume that for every multi-index γ with |γ| = d + 1 the
sequence of partial derivatives {∂γfi} converges in S ′ as i → ∞. Then there exists
a sequence of polynomials {Pi}i∈N with deg Pi ≤ d such that {fi + Pi} converges to
some distribution f ∈ S ′ as i → ∞.

Proposition 2.7 is probably a folklore fact; see [36, p. 53]. Since we could not
find its proof in the literature, we include the proof of Proposition 2.7 in Section 6.

Proof of Lemma 2.6. Take any f ∈ S ′ and suppose that f̂ has order ≤ m. This
means that there exists an integer l ≥ 0 and a constant C such that

(2.16) |〈f̂ , φ〉| ≤ C sup
|α|≤l, |β|≤m

||φ||α,β for all φ ∈ S,

where ||φ||α,β = supx∈Rn |xα||∂βφ(x)| denotes the usual semi-norm in S(Rn) for
multi-indices α and β. Suppose that ϕ ∈ S satisfies the hypothesis of Lemma 2.6.
In particular, there exists a constant c > 0 such that

(2.17) supp ϕ̂ ⊂ {ξ ∈ R
n : 1/c < |ξ| < c}.

We will first show that the series
∑

j≥0 ϕj ∗ f converges in S ′. Since the Fourier
transform is an isomorphism of S ′, this is equivalent to saying that

∑
j≥0 ϕ̂j f̂

converges in S ′. By (2.16)

(2.18) |〈ϕ̂j f̂ , φ〉| = |〈f̂ , ϕ̂jφ〉| ≤ C sup
|α|≤l, |β|≤m

||ϕ̂jφ||α,β .

Since ϕ̂j(ξ) = ϕ̂((A∗)−jξ), by applying the chain rule we have

(2.19) sup
|β|=s

||∂βϕ̂j ||∞ ≤ C||(A∗)−j ||s sup
|β|=s

||∂βϕ̂||∞.

Since the norms ||(A∗)−j || are uniformly bounded for all j ≥ 0 by the expansiveness
of A∗, we have by (2.17)

sup
|α|≤l, |β|≤m

||ϕ̂jφ||α,β ≤ C sup
ξ∈Rn

(
(1 + |ξ|)l sup

|β|≤m

|∂βϕ̂j(ξ)| · sup
|β|≤m

|∂βφ(ξ)|
)

≤ C sup
1/c<|(A∗)−jξ|<c

(1 + |ξ|)l sup
|β|≤m

|∂βφ(ξ)|

≤ C sup
|α|≤l+1, |β|≤m

||φ||α,β sup
1/c<|(A∗)−jξ|<c

(1 + |ξ|)−1

≤ C sup
|α|≤l+1, |β|≤m

||φ||α,β sup
|ξ|>1/c

(1 + |(A∗)jξ|)−1 ≤ Cλ−j
− sup

|α|≤l+1, |β|≤m

||φ||α,β ,

(2.20)
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where in the last step we used (2.7) with λ− being the same as in Lemma 2.2. Since
A∗ is expansive, we can choose λ− > 1. Combining (2.18) and (2.20) shows that∑

j≥0 ϕ̂j f̂ converges in S ′.
Next we will show that for sufficiently large d, the series

∑
j<0 ∂γ(ϕj ∗ f) con-

verges in S ′ for every multi-index |γ| = d + 1. Again, this is equivalent to saying
that

∑
j<0 ξγϕ̂j f̂ converges in S ′ with |γ| = d + 1.

Choose any integer d ≥ �m ln λ+/ lnλ−�, where λ+ and λ− are the same as in
Lemma 2.2. Repeating the estimates as in (2.20) we have by (2.19) for j < 0

sup
|α|≤l, |β|≤m

||ξγϕ̂jφ||α,β

≤ C sup
0≤k≤d+1

sup
ξ∈Rn

(
(1 + |ξ|)l|ξ|d+1−k sup

|β|≤m−k

|∂βϕ̂j(ξ)| · sup
|β|≤m−k

|∂βφ(ξ)|
)

≤ C sup
0≤k≤d+1

||(A∗)−j ||m−k sup
|β|≤m−k

||φ||0,β sup
1/c<|(A∗)−jξ|<c

(1 + |ξ|)l|ξ|d+1−k

≤ C sup
0≤k≤d+1

||(A∗)−j ||m−k sup
|β|≤m

||φ||0,β sup
|ξ|<c

(1 + |(A∗)jξ|)l|(A∗)jξ|d+1−k

≤ C sup
0≤k≤d+1

λ
−j(m−k)
+ λ

j(d+1−k)
− sup

|β|≤m

||φ||0,β ≤ Cλ−jm
+ λ

j(d+1)
− sup

|β|≤m

||φ||0,β ,

(2.21)

where in the last two steps we used (2.8) and (λ+/λ−)j < 1 for j < 0, respectively.
To clarify (2.21), we note that 0 ≤ k ≤ d + 1 represents the number of derivatives
that fall on the term ξγ when applying the Leibniz rule for ∂β(ξγϕ̂jφ). Therefore,
by (2.16) and (2.21) for any |γ| = d + 1 we have

|〈ξγϕ̂j f̂ , φ〉| = |〈f̂ , ξγϕ̂jφ〉| ≤ C(λ−m
+ λd+1

− )j sup
|β|≤m

||φ||0,β ,

which, by our choice of d, implies that
∑

j<0 ξγϕ̂j f̂ converges in S ′, since λ−m
+ λd+1

−
> 1. Since |γ| = d + 1 is arbitrary, Proposition 2.7 implies the existence of polyno-
mials {Pk}, such that {

∑−1
j=−k ϕj ∗ f + Pk} converges in S ′ as k → ∞.

Combining the above yields that {
∑∞

j=−k ϕj ∗ f + Pk} converges to some distri-
bution f0 ∈ S ′ as k → ∞. By (2.13) it is clear that supp(f̂ − f̂0) = {0} by testing
against φ ∈ S with 0 �∈ supp φ. Therefore, there exists a polynomial P such that
f = f0 + P , which completes the proof of Lemma 2.6. �

Lemma 2.8. Suppose that A is an expansive matrix. If g ∈ S ′
(Rn), h ∈ S(Rn)

and

supp ĝ, ĥ ⊂ (A∗)j [−π, π]n for some j ∈ Z,

then

(2.22) (g ∗ h)(x) =
∑

k∈Zn

| detA|−jg(A−jk)h(x − A−jk),

with convergence in S ′. Consequently, if ϕ, ψ ∈ S ′(Rn) satisfy (2.9), (2.10), then

(2.23) f =
∑
Q∈Q

〈f, ϕQ〉ψQ, for any f ∈ S
′
/P,



1478 MARCIN BOWNIK AND KWOK-PUN HO

where the convergence of the above series, as well as the equality, is in S ′/P. More
precisely, there exists a sequence of polynomials {Pk}∞k=1 ⊂ P and P ∈ P such that

f = lim
k→∞

( ∑
Q∈Q, | det A|−k≤|Q|≤| det A|k

〈f, ϕQ〉ψQ + Pk

)
+ P,

with convergence in S ′.

Proof. The proof of Lemma 2.8 is a straightforward adaptation of [28, Lemma 6.10],
which is included for completeness. Since g ∈ S ′(Rn) has compact support in the
Fourier domain, g is regular. More precisely, the distribution g is a slowly increasing
(at most polynomially fast) and infinitely differentiable function. Hence, g(A−jk) is
well defined for each k ∈ Z, and the integral defining (g∗h)(x) converges absolutely
since h ∈ S(Rn).

First, we suppose that g ∈ S(Rn) and expand ĝ in the Fourier orthonormal basis{
| detA|−j/2

(2π)n/2
e−i〈A−jk,ξ〉

}
k∈Zn

of L2((A∗)j [−π, π]n),

ĝ(ξ) =
∑

k∈Zn

| detA|−j

(2π)n

( ∫
(A∗)j [−π,π]n

ĝ(y)ei〈A−jk,y〉dy

)
e−i〈A−jk,ξ〉.

Since ĝ is supported in (A∗)j [−π, π]n, we can replace (A∗)j [−π, π]n by R
n in the

above integral so that we have

ĝ(ξ) =
∑

k∈Zn

| detA|−jg(A−jk)e−i〈A−jk,ξ〉 for ξ ∈ (A∗)j [−π, π]n,

by the Fourier inversion formula. Since supp ĥ ⊂ (A∗)j [−π, π]n, we can replace ĝ

by its periodic extension without altering the product ĝĥ. Using g ∗ h = (ĝĥ)̌, we
obtain

(g ∗ h)(x) =
∑

k∈Zn

| detA|−jg(A−jk)(e−i〈A−jk,ξ〉ĥ(ξ))̌(x)

=
∑

k∈Zn

| detA|−jg(A−jk)h(x − A−jk).

The case of a general g ∈ S ′ is obtained from the result just proved by the
standard regularization argument. For δ > 0, let gδ(x) = γ(δx)g(x), where γ ∈
S(Rn) satisfies γ(0) = 1, and supp γ̂ is compact. Since gδ(x) ∈ S(Rn), we have

(gδ ∗ h)(x) =
∑

k∈Zn

| detA|−jgδ(A−jk)h(x − A−jk).

Using the Lebesgue Dominated Convergence Theorem and taking the limit as δ →
0, we obtain (2.22). It is clear that the series (2.22) converges pointwise and in S ′.

Finally, to show (2.23), take any j ∈ Z. Let g = f ∗ ϕ̃j , h = ψj , and ϕ̃(x) =
ϕ(−x). By (2.22), (f ∗ ϕ̃j)(A−jk) = | detA|j/2〈f, ϕQj,k

〉, and ψj(x − A−jk) =
| detA|j/2ψQj,k

, we have

f ∗ ϕ̃j ∗ ψj =
∑

k∈Zn

〈f, ϕQj,k
〉ψQj,k

.
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Combining Lemma 2.6, (2.9), (2.10), and summing the above over j ∈ Z, yields
(2.23). �

3. Triebel-Lizorkin spaces

In this section we define the weighted anisotropic Triebel-Lizorkin spaces us-
ing the Littlewood-Paley decomposition associated with general expansive dilation
matrices.

3.1. Homogeneous Triebel-Lizorkin spaces. Motivated by the classical defi-
nition of Triebel-Lizorkin spaces by Triebel [42, 43], Frazier, Jawerth and Weiss
[27, 28], and their weighted counterparts by Bui [8, 10], we define anisotropic
Triebel-Lizorkin spaces as follows.

Definition 3.1. For α ∈ R, 0 < p < ∞, 0 < q ≤ ∞, and w ∈ A∞, we define
the weighted anisotropic Triebel-Lizorkin space Ḟα,q

p = Ḟα,q
p (Rn, A, wdx) as the

collection of all f ∈ S ′
/P such that

(3.1) ‖f‖Ḟα,q
p

=
∥∥∥∥( ∑

j∈Z

(| detA|jα|f ∗ ϕj |)q

)1/q∥∥∥∥
Lp(wdx)

< ∞,

where ϕ ∈ S(Rn) satisfies (3.2) and (3.3),

supp ϕ̂ := {ξ ∈ Rn : ϕ̂(ξ) �= 0} ⊂ [−π, π]n \ {0},(3.2)

sup
j∈Z

|ϕ̂((A∗)jξ)| > 0 for all ξ ∈ R
n \ {0}.(3.3)

To emphasize the dependence on ϕ we will use the notation Ḟα,q
p (Rn, A, wdx)(ϕ)

for (3.1). Later we will show that this definition is independent of ϕ.
The sequence space ḟα,q

p = ḟα,q
p (A, wdx) is the collection of all complex-valued

sequences s = {sQ}Q∈Q such that

‖s‖ḟα,q
p

=
∥∥∥∥( ∑

Q∈Q
(|Q|−α|sQ|χ̃Q)q

)1/q∥∥∥∥
Lp(wdx)

< ∞,

where χ̃Q = |Q|−1/2χQ is the L2-normalized characteristic function of the dilated
cube Q.

For the basic properties of S ′/P, we refer to [42, Section 5.1]. Here, we only
recall that S ′/P can be identified with the space of all continuous functionals on
the closed subspace S0(Rn) of the Schwartz class S(Rn) given by

S0(Rn) = {φ ∈ S :
∫

φ(x)xαdx = 0 for all multi-indices α}.

Equivalently, S0(Rn) is defined as a collection of φ ∈ S such that semi-norms

(3.4) ||φ||M = sup
|β|≤M

sup
ξ∈Rn

|∂βφ̂(ξ)|(|ξ|M + |ξ|−M ) < ∞ for any M ∈ N.

Moreover, semi-norms || · ||M generate a topology of a locally convex space on
S0(Rn).

We will make an extensive use of the following technical lemma. The proof of
Lemma 3.1 can be found in Section 6.
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Lemma 3.1. Suppose K is a compact subset of Rn, 0 < p < ∞, and w ∈ A∞.
Then there exist C, N > 0 such that

(3.5) sup
x∈Rn

|f(x)|
(1 + |x|)N

≤ C||f ||Lp(w) for all f ∈ S ′ with supp f̂ ⊂ K.

As one of the consequences of Lemma 3.1 we can conclude the completeness of
Ḟα,q

p (Rn, A, wdx) spaces.

Proposition 3.2. The inclusion map Ḟα,q
p = Ḟα,q

p (Rn, A, wdx) ↪→ S ′/P is contin-
uous. Moreover, Ḟα,q

p equipped with || · ||Ḟα,q
p

is a quasi-Banach space, i.e., Ḟα,q
p is

a complete quasi-normed space.

Proof. The continuity of the inclusion map is shown most easily for ϕ satisfying
(2.13) in addition to (3.2). It is a consequence of Lemma 3.1 applied for compact
sets Kj = (A∗)j supp ϕ̂, j ∈ Z, together with the observation that the constants
C = C(Kj) in (3.5) are uniformly bounded for j < 0 and they grow at most as
O(| detA|j/s1) as j → ∞ for some s1 > 0. Therefore, there exists N > 0 such that
for any φ ∈ S,

(3.6)

|〈f ∗ ϕj , φ〉| ≤ C(Kj)||f ∗ ϕj ||Lp(w)||(1 + |x|)Nφ(x)||∞
≤ C(Kj)| detA|−jα||f ||Ḟα,q

p
||(1 + |x|)Nφ(x)||∞

≤ C| detA||j|(1/s1+|α|)||f ||Ḟα,q
p

sup
|β|≤n+1,|γ|≤N

||φ̂||β,γ .

Using techniques similar to the proof of Lemma 2.6, it is then not very difficult to
show that there exists M > 0 and s2 > 0 such that

(3.7) |〈f ∗ ϕj , φ〉| ≤ C||f ||Ḟα,q
p

| detA|−|j|s2 ||φ||M ,

where ||φ||M is given by (3.4). Indeed, the idea behind showing (3.7) is as follows.
Choose h ∈ S(Rn) such that ĥ(ξ) = 1 for all ξ ∈ supp ϕ̂ and supp ĥ ⊂ {ξ : 1/r <
|ξ < r} for some r > 0. Then using 〈f ∗ ϕj , φ〉 = 〈f ∗ ϕj , hj ∗ φ〉 one can replace
the semi-norms ||φ̂||β,γ , where |β| ≤ n + 1 and |γ| ≤ N , by ||ĥ((A∗)−j ·)φ̂(·)||β,γ in
(3.6). Then techniques from the proof of Lemma 2.6 can be used to show (3.7).
For more details about deriving (3.7), we refer the reader to [7, Proposition 3.3].

Thus, (3.7) and Lemma 2.6 yield

|〈f, φ〉| ≤
∑
j∈Z

|〈f ∗ ϕj , φ〉| ≤ C
∑
j∈Z

||f ||Ḟα,q
p

| detA|−|j|s2 ||φ||M ≤ C||f ||Ḟα,q
p

||φ||M ,

which shows that i : Ḟα,q
p ↪→ S ′/P is continuous. Once the continuity of the

inclusion map i is established, the completeness of Ḟα,q
p (Rn, A, wdx) is immediate

by Fatou’s Lemma and Lemma 2.6.
In the case when ϕ satisfies only (3.2) and (3.3), one must use a variant of Lemma

2.6, where (2.14) is replaced by

f =
∑
j∈Z

f ∗ ϕj ∗ ψ̃j , convergence in S ′/P,

where ψ is as in Lemma 3.6 and ψ̃(x) = ψ(−x). This completes the proof of
Proposition 3.2. �
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3.2. Wavelet transforms for Ḟα,q
p (Rn, A, wdx). Suppose that ϕ, ψ ∈ S(Rn) are

such that supp ϕ̂, supp ψ̂ are compact and bounded away from the origin.

Definition 3.2. The ϕ-transform Sϕ, often called the analysis transform, is the
map taking each f ∈ S ′

(Rn)/P to the sequence Sϕf = {(Sϕf)Q}Q∈Q defined by
(Sϕf)Q = 〈f, ϕQ〉. This is well defined, since

∫
xγϕQ(x)dx = 0 for any multi-index

γ. Here, we follow the pairing convention which is consistent with the usual scalar
product in L2(Rn), i.e., 〈f, ϕ〉 = f(ϕ) for f ∈ S ′ and ϕ ∈ S. The inverse ϕ-
transform, Tψ, often called the synthesis transform, is the map taking the sequence
s = {sQ}Q∈Q to Tψs =

∑
Q∈Q sQψQ. We will show later that Tψs is well defined

for s ∈ ḟα,q
p .

Given a sequence s = {sQ}Q, 0 < r < ∞, and λ > 0, define the sequence
s∗r,λ = {(s∗r,λ)Q}Q by

(s∗r,λ)Q =
( ∑

P∈Q, |P |=|Q|
|sP |r/(1 + |Q|−1ρA(xQ − xP ))λ

)1/r

.

Clearly, we always have |sQ| ≤ (s∗r,λ)Q for any Q ∈ Q.
In order to prove the boundedness of Sϕ and Tψ, we need the following two

lemmas.

Lemma 3.3. Suppose α ∈ R, 0 < p < ∞, 0 < q ≤ ∞, and w ∈ Ap0 . Then for any
r > 0 and λ > max(1, r/q, rp0/p), there is a constant C > 0 such that

‖s‖ḟα,q
p (A,wdx) ≤ ‖s∗r,λ‖ḟα,q

p (A,wdx) ≤ C‖s‖ḟα,q
p (A,wdx) for all s = {sQ}Q.

Lemma 3.4 (Anisotropic Peetre’s inequality). Let K be a compact subset of Rn

and r > 0. Then there exist constants C1, C2 > 0 such that for any g ∈ S ′
(Rn)

with supp ĝ ⊂ K, we have

(3.8)
sup
z∈Rn

|∇g(x − z)|
(1 + ρA(z))1/r

≤ C1 sup
z∈Rn

|g(x − z)|
(1 + ρA(z))1/r

≤ C2[(MρA
|g|r)(x)]1/r for all x ∈ R

n.

The proofs of the above results can be found in Section 6. The next result is
a generalization of the fundamental result of Frazier and Jawerth saying that the
following diagram is commutative for ϕ and ψ satisfying (2.9) and (2.10):

ḟα,q
p

Tψ

���
��

��
��

�

Ḟα,q
p

Sϕ

����������
Id �� Ḟα,q

p

Theorem 3.5. Suppose α ∈ R, 0 < p < ∞, 0 < q ≤ ∞, w ∈ A∞, and
ϕ, ψ ∈ S(Rn) are such that supp ϕ̂, supp ψ̂ are compact and bounded away from
the origin. Then the operators Sϕ : Ḟα,q

p (Rn, A, wdx)(ϕ̃) → ḟα,q
p (A, wdx) and

Tψ : ḟα,q
p (A, wdx) → Ḟα,q

p (Rn, A, wdx)(ϕ) are bounded, ϕ̃(x) = ϕ(−x). In addition,
if ϕ, ψ satisfy (2.9), (2.10) then Tψ ◦ Sϕ is the identity on Ḟα,q

p (Rn, A, wdx)(ϕ) =
Ḟα,q

p (Rn, A, wdx)(ϕ̃).
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Proof. We will only prove the case of q < ∞ and leave details of the easier case
q = ∞ to the reader.

To prove the boundedness of Tψ, take any s = {sQ}Q ∈ ḟα,q
p . We will show

that f = Tψs =
∑

Q sQψQ converges in Ḟα,q
p and consequently in S ′/P. Assume

momentarily that s = {sQ} is finitely supported. Since the supports of ϕ̂ and ψ̂
are bounded and bounded away from the origin, there is an integer M such that
supp ϕ̂j ∩ supp ψ̂i = ∅ for |i − j| > M . Therefore,

(ϕj ∗ f)(x) =
i=j+M∑
i=j−M

∑
|P |=| det A|−i

sP (ϕj ∗ ψP )(x).

Since the functions ϕl∗ψ, l = −M,−M+1, . . . , M all belong to S(Rn), the functions
ϕj ∗ ψP are uniformly localized on the dilated cubes P ∈ Q, |P | = | detA|−i, with
|i − j| ≤ M , by the identity

ϕj ∗ ψP = (ϕj−i ∗ ψ)P for any P ∈ Q, |P | = | detA|−i.

In particular, for any λ > 1, there is a constant C = C(λ) > 0 such that

|(ϕj ∗ ψP )(x)| ≤ C|P |−1/2(1 + ρA(Ai(x − xP )))−λ

for P ∈ Q, |P | = | detA|−i, and |i − j| ≤ M . Given x ∈ Rn and i ∈ Z, let
Qi = Qi(x) ∈ Q be the unique cube such that x ∈ Qi and |Qi| = | detA|−i.
Therefore,

|ϕj ∗ f(x)| ≤ C

i=j+M∑
i=j−M

| detA|i/2

( ∑
|P |=| det A|−i

|sP |
(1 + ρA(Ai(x − xP )))λ

)

≤ C

i=j+M∑
i=j−M

|Qi|−1/2

( ∑
|P |=|Qi|

|sP |
(1 + |Qi|−1ρA(xQi − xP ))λ

)

= C

i=j+M∑
i=j−M

(s∗1,λ)Qi χ̃Qi(x) = C

i=j+M∑
i=j−M

∑
|Q|=| det A|−i

(s∗1,λ)Qχ̃Q(x).

By choosing λ > max(1, 1/q, p0/p), Lemma 3.3 yields

‖Tψs‖Ḟα,q
p

=
∥∥∥∥ ∑

Q

sQψQ

∥∥∥∥
Ḟα,q

p

=
∥∥∥∥( ∑

j∈Z

(| detA|jα|f ∗ ϕj |)q

)1/q∥∥∥∥
Lp(w)

≤ C

∥∥∥∥ M∑
l=−M

( ∑
j∈Z

∑
|Q|=| det A|−j+l

(| detA|jα|(s∗1,λ)Q|χ̃Q)q

)1/q∥∥∥∥
Lp(w)

= C

∥∥∥∥ M∑
l=−M

| detA|lα
( ∑

Q∈Q
(|Q|−α|(s∗1,λ)Q|χ̃Q)q

)1/q∥∥∥∥
Lp(wdx)

≤ C‖s∗1,λ‖ḟα,q
p

≤ C‖s‖ḟα,q
p

.

To show that the same estimate holds for arbitrary s ∈ ḟα,q
p , we apply the above

argument for some special ϕ additionally satisfying (2.13) and (3.2). Then, by the
above estimate and Proposition 3.2, Tψs =

∑
Q sQψQ is a well-defined element of

S ′/P, since sequences with finite support are dense in ḟα,q
p for p, q < ∞. Hence,
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by a limiting argument, the above estimate must also hold for arbitrary s ∈ ḟα,q
p ,

which shows the boundedness of Tψ.
To prove the boundedness of Sϕ, suppose that f ∈ Ḟα,q

p (Rn, A, wdx)(ϕ̃). Then,
for any x ∈ Rn, j ∈ Z, and r > 0, we have a pointwise estimate∑

|Q|=| det A|−j

|Q|−α|(Sϕf)Q|χ̃Q(x) = | detA|jα
∑

|Q|=| det A|−j

|(ϕ̃j ∗ f)(xQ)|χQ(x)

≤ | detA|jα
∑

|Q|=| det A|−j

sup
y∈Q

|(ϕ̃j ∗ f)(y)|χQ(x)

≤ C| detA|jα sup
z∈Q−Q

|(ϕ̃j ∗ f)(x − z)|
(1 + ρA(Ajz))1/r

,

where ϕ̃(x) = ϕ(−x), since z ∈ Q − Q ⊂ BρA
(0, 2H| detA|−j). Therefore,∑

|Q|=| det A|−j

|Q|−α|(Sϕf)Q|χ̃Q(x)

≤ C sup
z∈Rn

|(ϕ̃j ∗ f)(x − z)|
(1 + ρA(Ajz))1/r

= C sup
z∈Rn

|g(Ajx − z)|
(1 + ρA(z))1/r

≤ C(MρA
|g|r(Ajx))1/r = C(MρA

|ϕ̃j ∗ f |r(x))1/r,

where g(x) = (ϕ̃j ∗ f)(A−jx). We used here the dilation invariance of MρA
,

MρA
(g)(Ajx) = MρA

(g(Aj ·))(x), x ∈ R
n, j ∈ Z,

and Lemma 3.4 (Peetre’s inequality), since supp ĝ is compact and it is (indepen-
dently of j ∈ Z) contained in supp ̂̃ϕ.

By the Fefferman-Stein vector-valued inequality with 0 < r < min(p/p0, q), we
have

||Sϕf ||ḟα,q
p (A,wdx) ≤ C

∥∥∥∥( ∑
j∈Z

(| detA|jαM1/r
ρA

(|ϕ̃j ∗ f |r))q

)1/q∥∥∥∥
Lp(w)

= C

∥∥∥∥( ∑
j∈Z

(MρA
(| detA|jαr|ϕ̃j ∗ f |r))q/r

)r/q∥∥∥∥1/r

Lp/r(w)

≤ C

∥∥∥∥( ∑
j∈Z

(| detA|jαr|ϕ̃j ∗ f |r)q/r

)r/q∥∥∥∥1/r

Lp/r(w)

= C

∥∥∥∥(∑
j∈Z

(| detA|jα|ϕ̃j ∗ f |)q

)1/q∥∥∥∥
Lp(w)

= C‖f‖Ḟα,q
p (Rn,A,wdx)(ϕ̃),

which shows boundedness of Sϕ.
Finally, if we assume additionally that ϕ and ψ satisfy (2.9) and (2.10), then by

Lemma 2.8, Tψ ◦Sϕ is the identity on Ḟα,q
p . More precisely, Ḟα,q

p (Rn, A, wdx)(ϕ̃) ↪→
Ḟα,q

p (Rn, A, wdx)(ϕ) is a bounded inclusion. Hence, by reversing the roles of ϕ and
ϕ̃ we have

Ḟα,q
p (Rn, A, wdx)(ϕ̃) = Ḟα,q

p (Rn, A, wdx)(ϕ),

which completes the proof of Theorem 3.5. �



1484 MARCIN BOWNIK AND KWOK-PUN HO

Lemma 3.6. Suppose ϕ ∈ S satisfies (3.2) and (3.3). Then there exists ψ ∈ S
such that (2.9) and (2.10) are satisfied.

Proof. Let h(ξ) =
∑

j∈Z
|ϕ̂((A∗)jξ)|2. By (3.2) and the fact that A∗ is expansive,

for any ξ0 �= 0, there is a neighborhood U of ξ0, such that for ξ ∈ U , only a finite
number of terms in the sum defining h(ξ) are non-zero. Therefore, h(ξ) is C∞ on
R

n \ {0}. Moreover, by a compactness argument and (3.3), there are constants c1,
c2 such that

0 < c1 ≤ h(ξ) ≤ c2 < ∞ for all ξ ∈ R
n \ {0}.

Define ψ, by ψ̂(ξ) = ϕ̂(ξ)/h(ξ). An instant verification shows that the Calderón
condition (2.10) holds and ψ ∈ S, since ψ̂ is C∞ on Rn and supp ψ̂ = supp ϕ̂ ⊂
[−π, π]n \ {0}. �

Corollary 3.7. Suppose that α ∈ R, 0 < p < ∞, 0 < q ≤ ∞, and w ∈ A∞.
Then the space Ḟα,q

p is well defined in the sense that, for any ϕ1 and ϕ2 satisfying
(3.2) and (3.3), their associated quasi-norms in Ḟα,q

p (Rn, A, wdx)(ϕi), i = 1, 2, are
equivalent, i.e., there exist constants C1, C2 > 0 such that

(3.9) C1‖f‖Ḟα,q
p (Rn,A,wdx)(ϕ1) ≤ ‖f‖Ḟα,q

p (Rn,A,wdx)(ϕ2) ≤ C2‖f‖Ḟα,q
p (Rn,A,wdx)(ϕ1).

Proof. Suppose ϕ1 and ϕ2 each satisfy (3.2) and (3.3). Then by Lemma 3.6, it is
possible to find ψ1 and ψ2 so that (2.9) and (2.10) are satisfied for each pair ϕi,
ψi, i = 1, 2. Then by Lemma 2.8,

‖f‖Ḟα,q
p (Rn,A,wdx)(ϕ1) = ‖(Tψ̃2 ◦ Sϕ̃2)f‖Ḟα,q

p (Rn,A,wdx)(ϕ1) ≤ C‖Sϕ̃2f‖ḟα,q
p (A,wdx)

≤ C‖f‖Ḟα,q
p (Rn,A,wdx)(ϕ2),

by the boundedness of Sϕ̃2 and Tψ̃2 , since the pair ϕ̃2, ψ̃2 satisfies (2.9) and (2.10).
Reversing the roles of ϕ1 and ϕ2 yields (3.9). �

Remark 3.1. Suppose that ϕ ∈ S is such that supp ϕ̂ is compact and bounded away
from the origin. Hence, ϕ may not necessarily satisfy (3.2) or (3.3) and consequently
Ḟα,q

p (Rn, A, wdx)(ϕ) may not be a complete quasi-normed space. Nevertheless, from
the proof of Corollary 3.7, it follows that we still have a constant C > 0 depending
on ϕ such that

||f ||Ḟα,q
p (Rn,A,wdx)(ϕ) ≤ C||f ||Ḟα,q

p
for all f ∈ Ḟα,q

p .

We will also need the following very useful fact, which resolves all sorts of issues
caused by the fact that the elements of Ḟα,q

p are equivalence classes of tempered
distributions S ′ modulo polynomials P. This result guarantees the existence of
canonical representatives of elements in Ḟα,q

p modulo polynomials of degree ≤ L =
�α/ζ−�. Proposition 3.8 is a generalization of [27, Remark B.4] and [36, pp. 52–56]
in the unweighted case and [10, Proposition 1.1] in the weighted case.

Proposition 3.8. Suppose that α ∈ R, 0 < p < ∞, 0 < q ≤ ∞, w ∈ A∞,
and f ∈ Ḟα,q

p (Rn, A, wdx). For any ϕ1 ∈ S(Rn) such that supp ϕ̂1 is compact
and bounded away from the origin, and (2.13) holds, there exists a sequence of
polynomials {P 1

k }∞k=1 with deg P 1
k ≤ L = �α/ζ−� such that

(3.10) g1 := lim
k→∞

( ∞∑
j=−k

(ϕ1)j ∗ f + P 1
k

)
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exists in S ′. Moreover, if g2 is the corresponding limit in (3.10) for some other
ϕ2 ∈ S(Rn) such that supp ϕ̂2 is compact and bounded away from the origin, and
(2.13) holds, then

(3.11) g1 − g2 ∈ P and deg(g1 − g2) ≤ L.

Proof. Note that Lemma 2.6 already guarantees the existence of polynomials
{P 1

k }∞k=1 with deg P 1
k ≤ d for some d ≥ 0 such that (3.10) holds. However, it

is not clear why d could be chosen to be ≤ L = �α/ζ−� and why (3.11) holds.
Nevertheless, by Lemma 2.6 we know that

∑∞
j=0(ϕ

1)j ∗ f converges in S ′.

Let N >0 be the constant guaranteed by Lemma 3.1 for K =
⋃

j<0(A
∗)j(supp ϕ̂1).

Then, for any j < 0 and a multi-index β, by Remark 3.1 and Lemma 3.1,

(3.12)

sup
x∈Rn

|∂β((ϕ1)j ∗ f)(x)|
(1 + |x|)N

≤ C||∂β((ϕ1)j ∗ f)||Lp(w) = C||(∂β(ϕ1)j) ∗ f ||Lp(w)

≤ C
∑

|γ|=|β|
|aγ,j |||(∂γϕ1)j ∗ f ||Lp(w)

≤ C(λ−)j|β|| detA|−jα
∑

|γ|=|β|
||f ||Ḟα,∞

p (Rn,A,w)(∂γϕ1)

≤ C| detA|j(|β|ζ−−α)
∑

|γ|=|β|
||f ||Ḟα,q

p (Rn,A,wdx)(∂γϕ1)

≤ C| detA|j(|β|ζ−−α)||f ||Ḟα,q
p

.

Here, we used that for any ϕ ∈ S and a multi-index β, there exists a constant C > 0
such that for all j ≥ 0, we have

(3.13) ∂βϕj(x) =
∑

|γ|=|β|
aγ,j(∂γϕ)j(x), where |aγ,j | ≤ C(λ−)j|γ|.

This follows from the chain rule and the estimate ||Aj |||γ| ≤ C(λ−)j|γ| for j ≤ 0;
see also [6, the proof of Lemma 5.2].

Therefore, by (3.12),
∑

j<0 ∂β((ϕ1)j ∗ f) converges in S ′ for any |β| > L, since
|β|ζ− − α > 0. Consequently, Proposition 2.7 yields polynomials {P 1

k }∞k=1 with
deg P 1

k ≤ L and g1 ∈ S ′ such that (3.10) holds.
To show (3.11), let ϕ2 be another function satisfying hypotheses of Propo-

sition 3.8, and let g2 ∈ S ′ be the corresponding limit of (3.10) for some se-
quence of polynomials {P 2

k }∞k=1 with deg P 2
k ≤ L. Since g1 and g2 represent

the same equivalence class in S ′/P of f ∈ Ḟα,q
p , g1 − g2 is a polynomial. Let

K =
⋃

j<0(A
∗)j(supp ϕ̂1 ∪ supp ϕ̂2). Then, by a simple support argument and

(2.13),

(3.14) supp
( ∞∑

j=−k

((ϕ1)j ∗ f − (ϕ2)j ∗ f)
)̂

⊂ (A∗)−kK for any k ∈ Z.

Let ϕ ∈ S be given by

(3.15) ϕ̂(ξ) =
∞∑

j=0

ϕ̂1((A∗)−jξ) − ϕ̂2((A∗)−jξ).
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To check that ϕ ∈ S, note that for every ξ ∈ Rn, only a finite number of terms in
(3.15) are non-zero and hence ϕ̂ is C∞. The support of ϕ̂ is bounded and bounded
away from the origin, since ϕ̂(ξ) = 0 for all ξ �∈ K, by (2.13). Equivalently, ϕ can
be defined as

ϕ(x) =
∞∑

j=0

(ϕ1)j(x) − (ϕ2)j(x) for x �= 0,

where the series converges pointwise for all x ∈ Rn \{0}. However, the above series
does not converge for x = 0 (unless ϕ1(0) = ϕ2(0)) and (3.15) is needed to show
that ϕ ∈ S.

We claim that

(3.16)
∞∑

j=−k

((ϕ1)j ∗ f − (ϕ2)j ∗ f) = ϕ−k ∗ f,

where the series converges in S ′. Indeed, by (3.15)( ∞∑
j=−k

(ϕ1)j−(ϕ2)j

)̂
(ξ) =

∞∑
j=−k

ϕ̂1((A∗)−jξ)−ϕ̂2((A∗)−jξ) = ϕ̂((A∗)kξ) = ϕ̂−k(ξ).

Hence, by (3.12) and (3.16), for any φ ∈ S and |β| > L,

|〈∂β(g1 − g2), φ〉| =
∣∣∣∣ lim

k→∞

〈 ∞∑
j=−k

∂β((ϕ1)j ∗ f + P 1
k − (ϕ2)j ∗ f − P 2

k ), φ
〉∣∣∣∣

= lim
k→∞

∣∣∣∣〈 ∞∑
j=−k

∂β((ϕ1)j ∗ f − (ϕ2)j ∗ f), φ
〉∣∣∣∣ = lim

k→∞
|〈∂β(ϕ−k ∗ f), φ〉|

≤ lim
k→∞

sup
x∈Rn

|∂β(ϕ−k ∗ f)(x)|
(1 + |x|)N

∫
Rn

(1 + |x|)N |φ(x)|dx

≤ C lim
k→∞

| detA|−k(|β|ζ−−α)||f ||Ḟα,q
p

= 0.

This shows (3.11) and completes the proof of Proposition 3.8. �
As an immediate corollary of Lemma 2.8 and Proposition 3.8, we have

Corollary 3.9. Suppose that α ∈ R, 0 < p < ∞, 0 < q ≤ ∞, w ∈ A∞, and
f ∈ Ḟα,q

p (Rn, A, wdx). Given ϕ1, ψ1 ∈ S satisfying (2.9) and (2.10), there exists a
sequence of polynomials {P 1

k }∞k=1 with deg P 1
k ≤ L = �α/ζ−� such that

(3.17) g1 := lim
k→∞

( ∑
Q∈Q, | det A|−k≤|Q|≤| det A|k

〈f, (ϕ1)Q〉(ψ1)Q + P 1
k

)
exists in S ′. Moreover, if g2 is the corresponding limit in (3.17) for some other
ϕ2, ψ2 ∈ S satisfying (2.9) and (2.10), then (3.11) holds.

3.3. Inhomogeneous Triebel-Lizorkin spaces. In this subsection we define in-
homogeneous counterparts Fα,q

p of homogeneous Triebel-Lizorkin spaces Ḟα,q
p and

we briefly describe some of their basic properties. In general, it is much easier to
prove results for inhomogeneous than homogeneous spaces, since all technical issues
involving convergence in S ′/P, which preoccupied much of our attention, are non-
existent in the inhomogeneous case. Moreover, all results for inhomogeneous spaces
considered here are generally straightforward modifications of the corresponding
homogeneous results and therefore we will only outline required changes.
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Definition 3.3. For α ∈ R, 0 < p < ∞, 0 < q ≤ ∞, and w ∈ A∞, we define the
weighted inhomogeneous anisotropic Triebel-Lizorkin space Fα,q

p = Fα,q
p (Rn, A, wdx)

as the collection of all f ∈ S ′
such that

‖f‖Fα,q
p

= ‖f ∗ Φ‖Lp(w) +
∥∥∥∥( ∞∑

j=1

(| detA|jα|f ∗ ϕj |)q

)1/q∥∥∥∥
Lp(w)

< ∞,

where Φ ∈ S(Rn) and ϕ ∈ S(Rn) satisfy (3.2), (3.18), and (3.19),

supp Φ̂ ⊂ [−π, π]n,(3.18)

sup
j≥1

{|ϕ̂((A∗)−jξ)|, |Φ̂(ξ)|} > 0 for all ξ ∈ R
n.(3.19)

As in the homogeneous case, we will see that this definition is independent of Φ
and ϕ as above.

Let Q0 = {Q ∈ Q : |Q| ≤ 1}. The sequence space, fα,q
p = fα,q

p (A, wdx), is the
collection of all complex-valued sequences s = {sQ}Q∈Q0 such that

‖s‖fα,q
p

=
∥∥∥∥( ∑

|Q|≤1

(|Q|−α|sQ|χ̃Q)q

)1/q∥∥∥∥
Lp(w)

< ∞,

where χ̃Q = |Q|−1/2χQ is the L2-normalized characteristic function of the dilated
cube Q.

Since fα,q
p is trivially isometrically imbedded in ḟα,q

p , virtually all results for ḟα,q
p

have immediate analogues for fα,q
p . In particular, it is immediate that Lemma 3.3

holds for fα,q
p .

We can also define ϕ-transform Sϕ and the inverse ϕ-transform Tψ corresponding
to the inhomogeneous setting.

Definition 3.4. Suppose that Φ, Ψ ∈ S(Rn), ϕ, ψ ∈ S(Rn) satisfy (3.2), (3.3), and
(3.19). Define the inhomogeneous ϕ-transform Sϕ = SΦ,ϕ to be the map taking
each f ∈ S ′

(Rn) to the sequence Sϕf = {(Sϕf)Q}Q∈Q0 defined by

(Sϕf)Q = 〈f, ΦQ〉 if |Q| = 1, (Sϕf)Q = 〈f, ϕQ〉 if |Q| < 1.

The inhomogeneous inverse ϕ-transform Tψ = TΨ,ψ is the map taking the sequence
s = {sQ}Q∈Q0 to Tψs =

∑
|Q|=1 sQΨQ +

∑
|Q|<1 sQψQ.

Given a pair Φ, ϕ ∈ S satisfying (3.2), (3.18), and (3.19) one can show that there
exists another pair Ψ, ψ ∈ S satisfying the same properties such that

(3.20) Φ̂(ξ)Ψ̂(ξ) +
∞∑

j=1

ϕ̂((A∗)−jξ)ψ̂((A∗)−jξ) = 1 for all ξ ∈ R
n.

Indeed, to show (3.20), notice that (3.18) and (3.19) imply that ϕ satisfies (3.3).
By Lemma 3.6, there exists ψ ∈ S such that (2.9) and (2.10) hold and ϕ̂(ξ)ψ̂(ξ) ≥ 0
for all ξ ∈ Rn. Hence, by a compactness argument and (3.19), it is easy to find a
required Ψ ∈ S such that (3.20) holds. Moreover, as in Lemma 2.8, we have the
representation formula

(3.21) f =
∑
|Q|=1

〈f, ΦQ〉ΨQ +
∑
|Q|<1

〈f, ϕQ〉ψQ,

for any f ∈ S ′(Rn) with convergence in S ′.
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Finally, one can show that Theorem 3.5 also holds in the inhomogeneous setting.
That is, Sϕ is a bounded operator from Fα,q

p to fα,q
p and Tψ is a bounded operator

from fα,q
p to Fα,q

p . Moreover, if Φ, Ψ ∈ S(Rn) and ϕ, ψ ∈ S(Rn) satisfy (3.2), (3.18),
and (3.19), then Tψ ◦ Sϕ is the identity operator on Fα,q

p . Indeed, it is not hard to
verify that the proof of the boundedness of Sϕ and Tψ is a direct adaption of the
proof of Theorem 3.5. It is then clear that the analogue of Corollary 3.7 also holds
for Fα,q

p .

4. Almost diagonal operators

In this section we study the class of almost diagonal operators on ḟα,q
p (A, wdx),

which was introduced in the dyadic case by Frazier and Jawerth [27]. The interest
of these operators on ḟα,q

p arises from their close connection to operators on function
spaces.

For a quasi-Banach space X, let L(X) be the algebra of bounded linear operators
on X with the operator norm. Define the bounded operators S∗

ϕ : L(Ḟα,q
p ) →

L(ḟα,q
p ) and T ∗

ψ : L(ḟα,q
p ) → L(Ḟα,q

p ) by

S∗
ϕ(T ) = Sϕ ◦ T ◦ Tψ for T ∈ L(Ḟα,q

p ),

T ∗
ψ(A) = Tψ ◦ A ◦ Sϕ for A ∈ L(ḟα,q

p ).

Repeating verbatim the arguments in [27, Section 3] and using Theorem 3.5 we
have the following commutative diagram:

L(ḟα,q
p )

T∗
ψ

�����������

L(Ḟα,q
p )

S∗
ϕ

�����������
Id �� L(Ḟα,q

p )

Moreover, if q �=∞, then any A∈L(ḟα,q
p ) is represented by a matrix {aQP }Q,P∈Q,

where aQP = (AeP )Q. Here, eP , P ∈ Q denotes the standard unit vector in ḟα,q
p

defined by (eP )Q = δPQ. If q = ∞, then despite the fact that not every A ∈ L(ḟα,q
p )

can be represented by a matrix, we claim that for any B ∈ L(Ḟα,q
p ), an operator

S∗
ϕB ∈ L(ḟα,q

p ) has a matrix representation. Indeed, for any s ∈ ḟα,q
p ,

((S∗
ϕ)(s))Q = (SϕBTψs)Q =

〈
B

∑
P

sP ψP , ϕQ

〉
=

∑
P

sP 〈BψP , ϕQ〉,

by Proposition 3.2 and Theorem 3.5. We are now ready to introduce the class of
almost diagonal operators on ḟα,q

p .

Definition 4.1. Suppose α ∈ R, 0 < p < ∞, 0 < q ≤ ∞, w ∈ A∞, and r0 =
inf{r : w ∈ Ar}. Let J = max(1, r0/p, 1/q). We say that an operator A, with
an associated matrix {aQP }Q,P∈Q, where aQP = (AeP )Q, is an almost diagonal
operator on ḟα,q

p (A, wdx), if there exists an ε > 0 such that

(4.1) sup
Q,P∈Q

|aQP |/κQP (ε) < ∞,
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where

κQP (ε) =
(
|Q|
|P |

)α(
1 +

ρA(xQ − xP )
max(|P |, |Q|)

)−J−ε

min
[(

|Q|
|P |

) 1+ε
2

,

(
|P |
|Q|

) 1+ε
2 +J−1]

.

Theorem 4.1. Suppose α ∈ R, 0 < p < ∞, 0 < q ≤ ∞, and w ∈ A∞. An almost
diagonal operator A is bounded as a linear operator on ḟα,q

p (A, wdx).

Proof. Suppose first that Theorem 4.1 is true in the case α = 0. Let A be an almost
diagonal operator on ḟα,q

p with matrix {aQP }Q,P . Let B be a linear operator on
ḟ0,q
p with matrix {bQP }Q,P defined by

bQP = (|P |/|Q|)αaQP .

It is easy to see that B satisfies the almost diagonal condition (4.1) with α = 0.
Let {sP }P ∈ ḟα,q

p and define {tP }P ∈ ḟ0,q
p by tP = |P |−αsP . By the result for

α = 0, we have∥∥∥∥{ ∑
P

aQP sP

}
Q

∥∥∥∥
ḟα,q
p

=
∥∥∥∥{∑

P

|Q|−αaQP sP

}
Q

∥∥∥∥
ḟ0,q
p

=
∥∥∥∥{ ∑

P

bQP tP

}
Q

∥∥∥∥
ḟ0,q
p

≤ C‖{tP }P ‖ḟ0,q
p

= C‖{sP }P ‖ḟα,q
p

,

which reduces the theorem to the case α = 0.
First, we consider the case r = min(p/r0, q) > 1, which implies that J = 1 in

Definition 4.1. Let A be an almost diagonal operator on ḟ0,q
p with matrix {aQP }Q,P

satisfying condition (4.1). We write A = A0 + A1, with

(A0s)Q =
∑

P∈Q, |P |≥|Q|
aQP sP and (A1s)Q =

∑
P∈Q, |P |<|Q|

aQP sP

for s = {sP }P ∈ ḟ0,q
p . For Q ∈ Q, |Q| = | detA|−j , and x ∈ Q, we have

|(A0s)Q| ≤ C
∑

|P |≥|Q|
κQP (ε)|sP |

≤ C
∑

|P |≥|Q|

(
|Q|
|P |

)(1+ε)/2 |sP |
(1 + |P |−1ρA(xP − xQ))1+ε

≤ C
∑
i≤j

∑
|P |=| det A|−i

(
|Q|
|P |

)(1+ε)/2 |sP |
(1 + |P |−1ρA(xP − xQ))1+ε

≤ C
∑
i≤j

| detA|(i−j)( 1+ε
2 )MρA

( ∑
|P |=| det A|−i

|sP χP |
)

(x)

using Lemma 6.2. Hence, we have( ∑
|Q|=| det A|−j

|(A0s)Qχ̃Q|q
)
≤C

(∑
i≤j

| detA|(i−j)( ε
2 )MρA

( ∑
|P |=| det A|−i

|sP χ̃P |
))q

.
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Therefore,

‖A0s‖ḟ0,q
p

≤C

∥∥∥∥( ∑
j∈Z

( ∑
i≤j

| det A|(i−j)( ε
2 )MρA

( ∑
|P |=| det A|−i

|sP χ̃P |
))q)1/q∥∥∥∥

Lp(w)

≤ C

∥∥∥∥( ∑
i∈Z

(
MρA

( ∑
|P |=| det A|−i

|sP χ̃P |
))q)1/q∥∥∥∥

Lp(w)

,

by Minkowski’s inequality. By the Fefferman-Stein vector-valued inequality we
conclude that

‖A0s‖ḟ0,q
p

≤ C

∥∥∥∥( ∑
P

|sP χ̃P |q
)1/q∥∥∥∥

Lp(w)

= C‖s‖ḟ0,q
p

,

since w ∈ Ap by p > r0. To show the corresponding estimate for A1, we apply the
same argument as for A0 using the condition

κQP (ε) ≤ C

(
|P |
|Q|

) 1+ε
2

(1 + |Q|−1ρA(xP − xQ))−1−ε.

Therefore, both A0 and A1 are bounded on ḟ0,q
p and, hence, A is also bounded.

The case r = min(p/r0, q) ≤ 1 is a simple consequence of the case r > 1. Indeed,
we remark that A = {aQP }Q,P being almost diagonal on ḟ0,q

p , i.e., (4.1) holds for
some ε > 0, is equivalent to

A′ = {a′
QP }Q,P = {|aQP |r(|Q|/|P |)1/2−r/2}Q,P

being almost diagonal on ḟ0,q/r
p/r , i.e., (4.1) holds for {a′

QP }Q,P and ε′ = rε. Hence,
we can pick an r̃ < r so close to r that the almost diagonal condition (4.1) still
holds with r = min(p/r0, q) replaced by r̃. This means that p/(r0r̃) > 1, q/r̃ > 1,
and that the matrix

Ã = {ãQP }Q,P =
{
|aQP |r̃

(
|Q|
|P |

)1/2−r̃/2}
Q,P

satisfies the almost diagonal condition (4.1) on ḟ0,q/r̃
p/r̃ for a smaller value of ε̃ than

ε′ = rε, since J̃ = max(1, r0r̃/p, r̃/q) = 1. Indeed, we have

|ãQP | ≤ C

(
1 +

ρA(xQ − xP )
max(|Q|, |P |)

)−r̃/r−r̃ε

min
[(

|Q|
|P |

)1/2+r̃ε/2

,

(
|P |
|Q|

)r̃/r−1/2+r̃ε/2]
.

Given s ∈ ḟ0,q
p , define t = {tQ}Q by tQ = |Q|1/2−r̃/2|sQ|r̃. Then

‖t‖1/r̃

ḟ
0,q/r̃
p/r̃

=
∥∥∥∥( ∑

Q∈Q
(|Q|1/2−r̃/2|sQ|r̃χ̃Q)q/r̃

)r̃/q∥∥∥∥1/r̃

Lp/r̃(w)

= ‖s‖ḟ0,q
p

.

By the r̃-inequality, we have

|(As)Q| ≤
( ∑

P

|aQP |r̃|sP |r̃
)1/r̃

= (|Q|r̃/2−1/2)1/r̃

( ∑
P

|ãQP ||tP |
)1/r̃

.

Hence,
‖As‖ḟ0,q

p
≤ ‖Ã({|tP |}P )Q‖1/r̃

ḟ
0,q/r̃
p/r̃

≤ C‖t‖1/r̃

ḟ
0,q/r̃
p/r̃

= C‖s‖ḟ0,q
p
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since Ã is bounded on ḟ0,q/r̃
p/r̃ (A, wdx), by Theorem 4.1 in the already shown case

p/r0, q > 1. This completes the proof of Theorem 4.1. �

5. Atomic and molecular decompositions

5.1. Smooth molecules. We are ready to introduce the notions of smooth mole-
cules adapted to anisotropic setting of expansive dilation matrices considered in
this work. Our definition is motivated by smooth molecules associated with the
usual dyadic dilations and studied in [27, Section 3]. However, for the sake of
clarity, we have decided to use a slightly simplified version of smooth molecules,
where the condition on differences of partial derivatives of the highest orders is
incorporated into the corresponding decay conditions on partial derivatives of one
higher order. This enables us to reduce the number of conditions defining smooth
molecules in [27] from 4 to 3. Moreover, this reduction is further justified by the
observation that in the non-isotropic setting one generally needs to assume the
appropriate decay and smoothness conditions of higher orders than in the isotropic
setting. Indeed, in the usual dyadic situation ζ− = ζ+ = 1/n and Definition 5.1
is equivalent (modulo the above-mentioned reduction) to the Frazier and Jawerth
notion of smooth molecules. However, if a dilation matrix A is non-isotropic, then
0 < ζ− ≤ 1/n ≤ ζ+ < 1 and we have different growth rates of a quasi-norm ρA(x)
in different directions. To compensate for this we ought to require more smoothness
and decay conditions to have meaningful notion of smooth molecules. These are
reflected in conditions (5.1)–(5.6).

Definition 5.1. Suppose α ∈ R, 0 < p < ∞, 0 < q ≤ ∞, w ∈ A∞, and r0 =
inf{r : w ∈ Ar}. Let J = max(1, r0/p, 1/q) and N = max(�(J − α − 1)/ζ−�,−1).

We say that ΨQ(x) is a smooth synthesis molecule for Ḟα,q
p (Rn, A, wdx) supported

near Q ∈ Q with |Q| = | detA|−j and j ∈ Z, if there exist M > J such that

|∂γ [ΨQ(A−j ·)](x)| ≤ | detA|j/2

(1 + ρA(x − AjxQ))M
for |γ| ≤ �α/ζ−� + 1,(5.1)

|ΨQ(x)| ≤ | detA|j/2

(1 + ρA(Aj(x − xQ)))max(M,(M−α)ζ+/ζ−)
,(5.2) ∫

xγΨQ(x)dx = 0 for |γ| ≤ N.(5.3)

We say that a collection {ΨQ}Q∈Q is a family of smooth synthesis molecules, if
each ΨQ is a smooth synthesis molecule supported near Q.

We say that ΦQ(x) is a smooth analysis molecule for Ḟα,q
p (Rn, A, wdx) supported

near Q ∈ Q with |Q| = | detA|−j and j ∈ Z, if there exists M > J such that

|∂γ [ΦQ(A−j ·)](x)| ≤ | detA|j/2

(1 + ρA(x − AjxQ))M
for |γ| ≤ N + 1,(5.4)

|ΦQ(x)| ≤ | detA|j/2

(1 + ρA(Aj(x − xQ)))max(M,1+αζ+/ζ−+M−J)
,(5.5) ∫

xγΦQ(x)dx = 0 for |γ| ≤ �α/ζ−�.(5.6)

We say that {ΦQ}Q∈Q is a family of smooth analysis molecules if each ΦQ is a
smooth analysis molecule supported near Q.
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The following comments may clarify the above definitions.

Remark 5.1. Whenever we talk about smooth molecules or atoms, ΦQ and ΨQ

should be understood as some function indexed by Q = A−j([0, 1]n +k) ∈ Q, which
is not necessarily equal to the usual convention ΨQ(x) = | detA|j/2Ψ(Ajx−k) used
throughout Section 3. Conditions (5.1) and (5.4) should be understood as follows.
Let DA be the dilation operator given by DAf(x) = f(Ax). Then the left-hand
side of (5.1) is simply |∂γ(DA−j ΨQ)(x)| and similarly for (5.4). Moreover, to avoid
any ambiguity, (5.1) and (5.4) require that ΨQ and ΦQ have continuous partial
derivatives of order �α/ζ−� + 1 and N + 1, respectively.

Remark 5.2. If α < 0, then the smoothness condition (5.1) is void. If α ≥ 0 is
sufficiently large, say α ≥ M(1−ζ−/ζ+), then (5.2) follows from (5.1). Additionally,
if α > J − 1, then N = −1 and the vanishing moment condition (5.3) is void.
Furthermore, if α = 0, then N = �(J − 1)/ζ−�. If also 0 < p ≤ 1 and q ≥ p/r0,
then N = �(1/p−1)/ζ−�, and (5.3) coincides with the vanishing moment condition
for atoms in the anisotropic Hardy space Hp

A(Rn); see [6, Section 4]. On the other
hand, if α = 0 and min(p/r0, q) ≥ 1, then the conditions for smooth synthesis
molecules reduce to (5.1) for |γ| ≤ 1, (5.2), and (5.3) for γ = 0. Similar comments
are applicable for smooth analysis molecules.

The main motivation behind somewhat non-obvious orders of decay and smooth-
ness imposed on smooth molecules is revealed in the following lemma, which is a
non-isotropic variant of [27, Corollary B.3].

Lemma 5.1. Suppose {ΦQ}Q and {ΨQ}Q are families of smooth analysis and
synthesis molecules for Ḟα,q

p , respectively. Then the matrix {aQP }, given by aQP =
〈ΨP , ΦQ〉, is almost diagonal. More precisely, there exist C > 0 and ε > 0, such
that

|〈ΨP , ΦQ〉| ≤ CκQP (ε) for all Q, P ∈ Q.

The elementary, but tedious proof of Lemma 5.1 can be found in Section 6. As
an immediate consequence we obtain the following two corollaries.

Corollary 5.2. Suppose {ΨQ}Q is a family of smooth synthesis molecules for Ḟα,q
p

and ϕ ∈ S(Rn) with 0 �∈ supp ϕ̂. Then the matrix {aQP }, given by aQP = 〈ΨP , ϕQ〉,
is almost diagonal.

Corollary 5.3. Suppose {ΦQ}Q is a family of smooth analysis molecules for Ḟα,q
p

and ψ ∈ S(Rn) with 0 �∈ supp ψ̂. Then the matrix {aQP }, given by aQP = 〈ψP , ΦQ〉,
is almost diagonal.

We will also need the following elementary result, which provides an approxima-
tion of smooth molecules by elements of the Schwartz class S.

Lemma 5.4. Suppose that Φ is a smooth analysis (or synthesis) molecule supported
near Q ∈ Q. Then there exists a sequence {φk}∞k=1 ⊂ S and c > 0 such that cφk

is a smooth analysis (or synthesis) molecule supported near Q for every k, and
φk(x) → Φ(x) uniformly on Rn as k → ∞.

Proof. Using translations and dilations, we may assume that Q = [0, 1]n. Indeed,
if Φ is a smooth molecule supported near Q = A−j([0, 1]n + k), then it is not hard
to check that | detA|−j/2T−kDA−j Φ is a smooth molecule supported near [0, 1]n.
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We will present the argument for a smooth analysis molecule Φ; the other case is
identical.

First, we will show that Φ can be approximated by a sequence {φk}∞k=1 ⊂ C∞.
Let h be a C∞ function such that h(x) ≥ 0 for all x ∈ Rn, supp h ⊂ B(0, 1), and∫

h = 1. Suppose that Φ is a smooth analysis molecule for some Q ∈ Q; the other
case is analogous. Then, we claim that φk = Φ∗hk, where hk(x) = 2nkh(2kx), does
the job. Indeed, using ∂γφk = (∂γΦ) ∗ hk, supp hk ⊂ A−kB(0, 1), and

∫
hk = 1, it

is not hard to check that cφk satisfies (5.4) and (5.5) for sufficiently small c > 0. It
is also obvious that φk ∈ C∞ satisfies (5.6) and φk(x) → Φ(x) uniformly as k → ∞.

Therefore, by the diagonal argument, we can assume that Φ ∈ C∞. Let g be a
C∞ function such that g(x) = 1 for x ∈ B(0, 1), and supp g ⊂ B(0, 2). For every
multi-index β, let φβ ∈ S be such that

∫
xγφβ(x)dx = δβ,γ . For example, take

φ̂β(ξ) = (−i)|β|ξβg(ξ). Then, we claim that

φk = Φg−k −
∑
|β|≤L

cβ
kφβ , where cβ

k =
∫

xβΦ(x)g−k(x)dx,

L = �α/ζ−� and g−k(x) = 2−nkg(2−kx) does the job. Indeed, it is clear that
cβ
k → 0 as k → ∞. Since each φβ ∈ S, then by the product and chain rules cφk

satisfies (5.4) and (5.5) for sufficiently small c > 0. Moreover, by our choice, φk has
vanishing moments up to order L, φk ∈ S, and φk(x) → Φ(x) uniformly as k → ∞.
This completes the proof of Lemma 5.4. �

5.2. Smooth molecular decompositions. We are now ready to show generaliza-
tions of Theorem 3.5 in the situation when the usual wavelet families of translates
and dilates {ϕQ}Q∈Q and {ψQ}Q∈Q are replaced by families of smooth analysis
{ΦQ}Q∈Q and synthesis molecules {ΨQ}Q∈Q.

Theorem 5.5 (Smooth molecular synthesis). Suppose A is an expansive matrix
and w ∈ A∞. There exists a constant C > 0, such that if f =

∑
Q∈Q sQΨQ, where

{ΨQ}Q is a family of smooth synthesis molecules for Ḟα,q
p (Rn, A, wdx), then

‖f‖Ḟα,q
p

≤ C‖{sQ}Q‖ḟα,q
p

for all {sQ}Q ∈ ḟα,q
p .

Proof. By Lemma 2.8, we can write ΨP =
∑

Q〈ΨP , ϕQ〉ψQ with the convergence
in S ′/P. By Theorem 4.1 and Corollary 5.2, A given by the matrix {aQP }Q,P =
{〈ΨP , ϕQ〉}Q,P is a bounded operator on ḟα,q

p (A, wdx). Since

TψAs =
∑
Q

∑
P

aQP sP ψQ =
∑
P

sP

∑
Q

〈ΨP , ϕQ〉ψQ =
∑
P

sP ΨP = f,

then by Theorem 3.5,

‖f‖Ḟα,q
p (Rn,A,wdx) = ‖TψAs‖Ḟα,q

p (Rn,A,wdx) ≤ C‖As‖ḟα,q
p (A,wdx) ≤ C‖s‖ḟα,q

p (A,wdx).

�

Theorem 5.6 (Smooth molecular analysis). Suppose A is an expansive matrix and
w ∈ A∞. There exists a constant C > 0, such that if {ΦQ}Q is a family of smooth
analysis molecules, then

‖{〈f, ΦQ〉}Q‖ḟα,q
p

≤ C‖f‖Ḟα,q
p

for all f ∈ Ḟα,q
p (Rn, A, wdx).
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The main technical difficulty in the proof of the above theorem is to justify the
meaningfulness of the pairing 〈f, ΦQ〉. Indeed, f ∈ Ḟα,q

p is an equivalence class in
S ′/P, and ΦQ may not even belong to S, and consequently, it may not be clear how
to understand 〈f, ΦQ〉. More than that, even when ΦQ happens to be in S, then
〈f, ΦQ〉 may still not be well defined, since it is necessary to choose an appropriate
representative of f in S ′ in its equivalence class in S ′/P for 〈f, ΦQ〉 to be understood
as the usual pairing of a tempered distribution f ∈ S ′ with a test function ΦQ ∈ S.
Therefore, we need a precise pairing procedure provided by Lemma 5.7.

Lemma 5.7. Suppose f ∈ Ḟα,q
p (Rn, A, wdx) and ΦQ is a smooth analysis molecule

for Ḟα,q
p (Rn, A, wdx) supported near Q ∈ Q. Then for any ϕ, ψ ∈ S(Rn) satisfying

(2.9) and (2.10), the series

(5.7) 〈f, ΦQ〉 :=
∑
j∈Z

〈ϕ̃j ∗ ψj ∗ f, ΦQ〉 =
∑
P∈Q

〈f, ϕP 〉〈ψP , ΦQ〉

converges absolutely and its value is independent of the choice of ϕ and ψ satisfying
(2.9) and (2.10).

Proof. First, note that for any f ∈ Ḟα,q
p , there exists a matrix {bQP }Q,P∈Q such

that bQP ≥ 0 and

(5.8) |〈f, ϕP 〉||〈ψP , φ〉| ≤ bQP and
∑
P

bQP < ∞,

whenever φ is a smooth analysis molecule supported near Q. Indeed, by Corollary
5.3, there exist C > 0 and ε > 0 such that |〈ψP , φ〉| ≤ CκQP (ε), and hence bQP =
C|〈f, ϕP 〉|κQP (ε) does the job. Moreover, by Theorem 3.5, {〈f, ϕP 〉}P ∈ ḟα,q

p , and
hence by Theorem 4.1,

∑
P bQP < ∞. This shows the absolute convergence of the

series in (5.7).
To show independence of the choice of ϕ and ψ, let {φl}∞l=1 ⊂ S be the sequence of

(constant multiples of) smooth analysis molecules supported near Q and converging
uniformly to ΦQ guaranteed by Lemma 5.4. By Proposition 3.8 and Corollary 3.9,
there exists a sequence of polynomials {Pk}∞k=1 with deg Pk ≤ L = �α/ζ−� such
that

∑∞
j=−k ϕ̃j ∗ ψj ∗ f + Pk converges in S ′ as k → ∞. Therefore, for each l, we

can define

〈f, φl〉 :=
〈

lim
k→∞

∞∑
j=−k

ϕ̃j ∗ ψj ∗ f + Pk, φl

〉
= lim

k→∞

∞∑
j=−k

〈ϕ̃j ∗ ψj ∗ f, φl〉

= lim
k→∞

∑
P∈Q,|P |≥| det A|−k

〈f, ϕP 〉〈ψP , φl〉 =
∑
P∈Q

〈f, ϕP 〉〈ψP , φl〉,

since the above series converges absolutely by (5.8). Moreover, by (3.11) in Propo-
sition 3.8 and (5.6), this definition does not depend on the choice of ϕ and ψ. Since
〈ψP , φl〉 → 〈ψP , ΦQ〉 as l → ∞, by (5.7) and the Lebesgue Dominated Convergence
Theorem, ∑

P∈Q
〈f, ϕP 〉〈ψP , φl〉 →

∑
P∈Q

〈f, ϕP 〉〈ψP , ΦQ〉 as l → ∞.

By the above reasoning, this limit is independent of ϕ and ψ satisfying (2.9) and
(2.10). This shows that 〈f, ΦQ〉 is well defined by (5.7) and completes the proof of
Lemma 5.7. �
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Proof of Theorem 5.6. After hard work in Lemma 5.7, the proof is now completely
trivial. Recall that by Lemma 5.7,

〈f, ΦQ〉 :=
∑
P

〈f, ϕP 〉〈ψP , ΦQ〉.

By Theorem 4.1 and Corollary 5.2, the operator A given by the matrix {aQP }Q,P =
{〈ψP , ΦQ〉}Q,P is bounded on ḟα,q

p (A, wdx). Since 〈f, ΦQ〉 =
∑

P 〈f, ϕP 〉aQP , by
Theorem 3.5, we have

‖{〈f, ΦQ〉}‖ḟα,q
p (A,wdx) = ‖ASϕf‖ḟα,q

p (A,wdx) ≤ C‖f‖Ḟα,q
p (Rn,A,wdx).

�

5.3. Smooth atomic decompositions. In this subsection we show that the ele-
ments of Ḟα,q

p (Rn, A, wdx) admit smooth atomic decompositions.

Definition 5.2. A function aQ(x) is said to be a smooth atom supported near a
cube Q = Qj,k = A−j([0, 1]n + k) ∈ Q if it satisfies

(5.9) supp aQ ⊂ A−j([−δ0, 1 + δ0]n + k),

where δ0 > 0 is some fixed constant, and

|∂γ [aQ(A−j ·)](x)| ≤ |Q|−1/2 for |γ| ≤ K̃,(5.10) ∫
Rn

xγaQ(x)dx = 0 for |γ| ≤ Ñ ,(5.11)

where Ñ ≥ N is the same as in Definition 5.1 and K̃ ≥ max(�α/ζ−�+ 1, 0). Recall
that

N =max(�(J −α−1)/ζ−�,−1) where J =max(1, r0/p, 1/q), r0 =inf{r : w ∈ Ar}.
When more emphasis is needed, we say that aQ is a (K̃, Ñ)-smooth atom.

We say that {aQ}Q∈Q is a family of smooth atoms, if each function aQ is a
smooth atom supported near Q.

Remark 5.3. We remark that every smooth atom aQ is always some fixed constant
multiple of a smooth synthesis molecule supported near Q. Moreover, this constant
multiple depends only on δ0 > 0, which controls the relative size of the support of
aQ. Indeed, it is clear that the support condition (5.9) together with (5.10) imply
the decay condition (5.2) of aQ and its partial derivatives (5.1) for any value of
M > J .

Theorem 5.8 (Smooth atomic decomposition). Suppose A is an expansive matrix,
α ∈ R, 0 < p < ∞, 0 < q ≤ ∞, and w ∈ A∞. For any f ∈ Ḟα,q

p there exists a
family of smooth atoms {aQ} and a sequence of coefficients s = {sQ} ∈ ḟα,q

p , such
that

(5.12) f =
∑
Q∈Q

sQaQ and ‖s‖ḟα,q
p

≤ C‖f‖Ḟα,q
p

,

where the above series converges unconditionally in Ḟα,q
p . Conversely, for any family

of smooth atoms {aQ},

(5.13)
∥∥∥∥ ∑

Q

sQaQ

∥∥∥∥
Ḟα,q

p

≤ C‖s‖ḟα,q
p

.
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Proof. The converse direction (5.13) follows immediately from Theorem 5.5 and
Remark 5.3. Let θ ∈ S be such that supp θ ⊂ B(0, δ0), and∫

xγθ(x)dx = 0 for all |γ| ≤ Ñ ,(5.14)

|θ̂(ξ)| ≥ c > 0 for all (2||A||)−1 ≤ |ξ| ≤ 1.(5.15)

It is easy to construct such θ; see [25, Theorem 2.6]. Indeed, let Θ ∈ S be a radial
function satisfying supp Θ ⊂ B(0, 1) and Θ̂(0) = 1. Then for sufficiently small 0 <

δ < δ0, θ = (−∆)Ñ (δ−nΘ(·/δ)) satisfies (5.14) and (5.15), since θ̂(ξ) = |ξ|2Ñ Θ̂(δξ).
Let η ∈ S be such that η̂(ξ) �= 0 ⇐⇒ (2||A||)−1 < |ξ| < 1. In addition, by
(5.15) we can modify the phase of η̂(ξ) such that η̂(ξ)θ̂(ξ) ≥ 0 for all ξ ∈ Rn.
Let h(ξ) =

∑
j∈Z

η̂((A∗)jξ)θ̂((A∗)jξ). Finally, let ϕ be given by ϕ̂(ξ) = η̂(ξ)/h(ξ).
Then, as in the proof of Lemma 3.6, one can show that ϕ ∈ S satisfies (3.2), (3.3),
and ∑

j∈Z

ϕ̂((A∗)jξ)θ̂((A∗)jξ) = 1 for all ξ ∈ R
n \ {0}.

Therefore, by Lemma 2.6 we can expand f ∈ Ḟα,q
p as

f =
∑
j∈Z

θj ∗ ϕj ∗ f,

where the equality and convergence is in S ′/P. Then, we can decompose the first
convolution to obtain the expansion of f

(5.16) f(x) =
∑
j∈Z

∑
Q∈Q, |Q|=| det A|−j

∫
Q

θj(x − y)(ϕj ∗ f)(y)dy.

At this moment, it may not be obvious that the above series converges in S ′/P.
However, if it does, then clearly this series must converge to f in S ′/P. Next, for
Q ∈ Q with |Q| = | det A|−j , we define

sQ = |Q|1/2 sup
y∈Q

|(ϕj ∗ f)(y)|.

It follows from the proof of the boundedness of Sϕ in Theorem 3.5 that s = {sQ}Q ∈
ḟα,q
p and ||s||ḟα,q

p
≤ C||f ||Ḟα,q

p
. We also define

aQ(x) = s−1
Q

∫
Q

θj(x − y)(ϕj ∗ f)(y)dy, if sQ �= 0,

and aQ ≡ 0 if sQ = 0. Therefore, we can rewrite (5.16) as f =
∑

Q∈Q sQaQ.
To guarantee that this series converges in Ḟα,q

p , by Theorem 5.5 and Remark 5.3,
it suffices to verify that each aQ is a smooth atom. It is immediate that aQ satisfies
(5.9) and (5.11). Finally, to check (5.10), for any multi-index γ and |Q| = | detA|−j ,
we have

|∂γ [aQ(A−j ·)](x)| ≤ s−1
Q | detA|j

∫
Q

|∂γθ(x − Ajy)||(ϕj ∗ f)(y)|dy

≤ | detA|js−1
Q sup

y∈Q
|(ϕj ∗ f)(y)|

∫
Q

|∂γθ(x − Ajy)|dy

≤ |Q|−1/2

∫
Rn

|∂γθ(y)|dy ≤ Cγ |Q|−1/2.
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Finally, by re-normalizing {aQ} and {sQ} by the constant factor sup|γ|≤K̃ Cγ , {aQ}
is the required family of smooth atoms. This completes the proof of Theorem
5.8. �

5.4. Atomic and molecular decompositions of Fα,q
p . After some necessary

modifications, all results about smooth atomic and molecular decompositions for
the homogeneous case can be generalized to the inhomogeneous case. For the sake
of completeness, we present the inhomogeneous versions of Theorem 5.5, Theorem
5.6, and Theorem 5.8.

Definition 5.3. Suppose α ∈ R, 0 < p < ∞, 0 < q ≤ ∞, w ∈ A∞, and r0 =
inf{r : w ∈ Ar}. Let Q0 = {Q ∈ Q : |Q| ≤ 1}.

We say that ΨQ(x) is an inhomogeneous smooth synthesis molecule for Fα,q
p

supported near Q ∈ Q0 if it satisfies (5.1)–(5.3) if |Q| < 1, and (5.1) only if |Q| = 1.
Hence, we do not assume that ΨQ has any vanishing moments if |Q| = 1. A
collection {ΨQ}Q∈Q0 is a family of inhomogeneous smooth synthesis molecules if
each ΨQ is a smooth synthesis molecule supported near Q.

We say that ΦQ(x) is an inhomogeneous smooth analysis molecule for Fα,q
p sup-

ported near Q ∈ Q0 if it satisfies (5.4)–(5.6) if |Q| < 1, and (5.4) only if |Q| = 1.
A collection {ΦQ}Q∈Q0 is a family of inhomogeneous smooth analysis molecules if
each ΦQ is a smooth analysis molecule supported near Q.

A matrix {aPQ}P,Q∈Q0 is an inhomogeneous almost diagonal matrix for fα,q
p if

there exists an ε > 0 such that

(5.17) sup
P,Q∈Q0

|aQP |/κQP (ε) < ∞.

It is clear that an operator A on fα,q
p given by an almost diagonal matrix is bounded

on fα,q
p . This follows immediately from Theorem 4.1 and the observation that

fα,q
p ↪→ ḟα,q

p is an isometric embedding.
Suppose {ΨQ} and {ΦQ} are families of inhomogeneous smooth synthesis and

analysis molecules, respectively. Then the inhomogeneous analogue of Lemma 5.1
holds, i.e., the matrix {aPQ}P,Q = {〈ΨP , ΦQ〉}P,Q is almost diagonal on fα,q

p . The
proof of this fact is a slight modification of the homogeneous case. Indeed, the
vanishing conditions for ΨQ and the additional decay in the case α < 0 are only
used in cases III and IV of Lemma 5.1, i.e., when applying Lemma 6.3 for h = ΨP

and |P | < |Q|. This never happens in the inhomogeneous case if |P | = 1. Similar
observation holds for ΦQ if |Q| = 1. The remaining estimate for 〈ΨP , ΦQ〉 for
|P | = |Q| = 1 is a consequence of Lemma 6.4. Hence, the inhomogeneous analogue
of Lemma 5.1 is true.

As a consequence, we have the following analogues for the corresponding results
for the homogeneous case.

Theorem 5.9 (Inhomogeneous smooth molecular synthesis). Suppose A is an
expansive matrix and w ∈ A∞. There exists a constant C > 0, such that if
f =

∑
Q∈Q0

sQΨQ, where {ΨQ}Q is a family of inhomogeneous smooth synthe-
sis molecules for Fα,q

p (Rn, A, wdx), then

‖f‖Fα,q
p

≤ C‖{sQ}Q‖fα,q
p

for all {sQ}Q ∈ fα,q
p .

Theorem 5.10 (Inhomogeneous smooth molecular analysis). Suppose A is an ex-
pansive matrix and w ∈ A∞. There exists a constant C > 0, such that if {ΦQ}Q is
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a family of inhomogeneous smooth analysis molecules, then

‖{〈f, ΦQ〉}Q∈Q0‖fα,q
p

≤ C‖f‖Fα,q
p

for all f ∈ Fα,q
p (Rn, A, wdx).

For the analogue of smooth atomic decomposition we need the following defini-
tion.

Definition 5.4. A function aQ(x) is said to be an inhomogeneous smooth atom
supported near a cube Q ∈ Q0 if it satisfies (5.9), (5.10), and (5.11) if |Q| < 1 and
(5.9) and (5.10) only if |Q| = 1. We say that {aQ}Q∈Q0 is a family of inhomogeneous
smooth atoms if each function aQ is a smooth atom supported near Q.

Theorem 5.11 (Inhomogeneous smooth atomic decomposition). Suppose A is an
expansive matrix and w ∈ A∞. For any f ∈ Fα,q

p there exists a family of inhomo-
geneous smooth atoms {aQ} and a sequence of coefficients s = {sQ} ∈ fα,q

p , such
that

f =
∑

Q∈Q0

sQaQ and ‖s‖fα,q
p

≤ C‖f‖Fα,q
p

,

where the above series converges unconditionally in Fα,q
p . Conversely, for any family

of inhomogeneous smooth atoms {aQ},∥∥∥∥ ∑
Q∈Q0

sQaQ

∥∥∥∥
Fα,q

p

≤ C‖s‖fα,q
p

.

The proof of Theorem 5.11 is a direct modification of Theorem 5.8. Indeed, let
θ, Θ ∈ S be such that supp θ, supp Θ ⊂ B(0, δ0), |Θ̂(ξ)| ≥ c > 0 for |ξ| ≤ 1, and θ
satisfies (5.14) and (5.15). Then, one can show that there exists a pair Φ, ϕ ∈ S
satisfying (3.2), (3.18), (3.19) and

(5.18) Φ̂(ξ)Θ̂(ξ) +
∞∑

j=1

ϕ̂((A∗)−jξ)θ̂((A∗)−jξ) = 1 for all ξ ∈ R
n.

Using the representation formula

(5.19) f = Θ ∗ Φ ∗ f +
∑
j≥1

θj ∗ ϕj ∗ f,

the rest of the proof of Theorem 5.11 is analogous to that of Theorem 5.8.

6. Proofs of auxiliary results

6.1. Proof of Proposition 2.7. To show Proposition 2.7 we will need the follow-
ing lemma.

Lemma 6.1. Given an integer d ≥ 0, define

Sd(Rn) = {φ ∈ S(Rn) : ∂αφ(0) = 0 for |α| ≤ d}.

Then there exists a collection {Tγ}|γ|=d+1 of continuous linear maps Tγ : Sd(Rn) →
S(Rn) such that any φ ∈ Sd(Rn) can be decomposed as

(6.1) φ(x) =
∑

|γ|=d+1

xγTγφ(x) for all x ∈ R
n.
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Sketch of the proof. Lemma 6.1 is trivial in one dimension, since Td+1 : Sd(R) →
S(R) given by

(6.2) Tdφ(x) =

{
φ(x)
xd+1 , x �= 0,
φ(d+1)(0)
(d+1)! , x = 0,

is a continuous linear map. Indeed, this is a consequence of the Taylor remainder
theorem.

To show Lemma 6.1 in higher dimensions we will proceed by induction. Assume
it is true in all dimension < n for all d ≥ 0.

Pick any φ ∈ Sd(Rn). For any (x2, . . . , xn) ∈ Rn we expand φ in the Taylor
polynomial of order d at the point (0, x2, . . . , xn), but only in x1 variable

(6.3) φ(x1, . . . , xn) =
d∑

j=0

∂j
x1

φ(0, x2, . . . , xn)
j!

(x1)j + Rφ(x1, x2, . . . , xn),

where the remainder satisfies Rφ(x1, x2, . . . , xn) = O(|x1|d+1) as |x1| → 0. Let g be
a fixed C∞ function on R such that g(x) = 1 for all x ∈ [−1, 1] and supp g ⊂ (−2, 2).
We define the map Tγ0 : Sd(Rn) → S(Rn), where γ0 = (d + 1, 0, . . . , 0), by

(6.4) Tγ0φ(x1, . . . , xn) =

⎧⎨⎩
g(x1)Rφ(x1,...,xn)+(1−g(x1))φ(x1,...,xn)

(x1)d+1 , x1 �= 0,
∂d+1

x1
φ(0,x2,...,xn)

(d+1)! , x1 = 0.

It is clear that Tγ0φ is C∞ on {(x1, . . . , xn) : x1 �= 0} with all its partial derivatives
decaying polynomially fast at ∞.

Moreover, since Tγ0φ(x1, . . . , xn) = Rφ(x1, . . . , xn)/(x1)d+1 in the neighborhood
U = {(x1, . . . , xn) : −1 < x1 < 1} of the hyperplane x1 = 0, by the Taylor
remainder theorem it follows that Tγ0φ is also C∞ in U with all its partial derivatives
decaying polynomially fast as |(x2, . . . , xn)| → ∞. Furthermore, it is not hard to
see that the map Tγ0 is continuous. Therefore, by (6.3) and (6.4)
(6.5)

φ(x1, . . . , xn) = (x1)d+1Tγ0φ(x1, . . . , xn) + g(x1)
d∑

j=0

∂j
x1

φ(0, x2, . . . , xn)
j!

(x1)j .

Applying the induction hypothesis, for every 0 ≤ j ≤ d we can decompose the
function ∂j

x1
φ(0, x2, . . . , xn) as in (6.1). Combining these decompositions into (6.5)

in the obvious manner we can define the operators Tγ with |γ| = d + 1 and
γ �= γ0 fulfilling (6.1). Since the trace operator T : S(Rn) → S(Rn−1) given
by Tφ(x2, . . . , xn) = φ(0, x2, . . . , xn) is continuous and since the differential opera-
tors ∂j

x1
: S(Rn) → S(Rn) are also continuous, the operators Tγ are continuous as

well. This completes the proof of Lemma 6.1. �

Proof of Proposition 2.7. Recall that the Fourier transform F isomorphically maps
S ′(Rn) into itself. Moreover, F maps polynomials into linear combinations of
derivatives of the point mass δ at 0, i.e., F(xα) = (−i)−|α|∂αδ. Therefore, Propo-
sition 2.7 is equivalent to the following statement:

Assume that for every multi-index γ with |γ| = d + 1 the sequence {xγfi} con-
verges in S ′ as i → ∞. Then there exists a sequence {ai,α}i∈N,|α|≤d such that the
sequence of distributions {fi −

∑
|α|≤d ai,α∂αδ} converges in S ′ as i → ∞.
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Suppose then that xγfi → fγ in S ′ as i → ∞. Let g be a fixed function in S(Rn)
such that g(x) = 1 for all |x| ≤ 1. For any ϕ ∈ S, consider the function

φ(x) = ϕ(x) − g(x)
∑
|α|≤d

∂αϕ(0)
α!

xα.

Since φ ∈ Sd(Rn), it admits the decomposition (6.1). Therefore,

〈fi, φ〉=
〈

fi,
∑

|γ|=d+1

xγTγφ

〉
=

∑
|γ|=d+1

〈xγfi, Tγφ〉 →
∑

|γ|=d+1

〈fγ , Tγφ〉 as i → ∞.

On the other hand,

〈fi, φ〉 = 〈fi, ϕ〉 −
∑
|α|≤d

∂αϕ(0)
α!

〈fi, g(x)xα〉 = 〈fi, ϕ〉 −
∑
|α|≤d

〈fi, g(x)xα〉
α!

〈δ, ∂αϕ〉

=
〈

fi −
∑
|α|≤d

ai,α∂αδ, ϕ

〉
where ai,α =

(−1)|α|〈fi, g(x)xα〉
α!

.

Since ϕ ∈ S is arbitrary and the operators Tγ , |γ| = d+1, are continuous by Lemma
6.1, the modified sequence {fi −

∑
|α|≤d ai,α∂αδ} converges in S ′ as i → ∞. �

6.2. Proof of Lemma 3.1.

Proof of Lemma 3.1. Lemma 3.1 holds under a weaker hypothesis than w ∈ A∞.
We only need to require that there is N0 > 0 and s0 > 0 such that

(6.6)
∫

Rn

w−s0(x)
(1 + |x|)N0

dx < ∞.

It is not hard to see that w ∈ A∞ implies (6.6). Indeed, since w ∈ A∞, we
can find 1 < p0 < ∞ such that w ∈ Ap0 , and by duality, w−p′

0/p0 ∈ Ap′
0
, where

1/p′0 + 1/p0 = 1. Hence, if we let s0 = p′0/p0, then w−s0 is in A∞ and thus it
satisfies the doubling condition with respect to ρA. That is, there is a constant
D > 0 such that for all x ∈ Rn and r > 0

(6.7)
∫

BρA
(x,| det A|r)

w−s0(y)dy ≤ D

∫
BρA

(x,r)

w−s0(y)dy.

Choose N0 > 0 such that D| detA|−N0ζ− < 1. Then, by (2.5) and (6.7)∫
Rn

w−s0(x)
(1 + |x|)N0

dx ≤ C

∫
Rn

w−s0(x)
(1 + ρA(x))N0ζ−

dx

= C

[∫
BρA

(0,1)

+
∞∑

j=0

∫
BρA

(0,| det A|j+1)\BρA
(0,| det A|j)

]
w−s0(x)

(1 + ρA(x))N0ζ−
dx

≤ C

∫
BρA

(0,1)

w−s0(x)dx ·
(

1 +
∞∑

j=0

Dj+1

| detA|jN0ζ−

)
< ∞,

which shows (6.6).
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Suppose that K ⊂ Rn is compact, 0 < p < ∞ and w satisfies (6.7). Let η ∈ S
be such that η̂(ξ) = 1 for all ξ ∈ K. Initially, we will show that (3.5) holds for all
f ∈ S with supp f̂ ⊂ K. For any N1 > 0 and 0 < s1 ≤ 1, by f = f ∗ η, we have

|f(x)| ≤
∫

Rn

|f(y)||η(x − y)|dy

≤ sup
y∈Rn

|f(y)|1−s1

(1 + |y|)N1(1−s1)

∫
Rn

|f(y)|s1(1 + |y|)N1(1−s1)|η(x − y)|dy

≤ ||f(·)(1 + | · |)−N1 ||1−s1
∞ sup

y∈Rn

|η(x − y)|(1 + |y|)N1

∫
Rn

|f(y)|s1

(1 + |y|)N1s1
dy

≤ C(1 + |x|)N1 ||f(·)(1 + | · |)−N1 ||1−s1
∞

∫
Rn

|f(y)|s1

(1 + |y|)N1s1
dy,

since η is in S. Therefore,

(6.8) sup
x∈Rn

|f(x)|
(1 + |x|)N1

≤ C

(∫
Rn

|f(y)|s1

(1 + |y|)N1s1
dy

)1/s1

.

If 0 < s1 < p, then by Hölder’s inequality,

(6.9)
∫ |f(y)|s1

(1 + |y|)N1s1

ws1/p(y)
ws1/p(y)

dy

≤
( ∫

|f(y)|pw(y)dy

) s1
p

( ∫
w−s1/(p−s1)(y)

(1 + |y|)N1ps1/(p−s1)
dy

) p−s1
p

.

Therefore, if we choose 0 < s1 < p small enough so that s1/(p − s1) < s0 and
N1 > 0 large enough so that N1ps1/(p − s1) > N0, where N0 and s0 are the same
as in (6.6), then combining (6.6), (6.8), and (6.9) yields (3.5) with N = N1.

Finally, to remove the assumption that f ∈ S, we use the standard regularization
technique as in Lemma 3.4. Let h ∈ S satisfy supp ĥ ⊂ B(0, 1), ĥ(ξ) ≥ 0, and
h(0) = 1. By the Fourier Inversion Formula, |h(x)| ≤ 1 for all x ∈ R

n. Given
an arbitrary f ∈ S ′ with supp f̂ ⊂ K, we let fδ(x) = f(x)h(δx) for 0 < δ < 1.
Then supp f̂δ ⊂ K + B(0, 1), fδ ∈ S, |fδ(x)| ≤ |f(x)| for all x, and fδ(x) → f(x)
uniformly on compact sets as δ → 0. Applying (3.5) to fδ and letting δ → 0, we
obtain (3.5) for a general f ∈ S ′ with supp f̂ ⊂ K. This completes the proof of
Lemma 3.1. �

Finally, we remark that an alternative proof of Lemma 3.1, which also works for
doubling measures with respect to ρA (hence, a larger class than A∞ weights), can
be found in [7].

6.3. Proof of Lemma 3.3. We need an auxiliary lemma to show Lemma 3.3.

Lemma 6.2. Suppose 0 < a ≤ r < ∞, λ > r/a, and i, j ∈ Z. Then for any
sequence s = {sP }P and for each cube Q ∈ Q with |Q| = | detA|−j and each
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x ∈ Q, we have

(6.10)
( ∑

|P |=| det A|−i

|sP |r/
(

1 +
ρA(xQ − xP )
max(|P |, |Q|)

)λ)1/r

≤ C| detA|(i−j)+/a

(
MρA

( ∑
|P |=| det A|−i

|sP |aχP

)
(x)

)1/a

,

where the constant C depends only on λ − r/a. In particular, if i = j, then

(6.11)
∑

|Q|=| det A|−j

(s∗r,λ)Qχ̃Q ≤ C

(
MρA

( ∑
|Q|=| det A|−j

|sQ|χ̃Q

)a)1/a

with the same constant C.

Proof. We may assume xQ = 0. Consider first the case when i ≤ j. For k ≥ 1, let

A0 = {P ∈ Q : |P | = | detA|−i and ρA(xP )/|P | ≤ 1},
Ak = {P ∈ Q : |P | = | detA|−i and | detA|k−1 < ρA(xP )/|P | ≤ | detA|k}.

Then ∑
P∈Ak

|sP |r
(1 + ρA(xP )/|P |)λ

≤ C| detA|−kλ
∑

P∈Ak

|sP |r ≤ C| detA|−kλ

( ∑
P∈Ak

|sP |a
)r/a

≤ C| detA|−kλ| detA|ri/a

( ∫
B̃

∑
P∈Ak

|sP |aχP

)r/a

,

since (
∫

χP )r/a = | detA|−ri/a and
⋃

P∈Ak
P ⊂ B̃ := BρA

(0, 2H| detA|k−i). Hence,
by the definition of the maximal operator, we have∑

P∈Ak

|sP |r
(1 + ρA(xP )/|P |)λ

≤ C| detA|−kλ| detA|ri/a|B̃|r/a

(
1
|B̃|

∫
B̃

∑
P∈Ak

|sP |aχP

)r/a

≤ C| detA|−k(λ−r/a)

(
MρA

( ∑
|P |=| det A|−i

|sP |aχP

)
(x)

)r/a

for any x ∈ Q ⊂ B̃. Summing over k ≥ 0, yields (6.10).
In the second case i > j, we redefine for k ≥ 1,

A0 = {P ∈ Q : |P | = | detA|−i and ρA(xP )/|Q| ≤ 1},
Ak = {P ∈ Q : |P | = | detA|−i and | detA|k−1 < ρA(xP )/|Q| ≤ | det A|k}.
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Then as before∑
P∈Ak

|sP |r
(1 + ρA(xP )/|Q|)λ

≤ C| detA|−kλ| detA|ri/a

( ∫
B̃

∑
P∈Ak

|sP |aχP

)r/a

≤ C| detA|(i−j)r/a−k(λ−r/a)

(
MρA

( ∑
|P |=| det A|−i

|sP |aχP

)
(x)

)r/a

for any x ∈ Q ⊂ B̃ := BρA
(0, 2H| detA|k−j). Summing over k ≥ 0, yields (6.10).

To see (6.11), multiply both sides of (6.10) by χ̃Q, and sum over all Q ∈ Q with
|Q| = | detA|−j ,∑

|Q|=| det A|−j

(s∗r,λ)Qχ̃Q ≤ C
∑

|Q|=| det A|−j

(
MρA

( ∑
|P |=| det A|−j

|sP |χ̃P

)a)1/a

χQ

= C

(
MρA

( ∑
|P |=| det A|−j

|sP |χ̃P

)a)1/a

,

since {Q ∈ Q : |Q| = | detA|−j} is a partition of Rn. �
Proof of Lemma 3.3. Suppose r>0 and λ>max(1, r/q, rp0/p). If r<min(q, p/p0),
then set a = r. Otherwise, if r ≥ min(q, p/p0), then take a such that r/λ < a <
min(r, q, p/p0). It is possible to choose such an a, since λ > max(1, r/q, rp0/p)
implies r/λ < min(r, q, p/p0). In both cases we have that

0 < a ≤ r < ∞, λ > r/a, q/a > 1, p/a > p0.

Therefore, Lemma 6.2 yields (6.11), and consequently we can estimate ḟα,q
p (A, wdx)

quasi-norm of s∗r,λ by

‖s∗r,λ‖ḟα,q
p (A,wdx) ≤ C

∥∥∥∥(∑
j∈Z

(
MρA

( ∑
|Q|=| det A|−j

|Q|−α|sQ|χ̃Q

)a)q/a)a/q∥∥∥∥1/a

Lp/a(w)

.

Since q/a > 1 and p/a > p0, by the Stein-Fefferman vector-valued maximal in-
equality we can remove MρA

from the above estimate (by increasing a constant C)
to obtain

‖s∗r,λ‖ḟα,q
p (A,wdx) ≤ C‖s‖ḟα,q

p (A,wdx).

�
6.4. Proof of Lemma 3.4.

Proof of Lemma 3.4. Since g ∈ S ′(Rn) has compact support in the Fourier domain,
g is regular. More precisely, the distribution g is a slowly increasing (at most
polynomially fast) and infinitely differentiable function. Let γ ∈ S(Rn) be such
that γ̂(ξ) = 1 for all ξ ∈ K. By g = γ ∗ g, we have for i = 1, 2, . . . , n,

|∂ig(x − y)| = |(∂iγ ∗ g)(x − y)| ≤
∫

Rn

|∂iγ(z − y)||g(x − z)|dz

≤ C

∫
Rn

|∂iγ(z − y)|(1 + ρA(z − y))1/r(1 + ρA(y))1/r |g(x − z)|
(1 + ρA(z))1/r

dz,

since

1 + ρA(z) ≤ H(1 + ρA(z − y) + ρA(y)) ≤ H(1 + ρA(z − y))(1 + ρA(y)).
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Hence,

|∂ig(x − y)|

≤ H sup
z∈Rn

|g(x − z)|
(1 + ρA(z))1/r

(1 + ρA(y))1/r

∫
Rn

|∂iγ(z − y)|(1 + ρA(z − y))1/rdz.

Since ∂iγ ∈ S, there exists C1 > 0 such that

(6.12) sup
y∈Rn

|∇g(x − y)|
(1 + ρA(y))1/r

≤ C1 sup
z∈Rn

|g(x − z)|
(1 + ρA(z))1/r

for all x ∈ R
n.

To show the second inequality in (3.8), take δ such that 0 < δ < 1. By the
Mean-Value Theorem we have

|g(x − y)| ≤ min
z∈BρA

(x−y,δ)
|g(z)| + diam(BρA

(x − y, δ)) sup
z̃∈BρA

(x−y,δ)

|∇g(z̃)|,

≤ Cδ−1/r

( ∫
BρA

(x−y,δ)

|g(z)|rdz

)1/r

+ Cδζ− sup
z̃∈BρA

(x−y,δ)

|∇g(z̃)|

by Lemma 2.2, where ζ− is the same as in (2.6). Here, we also used that BρA
(x−y, δ)

is convex, since by remarks preceding Proposition 2.1, it is possible to find a quasi-
norm ρA, which produces convex ρA-balls. Since

BρA
(x − y, δ) ⊂ BρA

(x, H(δ + ρA(y))),

we have∫
BρA

(x−y,δ)

|g(z)|rdz ≤
∫

BρA
(x,H(δ+ρA(y)))

|g(z)|rdz ≤ C(δ + ρA(y))MρA
(|g|r)(x),

sup
z̃∈BρA

(x−y,δ)

|∇g(z̃)| ≤ sup
z∈BρA

(x,H(δ+ρA(y)))

|∇g(x − z)|

≤ H1/r(1 + δ + ρA(y))1/r sup
z∈Rn

|∇g(x − z)|
(1 + ρA(z))1/r

.

Combining the above estimates we have

|g(x − y)| ≤ C(1 + ρA(y))1/r

[
δ−1/r(MρA

(|g|r)(x))1/r + δζ− sup
z∈Rn

|∇g(x − z)|
(1 + ρA(z))1/r

]
.

Therefore,

sup
z∈Rn

|g(x − z)|
(1 + ρA(z))1/r

≤ C

[
δ−1/r(MρA

(|g|r)(x))1/r + δζ− sup
z∈Rn

|∇g(x − z)|
(1 + ρA(z))1/r

]
.

Assume for the moment that g ∈ S, and choose δ sufficiently small in order to have
C1Cδζ− < 1/2. Combining the above with (6.12) and supz∈Rn

|g(x−z)|
(1+ρA(z))1/r < ∞,

we obtain

(6.13) sup
z∈Rn

|g(x − z)|
(1 + ρA(z))1/r

≤ C2(MρA
(|g|r)(x))1/r for all x ∈ R

n.

To remove the assumption that g ∈ S, we apply the standard regularization
argument; see, e.g. [42, p. 22] or [27, Lemma A.4]. Let h ∈ S satisfy supp ĥ ⊂
B(0, 1), ĥ(ξ) ≥ 0, and h(0) = 1. By the Fourier Inversion Formula, |h(x)| ≤ 1 for
all x ∈ Rn. For 0 < δ < 1, let gδ(x) = g(x)h(δx). Then supp ĝδ ⊂ K + B(0, 1),
gδ ∈ S, |gδ(x)| ≤ |g(x)| for all x, and gδ(x) → g(x) uniformly on compact sets as
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δ → 0. Applying (6.13) to gδ and letting δ → 0, we obtain (6.13) for a general
g ∈ S ′. This completes the proof of Lemma 3.4. �

6.5. Proof of Lemma 5.1. To prove Lemma 5.1 we need to show Lemma 6.3,
which is a generalization of the corresponding dyadic result; see [27, Lemma B.1].

Lemma 6.3. Suppose A is an expansive matrix, L ∈ Z, L ≥ 0, R > 1, S > 1+Lζ+,
i, j ∈ Z, i ≥ j, and x0 ∈ R

n. Suppose that g ∈ CL+1(Rn) and h ∈ L1(Rn) satisfy

|∂γ [g(A−j ·)](x)| ≤ | detA|j/2(1 + ρA(x))−R for |γ| ≤ L + 1,(6.14)

|h(x)| ≤ | detA|i/2(1 + ρA(Ai(x − x0)))−max(R,S),(6.15) ∫
xγh(x)dx = 0 for |γ| ≤ L.(6.16)

Then for any 0 < θ ≤ 1 satisfying

(6.17) (L + θ)ζ− + 1 < S,

there exists a constant C > 0, which is independent of g, h, i, j, and x0, such that
(6.18)
|(g∗h)(x)| ≤ C| detA|−(i−j)((L+θ)ζ−+1/2)(1+ρA(Aj(x−x0)))−R for all x ∈ R

n.

Proof. Using translation and dilation, we may assume that j = 0 and x0 = 0.
Indeed, suppose that g and h satisfy (6.14)–(6.16) for some i0 ≥ j0 ∈ Z and
x̃0 ∈ Rn. Then | detA|−j0/2DA−j0 g(x) and | detA|−j0/2DA−j0 T−x̃0h(x) satisfy the
corresponding conditions for i = i0−j0, j = 0, and x0 = 0. Thus, assuming Lemma
6.3 holds for j = 0 and x0,

| detA|−j0 |(DA−j0 g∗DA−j0 T−x̃0h)(x)|≤C| detA|−(i0−j0)((L+θ)ζ−+1/2)(1+ρA(x))−R.

This shows the general case of Lemma 6.3, since

| detA|−j0(DA−j0 g ∗ DA−j0 T−x̃0h)(x) = (g ∗ T−x̃0h)(A−j0x) = (g ∗ h)(A−j0x + x̃0).

Given x ∈ R
n we decompose R

n into 3 domains,

D1 = {y ∈ R
n : ρA(y − x) < 1},

D2 = {y ∈ R
n : ρA(y − x) ≥ 1 and ρA(y) ≤ ρA(x)/2H},

D3 = {y ∈ R
n : ρA(y − x) ≥ 1 and ρA(y) > ρA(x)/2H},

where H is the constant of the quasi-subadditivity inequality.
Then by the vanishing moment condition (6.16) we have

|(g ∗ h)(x)| ≤
∫

Rn

∣∣∣∣g(y) −
∑
|β|≤L

∂βg(x)
β!

(y − x)β

∣∣∣∣|h(x − y)|dy ≡
∫

D1

+
∫

D2

+
∫

D3

.

Case 1: Estimation of D1. For y ∈ D1, applying the Taylor Remainder
Theorem and (6.14) with |γ| = L + 1, we have∣∣∣∣g(y) −

∑
|β|≤L

∂βg(x)
β!

(y − x)β

∣∣∣∣ ≤ C|x − y|L+1 sup
z∈[x,y]

sup
|β|=L+1

|∂βg(z)|

≤ C|x − y|L+1 sup
z∈[x,y]

(1 + ρA(z))−R ≤ CρA(x − y)(L+1)ζ−(1 + ρA(x))−R,
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where [x, y] is the line segment joining x and y. Here, we used that for y ∈ D1 and
z ∈ [x, y],

ρA(z) ≥ (1/H)ρA(x) − ρA(x − z) ≥ (1/H)ρA(x) − ρA(x − y) ≥ (1/H)ρA(x) − 1,

where ρA(x − y) ≥ ρA(x − z) for z ∈ [x, y] is a consequence of convexity of ρA-
balls. Suppose that 0 < θ ≤ 1 satisfies (6.17). Such θ can always be chosen, since
Lζ− + 1 ≤ Lζ+ + 1 < S. Hence, by the change of variables we have∫

D1

≤ C| detA|i/2(1 + ρA(x))−R

∫
D1

ρA(x − y)(L+θ)ζ−(1 + ρA(Ai(x − y)))−Sdy

≤ C| detA|i/2(1 + ρA(x))−R

∫
Rn

ρA(y)(L+θ)ζ−(1 + ρA(Aiy))−Sdy

≤ C| detA|i/2(1 + ρA(x))−R| detA|−i((L+θ)ζ−+1)

×
∫

Rn

ρA(y)(L+θ)ζ−(1 + ρA(y))−Sdy

≤ C| detA|−i((L+θ)ζ−+1/2)(1 + ρA(x))−R,

since the last integral is finite by (6.17).
Case 2: Estimation of D2. For y ∈ D2, we have

ρA(x − y) ≥ ρA(x)/H − ρA(y) ≥ ρA(x)/H − ρA(x)/(2H) = ρA(x)/(2H).

On the other hand,

ρA(x − y) ≤ H(ρA(x) + ρA(y)) ≤ HρA(x) + ρA(x)/2 = (H + 1/2)ρA(x).

Thus, we have

1 + ρA(Ai(x − y)) ≥ | detA|iρA(x − y) ≥ | detA|i(1 + ρA(x))/(4H)

and

|x − y|L ≤ CρA(x − y)Lζ+ ≤ CρA(x)Lζ+ .

Consequently,∫
D2

≤ C

∫
D2

[
(1 + ρA(y))−R +

∑
|β|≤L

|x − y||β|
(1 + ρA(x))R

]
| detA|i/2

(1 + ρA(Ai(x − y)))max(R,S)
dy

≤ C
| detA|−i(S−1/2)

(1 + ρA(x))max(R,S)

×
[ ∫

Rn

1
(1 + ρA(y))R

dy +
ρA(x)Lζ+

(1 + ρA(x))R

∫
ρA(y)≤ρA(x)/2H

dy

]
≤ C

| detA|−i(S−1/2)

(1 + ρA(x))R

[
1 +

ρA(x)Lζ++1

(1 + ρA(x))S

]
≤ C| detA|−i(S−1/2)(1 + ρA(x))−R,

since S > Lζ+ +1. This is exactly what is needed, since S − 1/2 > (L+ θ)ζ− +1/2
by (6.17).
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Case 3: Estimation of D3. For y ∈ D3, we have ρA(y) ≥ ρA(x)/2H and,
hence,∫

D3

≤ C

∫
D3

[
(1 + ρA(y))−R +

∑
|β|≤L

|x − y||β|
(1 + ρA(x))R

]
| detA|i/2

(1 + ρA(Ai(x − y)))max(R,S)
dy

≤ C
| detA|i/2

(1 + ρA(x))R

∫
ρA(x−y)≥1

ρA(x − y)Lζ+

ρA(Ai(x − y))S
dy

≤ C
| detA|−i(S−1/2)

(1 + ρA(x))R

∫
ρA(z)≥1

ρA(z)Lζ+−Sdz ≤ C
| detA|−i(S−1/2)

(1 + ρA(x))R
,

since S > Lζ+ + 1. Again, this is what is needed by (6.17).
Combining the above estimates yields (6.18) and completes the proof of Lemma

6.3. �

As a special case of Lemma 6.3, formally corresponding to L = −1, where no
vanishing moments on h are assumed, we obtain

Lemma 6.4. Suppose A is an expansive matrix, R > 1, i, j ∈ Z, i ≥ j, and
x0 ∈ Rn. Suppose g, h ∈ L1(Rn) satisfy

(6.19) |g(x)| ≤ | detA|j/2(1 + ρA(Ajx))−R

and

(6.20) |h(x)| ≤ | detA|i/2(1 + ρA(Ai(x − x0)))−R.

Then

(6.21) |(g ∗ h)(x)| ≤ C| detA|−(i−j)/2(1 + ρA(Aj(x − x0)))−R

for some constant C > 0.

Finally, we are ready to show Lemma 5.1.

Proof of Lemma 5.1. We will split our estimates into 4 cases.
Case 1. Suppose |Q| ≤ |P | and α ≥ 0. Let i, j ∈ Z be such that |Q| =

| detA|−i ≤ | detA|−j = |P |. Then it is not hard to check that g(x) = ΨP (xP − x)
and h(x) = ΦQ(x) satisfy the hypotheses of Lemma 6.3 with R = M , L = �α/ζ−�,
S = 1 + αζ+/ζ− + M − J and x0 = xQ. More precisely, (5.1), (5.5), and (5.6)
imply (6.14), (6.15), and (6.16), respectively. Indeed, to show the least obvious
implication (5.1) =⇒ (6.14) it suffices to observe that

∂γ(DA−j g)(x) = ∂γ(DA−j TxP
D−IdΨP )(x) = ∂γ(TAjxP

D−IdDA−j ΨP )(x)

= ∂γ(D−IdDA−j ΨP )(x − AjxP ) = (−1)|γ|∂γ(DA−j ΨP )(AjxP − x).

Therefore, by Lemma 6.3 with θ = min(1, α/ζ−−�α/ζ−�+(M −J)/(2ζ−)) we have

|〈ΨP , ΦQ〉| = |(g ∗ h)(xP )|
≤ C| detA|−(i−j)((L+θ)ζ−+1/2)(1 + | detA|jρA(xQ − xP ))−M

≤ C| detA|−(i−j)(α+ε/2+1/2)(1 + | detA|jρA(xQ − xP ))−J−ε,

where ε/2 = (L + θ)ζ− − α > 0.
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Case 2. Suppose |Q| ≤ |P | and α < 0. Let i, j ∈ Z be such that |Q| =
| detA|−i ≤ | det A|−j = |P |. By Lemma 6.4 with R = M for the same choice of g
and h as in Case 1, we have

|〈ΨP , ΦQ〉| ≤ C| detA|−(i−j)/2(1 + | detA|jρA(xQ − xP ))−M

≤ C| detA|−(i−j)(α+ε/2+1/2)(1 + | detA|jρA(xQ − xP ))−J−ε,

where ε/2 = min(−α, (M − J)/2) > 0.
Case 3. Suppose |Q| > |P | and N ≥ 0. Let i, j ∈ Z be such that |Q| =

| detA|−j > | detA|−i = |P |. Again, it is not hard to check that hypotheses of
Lemma 6.3 with R = M , L = N , S = (M−α)ζ+/ζ−, x0 = xP , g(x) = ΦQ(xQ − x),
and h(x) = ΨP (x) are satisfied. More precisely, (5.2), (5.3), and (5.4) imply (6.15),
(6.16), and (6.14), respectively. Therefore, by Lemma 6.3 with

θ = min(1, (J − α − 1)/ζ− − �(J − α − 1)/ζ−� + (M − J)/(2ζ−))

we have

|〈ΨP , ΦQ〉| = |(g ∗ h)(xQ)|
≤ C| detA|−(i−j)((N+θ)ζ−+1/2)(1 + | detA|jρA(xQ − xP ))−M

≤ C| detA|−(i−j)(J−α+ε/2−1/2)(1 + | detA|jρA(xQ − xP ))−J−ε,

where ε/2 = (N + θ)ζ− − (J − α − 1) > 0.
Case 4. Finally, suppose |Q| > |P | and N = −1. Let i, j ∈ Z be such that

|Q| = | detA|−j > | detA|−i = |P |. By Lemma 6.4 with R = M for the same choice
of g and h as in Case 3, we have

|〈ΨP , ΦQ〉| ≤ C| detA|−(i−j)/2(1 + | detA|jρA(xQ − xP ))−M

≤ C| detA|−(i−j)(J−α+ε/2−1/2)(1 + | detA|jρA(xQ − xP ))−J−ε,

where ε/2 = min(−(J − α − 1), (M − J)/2) > 0.
Combining Cases 1–4, we conclude that

|〈ΨP , ΦQ〉| ≤ C(1 +
ρA(xQ − xP )
max(|P |, |Q|) )−J−ε ·

{
(|Q|/|P |)α+(1+ε)/2, |Q| ≤ |P |,
(|Q|/|P |)α−J+(1−ε)/2, |Q| > |P |,

= CκQP (ε),

which completes the proof of Lemma 5.1. �
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[40] J.-O. Strömberg, A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math., #1381,

Springer-Verlag (1989). MR1011673 (90j:42053)
[41] W. Szlenk, An introduction to the theory of smooth dynamical systems, Translated from

the Polish by Marcin E. Kuczma, PWN—Polish Scientific Publishers, Warsaw (1984).
MR0791919 (86f:58042)

[42] H. Triebel, Theory of Function Spaces, Monographs in Math., #78, Birkhäuser (1983).
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