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ATOMIC AND MOLECULAR IMPURITIES IN 4He CLUSTERS
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Abstract. A density functional theory is used to predict the binding energy of

atomic and molecular impurities (Ne, Ar, Kr, Xe, Li, Na, K, Rb, Cs, and SF6)

in the center of 4He clusters, in the limit of zero temperature and for zero angular

momentum states. The size dependence of the binding energy, from small clusters

to the bulk liquid limit, is investigated. The behaviour of the 4He density near the

impurity is also studied.
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I. INTRODUCTION

Helium clusters are produced in supersonic nozzle beam expansions (see Ref.[1]

for a recent review). They are expected to behave like liquid droplets down to zero

temperature. At low temperature they are strongly affected by quantum correla-

tions and, eventually, become superfluid. Several attempts have been made in the

last years in order to get experimental evidence of superfluidity in helium clusters.

Due to the weakness of the helium-helium interaction a direct characterization of

pure helium clusters is very difficult. A more promising approach is the investiga-

tion of atomic and molecular impurities attached to the helium clusters [2,3]. The

interpretation of the experimental data is still limited by the lack of quantitative

theories. The quantum mechanical description of the static and dynamics of helium

clusters has been tackled by several authors [4-10], but very little is known about

the behaviour of impurities [9-11].

In this work we calculate the energy and the density distribution associated

with impurity states in the center of helium clusters at zero temperature and zero

angular momentum. We employ a density functional method, which was developed

in the last decade [5,12-14] in the context of inhomogeneous states of liquid helium.

With a relatively small numerical effort it provides quantitative predictions which

are close to the results of ab initio Monte Carlo calculations in the case of small

clusters, and can be extended to large clusters, up to the bulk liquid limit. Quantum

correlations between helium atoms are accounted for by means of a phenomenologi-

cal density dependent interaction. The impurity is included as an external potential

in which the helium density adjusts to minimize the energy. Rare gas atoms, alkali

atoms, and SF6 molecule are considered. Accurate impurity-helium potentials are

taken from the literature [15-18].



In Section II we introduce the density functional formalism, emphasizing the

main physical features and discussing the approximations made in the treatment of

the impurity. In Section III we present the results of the calculations. Section IV

is a short summary of the main results and a discussion about open problems and

future work.

II. METHOD

In a density functional theory one writes the total energy of the many-body

system as a functional of the one-body density ρ(r), in the form

E =

∫

dr H[ρ] . (1)

Under certain conditions the minimization of E with respect to ρ is equivalent to the

solution of the many-body Schrödinger equation [19]. In general, however, the exact

form of the functional, whose minimum is located at the true equilibrium density

of the system, is not known a priori. Thus suitable phenomenological functionals

are introduced; they yield approximate results, whose quality depends on how the

relevant symmetries and correlations are included in the starting functional form.

A first systematic description of helium clusters in the framework of density

functional is the one of Ref. [5]. The theory was built in such a way that the

compressibility and surface tension of liquid helium were reproduced. The results for

the cluster energy and density profile were close to the ones of quantum variational

calculations [4]. The functional of Ref. [5] has been recently extended to include

the effect of the finite range helium-helium interaction [13]. The new functional has

the form:

H◦ =
h̄2

2m
(∇

√

ρ(r) )2 +
1

2

∫

dr′ ρ(r)ρ(r′)V (|r− r′|) + c

2
ρ(r)(ρ̄r)

1+γ . (2)



The first term in the sum is a quantum pressure; it corresponds to the zero tem-

perature kinetic energy of a noninteracting Bose system. The second term contains

a two-body interaction V , which is the Lennard-Jones interatomic potential, with

the standard parameters α = 2.556 Å and ε = 10.22 K, screened at a distance

h=2.377 Å with a power law, as follows

V (x) =

{

4ε
[

(

α
x

)12 −
(

α
x

)6
]

, if x ≥ h;

V (h)
(

x
h

)4
, if x < h.

(3)

The last term in Eq. (2) accounts for short range correlations between atoms. In

particular it contains the effect of the hard core part of the interatomic potential. Its

form follows the idea of the ”weighted density approximation”, used mainly in the

study of classical fluids. The weighted density ρ̄ is the average of ρ(r) over a sphere

with radius h. The parameters c = 1.04554× 107 K Å3(1+γ), and γ = 2.8, together

with the screening length h, are the only three parameters of the theory; they are

fixed to reproduce the equation of state of the bulk liquid. As discussed in ref.[13]

the functional H◦ corresponds to a mean-field description, which incorporates phe-

nomenologically the effects of a finite-range interaction, with the correct long range

behaviour, as well as of short range correlations. Like the functional of Ref. [5] it

reproduces the equation of state, the compressibility and the surface tension of bulk

liquid 4He . Moreover it reproduces the behaviour of the static response function,

which is peaked at the roton wavelength. This ensures the inclusion of localization

effects, which are crucial to predict the freezing transition at high pressure [20], the

layer structure in helium films [21,22], and the shell structure near impurities [14].

The effect of an impurity can be included in the density functional by adding

a potential term

H = H◦ + VI(r)ρ(r) , (4)

where VI(r) is the helium-impurity potential. This corresponds to treat the impurity



as a classical object in a quantum liquid. Since the zero point motion of the impurity

is not accounted for, the validity of Eq. (4) is restricted to impurities heavier than

the helium atomic mass m. So, we do not discuss 3He or hydrogen impurities. For

them a full quantum mechanical treatment is necessary [10,11]. In this work we

consider rare gas atoms, alkali atoms and SF6 molecules. For most of them the

effect of zero point motion is surely negligible. Only for Li and Ne it gives rise to

sizeable effects, but, as we will discuss later, the potential contribution is expected

to be still dominant.

Combining Eqs. (1), (2) and (4) the minimization with respect to ρ yields the

following Euler-Lagrange equation:

[

− h̄2

2m
∆+ U(r) + VI(r)

]√
ρ = µ

√
ρ , (5)

where µ is the helium chemical potential, while U(r) is the Hartree self consistent

field derived from functional (2) [13,14]. Equation (5) can be solved in bulk helium

as well as in clusters of given particle number N . The solution yields both the

density profile and the energy of the system. The impurity chemical potential can

be extracted as difference between the energy of the cluster with and without the

impurity (X)

µI = E[X(He)N ]− E[(He)N ] . (6)

In bulk this is equivalent to

µI =

∫

dr (H[ρ(r)]− µρ(r)) . (7)

The solution of Eq. (5) in bulk helium as been already discussed by Pavloff

[14], who considered Na, Cs, Xe and Ba+ as impurities and used the same density

functional for liquid helium. The results for Xe were in good agreement with pre-

vious variational calculations by Kürten and Ristig [23]. For Cs the agreement was



only qualitative, mainly because the role of the elementary diagrams neglected in

the calculations of Ref. [23] is expected to be more important for Cs than for Xe.

Another test on the density functional method is the evaluation of the energy of

one atom of 4He , considered as a classical impurity in the rest of the liquid. The

calculation, with helium-helium interaction in place of VI , yields an energy of about

−23 K. This is in good agreement with independent estimates of the potential en-

ergy per particle in bulk helium. The difference between this value and the total

energy per particle, −7.15 K, is an estimate of the zero point kinetic energy. The

kinetic energy for different impurities scales approximately as the mass ratio and

the square of the radius of the bubble created by the impurity inside the liquid. For

the lightest impurities considered in this work (Li and Ne) the resulting zero point

energy is no more than 3÷ 4 K, which is much less than the potential energy.

In the present work we calculate the impurity chemical potential and the helium

density near the impurity, in bulk liquid and clusters, using accurate impurity-

helium interaction [15-18]. We consider only impurity states in spherical symmetry.

Thus Eq. (5) becomes a one-dimensional equation in the radial coordinate, which

can be solved numerically with a standard iterative procedure (a few minutes on a

RISC-CPU for each run). In the case of helium clusters, the assumption of spherical

symmetry implies impurity states in the center of the cluster. The inclusion of

possible bound states outside the cluster (surface states) will be a subsequent step,

which requires further numerical efforts in solving Eq. (5) with anisotropic density.



III. RESULTS

III.A Impurity in Bulk Liquid

We take the mixed rare gas van der Waals potential by Tang and Toennies

[16], the alkali-helium potential by Patil [18], and the spherical approximation of

the SF6-helium potential by Pack et al. [15], with a modified value of the potential

depth as in Ref. [17]. We solve Eq. (5) in bulk liquid helium by imposing the

asymptotic value of ρ equal to the uniform liquid density at fixed external pressure.

The results for the impurity states are summarized in Table I. In the first column

the impurity chemical potential (at zero temperature and zero pressure) is given.

One notes that it is negative for rare gas atoms and for SF6, while it is positive for

alkali atoms. This reflects the different structure of VI ; the alkali-helium potential

has a more extended repulsive core and a weaker attractive tail than the rare-gas

and the SF6 potential. As a consequence the rare gas impurities, as well as SF6,

tend to compress the helium atoms in shells around the impurity, in a region of large

and negative VI , with a gain in energy. On the contrary, the alkali atom pushes

the helium atoms far away without changing significantly the helium density; this

corresponds to a cost in energy. Density profiles are shown in Fig. 1. The height of

the first peak in helium density is also given in the second column of Table I (the

equilibrium density of the uniform liquid is 0.0218 Å−3). The energy systematics

and the structure of the density profiles are very similar to the situation of helium

films on solid substrates [21,22], where one finds a transition from wetting to non

wetting as a function of the substrate-helium potential parameters.

An interesting quantity is the number of helium atoms in the first shell, close

to the impurity (third column in Table I). The most attractive case is the one of

SF6, where we find approximately 25 atoms in the first shell, corresponding to a



solid snowball surrounding the impurity. This snowball makes the impurity state

less sensitive to the external pressure, since the behaviour of state is dominated

by the local shell structure. The chemical potential of alkali atoms is much more

pressure dependent. It tends to increase with the external pressure, because it costs

more energy to create a bubble in a liquid under pressure. For instance, the chemical

potential of Na increases from 49 K to 74 K in passing from zero to 5 bars, while

the one of Kr decreases from −243 K to −250 K in the same range. It is worth

noticing that the existence of a shell structure near an impurity, as in the case of SF6

and rare gas atoms, has important consequences in the dynamic properties of the

system. In particular it is expected to change considerably the effective mass of the

impurity as well as the structure of the velocity field of helium in the surrounding

region.

The accuracy of our predictions depends on two main aspects: the quality of the

impurity-helium interaction used as input and the quality of the density functional

H◦. Indeed one can take from the literature different impurity-helium potential for

the same kind of impurity. The resulting chemical potential scales approximately as

the well depth of VI , and the height of the first peak in ρ slightly changes. But, at

the present level of understanding, the precision in the impurity-helium potential is

not crucial. For this reason we have also chosen the isotropic approximation for the

SF6-helium potential instead of the true anisotropic one. As concerns the quality

of the density functional, one can test it by comparison with quantum Monte Carlo

calculations, whenever available, as done in different contexts [5,11,13,22,24].

III.B Impurities in the center of helium clusters

The solution of Eq. (5) without the impurity potential corresponds to the case



of pure 4He clusters. The results for the energy systematics and for the density

profiles are very close to the ones of Ref. [5], where a simpler density functional

was used. This confirms the fact that for smoothly varying density the relevant

quantities in the theory are the compressibility and the surface tension, which are

both well reproduced by the two functionals.

We solve Eq. (5) with and without impurities. The difference in energy pro-

vides the impurity chemical potential. A major advantage of the density functional

method is that it works easily even with quite large clusters, up to N = 5000 par-

ticles or more. So one can test the asymptotic convergence to the bulk liquid limit,

predicting the size dependence of the results on a wide range of N .

In Figs. 2 and 3 we show the impurity chemical potential as a function of N .

Again there is a significant difference between alkali atoms and the other impuri-

ties. The alkali atoms are more sensitive to the size of the cluster and reach the

asymptotic value of the chemical potential in bulk more slowly. This effect can be

understood by looking at Fig. 4, where the density profile for a cluster with Na

and Kr is compared with the pure helium cluster. One notes that the rare gas

atom does not modify the external structure of the cluster. As a consequence its

chemical potential is fixed mainly by the local distortion of the density near the

center, and the energy is almost the same as in bulk liquid. On the contrary the

Na atom pushes the helium atoms outside, working against the local pressure of the

liquid and increasing the surface area. The net effect is an increase of the impurity

chemical potential with respect to the bulk value. This is also in agreement with

the pressure dependence of the chemical potential in bulk, which is stronger for

alkali atoms.

In all cases the chemical potential bends towards zero in the limit of small

clusters. This happens when the first shells of atoms near the impurity become



partially occupied. In the case of SF6 and rare gas the attractive impurity-helium

potential dominates on the helium-helium correlations; thus a lack of atoms in the

first shells, in the potential well of the impurity, implies an increase of energy. Vicev-

ersa in the case of alkali atoms the helium-helium correlations are more important

and a decrease in helium density implies a decrease in energy.

Typical density profiles are shown in Fig. 5. One notes that the first shell of

atoms near the rare gas impurity is deformed only for very small N . This is a clear

sign that the impurity prefers to tie the helium atoms around itself, i.e., to stay in

the center of the cluster with a relatively large binding energy. This effect is even

stronger in the case of SF6. On the contrary, the alkali atoms seem not to bind

to the center of the cluster for any value of N . The energy of the impurity-cluster

system is higher when the impurity is in the center than when it is far outside. This

does not exclude a priori the possibility to capture alkali atoms on helium droplets.

In fact, since at large distance the relative interaction is attractive, a local energy

minimum may still exist on the surface of the cluster.

Monte Carlo calculations for small clusters with impurities are also becoming

available. In Fig. 6 we compare the density profile for a cluster of 111 particles

with a SF6 molecule in the center. The dashed line is the result of Diffusion Monte

Carlo calculations [10], and the solid line is the prediction of our density functional

theory, using the same impurity-helium potential. The agreement is very good. The

small difference in the first peak height is well within the expected accuracy of the

present theory.

IV. CONCLUSIONS

We have done density functional calculations for rare gas atoms, alkali atoms



and SF6 molecule in the center of helium clusters. We have discussed the size

dependence of the impurity chemical potential and of the helium density profile on

a wide range of particle number, up to the bulk liquid limit. Our results strongly

support the existence of bound states in the center of a cluster for rare gas atoms

and SF6, but not for alkali atoms. For SF6 in small clusters the predictions of the

density functional theory are in good agreement with the ones of recent Diffusion

Monte Carlo calculations [10].

In view of the current debate about the location of impurities on clusters [2,3]

further theoretical work is needed. A first possibility is to drop the spherical sym-

metry in Eq. (5), to allow for impurity states on the surface of the clusters, as well

as to study the cluster-impurity interaction as a function of the relative distance.

This makes the numerical computation heavier, without any substantial change in

the theory. A second point is the inclusion of non zero angular momentum, which

is expected to favour surface impurity states [2]. The inclusion of velocity field

and vorticity in the framework of the density functional theory has been already

discussed for bulk liquid helium [24]. The treatment of the velocity field in the

cluster geometry is expected to be more difficult. The problem deserves certainly

further investigations, being directly related to the concept of superfluidity in finite

systems.
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FIGURE CAPTIONS

Fig. 1 Helium density profiles near impurities in bulk liquid, at zero temperature and

zero pressure. The profiles for rare gas impurities correspond to Ne, Ar, Kr,

and Xe in this order starting from the profile closest to r = 0. The profiles for

alkali impurities corresponds to Li, Na, K, Rb, and Cs in the same order. The

cordinate r is the distance from the impurity.

Fig. 2 Chemical potential of rare gas atoms, and SF6 molecule, in helium clusters as

a function of the helium particle number.

Fig. 3 Chemical potential of alkali atoms in helium clusters as a function of the helium

particle number.

Fig. 4 Density profile for 300 helium atoms around Na and Kr impurity. The dashed

line is the density profile of a pure helium cluster with the same number of

particles.

Fig. 5 Density profile for helium clusters with Na and Kr impurities. The number

of helium particles is 20, 30, 50, 100, 300, 1000, and 3000 starting from the

smallest one.

Fig. 6 Density profile for a cluster of 111 helium atoms and one SF6 molecule in the

center. Dashed line: Diffusion Monte Carlo calculations of Ref. [10]; solid line:

present calculation with the same impurity-helium potential.



TABLE CAPTION

Table I. Results for the impurity state in bulk liquid helium at zero pressure and zero

temperature. From left to right: impurity type, impurity chemical potential,

maximum value of the helium density, and number of helium atoms in the first

shell.



TABLE I

µI [K] ρmax (Å−3) Nshell

Li + 40 0.0242 –

Na + 49 0.0237 –

K + 68 0.0227 –

Rb + 69 0.0226 –

Cs + 84 0.0220 –

Ne − 39 0.0477 12

Ar − 195 0.0593 17

Kr − 243 0.0605 19

Xe − 313 0.0595 21

SF6 − 601 0.0820 25


