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Atomic clocks and inertial sensors

Ch. J. Bordé

Abstract. We show that the language of atom interferometry provides a unified picture for microwave and optical

atomic clocks as well as for gravito-inertial sensors. The sensitivity and accuracy of these devices is now such that

a new theoretical framework common to all these interferometers is required that includes: (a) a fully quantum

mechanical treatment of the atomic motion in free space and in the presence of a gravitational field (most cold-atom

interferometric devices use atoms in “free fall” in a fountain geometry); (b) an account of simultaneous actions

of gravitational and electromagnetic fields in the interaction zones; (c) a second quantization of the matter fields

to take into account their fermionic or bosonic character in order to discuss the role of coherent sources and

their noise properties; (d) a covariant treatment including spin to evaluate general relativistic effects. A theoretical

description of atomic clocks revisited along these lines is presented, using both an exact propagator of atom

waves in gravito-inertial fields and a covariant Dirac equation in the presence of weak gravitational fields. Using

this framework, recoil effects, spin-related effects, beam curvature effects, the sensitivity to gravito-inertial fields

and the influence of the coherence of the atom source are discussed in the context of present and future atomic

clocks and gravito-inertial sensors.

Figure 1. Rubidium atoms are extracted from a cold
rubidium gas (left) and from a Bose-Einstein condensate
(right). The atom beam falls down in the Earth gravity field.
(Courtesy of University of Munich [4].)
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1. Introduction

A first goal of this paper is to clarify the link

between atomic clocks and the recent field of atom

interferometry [1] and to show that, indeed, microwave

and optical atomic clocks are not only genuine atom

interferometers [2] but also atomic inertial sensors. We

demonstrate that the basic formula which gives the

fringe pattern in a fountain microwave clock is the same

as the corresponding formula for an atomic gravimeter.

The wave character of atoms is becoming more and

more manifest in these devices: the recoil energy

is not negligible any more in caesium

clocks ( π ). Atom sources may now

be coherent sources of matter-waves (Bose-Einstein

condensates [3-6], atom lasers or atomasers [7]) as

illustrated in Figure 1. We have to deal with a very

different picture from that of small clocks carried by

classical point particles. The atomic frame of reference

may not be well defined. In modern microwave atomic

clocks, atoms interact twice with an electromagnetic

field (this is the method of separated fields introduced by

N. F. Ramsey around 1950), giving rise to interference

fringes (Figure 2), which can now be reinterpreted as an

interference between the de Broglie waves associated

with the external motion of the atoms. Atomic clocks

should thus be considered as fully quantum devices

in which both the internal and external degrees of

freedom must be quantized. In a first step, we recall

this interpretation in the absence of gravitation.

Gravitation and inertia play a key role in slow-

atom clocks, which are realized on Earth as fountains
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Figure 2. Ramsey fringes obtained with the caesium
fountain clock. (Courtesy of BNM-LPTF [8].)

(see Figure 3) and in which both interactions of atoms

take place in the same resonator, once on their way

up and a second time on their way down. In a second

step, we thus introduce gravitation and inertia in the

theory of these clocks. As the Einstein red shift and

the second-order Doppler shift may become important,

atomic clocks also have to be treated as relativistic

devices.

Finally, we recall how the idea of separated

electromagnetic (e.m.) fields in space or time has been

extended to the optical domain in order to build atom

interferometers, which can be used as optical clocks but

also as very sensitive gravito-inertial sensors, and we

outline the state of the art concerning both theory and

experiments in this direction.

In the appendices, we give a complete derivation

of the quantum mechanical propagator for atom waves

in the presence of gravito-inertial fields and solve the

Schrödinger equation for an arbitrary mode structure

of these waves. We also present an exact stationary

solution of the atomic fountain and perform an explicit

quantum mechanical calculation of the fringes in a

fountain atomic clock for time-dependent wave packets.

2. Atom waves

The wave properties of atoms are fully described by

a dispersion law relating the de Broglie frequency to

the de Broglie wave vector, which is obtained from

the law connecting energy to momentum by

the introduction of the Planck constant. In free space

(Figure 4) the corresponding curve is the hyperbola of

equation

The amplitude of an atom wave may therefore be

written generally as

π

π

where is the Heaviside step function, introduced

here to eliminate negative energies (antiparticles). In

the non-relativistic limit:

π

Figure 3. Principle and realization of a fountain clock. (Courtesy of BNM-LPTF [8].)
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Figure 4. Energy-momentum curves: (1D cut of the mass
shell) hyperbola for a massive particle, e.g. an atom in a
given internal energy state, and straight lines for photons.
The slope is the group velocity of the de Broglie wave.

If is expanded, for example, in Hermite-Gauss

functions,

π

we obtain a complete orthogonal set of free-propagation

modes. An even better expansion scheme is the use of

3D Hermite polynomials introduced by Grad [9] (see

Appendix 2). The lowest-order modes correspond

to minimum uncertainty wave packets ( :

π

with

which can then be shifted to any frame in uniform

motion by a Galilean transformation. For any higher-

order mode , the transposition

in (3) gives

where

is the classical action. These free-space propagation

modes transform with the same law as in

Gaussian laser optics [10]. The matrices are

functions of time in this case and we see below how

the law can be generalized in the presence of

gravito-inertial fields.

For a travelling wave in the direction, the

function can be written

and we may keep the kinetic energy

instead of in the expression of the modes. This is

a good choice if the atom wave is monochromatic, in

which case the integral over energy combines with an

amplitude proportional to . In the paraxial

approximation [11]:

and

π

with . The same Hermite-Gauss expansion

as above may be used for . Again the

propagation is described by matrices, which

are in this case functions of . The lowest-order modes

are then

π
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with

3. Interaction of two-level atoms with

electromagnetic waves

We make systematic use of energy-momentum diagrams

to discuss the problem of interaction of two-level atoms

with two separated field zones in a Ramsey excitation

scheme (Figure 5).

Figure 5. Illustration of the reinterpretation of the separated
field method as interference between de Broglie waves. Case
of successive interactions with copropagating waves.

Figures 6 and 7 illustrate the energy and momentum

conservation between this two-level atom and effective

photons from each travelling wave in the transverse and

longitudinal directions and display the recoil energy,

the first- and second-order Doppler shifts and the

transit broadening. It is clear from Figure 7 that, out

of resonance, an additional longitudinal momentum

is transferred to the atoms in the excited state. This

velocity change along the forward direction is the basis

for the so-called mechanical reinterpretation of Ramsey

fringes [12-15]. We now illustrate this point in more

detail through a simple first-order theory of Ramsey

fringes.

Let us consider a beam of two-level atoms with

E E initially in state which interacts successively

with two field zones respectively centred at and ,

Figure 6. Energy versus transverse momentum in the
absorption of a photon by a two-level atom. Two different
rest masses � � correspond to the two internal energies

� � of the atom. A distribution of absorbed frequencies
follows from a distribution of momenta. The central Bohr
frequency is defined by �

�� � �
�.

Figure 7. Energy versus longitudinal momentum in the
absorption of a photon by a two-level atom. When the e.m.
radiation is confined in the longitudinal direction, there is
a corresponding distribution of wave vector components
in that direction, which allows for a spread of absorbed
frequencies (transit-time broadening or Rabi pedestal) and a
change of the longitudinal momentum of the atom.

as in Figure 5, and let us calculate the excited state

amplitude to first order in each field zone [2, 16]. One

can check that the following expression is indeed a

first-order solution of the Schrödinger equation:

π
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π

where the energy is given by the dispersion relation (1)

and can be expanded in a Taylor series:

The matrix element of the Hamiltonian of

interaction with the e.m. waves is

, where is a

Rabi frequency. Let us introduce a monochromatic

electromagnetic wave with a Gaussian distribution of

(example for illustration) and, for simplicity, let us

ignore the dimension :

π π

with

and

. We have used as a short form

for . In the time integral, the upper bound

may be extended to infinity if the considered wave

packet has left the interaction zone (this is justified

in footnote 1, where the exact calculation of [11] is

1. The exact calculation gives

���
�

π �� �����������
�

π ���
	

�
 ���� ��� ��� ���

����� ��� ����	�	 ���

��  �� � � � ��� �  ����� ���	� �
�

with � 
 �� � 
 	

and where is the error function of complex arguments.
The second term vanishes with the distance � 
,
leaving the accelerated or decelerated first contribution as
the dominant one.

recalled). We obtain a function expressing energy

conservation as expected from the S-matrix:

π

and corresponding to Figures 6 and 7. If the resonance

condition is satisfied in

Figure 6 this implies in Figure 7, otherwise the

effect of energy conservation is to select a particular

component .

We obtain the first-order excited state transition

amplitude:

π

π

as the product of the e.m. carrier times a Rabi frequency

and a Rabi envelope, times an additional momentum

phase factor for each initial wave packet Fourier

component.2 This additional longitudinal momentum is

proportional to the detuning and is responsible for the

Ramsey fringes, as de Broglie waves associated with

each path have a different wavelength in the dark zone

(Figure 5) and the transition probability integrated over

the detection volume is

This Ramsey interference pattern has a blue recoil

shift and is the superposition of fringe subsystems

corresponding to each velocity class, shifted by the

first-order Doppler effect. If the transverse velocity

distribution is too broad (absence of diaphragm in the

fountain) or in the optical domain, this will blur out the

fringes. The integral is easily calculated for Gaussian

wave packets and statistical mixtures. To make the

connection with atom optics, this superposition can be

rewritten as a correlation function involving the degree

of transverse coherence of the atom source:

2. If, instead of a monochromatic non-plane (localized) wave, we
had considered a plane non-monochromatic (pulsed in the time
domain) wave, the exchange in momentum would have been
replaced by an exchange of energy and the space-dependent
phase by a time-dependent phase.

Metrologia, 2002, 39, 435-463 439



Ch. J. Bordé

Fringes will be obtained as long as

is smaller than the coherence width of the atom

source.3 This expression can be obtained directly from

the previous one, using the convolution theorem, but

we may also obtain it directly from the following

approximate expression for which is valid

for a quasi-monochromatic atom wave packet, when

we neglect the dependence of the Rabi envelope:

π

In the simple case of a monochromatic Gaussian wave

( stands for above):

π

3. As our starting point, we could also have calculated the rate
of change of the upper-state population to second order in

the perturbation , from the density matrix element
���
�� ,

representing thermal equilibrium in the ground state (for a
stationary system and whenever there is such an equilibrium
within the considered degrees of freedom):

��� ����

��

�

�

��

� � � � ��

�
�� �

���
��

�� �

��
� � �

�

� �

��

�

��� � ��

�

� �

�
�

��
� �

�

�

where � and � are the free propagators for states and ,
���and the total number density and the partition function

and where � . The combination of variables in the
“complex time” stems from the fact that the thermal
propagator or correlation function �

� satisfies
both the Schrödinger equation and the Bloch
equation with the same Hamiltonian. When
this is the case, the thermal propagator combines the statistical
properties associated with the entropy and the kinematical
properties associated with the action and the conjugate variables
of the energy are respectively the time and the reciprocal
temperature, with Planck and Boltzmann constants as respective
quanta of action and information. The thermal correlation
function �

� describes the coherence of the atom
wave source. Its width is the thermal de Broglie wavelength

with � and it gives rise to the e-fold
Doppler half-width � . Incidentally, an accurate value for
the Boltzmann constant � could be obtained through the
accurate frequency measurement of a Doppler width in a
gas [17]. The equation above can also be used to discuss the
Lamb-Dicke-Mössbauer effect in confined atomic systems.

The previous integral gives for the signal

π

where the second factor

gives the loss of contrast associated with the finite

coherence length.

A second mechanism, which was considered only

recently for microwave clocks [18], is the interaction

with oppositely travelling waves in each zone as in

Figures 8 and 9.

Figure 8. Illustration of the reinterpretation of the separated
field method as the interference between de Broglie waves.
Case of successive interactions with counterpropagating
waves.

This is possible only if the initial wave packet has

Fourier components which differ by (minimal

size of atomic cloud λ ) as

We show that the resulting signal exhibits fringes

with an opposite recoil shift and that, unlike the

previous one, this signal depends on the propagation
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Figure 9. Energy versus transverse momentum exchanges in
the case of successive interactions with counterpropagating
waves.

characteristics and longitudinal coherence of the

incident atom wave. If the atom wave is incoherent

(e.g. in a thermal beam) we have also a in

the initial density matrix. Energy conservation requires

and it will not be satisfied for most

velocities (Figure 9) so that the signal will tend to

average out with time integration for a broad velocity

distribution. In the case of a quasi-monochromatic atom

wave, the integration over gives the signal as

which is strongly dependent on the position of the atom

beam waist position . To illustrate what happens for

a coherent atom wave with a simple case, we may use

here again the approximate expression of the excited

state amplitude, to express this signal as

π

For the Gaussian wave packet, the previous integral

gives the signal

π

where the factor accounts

for the requirement that the minimal size

of the cloud must be smaller than the

electromagnetic wavelength. The other contrast factor

shows

that if the waist is located at , this second contribution

will have the same magnitude as the first one and the

overall recoil shift will cancel [18]. If it is focused at

the midpoint (perfect time reversal),

this second signal will be free of Doppler effect and

will tend to dominate and impose its opposite recoil

shift. The situation of could be

obtained, for example, with a coherent atom wave

having its waist at the top of a fountain clock, which

could be achieved in a clock design such as that

represented in Figure 10.

Figure 10. Schematic view of a possible future fountain
clock using the continuous coherent atom wave source
being developed at Laboratoire Kastler Brossel (Paris).
The magnetic mirror is in the strong-field regime, in which
four magnetic sublevels bounce upwards (including one
connected with , ), and the four others are
attracted (including one connected with , ). This
guarantees detection on a dark background. (Courtesy of

Jean Dalibard, Christophe Salomon and David Guéry-Odelin.)

To describe fountain geometries, which imply

directly the action of the gravitational field on the

atomic wave function, we now introduce gravito-inertial

fields in a very general way and then apply the previous

results concerning the interaction physics to the double

interaction with the same microwave field.

4. Introduction of gravito-inertial fields

The well-known stationary solution of the Schrödinger

equation in the presence of a gravitational field

involving the Airy function [19, 20] can be extended
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to the case of a continuous fountain clock [21].

This is done in Appendix 1, where the phase shifts

for a two-level atom wave are derived. However,

calculations with the Airy function are not so easy

and we prefer to take a more general time-dependent

approach, which is mathematically simpler and more

powerful as most clocks use time-dependent wave

packets anyway. To take gravito-inertial fields into

account in the treatment of fountain clocks and other

atom interferometers, we consider quite generally the

Schrödinger equation obtained as the low-velocity limit

of a general relativistic equation described in Section 6

of this paper:

where is an internal atomic Hamiltonian, the

corresponding rest mass operator, and some

general interaction Hamiltonian with an external field

(e.g. a microwave or a laser e.m. field or the gradient

of a gravitational field gradient). Gravito-inertial fields

are represented by the tensors (

for a gravitational wave) and (gravitational field

gradient) and by the vectors and . The same

terms can also be used to represent the effect of

various external electromagnetic fields. The operators

and are respectively the orbital

and spin angular momentum operators. Apart from

in , we have limited the dependence of the

Hamiltonian to second order in the operators and

.

The rotation terms are easily removed with a

unitary transformation (active rotation)4 [16, 10]:

�

with

�

4. In the non-rotating frame, the atomic state vector is �

and an active rotation takes the e.m. wave vector from its
time-independent initial position to a time-dependent �

rotating with the angular frequency . Conversely, in the

rotating frame, where the e.m. wave vector is specified to be ,

it takes an active rotation with the angular frequency to
bring the atomic state vector from � to .

where is a chronological ordering operator. We

obtain the following equation for the “non-rotating”

state vector:

When has a fixed direction , the rotation is

parametrized through the simple formula

with and where are the

generators of infinitesimal rotations:

(Matrices with the opposite sign have been used in

[16]). This formula can be used to rotate all vectors

and tensors and, as an example, the wave vector of the

electromagnetic field transforms as

If does not have a fixed direction, a chronological

ordering operator must be introduced in each of

these formulas and is replaced by the following

orthogonal rotation matrix

The exact propagator of (31) in the absence

of is derived in Appendix 2 by introducing

a vector such that

and the matrices of Gaussian optics [16, 10]:

π
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where is Hamilton’s principal function:

where is a partial

Lagrangian and where , are matrices

corresponding to the tensors and vectors

(we have omitted the subscript 0 whenever

unnecessary).

If and are independent of time,

where

satisfies ,

are the Pauli matrices and and are respectively

and unit matrices. If is also

independent of time,

Finally the rotation (30) is used to bring the propagator

back in the rotating frame:

Using the invariance of the action and of in

this rotation, we see that the propagator

has the same form as with transformed matrices

:

and transformed vectors and tensors:

This propagator is then used to “propagate” wave

packets along both arms of the interferometer. For this,

we use the theorem demonstrated in Appendix 2. Let us

illustrate this theorem with a simple example (without

rotation). For one space dimension , with

the following result (corrected from [16]) is obtained

for the wave packet at :

π

where

is the classical action, with , and where

is a Gaussian (more generally Hermite-Gaussian) wave

packet at the initial time in which the central position

, the initial velocity and the initial complex

width parameters , in phase space, have to be

replaced by their values at time given by the

transformation law:

Hence the total phase factor acquired by

the atomic wave packet is

.5 In the limit where

5. The phase shift along each arm �� �

�

�

is equal to minus the time integral of the kinetic energy in the
absence of a gravity field gradient.
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, , , ,

and

.

All these results are generalized to three space

dimensions in Appendix 2 with arbitrary time-

dependent tensors and vectors and any modal structure

of the atom waves. To include rotations and retrieve

the Sagnac effect, it will be sufficient to use, in the

final result, the transformed matrices, vectors

and tensors given above in (42), (43) and (44). In

a microwave fountain clock, there is a small Sagnac

effect, out of resonance, but the corresponding shift

cancels for the most part for a symmetric transverse

velocity distribution or for a truly stationary e.m.

wave. We return to the Sagnac effect later in this paper

for the optical domain.

The application of the formalism to

fountain clocks (Figure 11) is given in detail in

Appendix 3 with the following conclusions: the

additional momentum communicated after the first

interaction

δ

combined with the path length gives

the phase shift responsible for the Ramsey fringes

(see Figure 11). Note that this phase shift is indeed the

same as in the atom gravimeter (see below) and an atom

fountain clock is essentially a gravimeter with a recoil

momentum communicated longitudinally proportional

to the detuning. After integration over the tranverse

velocity , the first-order Doppler shift gives

a reduced contrast, which depends on the focusing of

the atom wave, as discussed above. The second-order

Doppler shift in combines with the gravitational

phase shift to give a correction factor to

. The final overall phase factor for the fringes is thus

There is an opposite recoil correction for the contri-

bution which comes from the successive interactions

with oppositely travelling waves, with a contrast that

depends on the position of the focal point of the atom

wave, as discussed above in the absence of gravitation.

In addition, there is a global gravitational red shift

of the fountain at altitude . Finally, out of

resonance, there is a small splitting of the wave packets

as they travel along the two parabolic paths, which also

leads to a reduction in contrast.

5. Optical atomic clocks

In the optical domain, more interaction zones are

necessary to close the interferometer [22-24] and cancel

the transverse phase shift (see Figure 12).

This closed circuit may have different shapes [24]:

parallelogram (case of three or four copropagating

Figure 11. Phase shift in a fountain clock.

Figure 12. Magneto-optical trap (MOT, left) and sequence
of four laser beam spatial zones or time pulses to generate a
closed atom interferometer in space or space-time (right).

Figure 13. Pair of interferometers generated by two
counterpropagating pairs of two copropagating laser beams.
In one case the atoms are in their ground state in the
central gap while they are in the excited state in the second
interferometer central drift zone. The four interaction
regions may be separated in space or in the time domain.
They may involve single-photon or multiphoton (Raman
or cascade) transitions.

laser beams) or trapezoid (two counterpropagating pairs

of copropagating laser beams) or more complicated
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geometries with larger deviations [25-27]. The choice

depends on the type of phase shift that one wishes to

measure: symmetric configurations are sensitive only to

inertial effects while asymmetric ones also depend on

the laser detuning. A variety of transition processes and

effective fields may be used: single photon transitions,

or two-photon transitions of Raman or cascade type

[23, 24]. These interactions may be separated in space

to generate a spatial interferometer [13, 28] or in

time to generate a space-time interferometer, as in

recent realizations of optical clocks [12, 29, 30],

which use magneto-optical traps of Ca, Sr or Mg.

Cold atoms are released from a magneto-optical trap

and submitted to the four pulses required to generate

the interferometer (Figure 13). An interference pattern

such as that displayed in Figure 14 is obtained. High

performances of stability and accuracy have been

achieved in these different experiments. A frequency

stability of has been measured with

the cold-calcium optical frequency standard compared

with an ultra-stable cavity [31, 32]. The potential for

improving this stability is considerable: the quantum

limit for optical clocks with typical fountain parameters

is . Concerning accuracy, the German and

US groups have achieved values of the order of ,

presently limited by the wave-front quality of the

interrogation laser, and here again this value is expected

to improve significantly in the future as new techniques

are being developed to further cool these atoms [33].

Figure 14. Interference pattern of an optical calcium clock.
(Courtesy of F. Riehle, PTB.)

In the case of the trapezoid geometry, two different

interferometers are created by two counterpropagating

pairs of copropagating laser beams (Figure 15) with

opposite recoil shifts. The two fringe systems are

separated by . This splitting is clearly resolved in

Figure 16 where the velocity distribution in a thermal

beam of magnesium averages out the side fringes. In

current realizations of optical clocks the fringe spacing

is set precisely equal to this recoil splitting, in order

to have two superimposed interference patterns as in

Figure 14.

Figure 15. Energy-momentum diagrams illustrating
exchanges in the two interferometers obtained with two
counterpropagating pairs of two copropagating laser beams.
The recoil shifts of central fringes are opposite. The first
manifestation of this splitting was observed in the saturation
spectrum of the methane molecule [34] and was the first
quantitative demonstration of the exchange of momentum

between light and an atomic species.

Figure 16. Interference patterns obtained with a magnesium
interferometer by Ertmer’s group [12]. Because of the
thermal velocity distribution, only the central fringes
dominate and one can see clearly the recoil splitting between
the two fringe systems, with a resolution (reciprocal fringe
width) increasing with the distance between the beam
splitters.
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In other experiments this recoil splitting is used

to perform an accurate frequency measurement of

and consequently of the fine structure constant

, thanks to the relation

where all quantities (Rydberg constant, ratio of proton

mass to the electron mass ...) may be known

with a relative uncertainty equal to or better than ,

which means that may be determined directly with

an uncertainty at the level [27]. As the recoil

shift is proportional to the difference in kinetic energies

in both arms of the interferometer, it can be increased

very significantly (quadratically) by an accumulation

of momentum quanta on one arm with respect to

the other arm [25-27, 35]. Recent determinations on

Earth by Chu’s group have been pushed as far as the

level, which is of great importance as a quantum

electrodynamics (QED) test, given the discrepancies

between various other determinations and independently

of any QED calculation.

The theory of optical clocks began with perturb-

ative and numerical approaches around 1977 [22].

A more sophisticated theory, which is still used to

describe experimental results, introduces 2 2

matrices in the internal spinor space of the two-level

system and free propagation between pulses/field zones

and was first published in 1982 [36, 37]. In 1990,

the formalism for atom-wave propagation

in gravito-inertial fields was presented, for the first

time, in Les Houches [10]. The strong-field S-matrix

treatment of the electromagnetic field zones was then

published in 1994 [15, 13]. In 1995, the problem of

Rabi oscillations in a gravitational field was treated in

analogy/complementarity with the frequency chirp in

curved wave-fronts [38, 39]. Finally, the dispersive

properties of the group velocity of atom waves in

strong e.m. fields were described as a generalization

of the dynamical neutron diffraction theory [40] in

neutron beam splitters [41-43]. Today we combine all

these elements in a new sophisticated and realistic

quantum description of optical clocks. This effort is also

under way for atomic-inertial sensors and is essential

to develop strategies to eliminate the inertial-field

sensitivity of optical clocks [29]. In the next section,

we outline the complete general relativistic derivation

of phase shifts which was published in 1999 [44].

6. General relativistic framework for atom

interferometry

It is possible to include all possible effects of inertial

fields, as well as all the general relativistic effects of

gravitation, in a consistent and synthetic framework

[45, 41, 44], in which the atomic fields are second-

quantized. The starting point is the use of coupled

field equations for atomic fields of a given spin in

curved space-time: e.g. coupled Klein-Gordon, Dirac

or Proca equations. Gravitation is described by the

metric tensor and by tetrads, which enter in these

equations. Several strategies can then be adopted: one

can perform Foldy-Wouthuysen transformations [46],

but conceptual difficulties arise in the case of arbitrary

; one can go to the weak-field limit

with and use renormalized spinors, and

finally one can consider as a spin-two tensor-field

in flat space-time [47-49] and use ordinary relativistic

quantum field theory. Using this last approach, it has

been possible to derive field equations that display

all interesting terms, coupling Dirac atomic fields,

gravitational and electromagnetic fields and simple

expressions of the corresponding relativistic phase shifts

in atom interferometers [44].

The evolution equation of the state vector

in the interaction picture is

where the operator , acting on the field operator

, is given in compact form by

with and

The free-field operator is written

,

where and are the annihilation operators

for the particles or antiparticles, respectively, and

are the positive or negative energy solutions of the

free Dirac equation:

π

We are interested in the output spinor corresponding

to one-particle (antiparticle) states: e.g.

for atoms. The evolution of this spinor

is governed by the equation

to which we may add terms corresponding to

diagonal magnetic dipole and off-diagonal electric

dipole interactions [45, 41]. This equation has been

used in [41, 44] to discuss all the terms that lead to a

phase shift in an interferometer.

For the phase shift, the general result is
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where is the mean spin vector

where is the spatial part of the

Thomas-Pauli-Lubanski 4-vector operator [50].

Expression (58) displays all the terms which may

lead to a gravitational phase shift in a matter-wave

interferometer:

• The terms involving lead to the gravitational

shift ( , to shifts involving higher

derivatives of the gravitational potential and to

the analogue of the Thomas precession (spin-orbit

coupling corrected by the Thomas factor).

• The terms that involve give the Sagnac

effect in a rotating frame ( r ), the

spin-rotation coupling and a relativistic correction

(analogous to the Thomas term for ). They also

describe the Lense-Thirring effects from inertial

frame-dragging by a massive rotating body, which

is a source for .

• The other terms, which involve the tensor

, describe genuine general relativity effects

such as the effect of gravitational waves and de

Sitter geodetic precession (which also includes the

Thomas term for ).6

In fact the phase calculation is usually more complex,

as (58) applies only to the case of straight unperturbed

trajectories. In practice, however, one cannot ignore

the fact that, when calculating the phase to first order

for a given term of the Hamiltonian, the motion of

the particles is affected by other terms. One example,

mentioned above, is the calculation of the gravitational

shift within the atom beam splitters, in which one

cannot ignore the important effects of the diffracting

electromagnetic field on the trajectories of the particles

[41, 42, 38, 43]. Gravitational phase shifts have to be

calculated along these trajectories. Another example

is the gravity field itself, which, on Earth, gives

parabolic trajectories for atoms. The phase shift for

the other terms in (58) has to be calculated along

these parabolas. A convenient way to achieve these

calculations is to replace and in (58) by

6. Some authors reserve the name “Thomas precession” for the
contribution arising specifically from an acceleration (which
has been included here in ��) and separate it from de Sitter
precession.

the classical trajectory obtained in the

formalism. In the non-relativistic limit, one

is brought back to the Schrödinger equation and, up to

second degree in position and momentum operators, the

best approach is to take the full benefit of the

formalism developed above, which gives exact results.

Higher-order terms can be treated as perturbations along

unperturbed trajectories.

The reader will find calculations of the phases

corresponding to the various terms in [24, 23, 41, 51,

52]. In these calculations, one should never forget that

the external field acts not only on the atoms but

also on other components of the experiments, such as

mirrors and laser beams and that, depending on the

chosen gauge, additional contributions may enter in the

final expression of the phase which should, of course,

be gauge independent. As an example, the Sagnac phase

which can be removed from the above formula by a

simple coordinate transformation will reappear in the

beam-splitter phases.

The expressions valid for spins 0 and 1/2 may

be conjectured to be valid for arbitrary spin if

is replaced by the corresponding spin operator . The

extension of the formulae is currently under way using

higher spin formalisms.

Formula (58) also displays the analogy with

electromagnetic interactions: plays the role of

the 4-potential and

plays the role of a gravito-magnetic field .

This new correspondence between the gravitational

interaction and the electromagnetic interaction general-

izes the so-called gravito-electric and gravito-magnetic

interactions introduced by DeWitt [53] and Papini [54].

The spin-independent part of this phase shift

(Linet-Tourrenc [55] term) (a

combination that also appears in the generalized

Thomas precession), corresponds to , where

is the 4-velocity and the corresponding

circulation of potential takes the form of the Aharonov-

Bohm phase formula . Using Stokes theorem

in four dimensions, this integral gives the phase shift as

the ratio of the flux of gravito-electromagnetic forces

through the interferometer space or space-time area to

a quantum of flux of force or :

δ

with

in analogy with electromagnetism. This formula gives

δ

for the gravitational phase shift [23, 24] as the flux of a

gravito-electric field through a space-

time area (which is the case above for the fountain
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Figure 17. Atom-wave gravimeter developed at Stanford University by Chu and co-workers [56]. � caesium atoms
extracted from a low-pressure background vapour are loaded in a MOT in 600 ms and launched upwards. A sequence of
microwave, velocity-sensitive Raman and state-selective blow-away pulses places � atoms in the 6 S��� , �

state with an effective vertical temperature of approximately nK. The atomic cloud enters a magnetically shielded region
and is illuminated by the sequence π π π of interferometer Raman pulses which enter from below. The retromirror
is vibration-isolated with an actively stabilized system. The plot at right displays typical fringes for ms. Each
point corresponds to a single launch of the atoms separated by 1.3 s and the data were taken over 1 min.

clock), whereas the Sagnac phase shift7 is the flux of

a gravito-magnetic field through an

area in space [23, 24], which atomic clocks usually

do not have:

δ

The spin-rotation term is discussed in more detail in

[41, 44]. Its effect on atomic clocks needs to be

carefully evaluated as, unlike the magnetic field, the

gravito-magnetic field cannot be shielded.

7. State of the art for gravito-inertial sensors

To emphasize the sensitivity of atom interferometers

to inertial and gravitational fields, a short overview

of realizations of gravito-inertial sensors, including

gravimeters, gradiometers and atomic gyros, is proposed

in this last section. A first very successful application of

atom interferometry is gravimetry and was developed by

Chu and collaborators (Figure 17). This is an extension

of the celebrated COW experiments for neutrons [57]

to the atom world. In 1991, in one of the early

experiments of atom interferometry [58], this group

7. This Sagnac phase shift (in units of 2π can be written as the
projection of the orbital angular momentum (in units of )
of the interfering particles. An example of nuclear Sagnac
interferometer is provided by rotating molecules, for which this
phase shift is naturally quantized.

demonstrated a resolution of for in 40 min

integration time. In recent Earth gravity measurements,

the relative sensitivity is δ after 60 s

and the absolute uncertainty is [27, 56]. This

resolution is sufficient to see clearly the effect of ocean

loading on the Earth tides. Also, the agreement with

a conventional corner-cube gravimeter (FG5) is at the

level, which constitutes by itself a test of the

equivalence principle between an atomic species and

a macroscopic object at that level. The corresponding

space-time diagram is given in Figure 18, from which

the following phase shift is calculated with the

formalism [16]:

δ

which, to first order in and for reduces to

where the first term, which is precisely expression (61),

gives huge phase shifts for matter-waves compared with
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Figure 18. Space-time diagram of the atomic gravimeter.

what could be obtained with light rays, since the times

can be of the order of and is of the order of

10 m compared with an optical wavelength. The next

term is a significant correction due to the gravitational

field gradient . One can also measure directly these

field gradients, with two gravimeters using two clouds

of cold atoms and sharing the same vertical laser beam

splitters. It is then no longer necessary to have a very

sophisticated inertial platform for the reference mirror

and it is possible to measure directly the differential

acceleration between these two clouds. This is the

principle, illustrated in Figure 19, of the gradiometers

developed first in Stanford then in Yale by Kasevich

and co-workers [27, 59]. The current sensitivity is

4 10 s Hz and the uncertainty is 1 10

s Hz for an extrapolated 10 m separation between

accelerometers. For the future, this principle may be

considered for gravitational wave detection in space

[60].

The first demonstration of a gyro using atom

waves was performed at the Physikalisch-Technische

Bundesanstalt in Braunschweig, Germany, in a joint

collaboration with the present author [61] (Figure 20).

The simplified first-order Sagnac phase shift formula

(62) given above reveals the considerable gain in

sensitivity brought by matter-waves, as, in this formula,

the rest mass energy has to be replaced by the

photon energy in the case of light waves. This

expression can be derived by a number of approaches,

the best of which is to use the rotation operator in

the Schrödinger equation and the derived propagator

and matrices, as outlined above, which gives

the Sagnac shift thanks to an exact formula. The same

approach applies to the trapezoid geometry used in the

previous experiment as well as to the parallelogram

geometry, as suggested in [24], analogue of the Mach-

Zehnder optical interferometer, which has been used in

more recent experiments and which has the advantage of

being insensitive to laser detuning. For the illustration,

the formula calculated with the formalism is

Figure 19. Atom wave gradiometer of Yale University. The two clouds of atoms share the same Raman beams,
which generate two atom interferometers separated vertically by 1 m.
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Figure 20. The first atom-wave gyro [61]. The calcium
atomic beam originating from the oven on the left crosses
two counterpropagating pairs of copropagating laser beams
generated by the pair of cat’s-eyes facing each other on
the right platform. These four beams act as beam splitters,
deflectors and recombiner for the atom waves and the
excited state output of the interferometer is monitored via
the fluorescence light by the photomultiplier on the extreme
right of the apparatus. The whole set-up is mounted on
a rotating table.

Figure 21. Atomic gyro developed at Yale in the group of
Mark Kasevich. The Sagnac phases corresponding to the two
opposite thermal atom beams have opposite signs and are
subtracted. The Earth rotation is responsible for the offset.

in that case (with and ):8

δ

which simplifies if the Bragg condition

is satisfied ( in the non-rotating

frame). This formula does not include the corrections

associated with the anomalous group velocity of

atoms within the beam splitters [41-43] (let us recall

that, during the interaction, the atom trajectories are

perpendicular to the laser beams in the case of zero

detuning and when the Bragg condition is satisfied, as

in the neutron interferometers).

For rotations, the best sensitivity achieved to date

is rad s Hz [62] with the set-up of

Figure 21. Clearly, if the atomic motion is reversed

is unchanged, while is reversed. This property is

used to separate rotations and accelerations by means

of counterpropagating atomic beams. A compact device

(30 cm height) using cold atoms and the caesium clock

technology (PHARAO) is under development in Paris,

in a joint collaboration between several laboratories

[63], and is shown in Figures 22 and 23. Here again,

cold atoms are launched along counterpropagating

parabolic trajectories, in order to separate the various

components of the acceleration and of the rotation

fields.

The sensitivity numbers quoted here are expected

to improve rapidly in the near future, especially in

8. As in the gravitational field case considered above and treated
in detail in [16], the symmetry of the interferometer is such
that the action integral in the absence of perturbation is the
same on both arms and does not make any contribution to
the phase shift. In the presence of the gravito-inertial field
the difference in action is exactly compensated by the phase
difference on both paths before the last interaction, which
comes from the separation of the end points and is easily
evaluated at the mid-point (see Appendix 3). The Sagnac
phase is then given by a simple sum over beam-splitter phase

contributions �� ��:

�

�� � �

in which the coordinates �� are those of the successive
positions of the interaction points in the inertial frame of the
atoms. After the last interaction, a small additional contribution,
of the order �, is associated with the laser phase difference
between the two end points.
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Figure 22. Principle of the cold caesium gyro-accelerometer developed at the Paris Observatory in collaboration
between D. Holleville, J. Fils, A. Landragin, N. Dimarcq, A. Clairon (LHA and BNM-LPTF), Ph. Bouyer
(IOTA), Ch. Salomon (LKB) and Ch. Bordé (LPL-ERGA).

space experiments, in which general relativistic effects

should become detectable. The space project called

HYPER [64] aims precisely at the detection of such

effects thanks to the possibility of long drift times

in space (Figure 24). This will considerably increase

the sensivity of these devices. The technology of

trapping and manipulating cold atoms developed for

the project ACES (Atomic Clock Ensemble in Space)

will be directly applicable to inertial sensors for many

applications in deep space navigation of space probes.

Among the goals of HYPER, there is a very accurate

measurement of the fine structure constant , a test

of the equivalence principle at the atomic level, using

two different atomic species in the interferometer, a

detection of the periodic signal from the latitudinal

dependence of the Lense-Thirring effect in polar orbit,

decoherence studies ... . In fact, atom interferometers

are so sensitive to gravito-inertial fields and to their

gradients that it will be necessary during the next few

years to develop many new techniques and tricks in

the field of atom optics (e.g. phase conjugation of atom

waves) to isolate the specific signature of investigated

phenomena.

An accurate measurement of the effect of

gravitation and inertia on antimatter also appears

as a possibility already discussed in [65] with

a transmission-grating interferometer, although we

believe, for obvious reasons, that an antiatom

interferometer using laser beams for the antihydrogen

beam splitters (so-called Ramsey-Bordé interferome-

ters) would be better suited for such an experiment.

Such an interferometer has been recently demonstrated

for hydrogen [35]. Coherent beams of antihydrogen

will be produced either by Bose-Einstein condensation

and/or by stimulated bosonic amplification9 [7].

9. Using for example a reaction such as antiproton + positronium
antihydrogen + electron.
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Figure 23. Cold-atom gyro-accelerometer under construction at the Paris Observatory.

Figure 24. Schematic of an atom interferometer in space providing long drift times and a large interferometer area.

Appendix 1

Stationary fountain solution

In this appendix, we show how the well-known

stationary solution of the Schrödinger equation for

atoms in the presence of a constant gravitational field

[19, 20] can be adapted to the fountain clock problem.

The vertical gravitational potential for atoms in the

internal energy state is , where is the vertical

coordinate. If the constant energy of the atoms is ,

the time-independent Schrödinger equation reads

If we introduce the dimensionless coordinates

thanks to the length

the Schrödinger equation can be rewritten in a form

free of parameters:

We seek a solution of the form
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in which carries the transverse dependence

in and is a slowly varying function of . These

functions satisfy

where has been neglected in the second

equation. The first equation has the well-known Airy

solutions10

Ai Bi

Most useful for our purpose is the asymptotic expression

of these Airy functions:

Ai Bi
π

π

From this solution, we may approximate

by and replace the second equation by

which, by shifting to the new variable

becomes

The functions are thus given by the usual

counterpropagating solutions of laser mode theory

in free space [10] with , i.e. by expressions easily

obtained from (7), (8) and (9) of the main text. We

write the general solution as

where, as depends on only through , the

wave propagating downwards is

obtained from the upward solution

by reflection from the horizontal plane . A special

case, which satisfies reversal symmetry, is

with a waist at .

10. This solution is not normalized. The normalization constant
is , see [19].

A better way to obtain exact solutions and to reach

the same conclusions is to look for transversally plane

wave solutions of (67):

where satisfies

with, this time,

and

The general exact solution is therefore

π

Ai

which we can split into upgoing and downgoing

solutions with (74). If is real, is real

and satisfies time-reversal symmetry.

If we use cylindrical coordinates, this solution can

be written

π

π

Ai

which can be expanded into a Fourier series of the

azimuthal angle of as in [10]. By way of

illustration, if we have a fountain with cylindrical

symmetry, we can use

π

π

to write the solution as a single integral (the factor

is omitted):

Ai

and finally, for a Gaussian spectrum of (with a phase

written in a way that will become clear below):

Ai
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which we can again split into upgoing and downgoing

solutions with (74), which is easily calculated with a

program such as Mathematica and has indeed been

used by the author to investigate the amplitude and

wave-front structure of this solution.

The general solution has the asymptotic form

π π

π

π

where has been approximated by in the

denominator, as far from the fountain

apex. For the same reason, we may expand the phase

π π

π

π

We recover the form

with an explicit expression of the solution

π

which obviously satisfies (78) and where can

be expanded in Hermite-Gauss, Laguerre-Gauss ...

functions. If the wave is plane (waist) in the horizontal

plane for the ascending wave and for

the descending wave (as is positive in the physically

accessible region, only one of these possibilities will

occur, depending on the sign of :

π

and if the upward and downward waves have

matched wave-fronts: . In the simple case of

the Gaussian spectrum of (see [11], Appendix B):

π

with

Apart from wave-front considerations, the phase

difference between the downward and upward waves is

To investigate how this phase changes with the various

parameters, let us calculate its partial derivatives, at

the return point , where the atoms recover their

initial velocity :

Hence the phase associated with the detuning δ

is

δ δ

and the phase associated with the second-order Doppler

shift combined with the gravitational shift is

Appendix 2

Derivation of the quantum-mechanical propagator

for atom waves in the presence of gravito-inertial
fields and general solution of Schrödinger equation

We start with the following equation obtained in the

main text for the state vector in the “non-rotating”
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frame:

For simplicity, in the following, we omit the subscript

for the “non-rotating” frame. We denote by

the tensor such that , and by , , ,

the matrices corresponding to the tensors ,

and vectors , . Owing to the hermiticity of the

Hamiltonian, , and are real symmetric matrices.

As shown in detail in [10] in the one-dimensional

case, a new series of unitary transformations,

where

eliminates one term after the other and brings (31) to

the form

The first transformation

is a space translation, which gives the new equation

Then

is a boost, which yields

Thirdly,

is a gauge transformation and the equation for

reads

Then we apply successively11

λ

where λ satisfies

λ
λ λ

and

where satisfies

λ λ

so that

λ

λ

and finally

λ

λ

λ

λ

(“affinity operator” analogous to the rotation operator).

11. For all these calculations, we use the operator identity
�� ��� �

��
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with

where the matrices and are introduced below. The

free propagator (in the absence of ) is therefore

where

From now on, we use a simple matrix notation for 3D

vector and tensor components. The matrix elements of

the operators are found to be

λ

π

where the matrix is given by

λ

We find

λ
π

π

with the following relations:

λ

λ

These matrices satisfy

By construction, the propagator is a solution of

the Schrödinger equation for any . We may therefore

write a general solution, which has the same structure

and a set of matrices of parameters and that satisfy

the same equations as the matrices. We write

this analogous matrix as

With this correspondence, this general solution is the

generalized coherent state:

where is a normalization constant. It is an eigenvector

of the following annihilation operator (not to be

confused with the matrix introduced previously):

and plays the role of a generating function for 3D

Hermite-Gauss solutions [9, 66]:
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In order to determine the action of the propagator

on any of these 3D Hermite-Gauss solutions, it will thus

be sufficient to consider this action on a wave packet

obtained from the generating function:

which gives

π

where is the classical action:

The final wave packet is thus obtained from the initial

wave packet at by multiplication by the phase factor

and by replacing the central position ,

the initial momentum and the initial complex width

parameters , in phase space (all of which are

matrices) by their values at time given by the

transformation law:

As both sides can be expanded in increasing powers of

with 3D Hermite-Gauss functions as coefficients, the

theorem is proved for all modes of propagation.

If both the field gradient and the wave packet

diffraction are neglected, the propagator for each

internal state reduces to the simplified classical form

with , which generalizes the

propagator used to recover the classical approximation

in previous papers.

Appendix 3

Explicit quantum mechanical calculation of the

fringes in a fountain atomic clock

The goal of this appendix is to illustrate the calculation

of the excited state amplitude by the

formalism in the simple case of an atomic fountain

clock. The fringes result from the interference of atom

waves propagating along two different external paths

entangled with the state of internal excitation of the

atoms . The excited state amplitude of atoms

in a fountain is given by
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where the free propagators are given in

the text and where

is the transfer matrix element of the interaction

Hamiltonian for each field zone (in the interaction

representation in the

absence of spin-rotation interaction).12 In the magnetic

dipole approximation, this matrix element is given to

first order by

π

which leads to the following expression of the main

text, when the effect of gravitation is neglected in the

interaction zone (with ):

π
π

For strong field expressions of the e.m. interaction

matrix element with various field profiles, see [15,

13, 42, 38, 43] and the recent analysis in [18] for

microwave clocks.

Here, for simplicity, we restrict ourselves to a two-

dimensional problem, for the vertical direction and

for the transverse direction of propagation of the

microwave field.

If the initial wave packet in the

internal state is centred at the vertical position

12. From Appendix 2, we have generally:

�� �� �� � which reduces

to �� �� � � in the absence of rotation
and field gradient.

at time and is considered, momentarily, as a plane

wave in the tranverse direction , it can be written

The propagated wave packet at time at the vertical

position and transverse position is

where

and where

is the action calculated along the classical trajectory.

If is the central position of the electromagnetic

field zone, the effect of the interaction in the beam

splitter is to multiply this wave packet by the transition

amplitude factor

with

The expression of the wave packet becomes

458 Metrologia, 2002, 39, 435-463



Atomic clocks and inertial sensors

After the interaction, at a later time , the wave packet

centre coordinate and the corresponding velocity are13

and the relevant action is

The final expression of the wave packet becomes

In the special case where

, the previous

expression simplifies to14

13. Rigorously, the transformation law, which originates
from a Hamiltonian formalism developed in [16], should be
used as an law for the position/momentum
pair.

14. In a rotating frame, is the matrix � � � ,
which leads to a Sagnac effect through terms such as

� � � �

� , and to a Sagnac shift for an

asymmetric � distribution and unequal travelling wave
intensities.

multiplied by the same factor for the direction:

We use this expression for both arms with the following

sequences:

• on arm 1, a first interaction at time , where

is chosen such that , so that we let

in the previous expression:

with ;

• on arm 2, we replace by as the initial time and

the second interaction takes place at a later time :
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where is chosen such that the centre of the wave

packet on arm 2 coincides with the position of the

second interaction:

If (single microwave resonator) this

implies that . For a constant

acceleration , and hence

. At the same time , the first

wave-packet centre is at position

which differs from the previous one by15

The wave-packet velocities are then respectively

with

(energy conservation in the second interaction). This

corresponds to a difference in kinetic energy precisely

equal to the difference in potential energy:

15. If we approximate by

�
�

�

then

�

�
�

�
�

�

�

�

�
�

�

�

�

where is the square of the Planck mass, � the proton
mass, � the mass of the Earth and � its radius. The Planck
mass appears here as in any problem where the ratio of and
is involved (e.g. the watt balance or atomic Bloch oscillations).

We can now calculate the interference term in the

excited state population at time :

From the expression of resulting from energy

conservation, the time-dependent phase factor

disappears and
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in which we have the expected spatial beat owing to the

difference in momentum of the two wave packets. At

this point, it is convenient to introduce a wave-packet

structure in ( is a plane wave component of )

and after and integration, the previous expression

becomes

with

where , , , , in the absence

of gravity and where , , in the case of

the fountain with a single resonator.

Finally, we can integrate the previous signal over

space coordinates and . For this, we use the same

formula:

π

Im

with , from which we infer

incidentally the following theorem:

The phase factor resulting from the velocity

difference after integration is equal to the phase factor

calculated at the mid-point before

integration:

With the previous integral we find

π

with

and where is the time for

which the wave packet has its minimum uncertainty.

The integral can be performed in the same

manner or we may use the previous mid-point theorem

to discuss phase shifts directly.

Finally, from the final probability formula (174),

we keep the following phase factors:

which gives the main phase factor for the Ramsey

fringes;

which gives a correction to the recoil shift associated

with each contribution;

which gives the global gravitational red shift of the

fountain and the remaining phase factors give the
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right combination of the relativistic Doppler shift and

gravitational phase shift corrections:

We should also emphasize that there is a contrast factor

owing to the vertical separation of the wave packets

, for which we have seen that the Planck

mass was directly involved.
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28. Bordé Ch. J., Avrillier S., van Lerberghe A., Salomon Ch.,
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43. Lämmerzahl C., Bordé Ch. J., General Relativity and

Gravitation, 1999, 31, 635.
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