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Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior
room-temperature sodium-sulfur batteries

Abstract

The low-cost room-temperature sodium-sulfur battery system is arousing extensive interest owing to its
promise for large-scale applications. Although significant efforts have been made, resolving low sulfur reaction
activity and severe polysulfide dissolution remains challenging. Here, a sulfur host comprised of atomic
cobalt-decorated hollow carbon nanospheres is synthesized to enhance sulfur reactivity and to
electrocatalytically reduce polysulfide into the final product, sodium sulfide. The constructed sulfur cathode
delivers an initial reversible capacity of 1081 mA h g−1 with 64.7% sulfur utilization rate; significantly, the cell
retained a high reversible capacity of 508 mA h g−1 at 100 mA g−1 after 600 cycles. An excellent rate
capability is achieved with an average capacity of 220.3 mA h g−1 at the high current density of 5 A g−1 .
Moreover, the electrocatalytic effects of atomic cobalt are clearly evidenced by operando Raman spectroscopy,
synchrotron X-ray diffraction, and density functional theory
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Atomic cobalt as an efficient electrocatalyst in
sulfur cathodes for superior room-temperature
sodium-sulfur batteries
Bin-Wei Zhang 1, Tian Sheng 2, Yun-Dan Liu3, Yun-Xiao Wang 1, Lei Zhang1, Wei-Hong Lai1, Li Wang1,

Jianping Yang4, Qin-Fen Gu5, Shu-Lei Chou 1, Hua-Kun Liu 1 & Shi-Xue Dou 1

The low-cost room-temperature sodium-sulfur battery system is arousing extensive interest

owing to its promise for large-scale applications. Although significant efforts have been made,

resolving low sulfur reaction activity and severe polysulfide dissolution remains challenging.

Here, a sulfur host comprised of atomic cobalt-decorated hollow carbon nanospheres is

synthesized to enhance sulfur reactivity and to electrocatalytically reduce polysulfide into the

final product, sodium sulfide. The constructed sulfur cathode delivers an initial reversible

capacity of 1081 mA h g−1 with 64.7% sulfur utilization rate; significantly, the cell retained a

high reversible capacity of 508mA h g−1 at 100mA g−1 after 600 cycles. An excellent rate

capability is achieved with an average capacity of 220.3 mA h g−1 at the high current density

of 5 A g−1. Moreover, the electrocatalytic effects of atomic cobalt are clearly evidenced by

operando Raman spectroscopy, synchrotron X-ray diffraction, and density functional theory.
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C
urrently, lithium-ion batteries (LIBs) play a dominant role
in battery technologies for portable electronics because of
their high capacity, high energy density, and reliable

efficiency1,2. On the other hand, new emerging applications, such
as electric vehicles and large-scale grids, require battery tech-
nologies with low costs and long cycle life3–6. Lithium-sulfur (Li/
S) batteries have attracted intense attention due to high theore-
tical specific energy, environmental benignity, and the low cost
and abundance of sulfur7–9. Due to efforts over decades, exciting
progress on Li-S batteries has been achieved in terms of high
capacity, prolonged service life, and remarkable rate capability,
which are rapidly bringing this system near delivery to market.
Meanwhile, it should be noted that the battery systems based on
Li-ion storage are not suitable for large-scale applications, due to
the high cost and insufficiency of Li resources10,11. Therefore,
increasing interest is currently transferring to batteries based on
low-cost and abundant sodium12,13. Room-temperature sodium-
sulfur (RT-Na/S) batteries are among the ideal candidates to
meet the scale and cost requirements of the market due
to overwhelming advantages: a theoretical capacity of S
(1672 mA h g−1), low cost, nontoxicity and resource
abundance14,15. Nevertheless, RT-Na/S batteries, which share a
similar reaction mechanism to the Li/S batteries, are facing cri-
tical problems with respect to low reversible capacity and fast
capacity fade16,17. The poor conductivity of sulfur and sluggish
reactivity of sulfur with sodium, resulting in a low utilization rate
of sulfur and incomplete reduction to Na2Sx (x ≥ 2) rather than
complete reduction to Na2S, are the main reasons for low
accessible capacity. In addition, fast capacity fade during the
charge−discharge progress occurs due to the dissolution of long-
chain polysulfides in the electrolyte, which also leads to the rapid
loss of active materials. Hence, effective materials design is the
primary factor that is expected to improve the conductivity and
activity of sulfur, and prevent the dissolution of polysulfides. So
far, the reported sulfur hosts (for example, hollow carbon
spheres15, microporous carbon polyhedron sulfur composite18,
and conducting polymer19) could exhibit decent enhancement,
but a huge leap is needed to reach the standard of practical
applications. To the best of our knowledge, the best rate capacity
and longest cycling stability for RT-Na/S batteries are observed in
those containing the sulfur@interconnected mesoporous carbon
hollow nanospheres (S@iMCHS) (127 mA h g−1 at 5 A g−1)20

and C-S polyacrylonitrile (c-PANS) (150 mA h g−1 after 500
cycles at 220 mA g−1)21, respectively. It is obvious that the sulfur
cathodes based on traditional carbonaceous host materials are not
capable of meeting the practical targets for large-scale RT-Na/S
batteries.

Recently, novel sulfur hosts with inherent polarization, such as
metallic oxides22 and metal sulfides23, have been investigated in
Li/S cells. Compared with bare carbon materials, these polarized
host materials have strong intrinsic sulfiphilic property, which are
able to impede polysulfide dissolution due to the strong chemical
interactions between the polar host materials and the polysulfides.
A similar concept has been demonstrated in RT-Na/S batteries;
Cu nanoparticles loaded in mesoporous carbon are utilized to
immobilize the sulfur and polysulfides24; a novel Cu foam current
collector is able to activate sulfur electroactivity as well25. Fur-
thermore, atomic-scale metal materials, including single-atom
metals and metal clusters, in general, not only possess amazing
electronic and reactive properties, but also could reach the
maximum atomic utilization26–31. It is rational but very chal-
lenging to introduce novel atomic metals into a sulfur host, which
is expected to maximize the multifunctions of a polarized sulfur
host and achieve extraordinary performance for RT-Na/S
batteries.

Here, we successfully synthesized a highly effective sulfur host
with atomic Co (including SA Co and Co clusters) supported in
micropores of hollow carbon (HC) nanospheres. The HC nano-
spheres are employed as ideal frameworks, which could allow
initial anchoring of Co nanoparticles and subsequent S encap-
sulation. In each HC reactor, it is interesting that the diffusion of
sulfur molecules can serve as traction for atomic Co (Con)
migration into carbon shells, forming a novel Con-HC host. A
sulfur composite, sulfur encapsulated in a Con-HC host (S@Con-
HC), is prepared by simply tuning the reaction temperature.
When applied in RT-Na/S batteries, the S@Con-HC cathode
exhibits outstanding electrochemical performance, which suggests
that the maximized atomic utilization could optimize the multiple
functions of Co metal towards enhancing sulfur conductivity,
activating sulfur reactivity, and immobilizing sulfur and poly-
sulfides. More specifically, the S@Con-HC achieves remarkable
cycling stability (507 mA h g−1 after 600 cycles at 100 mA g−1)
and rate performance (220.3 mA h g−1 at 5 A g−1). A deep insight
into the mechanism has also been obtained by cyclic voltammetry
(CV), operando Raman spectroscopy, synchrotron X-ray dif-
fraction (XRD), and density functional theory (DFT), confirming
that atomic Co could alleviate the “shuttle effect” and also
effectively electrocatalyze the reduction from Na2S4 into the final
product Na2S.

Results
Growth process for sulfur-hosted atomic cobalt-decorated
hollow carbon composite. The synthetic process of the S@Con-
HC is illustrated in Fig. 1. The successful encapsulation of Co
nanoparticles (NPs, ~3 nm) and S is attributed to the micro-
porous and hollow structure of carbon spheres. Initially, a CoCl2
solution was immersed into the HC spheres and was reduced to
Co NPs that uniformly decorated the carbon shells (~5 nm) of
HC nanospheres (Co-HC) by controlled thermal treatment
method (Supplementary Figs. 1, 2). The interactions between Co
and S occur in two stages, along with increasing temperature.
Firstly, the melted S was loaded into the Co-HC by a capillarity
effect via a facile melt-diffusion strategy at 155 °C for 12 h (with
the product denoted as S/Co-HC). It is clear that some of the S
agglomerates in the hollow space of carbon spheres and others are
dispersed in the carbon shells of the S/Co-HC, as shown using
atomic resolution high-angle annular dark field (HAADF) scan-
ning transmission electron microscopy (STEM) images (Supple-
mentary Fig. 3). Subsequently, the S/Co-HC was heat-treated at
300 °C in a sealed quartz ampoule, which interestingly leads to
the disappearance of Co nanoparticles and S agglomeration.
During this process, S begins to sublime. The concentration
gradient results in S diffusion from the inside of the nanospheres
to the surface. With sufficient thermal energy for S evaporation,
most of the S molecules diffuse into the C shells, which would
drive the Co nanoparticles to be re-dispersed into the carbon
shells as well. Thus, atomic Co, including Co single atoms and
clusters, migrates into the C shells of each HC nanosphere by
taking advantage of the diffusion of inner S molecules. Finally, a
novel S nanocomposite with S embedded into atomic Co-
decorated hollow carbon (S@Con-HC) could be achieved.

As displayed in Fig. 2 and Supplementary Fig. 4, the scanning
electron microscopy (SEM) and transmission electron micro-
scopy (TEM) images of the S@Con-HC demonstrate that the
uniform dispersion of hollow carbons without any nanoparticles
existed; meanwhile, atomic Co (bright dots) are observed in the C
shells. The elemental mapping and line-profile analysis of S@Con-
HC demonstrates that this atomic Co is well confined in the
carbon shells; meanwhile, most of the S is embedded in the
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carbon shell along with the dispersion of atomic Co, which
implies the simultaneous formation of atomic Co and S
dispersion. This is attributed to Co atoms migrating into HC
shells with S sublimation via an atom migration strategy based on
the strong interaction between Co and S. Hence, most of the S
molecules diffuse into the C shells, and are adsorbed by atomic
Co. The average size of the atomic Co is calculated to be 0.4 ± 0.2
nm from 200 single atoms and clusters in Supplementary Fig. 4.
For comparison, a sample with S loading on plain HC (S@HC), in
which the S is evenly dispersed among the carbon shells of HC,
was prepared at 300 °C (Supplementary Fig. 5). It should be
pointed out that atomic metals are difficult to form in pure
carbon materials because of their high energy and instability32.
Surprisingly, the atomic Co is successfully introduced into the
S@Con-HC composite. Active S, in turn, plays a critical role in
forming and stabilizing atomic Co by strong chemical Co−S
bonds. In sharp contrast, numerous cubic nanoparticles (~ 10
nm) can be observed in HC prepared at 400 °C (Supplementary
Fig. 6). The HAADF-STEM image displays two lattice distances
of 1.94 Å and 2.75 Å, which are indexed to the (220) and (200)
planes of CoS2, respectively. Elemental mapping of S@CoS2-HC
clearly shows the formation of CoS2. The line-profile analysis
across the carbon shell in Supplementary Fig. 6c demonstrates
that the signal of Co is negligible in the carbon shell. The
elemental S mapping results demonstrate that the S is homo-
geneously dispersed in the CoS2-HC host. Inductively coupled
plasma-optical emission spectroscopy (ICP-OES) results
demonstrate that the contents of Co are comparable, with weight
ratios of 7.53, 7.06, and 6.85% in S/Co-HC, S@Con-HC, and
S@CoS2-HC, respectively. Meanwhile, the Co loading ratios (5
and 20% of CoCl2) also have been optimized for S@Co-HC as
shown in Supplementary Figs. 7, 8 (details see Supplementary
Note 1).

The thermogravimetric analysis (TGA) results shown in Fig. 3a,
Supplementary Figs. 9, 10 indicate that the S contents in S/Co-
HC, S@Con-HC, and S@HC are ~48, 47, and 30 wt%,
respectively. The low S loading ratio of 30 wt% indicates that
atomic Co in HC is favorable to capture S and enhance S loading
amount. There are three states of sulfur in S@Con-HC. The
crystalline sulfur on the carbon layer would sublime at a relatively
low temperature of ~270 °C, which accounts for ~33 wt%. Then, a
small amount of amorphous sulfur, confined in the micropores15,

would evaporate at temperatures from 270 to 530 °C with a sulfur
loss of ~8 wt%; the sulfur encapsulated in the hollow space could
finally sublime at a high temperature of 530 °C, which
corresponds to a sulfur portion of ~6 wt%. The S@HC sample
shows a similar TGA curve, indicating S present in the same
states as those of the S@Con-HC; the amorphous sulfur in S@HC
is about ~7 wt%. Compared with other Co-based materials, as
shown in Supplementary Fig. 10, S in the S@Con-HC is the most
difficult to vaporize. The starting temperature of weight loss is
173 °C for S@Con-HC, which is much higher than that of S/Co-
HC (155 °C), indicating that the binding between S and Co in
S@Con-HC is the strongest20. Interestingly, the S loss commences
at 171 °C for S@HC, indicating that the S is firmly embedded into
HC after removing the surface S via heat treatment at 300 °C20.
This result also indicates that the S in S@Con-HC not only is
physically confined in HC frameworks, but also chemisorbed by
atomic Co. The S ratio of S@CoS2-HC (~31 wt%) is low because
the formation of CoS2 consumes a certain amount of S. XRD
patterns of these samples are shown in Fig. 3b and Supplementary
Fig. 11; the peaks of S@Con-HC and S@HC are indexed to
crystalline sulfur. The low intensity and absence of certain peaks
imply that sulfur could be embedded in the Con-HC and HC
hosts. CoS2/S-HC has four peaks at 32.5°, 36.36°, 46.54°, and
54.98°, corresponding respectively to the (200), (210), (220), and
(311) planes of CoS2 (JCPDF no. 41-4171). Significantly, the XRD
results for S/Co-HC and S@Con-HC indicated that S accounted
for the dominant component, and the lack of XRD peaks for Co
or any CoSx is likely due to the ultrafine and even atomic size of
Co; additionally, the wrapping by S of the surface of Co would
decrease its signal as well.

To investigate the interaction between Co and S, X-ray
photoelectron spectroscopy (XPS) was carried out. As shown in
Fig. 3c and Supplementary Fig. 12, compared with pure S (S 2p3/
2,164.0 eV), the S 2p3/2 responses of S@HC and S@Con-HC are
shifted at 163.60 and 163.45 eV, respectively. The shift is probably
attributable to the adsorption of S by HC33. The lower S 2p3/2 of
S@Con-HC could be due to the presence of atomic Co, which is
decorated on the carbon shell and could aid HC in immobilizing
S by forming Co−S bonds. Interestingly, the S 2p3/2 binding
energy of S/Co-HC (165.1 eV) is close to that of CoS2/S-HC
(164.90 eV), which indicates that the surface Co nanoparticles of
S/Co-HC could be polarized to S2−. To further investigate this
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Fig. 1 Schematic illustration of synthesis. Schematic illustration of the synthesis of the hollow carbon decorated with cobalt nanoparticles (Co-HC). After

sulfur (S) impregnation, the S/Co-HC is heat treated to generate atomic Co-decorated hollow carbon as a sulfur host material (S@Con-HC)
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hypothesis, we studied the states of Co. The XPS data for S@Con-
HC in the Co 2p region in Fig. 3d indicate that Co contributions
can be deconvoluted into Co0 (778.70 eV) and Co2+ (781.60 eV).
The Co2+ (781.60 eV) in S@Con-HC could be attributed to single
Co anchored on S-dispersed hollow carbon34, probably through
the formation of a Co−S bond. While, except for single Co atoms,
Co clusters exist in S@Con-HC as shown in Fig. 2 and
Supplementary Fig. 4. Due to the existence of these Co clusters,
XPS data in the Co 2p region for S@Con-HC show evidence of the
Co0 state. The binding energy of the Co0 2p3/2 in S@Con-HC is
778.70 eV, which is a shift of 0.5 eV compared with that of pure
Co (778.20 eV); this right-shifted binding energy indicates the
formation of Co−S bonds between Co clusters and S in S@Con-
HC. The XPS spectrum region of Co 2p3/2 for S@CoS2-HC with
peaks at 781.10 and 785.80 eV is attributed to Co2+ 2p3/2 and Co4
+ 2p3/2, respectively, and the formation of Co−S bonds of CoS235.
Since XPS analysis is a surface-sensitive technique, the trend in
Co binding energy relies on the size of the Co@CoSx core-shell
structure, and that is why the Co oxidation states of S/Co-HC
show the highest bonding energy in Supplementary Fig. 12. Based
on the TGA, XRD, and XPS results we could draw the conclusion
for S@Con-HC that S is not only physically adsorbed by HC, but
is also chemisorbed by atomic Co, leading to the formation of Co
−S bonds. Meanwhile, the S@Con-HC delivers the Co0 state,
which could effectively improve conductivity of an S cathode and
enhance the performance of RT-Na/S batteries.

Performance evaluation of the room-temperature sodium-sul-
fur batteries. The discharge/charge profiles of the 1st, 2nd, 10th,
50th, 100th, 200th, 300th, 400th, 500th, and 600th cycles at 100
mA g−1 of S@Con-HC and S@HC cathode materials are shown in
Fig. 4a, b. The RT-Na/S@Con-HC cell shows two long plateaus
that run from 1.68 to 1.04 V, and 1.04 to 0.8 V during the initial
discharge process: the high-voltage plateau corresponds to the
solid−liquid transition from S to dissolved long-chain poly-
sulfides; and the low-voltage plateau is attributed to the further
sodiation of long-chain polysulfides to short-chain sulfides. By
contrast, the two plateaus of S@HC are at 1.82 and 1.62 V during

the initial discharge process. The lower potential plateaus of
S@Con-HC in the initial cycle may be attributed to the complex
bonds between Co and S (Co−S bonds), so that additional energy
is needed to dissociate S from the Co−S bond, resulting in a more
negative potential36,37. Consequently, the following discharge
potential plateaus of S@Con-HC shifted to the positive
direction38,39. This phenomenon also could be found in S/Co-HC
and S@CoS2-HC, as shown in Supplementary Fig. 13. To inves-
tigate the effects of slow charge−discharge processes, the S@Con-
HC cell at low current densities (20 and 50mA g−1) were carried
out, as shown in Supplementary Fig. 14. It could be clearly seen
that the initial reversible capacity of S@Con-HC is 1613mA h g−1

at 20mA g−1, which is close to the theoretical capacity of S (1672
mA h g−1), retaining reversible capacity of 945mA h g−1 after 40
cycles. When tested at 50 mA g−1, the S@Con-HC delivers an
initial reversible capacity of 1360mA h g−1, maintaining 904mA
h g−1 after 40 cycles. During the slow charge−discharge process at
current density of 20 mA g−1, the produced long-chain poly-
sulfides could be further fully sodiated to Na2S4. Meanwhile, the
atomic Co will effectively alleviate dissolution of Na2S4 and elec-
trocatalytically reduce Na2S4 into the final product Na2S. How-
ever, the slow charge−discharge process would aggravate the
dissolution and shuttle effect of the long-chain polysulfides,
leading to fast capacity decay and inferior capacity retention. This
phenomenon is well in agreement with the cycling performance,
in which this cathode shows the lowest capacity retention (58.5%)
at 20 mA g−1. The comparisons at different currents indicate
that the slow charge−discharge process is favorable to realize
high reversible capacity but severe capacity decay. It is rational
to select a current density that would be slow enough to exert
the capacity of all S active materials and fast enough to
alleviate the shuttle effect. By contrast, the current density of
100mA g−1 shows the most satisfactory performance. Meanwhile,
the electrochemical performances of different Co loading
of S@Co-HC are shown in Supplementary Fig. 15 and
Supplementary Note 2, which also demonstrated that the S@Con-
HC processes the best performance among these cathode
materials.
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The long-term cycling stability of the S@HC and S@Con-HC
cathodes is displayed in Fig. 4c at 100 mA g−1 over 600 cycles.
Both S@HC and S@Con-HC display high cycling stability and
capacity retention after the initial capacity decay, which indicates
that the closed hollow carbon host could effectively manage the
fatal polysulfide dissolution. The S@Con-HC delivers an initial
reversible capacity of 1081 mA h g−1 with a Coulombic efficiency
of 52.1%, retaining excellent reversible capacity of 508 mA h g−1

after 600 cycles. The high initial discharge capacity of S@Con-HC
(~2075 mA h g−1) is due to the decomposition of the electrolyte,
the side reactions between the carbonate-based solvents and
soluble polysulfides, and the formation of the solid electrolyte
interphase film25. In sharp contrast, the S@HC cathode delivers
the first capacity of 580/1209 mA h g−1, which declines to 271
mA h g−1 after 600 cycles. During the first ten cycles, there is
obvious capacity decay for both of the S@Con-HC and S@HC
cathodes, which is attributed to the loss of dissolved long-chain
polysulfides. The cells show relatively stable cycling but with
gradual capacity loss for the subsequent 600 cycles, which mainly
originates from the impedance increase in the cells due to the
formation of Na2S. This is consistent with the synchrotron XRD
results (Fig. 5), confirming that the nonconductive Na2S would
accumulate in the cathode during the charge/discharge processes.
Significantly, the high accessible capacity of S@Con-HC arises
mostly due to the atomic Co decoration that is able to further
improve the conductivity and electroactivity of S. To highlight the
role of atomic Co, the cycling stability of S/Co-HC and S@CoS2-
HC are shown in Supplementary Fig. 16. It is noteworthy that the
S/Co-HC displays fast capacity degradation, which shows the
initial reversible capacity of 1018/617 mA h g−1, but after 100
cycles, it is only 64/62 mA h g−1. Additionally, the first-cycle
reversible capacity of S@CoS2-HC is 610/1415 mA h g−1 respec-
tively; after 200 cycles, it is only 206 mA h g−1. These results

demonstrate that the atomic Co possesses stronger electrocata-
lytic capability than Co nanoparticles and CoS2 nanoparticles.
The role of atomic Co towards improving S performance will be
discussed in the following section.

Rate-capability tests were evaluated at various current densities
from 0.1 to 5 A g−1 in the potential range of 0.8 to 2.8 V,
as shown in Fig. 4d. It is evident that S@Con-HC exhibits
the highest reversible capabilities of ~820, 498, 383, 313, 269, and
220 mA h g−1 at 0.1, 0.2, 0.5, 1, 2, and 5 A g−1, respectively,
compared to the S@HC and S@CoS2-HC (Supplementary Fig. 17).
When the discharge/charge rate is brought back to the initial rate
of 0.1 A g−1, RT-Na/S@Con-HC shows amazing reversible
capacity of 625 mA h g−1 after 100 cycles (367 mA h g−1 for
RT-Na/S@HC). A comparison of the rate capability versus
current density of S@Con-HC with the state-of-the-art in the
literature is presented in Fig. 4e; to the best of our knowledge,
such an exceedingly high rate capability of RT-Na/S batteries has
not been reported previously 39–45. The polarized Con-HC host is
responsible for the prevailing Na-storage properties of S@Con-
HC, which plays key roles in maximizing sulfur/polysulfides
immobilization and activation via strong electrocatalytic atomic
Co, reaching performance that is among the best in the field of
RT-Na/S batteries.

Mechanistic investigation on sodium-storage of the sulfur
cathode. To investigate the mechanism of S@Con-HC, CV, in situ
Raman spectroscopy (at 500 mA g−1) and in situ synchrotron
XRD (λ= 0.6883 Å) data, using the Powder Diffraction Beamline
(Australian Synchrotron), were collected for the initial galvano-
static charge/discharge and the second discharge curve (at 100
mA g−1). Figure 5a presents cyclic voltammograms of S@Con-
HC, while voltammograms for S@Co-HC, S@CoS2-HC, and
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S@HC are shown in Supplementary Fig. 18 (details see Supple-
mentary Note 3). The RT-Na/S@Con-HC cell shows two pro-
minent peaks at around 1.68 and 1.04 V during the first cathodic
scan. The peak at 1.68 V corresponds to the transition from solid
S to dissolved liquid long-chain polysulfides (Na2Sx, 4 < x ≤ 8)46;
in the following cathodic sweep from 1.68 to 1.04 V, the long-
chain polysulfides are further sodiated to Na2S4 and then short-
chain polysulfides are sodiated (Na2Sy, 1 < y ≤ 3)20. Significantly,
the following cathodic peaks move toward positive potential after
the first CV cycle, corresponding to the results for the discharge/
charge curves, which also demonstrates the formation of Co−S
bonds in S@Con-HC. Meanwhile, operando Raman spectra and
synchrotron XRD patterns complementarily confirm the
mechanism mentioned above. As illustrated in Fig. 5b, when the
cell is discharged to 1.60 V, the S stretching vibration band at 475
cm−1 disappears and another peak (451 cm−1) appears, which

could be assigned to Na2S447. Correspondingly, in situ synchro-
tron XRD (Fig. 5c) demonstrates broadening of a peak at 23.01°,
indexed to the (240) planes of S (JCPDF no. 71-0569), upon
discharge to 1.8 V. A new peak (22.97o) evolves around the ori-
ginal peak (23.01°), which could be attributed to the formation of
long-chain polysulfides (Na2Sx). When further discharged to 1.4
V, the Na2Sx peak gradually disappeared and a new peak at 13.22°
developed, which can be attributed to the (213) planes of Na2S4
(JCPDF no. 71-0516). When discharged to 1.30 V, not only is
there a main broad band at 451 cm−1, but also a new peak at 472
cm−1 that appears in the Raman spectra; this new peak could be
attributed to the Na2S247. Consistently, a new peak at 18.73° in
the synchrotron XRD pattern for the sample discharged to 1.2 V
could be attributed to the (104) peak of Na2S2 (JCPDF no. 81-
1764)20. Furthermore, the in situ Raman spectrum of S@Con-HC
that is discharged to 1.0 V also exhibits a new peak at 475 cm−1.
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Given the similar Raman fringes of Na2S and S847,48, it mostly
indicates the formation of Na2S47; when fully discharged to 0.8 V,
the only band at 475 cm−1 demonstrates that the final product is
Na2S. It is convincing that a new peak generated at 17.07° could
be assigned to the (220) planes of Na2S as well, as shown in
Fig. 5c (JCPDF no. 77-2149)20. Therefore, the first discharge
mechanism is proposed to be as follows:

S ! Na2Sx ! Na2S4 ! Na2S2 ! Na2S: ð1Þ

When the cell is charged back to 2.8 V, Na2S2 and S are not
detectable by in situ Raman spectroscopy or in situ synchrotron
XRD, indicating that the reaction is not (or is only slightly)
reversible; the processes from Na2S to Na2S4 and to Na2Sx are
expected to be reversible. The peaks corresponding to Na2S in the
Raman spectra and in the synchrotron XRD patterns always exist
after its initial generation, which is probably due to the partial

reversibility of the final Na2S product, thus accumulating during
the prolonged discharge/charge process.

Significantly, synchrotron XRD data for the second discharge
process do not show any trace of Na2S2, and the diffraction peak
intensity of Na2S4 obviously decreases. It indicates that the
reaction rate of reduction from Na2S4 into Na2S is very fast. We
thoroughly analyzed this phenomenon, and proposed a new
mechanism in which atomic Co could quickly catalyze the
reduction of Na2S4 into Na2S; this electrocatalytic reaction could
effectively slow down the dissolution of Na2S4 during cycling as
well as result in the excellent electrochemical performance of
S@Con-HC. Furthermore, the polysulfide dissolution behaviors of
S@Con-HC and S@HC electrodes using transparent glass cells are
compared in Supplementary Fig. 19. The cell with S@Con-HC
remained colorless during the 10-h discharge process, which
implies the alleviation of the polysulfide dissolution and suggests
that atomic Co could kinetically catalyze the polysulfide
reduction to Na2S instead of dissolution into the electrolyte.
However, the yellow polysulfide on the surface of the S@HC
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electrode was observed upon discharge for 5 h; when upon a 10-h
sodiation process, it could be clearly seen that yellow polysulfide
dissolved in the cell. This color change of S@HC indicates that
the polysulfide dissolution into electrolyte, i.e. shuttle effect, could
lead to a loss of active materials. In order to guarantee reliability
of the capacity of the S@Con-HC cathode, the capacity
contribution of the S host, Con-HC, was evaluated as well. The
Con-HC was fabricated from the S@Con-HC sample by dissolving
the loaded S with CS2 solvent. The XRD results of Con-HC and
S@Con-HC are shown in Supplementary Fig. 20. It could be
clearly seen that Con-HC does not show any S characteristic
peaks, indicating that S has been completely removed. The
discharge/charge profiles and cycling performance of Con-HC are
shown in Supplementary Fig. 21a, which displays a very low
initial reversible capacity of 70 mA h g−1, only retaining a

reversible capacity of 40.1 mA h g−1 after 200 cycles. By contrast,
Supplementary Fig. 21b clearly shows that the capacity contribu-
tion of Con-HC in the S@Con-HC cathode could be negligible.
Meanwhile, the compositional and morphological changes of
S@Con-HC after 600 cycles are shown in Supplementary Fig. 22,
which also indicated that the atomic Co in S@Con-HC could
effectively enhance the reversible capacity of the RT-Na/S@Con-
HC batteries.

In order to confirm our hypothesis, ab initio molecular
dynamics (AIMD) simulations are used to reveal the decomposi-
tion of the Na2S4 cluster adsorption process on atomic Co/carbon
(Fig. 6a) and carbon support (Fig. 6b). Figure 6a, b shows the
decomposition of Na2S4 cluster and evolution into Na2S3 cluster,
Na2S2 cluster, and Na2S cluster on atomic Co/carbon and carbon
support. An ideal model of a sp3 carbon, including 216 C atoms
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and two exposed surfaces terminated by 72 H atoms49, is applied
in modeling the carbon support to calculate the adsorption of a
Na2S4 cluster. The DFT calculations were conducted by
considering the single atomic Co occupying 41% in the S@Con-
HC and the Co6 cluster consisting of six Co atoms with the size of
~0.1 nm. The adsorption energy was defined as: E(ad)= E(ad/
surf)− E(surf)− E(ad), where E(ad/surf), E(surf), and E(ad) are
the total energies of the adsorbates binding to surface, clean
surface and free adsorbate in gas phase, respectively. The
adsorption energy of Na2S4 cluster on carbon support is −0.64
eV. The binding energy of the Co6 cluster with the carbon
support layer is −1.21 eV; meanwhile, the Na2S4 initially adsorb
on the Co6 cluster with the binding energy of −0.64 eV, which is
the same with that on the sp3 carbon surface. However, the Na2S4
structure was observed to decompose spontaneously on the Co6
cluster during the AIMD simulation; for pure carbon support,
Na2S4 could not be decomposed. As presented in Fig. 6a, Na2S3,
Na2S2, and Na2S clusters were identified respectively on the Co6
cluster and the dissociated S atoms were trapped by the Co6
cluster. Figure 6c displays the relative adsorption energies of these
sodium polysulfide clusters and the corresponding data are listed
in Supplementary Table 1, showing that the adsorption energy of
Na2S4 on Co6 is −4.33 eV; for Na2S3, the adsorption energy is
negatively shifted to −4.85 eV. Furthermore, the adsorption
energy of Na2S2 is −7.85 eV; surprisingly, the adsorption energy
of Na2S negatively shifts to −10.67 eV. This strong adsorption
energy of Na2S indicates that the reaction from Na4S2 into Na2S is
kinetically fast. It is evident that the binding energies of these
sodium polysulfide clusters were much stronger than those on
pure carbon support, indicating that the decomposition of Na2S4
in the presence of the Co6 cluster could be electrocatalyzed,
consistent with the speculation from operando Raman and
synchrotron XRD results. The schematic illustrations of electrode
reaction mechanisms for the S@Con-HC and S@HC are shown in
Fig. 6d, e. These atomic Co, with surface sulfurization, could
effectively alleviate the polysulfides dissolution based on polar
−polar interactions. Moreover, the confined polysulfides in
the inner carbon shell could be fully catalytically reduced
into Na2S by atomic Co, leading to high S utilization.
Therefore, the atomic Co in S@Con-HC plays a critical role in
achieving sustainable cycling stability and high reversible
capacity. By contrast, the intensive “shuttle effect” and incomplete
sodiation reactions result in the inferior performance of
the S@HC cathode.

Discussion
Overall, atomic Co, including SA Co and Co clusters, is suc-
cessfully applied into RT-Na/S batteries as a superior electro-
catalytic host. The novel S@Con-HC electrode delivers a high
initial reversible capacity of 1081 mA h g−1; even after 600 cycles,
it achieves a superior reversible capacity of 508 mA h g−1 at 100
mA g−1 without any degeneration of the elaborate nanos-
tructure. The atomic scale of polarized Co is responsible for the
outstanding enhancement of the S cathode, which is reaching the
limitation of Co (Co-S) for S/polysulfides immobilization and
activation in RT-Na/S batteries. Meanwhile, in situ Raman,
synchrotron XRD, and DFT are combined to confirm that
atomic Co could electrocatalytically reduce Na2S4 into Na2S,
which effectively alleviates dissolution of polysulfides and thus
impeding the shuttle effect. Significantly, this work introduces
atomic Co into electrode design, which innovatively bridges
battery and electrocatalyst fields and provides a new exploration
direction for novel design of electrode materials for the
advancement of various battery technologies, especially in RT-
Na/S batteries.

Methods
Synthesis of hollow carbon nanospheres. Commercial silicon nanoparticles
(~60–70 nm), utilized as hard templates, were first coated with resorcinol for-
maldehyde (RF) via a sol−gel process. Specifically, 0.15 g Si nanoparticles and 0.46
g cetyltrimethylammonium bromide (CTAB) were added in 14.08 mL of H2O and
transferred into a three-neck round-bottom flask. A homogenous dispersion could
be obtained after continuous ultrasonication and stirring for 0.5 h, respectively.
Secondly, 0.7 g resorcinol, 56.4 mL of absolute ethanol, and 0.2 mL of NH4OH were
added in the dispersion sequentially; the flask was maintained at 35 °C with stirring
for 0.5 h, followed by the addition of 0.1 mL formalin. The RF polymerization
could be completed after continually stirring for 6 h at 35 °C and ageing overnight.
The obtained Si@RF nanospheres were collected and washed with deionized water
and alcohol, respectively. The core-shell Si@C sample was prepared by calcination
of the Si@RF powder at 600 °C for 4 h (5 °C min−1) in N2 atmosphere. Finally,
hollow carbon nanospheres (HC) were prepared by etching the Si template away
with a 2.0 M NaOH solution.

Synthesis of different sulfur cathode samples. A sulfur host, cobalt
nanoparticles-decorated HC (Co-HC), was synthesized by uniform dispersion of
44.76 mg CoCl2 and 100 mg HC in ethanol via ultrasonication. The HC containing
CoCl2 was then heated overnight in a blast oven at 80 °C, by which the mixture
could solidify and shrink along with the ethanol evaporation. Afterwards, the above
mixture was reduced at 200 °C for 2 h in a forming gas with 10 vol% H2 in
nitrogen, leading to the formation of Co-HC. Three S cathode samples were fab-
ricated accordingly based on this Co-HC host. A mixture of Co-HC:S with a weight
ratio of 1:1.5 was first ground by mortar and pestle, and then sealed in a Teflon-
lined autoclave. A primary S cathode, S/Co-HC composite, was obtained after the
autoclave was heated at 155 °C for 12 h. When the obtained S/Co-HC composite
was further sealed in a quartz ampoule, and thermally treated at 300 and 400 °C for
2 h in N2 atmosphere, respectively, two new samples denoted as S@Con-HC and
S@CoS2-HC could be synthesized. In addition, a contrast sample with plain HC as
S host was prepared, in which S was embedded into the plain HC frameworks
(denoted as S@HC). The synthesis procedures are the same as that of S@Con-HC
by utilizing HC instead of Co-HC.

Structural characterization. The morphologies of the samples were investigated
by SEM (JEOL 7500), TEM (JEOL 2011, 200 keV), and STEM (JEOL ARM-200F,
200 keV). The XRD patterns were collected by powder XRD (GBC MMA dif-
fractometer) with Cu Kα radiation at a scan rate of 1omin−1. XPS measurements
were carried out using Al Kα radiation and fixed analyzer transmission mode: the
pass energy was 60 eV for the survey spectra and 20 eV for the specific elements.

Electrochemical measurements. The electrochemical tests were conducted by
assembling coin-type half-cells in an argon-filled glove box. The slurry was pre-
pared by fully mixing 70 wt% active materials (S/Co-HC, S@Con-HC, S@CoS2-HC,
S@HC), 10 wt% carbon black, and 20 wt% carboxymethyl cellulose (CMC) in an
appropriate amount of water via a planetary mixer (KK-250S). Then, the obtained
slurry was pasted on Cu foil using a doctor blade with a thickness of 100 µm, which
was followed by drying at 50 °C in a vacuum oven overnight. The working elec-
trode was prepared by punching the electrode film into discs of 0.97 cm diameter.
The sodium foil was employed as both reference and counter electrode. The
electrodes were separated by a glass fiber separator. Electrolyte, 1.0 M NaClO4 in
propylene carbonate/ethylene carbonate with a volume ratio of 1:1 and 5 wt%
fluoroethylene carbonate additive (PC/EC+ 5 wt% FEC), was prepared and used in
this work. The electrochemical performance was tested on a LAND Battery Tester
with a voltage window of 0.8–2.8 V. All the capacities of cells have been normalized
based on the weight of sulfur. CV was performed using a Biologic VMP-3 elec-
trochemical workstation.

In situ measurements. The in situ Raman cell was bought from Shenzhen Kejing
star. The in situ Raman was collected with a Renishaw InVia Raman microscope,
with excitation 532 nm laser wavelengths and L50× objective lens. The spectra were
collected in galvanostatic mode when the in situ Raman cell was discharged/
charged at a current rate of 500 mA g−1 using a computer controller (CHI 660D).
The acquisition time of each Raman spectrum was 60 s; and lower laser power was
utilized to avoid electrode damage during the long-term measurements. For in situ
synchrotron XRD measurements, the cells were similar to the above-mentioned
coin cells for electrochemical performance testing. To enhance the diffraction peak
intensity, a thicker layer of cathode material was loaded on the Cu foil, with loading
up to 5 mg cm−2. To guarantee that the X-ray beams could penetrate the whole cell
and that the electrochemical reactions could be monitored, three 4-mm diameter
holes were punched in the negative and positive caps as well as the spacer. Then,
Kapton film (only showing low-intensity responses in XRD patterns) was used to
cover the holes in the negative and positive caps, and AB glue was used for
complete sealing. The charge/discharge process was conducted with a battery test
system (Neware) that was connected to the cell.

Computational methods. The spin-polarized electronic structure calculations were
performed in the Vienna Ab-initio Simulation Package code with Perdew-Burke-
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Ernzerhof (PBE) functional of exchange-correlation. The projector-augmented-
wave (PAW) pseudopotentials were utilized to describe core electron interac-
tions50–52. Considering the significance of van der Waals (vdW) forces to the
adsorption, we utilized the D3 dispersion vdW corrections with zero damping for
describing the vdW interactions.53,54 The Co cluster consisted of six Co atoms with
a size of ~0.1 nm and the Co−Co bond distances was 2.24 Å. The Na2S4 cluster was
obtained after 10 ps of AIMD simulations at 350 K at first and the final structure
was optimized. To gain insights into the Na2S4 dissociative adsorption on carbon-
supported Co6 cluster, we firstly performed the AIMD simulation for 10 ps
(10,000 steps, 1 fs per step) within the canonical (NVT) ensemble at 350 K to
accelerate the dissociation rate of Na2S4 cluster on carbon-supported Co6 cluster.
During the AIMD simulations, the carbon support was fixed while the Co6 and
Na2S4 clusters were allowed to move. Secondly, we chose some representative
sodium polysulfide structures, i.e., Na2S3, Na2S2 and Na2S clusters, which were
observed from molecular dynamics simulations. Thirdly, the geometries of these
sodium polysulfide clusters were optimized to calculate the total energies. The cut-
off energy was set to 370 eV for molecular dynamics simulations and the cut-off
energy was 450 eV for geometry optimizations aiming to get the accurate energy. A
gamma Monkhorst-Pack k-point sampling was used. In this paper, the adsorption
energy was defined as: E(ad)= E(ad/surf)− E(surf)− E(ad), where E(ad/surf), E
(surf), and E(ad) are the total energies of the adsorbates binding to surface, clean
surface and free adsorbate in gas phase, respectively.

Data availability
The data that support the findings of this work are available from the corresponding
author upon reasonable request.

Received: 30 January 2018 Accepted: 30 July 2018

References
1. Dunn, B., Kamath, H. & Tarascon, J. M. Electrical energy storage for the grid:

a battery of choices. Science 334, 928 (2011).
2. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657

(2008).
3. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-

oxide electrodes. Nat. Mater. 12, 827–835 (2013).
4. Tan, G. et al. Freestanding three-dimensional core-shell nanoarrays for

lithium-ion battery anodes. Nat. Commun. 7, 11774 (2016).
5. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable

electronics. Science 327, 1603 (2010).
6. Zhang, W., Mao, J., Li, S., Chen, Z. & Guo, Z. Phosphorus-based alloy

materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 139,
3316–3319 (2017).

7. Yang, C. P., Yin, Y. X., Guo, Y. G. & Wan, L. J. Electrochemical (de)lithiation
of 1D sulfur chains in Li-S batteries: a model system study. J. Am. Chem. Soc.
137, 2215–2218 (2015).

8. Manthiram, A., Fu, Y., Chung, S. H., Zu, C. & Su, Y. S. Rechargeable
lithium–sulfur batteries. Chem. Rev. 114, 11751–11787 (2014).

9. Seh, Z. W., Sun, Y., Zhang, Q. & Cui, Y. Designing high-energy lithium-sulfur
batteries. Chem. Soc. Rev. 45, 5605–5634 (2016).

10. Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon-
sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009).

11. Zhou, G., Paek, E., Hwang, G. S. & Manthiram, A. Long-life Li/polysulphide
batteries with high sulphur loading enabled by lightweight three-dimensional
nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 6, 7760 (2015).

12. Hwang, J. Y., Myung, S. T. & Sun, Y. K. Sodium-ion batteries: present and
future. Chem. Soc. Rev. 46, 3529–3614 (2017).

13. Chao, D. et al. Array of nanosheets render ultrafast and high-capacity Na-ion
storage by tunable pseudocapacitance. Nat. Commun. 7, 12122 (2016). 12122.

14. Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on
sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014).

15. Xin, S., Yin, Y. X., Guo, Y. G. & Wan, L. J. A high-energy room-temperature
sodium-sulfur battery. Adv. Mater. 26, 1261–1265 (2014).

16. Lu, X. et al. Advanced intermediate-temperature Na-S battery. Energy
Environ. Sci. 6, 299–306 (2013).

17. Hueso, K. B., Armand, M. & Rojo, T. High temperature sodium batteries:
status, challenges and future trends. Energy Environ. Sci. 6, 734 (2013).

18. Wei, S. et al. A stable room-temperature sodium-sulfur battery. Nat. Commun.
7, 11722 (2016).

19. Wei, S., Ma, L., Hendrickson, K. E., Tu, Z. & Archer, L. A. Metal-sulfur battery
cathodes based on PAN-sulfur composites. J. Am. Chem. Soc. 137,
12143–12152 (2015).

20. Wang, Y. X. et al. Achieving high-performance room-temperature sodium-
sulfur batteries with S@Interconnected mesoporous carbon hollow
nanospheres. J. Am. Chem. Soc. 138, 16576–16579 (2016).

21. Hwang, T. H., Jung, D. S., Kim, J. S., Kim, B. G. & Choi, J. W. One-
dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries
operating at room temperature. Nano Lett. 13, 4532–4538 (2013).

22. Pang, Q., Kundu, D., Cuisinier, M. & Nazar, L. F. Surface-enhanced redox
chemistry of polysulphides on a metallic and polar host for lithium-sulphur
batteries. Nat. Commun. 5, 4759 (2014).

23. Zhou, G. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for
Li-Sbatteries. Proc. Natl. Acad. Sci. USA 114, 840–845 (2017).

24. Zheng, S. et al. Nano-copper-assisted immobilization of sulfur in high-surface-
area mesoporous carbon cathodes for room temperature Na-S batteries. Adv.
Energy Mater. 4, 1400226 (2014).

25. Zhang, B. W. et al. In situ grown S nanosheets on Cu foam: an ultrahigh
electroactive cathode for room-temperature Na-S batteries. ACS Appl. Mater.
Interfaces 9, 24446–24450 (2017).

26. Tyo, E. C. & Vajda, S. Catalysis by clusters with precise numbers of atoms.
Nat. Nano 10, 577–588 (2015).

27. Yao, S. et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-
temperature water-gas shift reaction. Science 357, 389–393 (2017).

28. Liu, P. et al. Photochemical route for synthesizing atomically dispersed
palladium catalysts. Science 352, 797 (2016).

29. Yang, X. F. et al. Single-atom catalysts: a new frontier in heterogeneous
catalysis. Acc. Chem. Res. 46, 1740–1748 (2013).

30. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat.
Chem. 3, 634–641 (2011).

31. Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via
atom trapping. Science 353, 150 (2016).

32. Deng, D. et al. A single iron site confined in a graphene matrix for the
catalytic oxidation of benzene at room temperature. Sci. Adv. 1, e1500462
(2015).

33. Li, G. et al. Three-dimensional porous carbon composites containing high
sulfur nanoparticle content for high-performance lithium-sulfur batteries.
Nat. Commun. 7, 10601 (2016).

34. Liu, W. et al. Single-atom dispersed Co-N-C catalyst: structure identification
and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 7,
5758–5764 (2016).

35. Ganesan, P., Prabu, M., Sanetuntikul, J. & Shanmugam, S. Cobalt sulfide
nanoparticles grown on nitrogen and sulfur codoped graphene oxide: an
efficient electrocatalyst for oxygen reduction and evolution reactions. ACS
Catal. 5, 3625–3637 (2015).

36. Wang, J. et al. Sulfur composite cathode materials for rechargeable lithium
batteries. Adv. Funct. Mater. 13, 487–492 (2003).

37. Zhang, B., Qin, X., Li, G. R. & Gao, X. P. Enhancement of long stability of
sulfur cathode by encapsulating sulfur into micropores of carbon spheres.
Energy Environ. Sci. 3, 1531–1537 (2010).

38. Yu, X. & Manthiram, A. Room-temperature sodium-sulfur batteries with
liquid-phase sodium polysulfide catholytes and binder-free multiwall
carbon nanotube fabric electrodes. J. Phys. Chem. C 118, 22952–22959
(2014).

39. Yu, X. & Manthiram, A. Performance enhancement and mechanistic studies
of room-temperature sodium-sulfur batteries with a carbon-coated functional
Nafion separator and a Na2S/activated carbon nanofiber cathode. Chem.
Mater. 28, 896–905 (2016).

40. Park, C. W., Ahn, J. H., Ryu, H. S., Kim, K. W. & Ahn, H. J. Room-
temperature solid-state sodium/sulfur battery. Electrochem. Solid St. 9,
A123–A125 (2006).

41. Wenzel, S. et al. Thermodynamics and cell chemistry of room temperature
sodium/sulfur cells with liquid and liquid/solid electrolyte. J. Power Sources
243, 758–765 (2013).

42. Lee, D. J. et al. Alternative materials for sodium ion-sulphur batteries.
J. Mater. Chem. A 1, 5256 (2013).

43. Qiang, Z. et al. Ultra-long cycle life, low-cost room temperature sodium-sulfur
batteries enabled by highly doped (N,S) nanoporous carbons. Nano Energy 32,
59–66 (2017).

44. Yao, Y. et al. Binding S0.6Se0.4 in 1D carbon nanofiber with C-S bonding for
high-performance flexible Li-S batteries and Na-S batteries. Small 13, 1603513
(2017).

45. Lu, Q. et al. Freestanding carbon fiber cloth/sulfur composites for flexible
room-temperature sodium-sulfur batteries. Energy Storage Mater. 8, 77–84
(2017).

46. Yu, X. & Manthiram, A. Capacity enhancement and discharge mechanisms of
room-temperature sodium-sulfur batteries. ChemElectroChem 1, 1275–1280
(2014).

47. El Jaroudi, O., Picquenard, E., Gobeltz, N., Demortier, A. & Corset, J. Raman
spectroscopy study of the reaction between sodium sulfide or disulfide and

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06144-x

10 NATURE COMMUNICATIONS |  (2018) 9:4082 | DOI: 10.1038/s41467-018-06144-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


sulfur: identity of the species formed in solid and liquid phases. Inorg. Chem.
38, 2917–2923 (1999).

48. Janz, G. J. et al. Raman studies of sulfur-containing anions in inorganic
polysulfides. Sodium Polysulfides. Inorg. Chem. 15, 1759–1763 (1976).

49. Peng, X. X. et al. Graphitized porous carbon materials with high sulfur loading
for lithium-sulfur batteries. Nano Energy 32, 503–510 (2017).

50. Kresse, G. & Hafner, J. Abinitio molecular-dynamics for liquid-metals. Phys.
Rev. B 47, 558–561 (1993).

51. Kresse, G. & Hafner, J. Ab-initio molecular-dynamics for open-dynamics for
open-shell transition-metals. Phys. Rev. B 48, 13115–13118 (1993).

52. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for
metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.
6, 15–50 (1996).

53. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab
initio parametrization of density functional dispersion correction (DFT-D) for
the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

54. Xu, G. et al. Electrostatic self-assembly enabling integrated bulk and interfacial
sodium storage in 3D titania-graphene hybrid. Nano Lett. 18, 336–346 (2017).

Acknowledgements
This research was supported by the Australian Research Council (ARC) (DE170100928),
the Commonwealth of Australia through the Automotive Australia 2020 Cooperative
Research Centre (Auto CRC). The authors acknowledge the use of the facilities at the
UOW Electron Microscopy Centre funded by ARC grants (LE0882813 and LE0237478)
and Dr. Tania Silver for her critical reading.

Author contributions
B.-W.Z., Y.-X.W., and S.-L.C. conceived and designed the experiments. B.-W.Z. per-
formed all synthetic and characterization experiments. T.S. performed ab initio mole-
cular dynamics simulations. Y.-D.L. performed Raman experiments. L.Z. and W.-H.L.
performed the TGA experiments. B.-W.Z., L.W., and Q.-F.G. performed synchrotron

X-ray diffraction measurements, and J.Y. performed the ICP measurement. B.-W.Z.,
Y.-X.W., S.-L.C., H.-K.L., and S.-X.D. analyzed the data and wrote the manuscript. All
authors read and approved the final manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-06144-x.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06144-x ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:4082 | DOI: 10.1038/s41467-018-06144-x |www.nature.com/naturecommunications 11

https://doi.org/10.1038/s41467-018-06144-x
https://doi.org/10.1038/s41467-018-06144-x
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	University of Wollongong
	Research Online
	2018

	Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries
	Binwei Zhang
	Tian Sheng
	Yundan Liu
	Yunxiao Wang
	Lei Zhang
	See next page for additional authors
	Publication Details

	Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries
	Abstract
	Disciplines
	Publication Details
	Authors


	Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries
	Results
	Growth process for sulfur-hosted atomic cobalt-decorated hollow carbon composite
	Performance evaluation of the room-temperature sodium-sulfur batteries
	Mechanistic investigation on sodium-storage of the sulfur cathode

	Discussion
	Methods
	Synthesis of hollow carbon nanospheres
	Synthesis of different sulfur cathode samples
	Structural characterization
	Electrochemical measurements
	In situ measurements
	Computational methods

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS


