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Abstract 

The de Gennes narrowing phenomenon is frequently observed by neutron or x-ray scattering 

measurements of the dynamics of complex systems, such as liquids, proteins, colloids, and 

polymers.  The characteristic slowing down of dynamics in the vicinity of the maximum of the 

total scattering intensity is commonly attributed to enhanced cooperativity.  In this Letter, we 

present an alternative view on its origin through the examination of the time-dependent pair 

correlation function, the Van Hove correlation function, for a model liquid in two, three, and four 

dimensions.  We find that the relaxation time increases monotonically with distance and the 

dependence on distance varies with dimension.  We propose a heuristic explanation of this 

dependence based on a simple geometrical model.  This finding sheds new light on the 

interpretation of the de Gennes narrowing phenomenon and the α-relaxation time. 
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The dynamics of complex soft matter, including polymers [1-4], biological matter [5-7], colloids 

[8, 9] and various liquids [10, 11], is frequently measured by scattering experiments, such as quasi-elastic 

neutron scattering (QENS), x-ray photon correlation spectroscopy (XPCS) and neutron spin echo (NSE).  

Often one observes that the dynamics characteristically slows down in the range of Q, the momentum 

transfer, where the total scattering intensity, S(Q), reaches maximum.  This phenomenon is widely known 

as the de Gennes narrowing [12], and is usually interpreted as the sign of enhanced cooperative dynamics.  

Despite the ubiquity of this phenomenon, details of the dynamics are rarely discussed, particularly in real 

space.  In this Letter we suggest that the de Gennes narrowing could originate from a simple geometrical 

reason, and its observation does not necessarily imply the presence of collective dynamics.  

In 1954, Van Hove showed that the double differential cross section measured by inelastic x-ray 

or neutron scattering experiments are the Fourier transform of density correlations in space and time, by 

generalizing the concept of pair distribution function (PDF) [13].  The time-displaced PDF, G(r, t), where 

r is distance and t is time, is now known as the Van Hove correlation function.  It can be partitioned into 

the self- and distinct-parts, defined as Gs(r, t) and Gd(r, t).  The self-part tracks the positional correlation 

of the same particle at time t’ and t’ + t and describes migration of a single particle.  It is usually Gaussian 

for simple liquids [14, 15], whereas it is known to deviate considerably from the Gaussian form in deeply 

supercooled liquid [16-19].  On the other hand, the distinct-part records the positional correlation between 

different particles.  At t = 0 Gd(r, 0) is the snap-shot PDF, and as t approaches infinity the distinct-part 

converges asymptotically to unity.  However, its relaxation process within these two temporal limits for 

general liquids is not understood well.  Whereas for a long time the Van Hove function has been 

accessible only by simulation [16-20], it is now possible to determine it experimentally with high 

accuracy through the inelastic scattering measurements [21].  This provides additional incentive to further 

our understanding on the nature of the Van Hove correlation function.   
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We study model liquid iron as a representative of simple liquid using molecular dynamics 

simulations.  The focus is placed on three dimensional (3D) simulations whereas complementary two 

dimensional (2D) and four dimensional (4D) simulations are also carried out to support our argument on 

the mechanism.  We employ NVT ensemble, and the details regarding the simulation setup can be found 

in Supplementary Materials [22].  The melting point in 3D is around 2400 K and the viscosity crossover 

temperature denoted TA, below which super-Arrhenius behavior occurs, is around 2000 K consistent with 

previous studies [27].  The distinct-part of the Van Hove correlation function is computed using eq. 1 in 

3D, where ( ')ir t  represents the position of particle i at time t’ and .....  means thermal averaging over 

the choices of t’.   

 2 2( , ) ( ( ') ( ' ) )
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A typical example obtained from 3D simulation at T = 2500 K is displayed in Fig 1.  In panel (a), the 

result, Gd(r, t) − 1, is shown in a series of constant time slices.  We see that at t = 0 the oscillations in the 

PDF extend to long range, and are discernible even beyond 15 Ǻ.  As time progresses the locations of 

peaks and valleys remain nearly the same whereas their amplitudes gradually decay to zero.  However, 

the decay rate appears to vary with distance r.  For instance, the decay of the first peak is much faster than 

that of the second peak although the relaxation behavior of long range peaks and valleys are unclear from 

this illustration because of their small amplitudes.  We normalize Gd(r, t) − 1 through Gd(r, 0) − 1 and 

show constant r slices in panel (b).  This plot demonstrates one of our major findings in this Letter: the 

relaxation time of Gd(r, t) − 1 has monotonic r-dependence.  With larger distance, the relaxation becomes 

more sluggish.  We find that the normalized Gd(r, t) − 1 can be satisfactorily described by the functional 

form of exp(-(t/τ)β), where τ is interpreted as the relaxation time and β quantifies contraction or stretching 

of the exponential.  We employ this functional form to fit the normalized correlation function at selected 

distances and the fitting curves are shown in panel (b) as short dashed lines.  One sees that the fitting 
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quality is quite good, except for the first peak and at the short time where a ballistic process is dominant. 

The first peak overshoots the zero line at t ≈ 1500 fs and remains negative afterward within the shown 

temporal range although it should also converge to zero at a long-time limit.  Because of this overshooting, 

the relaxation of the first peak cannot be described by the exponential function in contrast to the peaks 

and valleys at far-field.  Apparently the dynamics of the atoms in the first nearest neighbor shell is too 

strongly correlated with the central reference particle to be described by a simple exponential function. 

The seemingly deteriorating fitting quality at long distance and long time is due to the statistical error in 

calculating the Van Hove correlation function.  Nonetheless, all the r-squared parameters from fitting are 

better than 0.995 (see section 7 in Supplementary Materials for more details).  It is important to note that 

the extracted relaxation time is model independent.  One can alternatively determine the relaxation time 

by empirically monitoring the time when the normalized Van Hove function decays to 1/e and both 

methods yield identical value within statistical uncertainty.   

The determined r-dependent relaxation time τ(r) at three representative temperatures is shown in 

Fig 2.  It is clear that τ(r) increases linearly with distance, and the slope is temperature dependent.  Such 

linear dependence was observed also for our simulations with the Lennard-Jones and Yukawa potentials, 

suggesting that this is a general behavior of high-temperature liquids.  The value of β was also found to 

increase linearly with r, and is weakly dependent on temperature, as shown in Supplementary Material 

[22].  It is difficult to provide a full and rigorous explanation of this linearly increasing relaxation time, 

but we propose the following heuristic argument.  By the definition of g(r) in 3D, or equivalently Gd(r, 0), 

the number of particles located within the range of r to r + dr from a reference particle is on average N(r) 

= 4πρ0g(r)r2dr, where ρ0 is the number density of atoms.  We note that the PDF is a spherically averaged 

quantity, and at large distance the PDF describes the correlation between one atom at the center and an 

aggregate of atoms at the distance r, rather than the direct atom-atom correlation.  Based on this 

understanding, τ(r) then should reflect the relaxation of the aggregate of atoms and arguably scale with its 

fluctuations, ΔN(r).  By the central limit theorem (See Supplementary Materials [22] for more details) the 



6 

 

fluctuation in the number of particles within the same radial shell is proportional to the square root of N(r), 

hence, ( ) 04 ( )N r r g rΔ πρ∝ .  At far-field where g(r) ≈ 1, ΔN(r) is consequently proportional to r, 

suggesting the scaling behavior of ( )r rτ ∝  in 3D.  According to this argument the observed linearly 

increasing relaxation time is directly attributable to a geometrical factor, not the collectivity of dynamics.  

This argument can be readily tested through dimensionality dependence of the geometrical factor.  In 

general, ΔN(r) in D-dimensional liquid should be characterized by the (D-1)/2 power dependence on r at 

far field.  Thus τ(r) is expected to show r0.5 and r1.5 dependences in 2D and 4D respectively.  To verify 

such prediction, the same analysis was applied also to the complementary 2D and 4D simulations at 2500 

K and 3500 K respectively.  We note that because the crossover temperature TA increases with 

dimensionality, a higher temperature is chosen here for 4D. 

We observe that τ(r) in 2D and 4D also increases with distance and indeed shows different 

curvatures comparing to 3D.  Following the previous argument we fit the relaxation time with the power 

law, 0
1

( ) r
rr
r

χ

τ τ τ
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

, where r1 is the position of the first peak of PDF and τr, τ0, and χ are fitting 

parameters, at distances beyond the first peak.  The fitting results are summarized in Table 1.  The 

determined powers χ are found to be close to the expected values.  We argue that the discrepancy between 

the fitted parameter and expected value of χ in 2D is due to the presence of robust hexatic fluctuations 

[28], which is not taken into consideration in the geometrical model.  The uniqueness of 2D can also find 

support from the negligible magnitude of τ0 in contrast to 3D and 4D.  Furthermore it is conceivable that 

the power χ in 4D could be underestimated due to a limited r-range (see Supplementary Materials [22] for 

simulation setup).  In order to assess the fitting quality and highlight the χ parameter, we plot 

[ ]{ }0log ( ) / rrτ τ τ−  versus ( )1log /r r  in Fig 3, where the slope is equal to χ.  Therefore we suggest that 

the present results qualitatively support the previous argument: The relaxation time of the distinct Van 
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Hove correlation function is characterized by the power law dependence on distance at far-field with the 

power χ = (D-1)/2.      

Next we investigate the nature of τr and τ0 from the found power law dependence of τ(r) by 

examining their temperature dependences in 3D, assuming χ = 1. The results are shown in Fig 4.  In (a), 

one sees that both τr and τ0 show the Arrhenius behavior at high temperatures and become super-Arrhenius 

below the viscosity crossover temperature, TA ≈ 2000K, similar to the well-known behavior of the 

Maxwell relaxation time τM [27].  To understand the relationship among τr, τ0 and τM, we plot their ratios 

as a function of temperatures in (b).  The Maxwell relaxation time is calculated from the shear stress 

correlation function using the Kubo equations as in Refs [27, 29].  It is first noticed that the ratio τr/τ0 is 

constant within the statistical uncertainty across the studied temperature range.  This ratio is found be 0.55 

and is dimensionality dependent; the τr/τ0 ratio for 4D is around 0.18.  Secondly, we see that both the τr/τM 

ratio and the τ0/τM ratio are constant (1.55 and 2.83, respectively) at high temperatures and increase below 

TA.  These observations suggest that τr and τ0 have the same origin, both reflecting the relaxation of 

density fluctuation.  At high temperatures, there is only one relaxational time-scale (Maxwell relaxation 

time) because phonons are localized [27].  Therefore τr and τ0 are proportional to τM.  However, below TA 

density fluctuation and stress fluctuation become decoupled due to the fact that phonons can propagate 

longer than one atomic distance [27].  As such, the proportionalities break down.    

We now discuss the slowdown of dynamics at a wavevector Q corresponding to the maximum in 

S(Q), known as the de Gennes narrowing phenomenon, from the perspective of real space dynamics.  In 

Fig 5 (a), we show the relaxation time τ(Q) determined from the collective-part of the intermediate 

scattering function, Fc(Q, t), which is the Fourier-transformation of the total Van Hove correlation 

function, at T = 2500 K in 3D.  Here τ(Q) is defined as the time when Fc(Q, t)/Fc(Q, 0) decays to 1/e.  It 

shows clear slowing down in the vicinity of the first peak of the structure factor S(Q) shown in Fig 5 (b), 

as suggested by de Gennes [12].  It has long been speculated that this characteristic slowing down is due 
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to the cooperativity of dynamics at the corresponding length-scale.  However, our results provide an 

alternative interpretation.  Because T = 2500 K is higher than TA, there should be no collective dynamics 

at this temperature.  But the r-dependence of the relaxation time, τ(r), shown in Fig. 2, provides the 

explanation.  Because g(r) and S(Q) are connected by the Fourier transformation, the first peak of S(Q) at 

QMax largely generates the long-range oscillations in g(r), whereas the first peak in g(r) creates the high-Q 

part of S(Q) [30].  Therefore Fc(QMax, t) reflects the behaviors of the far fields of Gd(r, t), which are 

slower.  This explains why τ(QMax) (= 417 fs) is much longer than the relaxation time of the first peak of 

the distinct-part of the Van Hove correlation function, 200 fs.  On the other hand, at other wave-vectors 

the structure factor has both constructive and destructive interferences from the peaks and valleys of g(r) 

(see Supplementary Materials [22] for further discussion).  Consequently the relaxation of S(Q) away 

from the first peak is dominated by the self-part of the Van Hove function.  Therefore the corresponding 

relaxation time is much shorter than τ(QMax) as shown in Fig 5.  In this interpretation of the de Gennes 

narrowing, the reason for the characteristic slowing down is due to the linearly increasing relaxation time 

in the distinct-part of the Van Hove correlation function in 3D for a geometrical reason, rather than the 

enhanced cooperativity in collective dynamics.  This analysis shows that the observation of the de Gennes 

slowing down does not necessarily mean the presence of collective relaxation modes.  In many cases it 

merely reflects the geometrical factor as explained here.   

This argument also raises a serious question regarding the validity of defining the α-relaxation 

time, τα, as τ(QMax), as is customarily done.  The reasoning is that τ(QMax) represents the relaxation time of 

the far-field oscillations in g(r), thus the structural relaxation time.  However, as discussed above the 

longevity of the oscillations in g(r) is merely the result of a geometrical factor, and the only independent 

parameter in simple liquids above TA is just τM [27].  The popularity of τ(QMax) may well originate from 

the fact that in the scattering experiment it is easier to determine the relaxation time at the peak of S(Q).  

Then it is just an exemplary case of looking for a key under the lamp post.  Thus in our view the so-called 

α-relaxation time determined as τ(QMax) is not a physically meaningful parameter.  In general we find it is 
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dangerous to discuss the relaxation time of the system from the intermediate scattering function, F(Q, t).  

Our view is that only when the full Van Hove function is determined the analysis of the relaxation time in 

liquid becomes physically meaningful. 

In conclusion, we showed that the distinct-part of the Van Hove correlation function encodes rich 

information regarding the dynamics of simple liquids.  There are two major findings in this Letter: First, 

the relaxation time of the distinct Van Hove correlation function increases monotonically with distance; 

second, this relaxation time is found to follow a power law dependence on r with power χ close to the 

prediction (D-1)/2 at far-field.  We attribute this power law dependence to a geometrical reason.  Based 

on this reasoning, we argue that the de Gennes narrowing phenomenon does not necessarily reflect the 

presence of collective dynamics but could simply be due to the linearly growing τ(r) in 3D for a 

geometrical reason.  There are still many characteristics not understood from the distinct-part of the Van 

Hove correlation function, such as the relaxation process of the first peak of PDF and the physical 

meanings of τr and τ0 from the power law dependence, which will be left to the future studies using binary 

mixture that allows exploration on deeply supercooled regime.  With the development of higher brilliance 

radiation sources, soon the present results can be tested through scattering experiments. 
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Table 1 Parameters determined from power law fitting to τ(r). The errors reflect 95% confidence bounds. 

 χ τr (fs) τ0 (fs) 

2D 0.66 ± 0.14  179.10 ± 80.60 8.84 ± 111.56  

3D 1.04 ± 0.16 122.30 ± 51.70  252.80 ± 94.90  

4D 1.45 ± 0.20  31.18 ± 11.95 171.20 ± 23.20  

 

 

 

  



13 

 

 

Figure 1.   The distinct-part of the Van Hove correlation function, Gd(r, t)-1, for 3D model liquid iron at 
2500 K: (a) constant t plot and (b) constant r plot. In (b), the results are normalized using respective t = 0 
values and the normalized correlation functions are fit with exp(-(t/τ)β) shown as short dashed lines. 

 

Figure 2.  The relaxation time determined from Gd(r,t) in 3D liquid iron at a series of distances at 
temperatures of 2000 K, 2500 K and 3000 K. The short-dashed straight lines serve as guides to the eyes. 
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Figure 3.  The r-dependent relaxation time τ(r) determined from the normalized distinct-part of van Hove 
correlation function of model liquid iron in 2D at 2500K (red triangle), 3D at 2500K (black circle), and 
4D at 3500K (blue square) beyond the first peak position.  The data points are shown in the form of 
log{[τ(r)-τ0]/τr} versus log(r/r1) to highlight χ from the expected power law dependence, where τ0 and τr 
are taken from Table 1. The short dashed lines serve as guides to the eye.           

 

Figure 4.  Temperature dependence of τr and τ0 from linear fitting to the r-dependent relaxation time of 
normalized distinct-part of the Van Hove correlation function of model liquid iron in 3D. The results are 
shown in Arrhenius plot in (a) and ratios in (b). τM is Maxwell relaxation time. Short dashed lines serve as 
guides to the eyes.   
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Figure 5 Illustration of de Gennes narrowing phenomenon: The wave-vector dependent relaxation time 
τ(Q) determined from the collective-part of intermediate scattering function at 2500 K in 3D liquid iron 
shown in (a) clearly demonstrates a characteristic slowing down in the vicinity of the peak position of 
S(Q) shown in (b). 

 


