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Abstract

Nanoparticles are often measured using atomic force microscopy or other scanning probe microscopy methods.

For isolated nanoparticles on flat substrates, this is a relatively easy task. However, in real situations, we often need

to analyze nanoparticles on rough substrates or nanoparticles that are not isolated. In this article, we present a

simple model for realistic simulations of nanoparticle deposition and we employ this model for modeling

nanoparticles on rough substrates. Different modeling conditions (coverage, relaxation after deposition) and

convolution with different tip shapes are used to obtain a wide spectrum of virtual AFM nanoparticle images

similar to those known from practice. Statistical parameters of nanoparticles are then analyzed using different data

processing algorithms in order to show their systematic errors and to estimate uncertainties for atomic force

microscopy analysis of nanoparticles under non-ideal conditions. It is shown that the elimination of user influence

on the data processing algorithm is a key step for obtaining accurate results while analyzing nanoparticles

measured in non-ideal conditions.

Introduction
Nanoparticle analysis is an important challenge in the

present nanoscale metrology. Nanoparticles are used in

many fields of research and technology [1-5], and their

proper characterization is, therefore, very important.

Even if there are several general and well established

experimental methods to nanoparticle analysis (optical

methods [6-8], electrochemistry-based methods [9], elec-

tron microscopy [10,11], X-ray methods [10,12] and

scanning probe microscopy [10,13]), their results differ

mutually very often due to different effects of non-ideal

measurement conditions [6,7,10,14].

In this article, we focus on nanoparticle analysis per-

formed using atomic force microscopy (AFM) [15],

which is one of the most popular scanning probe micro-

scopy methods. The interaction of nanoparticles with

the AFM probe was studied in the past quite extensively

from the experimental point of view–from the point of

nanoparticle measurement, AFM tip modification, or

nanoparticle manipulation [10,13,16-18]. If the isolated

nanoparticles of spherical shape are deposited on an ide-

ally flat substrate, their size can be determined easily

from the AFM image by measuring the nanoparticle

image height [13]. This quantity is not influenced by

tip-sample convolution effects and can provide accurate

nanoparticle size results.

However, if the particles are deposited on rough

substrates (or curved substrates generally), particle size

analysis is not so straightforward and therefore many

questions arise from the point of particle analysis imple-

mentation in AFM image processing software. Another

effect strongly influencing the AFM analysis of nanopar-

ticles is particle agglomeration and self-ordering on the

substrate. In real measurements, we can often observe

both effects. The statistical results of nanoparticle prop-

erties therefore rely on a good choice and correct use of

AFM data evaluation algorithms, which adds a human

error to the whole measurement process. From a

metrology point of view, this approach is not satisfac-

tory, as we cannot easily determine the measurement

uncertainty.

The aim of this article is to investigate the influence of

the substrate roughness and particle agglomeration on

the statistical analysis of nanoparticle properties. We

study the measurement uncertainty of nanoparticle

parameters with respect to different nanoparticle data

processing methods and scanning parameters (e.g., tip

related effects). To do this, we employ a simple model

that simulates the real particle deposition and ordering
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on the substrate and the basic physical phenomena con-

nected with this processes. Afterward, we simulate AFM

scans obtained on modeled samples and we evaluate

nanoparticle statistical properties using different data

analysis methods. Finally, we compare the results with

the nominal values of the nanoparticle statistical proper-

ties used for modeling on the first stage. This approach

enables us to determine the level of confidence in AFM

measurements of nanoparticles and to determine the

limits of measurement uncertainty in these cases.

Experimental arrangement
Atomic force microscopy measurements shown in

Figure 1a-d to illustrate the numerical models connec-

tion to real data in this article were performed using

AFM Explorer (Thermomicroscopes) in contact and

non-contact mode, using standard contact (type

MSCT-EXMT-A1) probes supplied by Veeco company

and non-contact probes (type PPP-NCLR) supplied by

NanoAndMore company. Measurements were per-

formed in ambient conditions. Image resolution was

between 500 × 500 pixels and 1, 000 × 1, 000 pixels,

scan speed between 1 and 5 μm/s. Raw data obtained

from the microscope were processed in Gwyddion

open source software using the plane leveling algo-

rithm [19].

Nanoparticle samples were prepared by spin-off coat-

ing, using a simple home-built apparatus; nanoparticles

were dispersed in ethylene glycol [20] (palladium) resp.

in water (polymer) and dried after deposition.

Figure 1 Typical AFM nanoparticle measurement of palladium on flat (a) and rough silicon (b), polymer on rough (c) and flat silicon (d).
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Data modeling and analysis
In order to simulate the full process of nanoparticle

deposition, measurement and analysis, data modeling

was performed in several successive steps:

1. modeling of a rough surface.

2. simulation of particle deposition on the surface.

3. creation of virtual AFM images by tip-sample

convolution.

4. nanoparticle statistical analysis using virtual

AFM images and data processing software.

In order to simulate the effects of both surface rough-

ness and nanoparticle clustering, we need to vary the

following parameters in steps 1 -3:

• surface roughness (parametrized using the root

mean square roughness and autocorrelation length),

• number of particles and their size (parametrized

using the surface coverage and the particle radius),

• AFM tip shape (parametrized using the tip radius

and the apex ratio).

The resulting nanoparticle statistical properties are

then compared to values used in step 2 (particle deposi-

tion). The algorithms used for data modeling are

described in more detail in the next two sections. All

the data modeling and processing algorithms were

implemented in Gwyddion open source software http://

gwyddion.net and are available for public in the present

version of software.

Surface generation and particle deposition modeling

Rough substrates were modeled to have a Gaussian

autocorrelation function [21], which is a simple model

often used in many fields of surface physics [22].

First, a sufficiently large field filled by independent

random numbers needs to be created, having these

properties:

〈η(r)〉 = 0 (1)

〈η(r)η(r′)〉 = πd/2δ(r − r
′). (2)

where h (r) is the random number at the position

given by r, h (r’) is the random number at the position

given by r’ and d is the surface dimensionality (here d =

2).

The surface z(r) is created by performing a convolu-

tion according to the formula

z(r) = 2d/2 σT−d/2

πd/2

∞
∫

−∞

exp

[

−2
(r − r

′)2

T2

]

η(r)dr
′, (3)

where s and/or T are the root mean square roughness

and/or autocorrelation length corresponding to the sur-

face to be constructed. As this integral is evaluated

numerically, it is necessary to limit the computation to a

sufficient area, depending on the decay of the Gaussian

function inside the integral. The resulting values z(r)

form a surface with the required root mean square

roughness s and autocorrelation length T.

Surface properties are therefore controlled by two

parameters–the root mean square roughness (s) and the

autocorrelation length (T). Note that for our simulation,

the autocorrelation length was kept constant and only

the root mean square roughness was varied.

For particle deposition, a simple model similar to

molecular dynamics calculations was constructed as

described below. The aim of the model is to include

basic interaction between nanoparticles and between a

nanoparticle and the substrate and to model the effects

of thermal and mechanical vibrations in nanoparticle

dispersion (e.g., Brownian motion). In contrast to more

rigorous models shown in literature [10,23], this model

does not include the effects of nanoparticle atomistic

structure or effects of the presence of the vapor phase

[24]; however, as seen from the results, it is still able to

generate images of nanoparticles very similar to real

images observed using atomic force microscopy (see

Figure 1a-d). In contrast to even simpler models (e.g.,

random placement of nanoparticles on substrate), it can

include the nanoparticle self-organization effects, which

are important phenomena affecting nanoparticle analysis

in scanning probe microscopy as seen in Figure 1c-d.

In order to model the nanoparticle deposition, we

used the following algorithms and physical models:

• Nanoparticles were modeled as Lennard-Jones

spheres, the surface by an integrated Lennard-Jones

potential [25,26].

• Verlet algorithm was used for the integration of

the Newton equations.

• The Anderson thermostat was used to simulate

Brownian motion of nanoparticles in a liquid (which

is the nanoparticle deposition in practice).

• Nanoparticle velocities were damped during com-

putation to simulate the decreasing mobility.

Typical images of nanoparticles obtained using this

approach are given in Figure 2a, c. The developed algo-

rithm enables us to create even more complex struc-

tures by varying the particle number, mobility and force

constants between particles and between particle and

substrate. A structure similar to a real measurement can

be therefore obtained relatively easily even for other

samples than those shown in Figure 1a-d.
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Virtual microscopy measurement and data evaluation

Virtual AFM measurement were performed using the

dilation algorithm presented in Ref. [27]. As we focused

on the analysis of statistical data processing methods in

this article, we limited the selection of used AFM tips to

a few commercially available probes (described by their

nominal radius and aspect ratio parameters). The dila-

tion algorithm returns simulated AFM images, deter-

mined morphologically as a convolution of rigid bodies.

This approach is therefore valid under the assumption

that there are no tip or sample changes due to tip-sam-

ple interaction. This could be in principle problematic

for very soft materials or for extremely small nanoparti-

cles whose geometry could change significantly due to

tip-sample forces [28,29]. Examples of results of the

dilation on simulated surfaces are given in Figure 2b, d.

We can see that the resulting images are very similar to

the real measurements (shown in Figure 1a-d). The

effect of dilation on a single nanoparticle on a curved

substrate is shown in Figure 3a. We can see that the tip

convolution prevents the AFM from seeing the mor-

phology below the nanoparticle. As there is no complete

information about both nanoparticle and substrate geo-

metry at these parts of AFM image, all the data proces-

sing algorithms need to make some assumptions

regarding nanoparticle and substrate properties.

For the characterization of nanoparticles from AFM

data, several algorithms can be used. The first stage is

always the segmentation of data into separate particles.

In principle, a simple thresholding can be used to do

this for the case of isolated particles on a flat substrate.

For rough or curved substrates and for agglomerated

particles, this approach usually fails as we cannot deter-

mine an appropriate threshold value; therefore, we use a

Figure 2 Results of nanoparticle deposition modeling and tip convolution: (a)–isolated nanoparticles with no convolution (or convolved

with tip 1), (b)–isolated nanoparticles convolved with tip 2, (c)–film of nanoparticles with no convolution (or convolved with tip 1), (d)–several

layers of nanoparticles convolved with tip 3.
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watershed approach for image segmentation in this

article.

The watershed algorithm is a relatively simple alter-

native to thresholding, providing much better segmen-

tation on complex structures [30,31]. In this case,

AFM data are first inverted in the z-direction. Virtual

drops are then placed on the surface, leaving them to

relax to minimum height, forming small “lakes.” This

is the first place (so-called location phase) after which

the individual “lakes” are associated with a particle.

After that, in the second phase (segmentation phase)

the drops continue to be placed on the surface and

relaxed, but unlike during the first phase, they are no

longer allowed to merge. This leads to image segmen-

tation. As a result, we obtain an image with marked

individual grains.

The second stage is to convert marked grains into

grain size distribution information of the nanoparticle

characterization. We can divide the nanoparticle proces-

sing algorithms into three categories:

1. algorithms based on nanoparticle projection on

the xy plane. Even if this quantity can be highly

affected by tip convolution, the effect of substrate

curvature or particle agglomeration can be much

smaller here than for height-based algorithms.

Figure 3 Schematics of data processing methods. Nanoparticle on curved substrate (a). Solid lines denote the substrate and the nanoparticle,

respectively, and the dotted line denotes the path of the AFM tip. The convolution effect on used data processing algorithms: (b)–nanoparticle

projection, (c)– nanoparticle volume at minimum basis, (d)–nanoparticle volume at Laplacian basis. Light gray represents the nanoparticle.

Medium gray shows the nanoparticle as seen by AFM (after tip convolution), dark gray represents volume determined by the data processing

algorithm. Note that even Laplacian basis cannot properly determine the whole nanoparticle volume as the surface geometry below

nanoparticle is unknown. As the power spectrum-based algorithm is a global one, it cannot be illustrated within this schematic figure.
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In this paper, this class of algorithms is represented

by equivalent disk projection.

2. algorithms based on nanoparticle height or

volume determination. For flat substrates and non-

agglomerated particles, this class of algorithms leads

to results that are not affected by tip-sample convo-

lution effects. For curved substrates, they can differ

in the treatment of the surface beneath the particle,

which cannot be observed using the AFM. In this

paper, this class of algorithms is represented by two

methods–volume analysis using minimum boundary

and Laplacian boundary method.

3. algorithms based on the statistical analysis of the

whole measurement, e.g., autocorrelation function or

power spectral density. These algorithms benefit

from the self-organization of nanoparticles on sub-

strate; in an ideal case, a honeycomb thin film is

observed. In this work, power spectral density

method is used.

There can be many varieties of details of the men-

tioned algorithms, providing slightly better or worse

results in particular cases. In this article, we cannot dis-

cuss all of them. We aim to show the main trends in

errors of different classes of algorithms under non-ideal

conditions in order to estimate how much we can trust

their results.

For nanoparticle radii evaluation, the following algo-

rithms were used (all based on their Gwyddion imple-

mentation, see http://gwyddion.net):

• particle radius determined on the basis of equiva-

lent disks (having the same area as the xy projection

of particle). Here, the selected particle area (obtained

from image segmentation, see above) is directly used

as the particle cross-section. Particle volume is then

calculated as volume of sphere having the same

cross-section (see Figure 3b).

• particle radius determined on the basis of its

volume with respect to its boundary minimum.

Here, the particle boundary is obtained from image

segmentation, and the minimum height value along

this boundary is used as a lower boundary to mea-

sure the particle volume (see Figure 3c). A numerical

correction by a factor of 0.8 is employed to remove

the apparent volume below the particle due to pro-

jection. The factor of 0.8 is the ratio between sphere

volume and the volume of the sphere together with

its cylindrical projection to the substrate.

• particle radius determined on the basis of its

volume with respect to Laplacian interpolation of its

boundary. Here, the particle boundary is obtained by

image segmentation, and Laplacian interpolation is

run to obtain the morphology of the substrate below

the particle (see Figure 3d). A numerical correction

by a factor of 0.8 is employed to remove the appar-

ent volume below particle due to projection.

• particle radius determined by radial power spectral

density evaluation. Here, a 2D Fast Fourier trans-

form is performed from the whole image, and the

particle size is determined from the observed max-

ima in the resulting radial power spectrum, which in

the ideal case of closely packed nanoparticles are

directly connected with the size of the nanoparticle.

As shown in the next section, each of the algorithms

has its own benefits and drawbacks with respect to the

treatment of nanoparticle agglomeration, tip size, or sur-

face roughness.

Results and discussion
Typical examples of nanoparticle measurements are

shown in Figure 1a-d, representing palladium and poly-

mer nanoparticles of different surface coverages, depos-

ited on a flat silicon and a rough (anodically etched)

silicon surface. We can see that both substrate rough-

ness and particle agglomeration can be easily seen on

the AFM images.

We have simulated several sets of nanoparticles on

rough substrates with variable roughness (s = 0 ÷ 10

nm). This range was chosen in order to include typical

surface morphologies observed on surfaces and thin

films prepared by different technological methods

[32,33]. Note that the surface root mean square value of

10 nm represents surface morphology with minimum to

maximum range of some 100 nm, which is already a

very high value (higher than the simulated nanoparticle

size).

First, the nanoparticle coverage (ratio of sample area

occupied by particles to total sample area) was varied,

to include all the typical effects starting from isolated

nanoparticles up to a substrate covered by several layers

of nanoparticles. Secondly, the effects of relaxation and

self-ordering of nanoparticles were studied, simulating

the nanoparticles with same coverages but different

mobility and relaxation parameters during deposition

modeling.

In the following paragraphs, the effects of tip convolu-

tion on different nanoparticle processing and evaluation

algorithms are discussed. For analysis, we have chosen

three different AFM tips:

1. ideal tip, represented by a δ-function (0 nm tip

radius and slope of 90°), unavailable in practice but

sometimes almost reached by carbon nanotubes -

based tips [14,34].

2. sharpened tip with 10 nm tip radius and slope

of 75°.
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3. standard tip with 15 nm tip radius and slope

of 57°.

In Table 1, results for the chosen data evaluation algo-

rithms are presented. Values are calculated for different

coverages (13, 50 and 140%), different AFM tips and dif-

ferent roughnesses (s = 0 and 10 nm). A nominal parti-

cle radius of 30 nm was used for the modeling,

representing a value in the mid-range of the typical

reference nanoparticles sizes. The maximum in the size

distribution or in the power spectrum (determined

using one of the algorithms mentioned above) was used

to determine the mean nanoparticle size. Presented

uncertainties are based on widths of appropriate distri-

butions, so they do not contain any systematic error or

other B-type uncertainty information [35]. We can see

that for a flat substrate and an ideal tip, we get the

nominal values (which could be expected); for a rough

substrate or non-ideal tip values, we can see increasing

differences between nominal values and results. Note

that for some cases, there was no maximum observed in

appropriate distribution and results could not be

obtained.

We can discuss each algorithm performance more in

detail separately, sorted by the amount of user influence

on measurement results (which itself can affect the

method reliability significantly):

• Particle projection: particle projection evaluation

method is in principle only as good as the segmenta-

tion used. Even if the watershed approach is very

robust itself, in the presence of voids between parti-

cles, there is a need of fine tuning of the algorithm

parameters in order to get an optimum segmenta-

tion. Moreover, this algorithm is the one most influ-

enced by tip convolution effects as the particle

projection changes significantly after convolution

(namely for isolated particles).

• Particle volume–boundary minimum basis: here,

the influence of the tip convolution is smaller as the

volume of particle changes relatively less than its

projection. However, the location of the proper

minimum on the particle boundary is crucial here

and for densely packed particles, this algorithm fails.

Here, the tip is no more able to reach the substrate

at the voids between particles and detected boundary

minimum is wrong, which leads to a distortion,

namely for larger probes. Moreover, it can be

expected that this algorithm is significantly affected

by the local substrate slope (even for isolated nano-

particles) as the substrate slope is not employed in

the evaluation (see Figure 3c).

• Particle volume–Laplacian boundary interpolation

basis: this approach treats the substrate geometry in

an optimum way for isolated particles, and it can

therefore provide slightly better results for high sub-

strate roughnesses than the previous one. However,

for densely packed particles or wide tips, it also fails,

as the tip does not reach the substrate, similarly as

in the previous case.

• Power spectrum analysis: as for area analysis meth-

ods, this approach fails for small coverages and non-

ideal tips namely. As the tip convolution increases,

the apparent width of the nanoparticles increases

and there is no packing effect to block this. Result-

ing radii are much higher than would be expected.

Table 1 Nanoparticle radii results of nanoparticle radii simulated measurements for nanoparticles with nominal radius

of 30 nm and different surface coverages.

s = 0 nm s = 10 nm

Pow Min Lap Disk Pow Min Lap Disk

C1, tip 1 32 ± 2 30 ± 1 30 ± 1 30 ± 1 33 ± 1 30 ± 3 30 ± 1 30 ± 1

C1, tip 2 37 ± 7 34 ± 1 34 ± 1 44 ± 2 44 ± 20 33 ± 5 32 ± 4 41 ± 3

C1, tip 3 N. A. 33 ± 3 33 ± 3 52 ± 5 N. A. 34 ± 6 34 ± 5 55 ± 9

C2, tip 1 32 ± 1 30 ± 1 30 ± 1 29 ± 1 33 ± 2 30 ± 2 30 ± 1 30 ± 1

C2, tip 2 38 ± 5 29 ± 3 25 ± 4 36 ± 3 38 ± 4 30 ± 5 28 ± 4 38 ± 6

C2, tip 3 37 ± 6 28 ± 5 22 ± 6 38 ± 3 38 ± 8 26 ± 6 22 ± 7 38 ± 5

C3, tip 1 30 ± 1 30 ± 1 30 ± 7 30 ± 1 31 ± 2 30 ± 2 28 ± 3 30 ± 1

C3, tip 2 31 ± 3 31 ± 2 24 ± 6 34 ± 4 34 ± 2 28 ± 6 23 ± 7 34 ± 5

C3, tip 3 34 ± 5 29 ± 5 21 ± 7 37 ± 5 33 ± 12 23 ± 8 17 ± 9 33 ± 7

C4, tip 1 31 ± 1 N. A. 25 ± 4 29 ± 1 35 ± 5 29 ± 9 22 ± 8 28 ± 2

C4, tip 2 30 ± 1 N. A. 19 ± 6 31 ± 3 31 ± 4 23 ± 12 18 ± 10 30 ± 8

C4, tip 3 29 ± 1 N. A. 16 ± 5 36 ± 4 31 ± 4 N. A. N. A. 30 ± 9

(C1: 13%, random, C2: 50%, random; C3: 50%, self-organized; C4: 140% self-organized) and different AFM tips (tip1: ideal, tip2: sharpened, tip3: standard; see text

for details).

Power spectrum (pow), minimum basis volume (min), Laplacian basis volume (lap) and xy projection (disk) methods were used. All values are in nanometers.

Total number of deposited particles was approximately 50 (C1), 180 (C2, C3) and 400 (C4)
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However, for dense packing this method seems to be

quite robust, even for higher surface roughness. The

main benefit of this method is that is does not use

any segmentation; therefore, the amount of user

influence is the smallest of all the discussed

approaches.

As seen from the table, generally the particle volume

-based methods are only suitable for small coverages,

where they produce reasonable results even for rough

substrates. With higher packing of particles or smaller

AFM tip side slope, the tip cannot reach the void

volume between particles, which leads to a loss of infor-

mation. Volume or height analysis methods are most

sensitive to this effect.

For power spectrum and particle projection methods,

the densely packed particles are an ideal measurand.

However, even for isolated nanoparticles, these methods

can be very effective if the AFM tip is sharp enough.

For all the methods based on image segmentation, the

effect of the roughness can be highly suppressed by

using a proper segmentation technique. Thresholding

can be effective only for an extremely small roughness

or substrate curvature. With a robust implementation of

any more complex technique, e.g., the watershed algo-

rithm, the effect of substrate irregularities can be highly

suppressed.

As a real example, the self-organized nanoparticle film

presented in Figure 1d was analyzed using all the men-

tioned algorithms. The nominal particle diameter of

NIST traceable polymer nanoparticles was (46 ± 2) nm,

i.e., the particle radius was 23 nm. They were deposited

on a flat silicon substrate forming a film of unknown

thickness and measured using a standard AFM tip. The

resulting radii were (23 ± 3) nm for the equivalent disk

radius method (particle projection), (11 ± 8) nm for the

minimum basis grain volume method, (8 ± 8) nm for

the Laplacean basis grain volume method and (24 ± 2)

nm for the power spectrum analysis method. We can

see that similarly to the modeling results, the particle

projection and power spectrum method provide signifi-

cantly better results for this type of sample.

Conclusion
In this article, the results of simulated nanoparticle mea-

surements are presented. Nanoparticles are located on

rough substrates, in some cases forming self-organized

structures or even several layers. In this way, we simu-

late typical non-ideal conditions observed at nanoparti-

cle measurement using atomic force microscopy. To

treat different tip convolution effects, nanoparticles are

convolved with several typical AFM tip geometries.

Results of different nanoparticle analysis algorithms are

compared and discussed.

It is shown that for isolated nanoparticles, height-

based algorithms can be successful if the area below the

nanoparticle is properly treated, both for flat and rough

substrates, providing no systematic errors and uncer-

tainties in the range of a few percents. However, for

agglomerated nanoparticles or blunt AFM tips, these

algorithms provide poor results and this effect is even

worse for rough surfaces; in this case, the errors are

comparable to estimated values.

For agglomerated particles, methods using lateral

dimensions, both power spectrum -based and particle

projection -based methods are very effective, even for

rough substrates. These methods can provide results

with uncertainty of a few percents and no systematic

errors.

The worst case was observed for non-agglomerated

nanoparticles with surface coverages between 30 ÷ 80%,

where all classes of algorithms provide systematic errors

and uncertainties larger than 10%. Here, a combination

of all the approaches must be used and results must be

interpreted very carefully.

It is shown that using a simple particle deposition

modeling technique, together with a tip-sample convolu-

tion algorithm, one can get relatively easily estimates of

uncertainty components related to data processing

methods in nanoparticle analysis. This can be also

understood as a fast approach for uncertainty estimation

in any particular case in practice. The method described

is implemented in the open source software package for

SPM data analysis Gwyddion http://gwyddion.net.
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