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ABSTRACT

Atomic instructions are a key ingredient of codes that op-
erate on irregular data structures like trees and graphs. It
is well known that atomics can be expensive, especially on
massively parallel GPUs, and are often on the critical path of
a program. In this paper, we present two high-level methods
to eliminate atomics in irregular programs. The first method
advocates synchronous processing using barriers. We illus-
trate how to exploit synchronous processing to avoid atomics
even when the threads’ memory accesses conflict with each
other. The second method is based on exploiting algebraic
properties of algorithms to elide atomics. Specifically, we
focus on three key properties: monotonicity, idempotency
and associativity, and show how each of them enables an
atomic-free implementation. We illustrate the generality of
the two methods by applying them to five irregular graph ap-
plications: breadth-first search, single-source shortest paths
computation, Delaunay mesh refinement, pointer analysis
and survey propagation, and show that both methods pro-
vide substantial speedup in each case on different GPUs.

Categories and Subject Descriptors

D.1.3 [Programming Techniques|: Concurrent Program-
ming— Parallel Programming

General Terms

Algorithms, Languages, Performance
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1. INTRODUCTION

GPUs have been used successfully to accelerate appli-
cations in many problem domains ranging from graphics
to molecular dynamics simulations and climate modeling.
GPUs perform particularly well when data access patterns
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are regular and predictable, as is the case in dense lin-
ear algebra computations. Not surprisingly, a lot is known
about how to implement such regular algorithms efficiently
on GPUs. In contrast, much less is known about efficient
GPU implementations of irregular algorithms that make un-
predictable, data-dependent accesses to complex data struc-
tures such as large graphs. Fine-grain synchronization is
usually necessary to exploit parallelism in such algorithms,
but this requires the use of atomic operations like atom-
icCAS on shared memory locations, which are an order of
magnitude more expensive than regular memory accesses.

For performance reasons, it is often beneficial to avoid
the use of atomic instructions whenever feasible. This is
particularly true when the contention on a shared resource
is high. Consider, for instance, a shared worklist from which
threads extract work items and onto which they push new
work items. Under heavy contention, the worklist quickly
becomes a performance bottleneck. This effect is exacer-
bated on massively multi-threaded processors such as GPUs.

An alternative synchronization mechanism is the barrier.
A global barrier is a primitive that guarantees that all threads
of a kernel reach a specific point in the code before any
thread may progress beyond that point. Thus, barriers make
part of the processing synchronous, which may enable an
atomic-free implementation. In effect, barriers partition the
processing into phases. The synchronization requirements
of phase-based processing are determined by the type of
processing performed within a phase. As long as a phase
contains homogeneous thread operations, there may be no
need for further synchronization. For instance, in the above
worklist example, if work extraction and insertion are sep-
arated into two phases, the work-extraction phase becomes
read-only, which requires no synchronization, and the work-
insertion phase becomes write-only, which can be efficiently
implemented using a barrier-based prefix sum. Thus, both
phases can be implemented without atomics.

In certain cases, which we found to be abundant in graph
algorithms, fine-grain synchronization can be eliminated by
exploiting algebraic properties of the computation. Con-
sider the example of computing single-source shortest paths
(SSSP) in a directed graph. The core operation in SSSP
is an edge-relaxation step, which, for an edge (src, dst),
checks if the current distance of dst is greater than the dis-
tance via src by adding the distance of src to the edge
weight. In general, due to multiple incoming edges, a node
may act as dst for two or more edges, e.g., (srci,dst) and
(srco,dst). Threads performing an edge-relaxation opera-
tion on the two edges may update the distance of dst in



parallel and, therefore, this operation requires synchroniza-
tion (in the form of an atomicMin instruction). However, we
observe that in SSSP the distance updates are monotonic,
i.e., the distance of a node only decreases. We show that
we can take advantage of this monotonicity to avoid atomics
altogether.

This paper makes the following contributions.

e We present two methods to elide atomic instructions
from a program. The first method is more general
and employs barrier-based processing to avoid con-
flicts. The second method exploits algebraic properties
of algorithms to avoid atomics entirely.

e We show that the two methods are applicable to sev-
eral real-world irregular programs. In particular, we
demonstrate how to avoid atomics in shortest paths
computations, breadth first search, Delaunay mesh re-
finement, points-to analysis, and survey propagation.

e We evaluate the effect of the two proposed methods
on the above-mentioned programs and show that the
application of our methods results in considerable per-
formance improvements on Fermi- and Kepler-based
GPUs. For instance, using barrier-based processing
speeds up Delaunay mesh refinement by 29% on Fermi,
and exploiting algebraic properties accelerates survey
propagation by up to 43% on Kepler.

The rest of this paper is organized as follows. Section 2
provides an overview of irregular algorithms and introduces
our applications. Section 3 describes how barrier-based pro-
cessing can avoid atomics. Section 4 explains how to ex-
ploit algebraic properties to elide atomics. Section 5 briefly
mentions other well-known techniques to eliminate atomics.
Section 6 assesses the effectiveness of our methods using five
irregular algorithms. Section 7 discusses related work. Sec-
tion 8 summarizes the main results.

2. BACKGROUND

We first define the notion of an irregular algorithm and
then introduce the irregular applications we study.

2.1 Irregular Algorithms

In regular code, control flow and memory references are
not data dependent. Matrix-vector multiplication is a good
example. Based only on the input size and the data-structure
starting addresses, but without knowing any wvalues of the
input data, we can determine the dynamic behavior of the
program on an in-order processor, i.e., the memory refer-
ence stream and the conditional branch decisions. This sort
of regularity can be exploited to improve memory coalescing
and minimize thread divergence and synchronization.

In irregular code, the input values to the program deter-
mine the runtime behavior, which therefore cannot be stat-
ically predicted and may be different for different inputs.
Irregular code usually arises from the use of complex data
structures such as trees and graphs. As a rule, irregular algo-
rithms are more difficult to parallelize and more challenging
to map to GPUs than regular algorithms. For example, in
graph applications, the memory-access patterns are usually
data dependent since the connectivity of the graph and the
values on nodes and edges may determine which nodes and
edges are touched by a given computation. This informa-
tion is usually not known at compile time and may change

dynamically even after the input graph is available. This
leads to uncoalesced memory accesses. Similarly, the con-
trol flow is usually irregular because branch decisions may
be different for nodes having different numbers of neighbors
or labels, leading to thread divergence and load imbalance.
In most regular applications, threads operate on disjoint
regions of memory that are statically known or can be stat-
ically determined. This eliminates the need for locks or
atomics when accessing the data. In contrast, the threads
of irregular applications often operate on potentially over-
lapping memory regions because their reads and writes are
input dependent and statically unknown. Hence, dynamic
mechanisms such as atomics or locks are typically required
to deal with conflicting accesses in irregular applications.

2.2 Applications

In this paper, we study the following five irregular pro-
grams from the LonestarGPU benchmark suite (available at
http://iss.ices.utexas.edu/?p=projects/galois).

e Breadth-First Search (BFS): This graph problem is
a key kernel in many important applications such as
mesh partitioning [8]. The BFS problem is to label
each graph node with the node’s minimum level (or
number of hops) from a designated start node.
Delaunay Mesh Refinement (DMR): This is a mesh-
refinement algorithm from computational geometry [6,
14]. It works on a triangulated input mesh in which
some triangles do not conform to certain quality con-
straints. The algorithm iteratively transforms such
‘bad’ triangles into ‘good’ triangles by recreating the
neighborhood (called cavity) around each bad triangle.
e Points-To Analysis (PTA): Andersen’s flow-insensitive,
context-insensitive points-to analysis is used in com-
pilers like GCC and LLVM [16]. It employs a fixed-
point algorithm that operates on a dynamically grow-
ing constraint graph in which directed edges are added
depending upon the input points-to constraints.

e Survey Propagation (SP): Survey Propagation is a heuris-
tic SAT-solver based on Bayesian inference [5]. The
algorithm represents the Boolean formula as a factor
graph, i.e., a bipartite graph with variables on one side
and clauses on the other. The general strategy of SP is
to iteratively update each variable with the likelihood
that it should be assigned a truth value of true or false.
Single-Source Shortest Paths (SSSP): This is another
classic graph problem. It computes the shortest path
of each node from a designated source node in a di-
rected graph [7]. We use the Bellman-Ford algorithm.

3. BARRIER-BASED PROCESSING

A global barrier is a synchronization primitive that guar-
antees that all threads from all thread blocks belonging to
a kernel reach a specific point in the code before any thread
may progress beyond that point. CUDA supports a barrier
at the thread-block level (syncthreads). However, a global
barrier (across thread blocks) needs to be emulated in soft-
ware. There are multiple ways in which a global barrier can
be implemented (e.g., see Baskaran et al. [3]), and it can be
done without using atomics [19, 24].

We advocate using barrier-based processing when resource
contention is high. The use of barriers transforms large
amounts of asynchronous processing into smaller synchronous



shared donationbox]|...], totalwork

// determine whether I should donate

for all work items assigned to me do
mywork += estimated work per item

atomicAdd(totalwork, mywork)

— barrier —

// donate

: averagework = totalwork / n_threads

: if mywork > averagework + threshold then
push excess work into donationbox

: — barrier —

: // process assigned work
: for all work items assigned to me do
process item

: // empty donation box

: while donationbox is not empty do
21:  item = pop work from donationbox
22:  process item

O e e e e e e e T

Figure 1: Pseudo code of work donation

phases. While asynchronicity is an essential ingredient of
high-performance parallel codes, we argue that limiting asyn-
chronicity to a phase can lead to simpler synchronization
requirements that can improve overall performance.
Specifically, in irregular algorithms, threads operate on
shared resources like a graph or a global worklist. Opera-
tions on such data structures need to be synchronized using
atomic instructions and locks implemented thereon. De-
pending upon the algorithm, a shared access may be to a
disjoint or an overlapping region and may require different
mechanisms to arrive at an atomic-free implementation.

3.1 Disjoint Accesses

Consider the example of work donation. Threads that are
assigned more work than the average thread may donate
their excess work to ensure better load balance. One way to
implement work donation is by creating a donation box that
is shared across all threads. The donor threads concurrently
push excess work items into the donation box. Threads that
finish their assigned work early extract work items from the
donation box and process them while slower threads are still
processing their originally assigned work. This leads to bet-
ter load balance, reducing the critical path length. Figure 1
shows pseudo code for work donation.

Let us focus on the pushing of excess work into the do-
nation box on Line 12. This can easily be implemented by
maintaining a buffer with an index specifying the current
size of the buffer. Each donor thread atomically increases
the index to make space for pushing its items (using an atom-
icAdd) as shown on Line 6. Atomic accesses are required be-
cause threads conflict on reading and updating the value of
the shared index. However, once the index is updated by a
thread, the thread can carry out the actual donation concur-
rently with other threads, even when all threads push work
into the same donation box. Thus, the purpose of the atomic
in this case is to obtain an exclusive slot (disjoint access) per
thread for performing the donation. Assuming the donation
box never overflows, no thread ever aborts. However, O(n)
serial atomic operations need to be executed, where n is the
number of threads that want to donate work.

shared array[n_threads]
array[threadlD] = my_n_items
— barrier —

for (s = n_threads / 2;s > 0;s =s / 2) do
if threadID + s < n_threads then
element = array[threadID + s
— barrier —
if threadID + s < n_threads then
array[threadID] 4= element
— barrier —

,_.

=
=

=

: // compute the start index for each thread
: startindex = array[threadID] - my_n_items

Figure 2: Prefix-sum computation

Barriers can help avoid these atomics. In the above work-
donation scenario, threads can alternatively perform a stan-
dard prefix-sum computation to find the range in the dona-
tion box into which they can concurrently push their items.
The prefix sum is computed in phases, operating on a shared
array initialized with the number of elements each thread
wishes to donate. The computation is cleverly divided among
the threads such that each array element is written by only
one thread in every iteration and there are no data races.
The step-size for accessing array elements is initialized to
half the number of threads and is halved in each phase until
it reaches zero, which indicates the end of the computation.
Thus, only O(log n) barriers are executed, where n is the
number of threads involved. When all threads belong to the
same thread block, the barrier can be implemented using the
fast __syncthreads() intrinsic, which is directly supported
by the GPU hardware. Pseudo code of such a prefix-sum
computation is given in Figure 2. The for loop computes
the prefix sum over the shared array, which finds the end
index for each thread. By subtracting the number of items
to be pushed, as shown in the last line of the code, each
thread obtains the start index of the donation box where it
should push its data items.

Note that emptying the donation box (Line 21 in Figure 1)
requires atomic accesses, but typically only a small number
of threads does this work. Barrier-based processing can be
utilized in other cases with disjoint accesses, e.g., by sepa-
rating reading from and writing to a worklist into separate
phases; a similar mechanism can be used to insert elements
into a worklist [17].

3.2 Overlapping Accesses

In disjoint accesses, each thread operates on a nonoverlap-
ping set of memory locations. Therefore, threads can con-
currently perform tasks on the same data structure (e.g.,
a donation box). However, in applications where accesses
from different threads overlap, only the non-overlapping set
of accesses may proceed; the conflicting threads generally
must wait or abort and try again later.

This can happen in several situations. Consider, for in-
stance, Delaunay mesh refinement, which operates on a tri-
angulated input mesh. Each thread is assigned a ‘bad’ trian-
gle, which does not conform to certain geometric constraints
(e.g., the constraint could be that none of the angles of the
triangle should be less than 30 degrees). The task of a thread
is to find a set of neighboring triangles, called the cavity,
around the bad triangle and transform (refine) it into a new



set of triangles, thus eliminating the bad triangle. Note that
a thread must obtain exclusive ownership of not only the bad
triangle but also the cavity to execute the refinement task.
However, the cavities of different bad triangles may overlap,
in which case only one of them can be refined at a time.

For exclusive ownership, each thread needs to acquire
fine-grained logical locks over all triangles in the cavity. A
coarse-grain lock at the cavity level is infeasible since a cav-
ity’s shape depends upon the geometry of the mesh, which
changes dynamically during the refinement procedure. Mesh
partitioning may allow lock coarsening at the partition gran-
ularity, but care must be taken when cavities span parti-
tions. In our input meshes, the number of bad triangles is
initially close to 50%, leading to many inter-partition cav-
ities. Therefore, instead of mesh partitioning, we focus on
the uniform scheme of fine-grained locking over a cavity’s
triangles, which is also used in other implementations [4,
14].

Deadlock may occur when two threads operating on over-
lapping cavities have acquired exclusive locks on some com-
mon triangles and wait for the other common triangles to be
released. This situation can be avoided in multiple ways; for
instance, by locking triangles in a particular order, say by
their IDs. Thread starvation is also possible, but as long as
wait-freedom can be proven, i.e., at least one thread makes
progress, algorithm termination is guaranteed.

In principle, the lock-based mutual exclusion approach
that is typically used in multi-core CPU versions can be
directly applied to GPUs. Current GPUs support atomic
primitives with which locks are easy to implement. How-
ever, multi-core code ported to GPUs is unlikely to perform
well in practice due to the massive multi-threading on the
GPU. Again, barrier-based processing performs better.

Exclusive ownership of the triangles in a cavity can be
obtained through three barrier-separated phases [19]. The
first phase is the ‘race’ phase wherein each thread marks its
cavity triangles with its thread ID. The second phase is the
‘priority-race’ phase wherein each thread checks its triangles’
markings to see if it owns all of them. If a needed triangle is
marked with a higher ID, the current thread aborts. If a tri-
angle is marked with a lower ID, the current thread changes
the marking to its own ID. The third phase is the ‘check’
phase wherein each thread simply checks if all its markings
are intact. If it owns all the triangles, it owns the cav-
ity and proceeds with the refinement; otherwise, it aborts.
The aborting threads try again in the next round depend-
ing upon whether their bad triangle still exists in the mesh.
This three-phase race-and-resolve scheme ensures exclusiv-
ity and probabilistically avoids livelocks [19]. This scheme
is best suited for overlapping accesses. For disjoint accesses,
one can use the mechanisms presented in Section 3.1.

The race-and-resolve scheme as originally proposed sup-
ports exclusive access to all work items. We extend it to
also support scenarios when any of the work items can be
owned. In other words, the scheme was originally proposed
in an AND context in which a thread owns either all or none
of the work items. We extend it to support OR contexts
where a thread may only receive a subset of the work items
it races for. Figures 3 and 4 show the operational semantics
of the original and the extended scheme. It is modeled as a
primitive race-and-resolve, which takes three inputs: (i)
data is a set of items a thread wants to operate on, (ii) flag
€ {AND, OR} indicates if a thread wishes to lock all data

: for item € data do

mark[item] = my-thread-id;

: — barrier —

: for item € data do

if mark[item] > my-thread-id then
abort = true;

else if mark[item] < my-thread-id then
mark[item] = my-thread-id;

: — barrier —

: for item € data do

if mark[item] # my-thread-id then
abort = true;

13: if labort then

14: callback(data);

—
QLAWY

= =
N —

Figure 3: Original race-and-resolve: AND case

: for item € data do

mark[item] = my-thread-id;

: — barrier —

: for item € data do

if mark[item] == my-thread-id then
callback(item);

Figure 4: Extended race-and-resolve: OR case

items together or only some of them, and (iii) callback is a
function that is called once the thread owns the data items.

The extended race-and-resolve scheme is useful, for exam-
ple, to ensure unique elements in a worklist. Consider the
case of SSSP where different threads may push the same
graph node into the worklist, leading to work duplication.
For work efficiency and better synchronization, one may
wish to avoid such duplicates. This can be readily accom-
plished using our extended race-and-resolve scheme as shown
in the pseudo code of Figure 5.

A potential problem with using global barriers is dead-
lock. To ensure that all threads from all thread-blocks can
reach the barrier, all thread-blocks need to be resident (i.e.
simultaneously running) on the GPU. This demands that
the number of thread-blocks be equal to or a small multi-
ple of the number of SMs, depending on the resource needs.
Therefore, the graph processing may need to be split across
a reduced number of threads, and each thread will have to
process more than one graph element. Whereas this can
complicate the implementation a little, the benefit of avoid-
ing locks is typically well worth the effort. As an alternative,
one may choose to implement a global barrier without re-
ducing the number of thread-blocks by returning control to
the CPU and re-launching the GPU kernel.

3.3 Benign Overlaps

In certain barrier-based implementations, one may lift the
synchronization requirement even in the presence of over-
lapping accesses. Consider, for instance, the breadth-first
search (BFS) computation. It can be implemented in a com-
pletely asynchronous manner, such that the graph nodes are
processed in any order. However, a better way of imple-
menting BFS is by processing nodes level-by-level, where
the source node is at level 0. The nodes reachable from the
source by a direct edge are at level 1. The nodes reachable
from the level 1 nodes by a direct edge are at level 2, and so
on. The process terminates when all nodes have their levels
marked. Processing of two consecutive levels is separated by
barriers. For instance, consider the graph shown in Figure 6



myworkitems = ...
race-and-resolve(myworkitems, OR, callback);

callback (workitem) {
worklist. push(workitem);

Figure 5: Unique worklist elements using the ex-
tended race-and-resolve function

Levels

Figure 6: Benign overlaps in BFS

with the BFS levels indicated on the right. Node a is the
designated source at level 0. Nodes b, ¢, and d are at level
1 because they are adjacent to the source node a. Nodes e,
f, and g are at level 2 because they are adjacent to level 1
nodes (and not adjacent to a level 0 node).

Level-by-level BF'S processing ensures that work is done
in an efficient order. However, depending upon the graph
connectivity, a single node’s level may be updated by more
than one thread. For instance, if a node dst is reachable
by direct edges from two source nodes src; and src,, the
threads operating on src; and src, may try to update dst’s
level in parallel, leading to overlapping accesses. This sce-
nario occurs in Figure 6 where node e is adjacent to nodes b
and d (as well as £). The threads operating on nodes b and d
may try to update node e’s level simultaneously. This would,
in general, require synchronization (either atomics or race-
and-resolve). However, since the processing is level-by-level,
both threads attempt to update node e’s level to the same
value. This means the conflict is benign. It does not mat-
ter which thread succeeds in updating the level of node e;
the level will invariably be updated correctly. Hence, due to
the algorithmic property of barrier-based level-by-level BF'S,
synchronization is not required. Note that in Figure 6, node
e is also adjacent to node £, but the level-by-level process-
ing precludes node e’s distance being updated by the thread
operating on node f.

4. EXPLOITING ALGEBRAIC PROPERTIES

Several regular and irregular computations bear special
properties that can be exploited to reduce or avoid the use of
atomic instructions. We focus on three algebraic properties
in the context of irregular algorithms: monotonicity, idem-
potency, and associativity. Each of these properties provides
us with a different opportunity to avoid atomic instructions.

4.1 Monotonicity

We call a computation monotonic if the values produced
by repeated application of the computation either only in-
crease or only decrease, but not both. For instance, in the
single-source shortest paths (SSSP) computation, the dis-

atomic—free update

lost—update problem correction by topology—driven

implementation

Figure 7: The lost-update problem and its solution

tance of a node never increases; hence the SSSP compu-
tation is monotonic. Similarly, the points-to information
computed by a flow-insensitive, context-insensitive pointer
analysis never decreases; hence PTA is also monotonic.

In our experience, monotonicity is a key algebraic prop-
erty to avoid synchronization. We illustrate it on the SSSP
computation. In SSSP, multiple threads may simultaneously
update the distance of the same node, necessitating synchro-
nization (in the form of atomicMin instructions). In the ab-
sence of atomics, however, concurrent thread execution may
result in lost updates. For example, a node with a current
distance of 10 may be updated by two threads, one updating
it to 7 and another to 5 (see Figure 7). However, due to the
data race, the node’s distance may first be updated to 5 and
then to 7. Thus, the node may end up with a final distance
of 7, which is incorrect. This is called the lost update prob-
lem, and it happens because checking whether to update the
value (compare) and the actual value update (write) are two
separate operations. Such an implementation may compute
an incorrect solution to SSSP.

However, if this atomic-free algorithm is implemented in
a topology-driven manner [21], it is guaranteed that the lost
update will be reconsidered in the next iteration because a
topology-driven algorithm processes all nodes in each iter-
ation. (In contrast, a data-driven algorithm processes only
the modified nodes in each iteration using a worklist.) Fig-
ure 8 shows the pseudo code of data-driven and topology-
driven processing. The data-driven version operates on a
worklist and processes work items until the worklist is empty.
Note that only the newly created work items are added to
the worklist, making it work-efficient. A topology-driven ap-
proach, in contrast, processes all possible work items (e.g.,
all graph nodes) as long as at least one of them is active
(i.e., changes the underlying data). This kind of processing
usually makes a topology-driven approach work-inefficient,
but it may be suited for GPU-based processing due to the
large number of available threads (cf. Nasre et al. [18]).

Hence, in a topology-driven atomic-free SSSP implemen-
tation, even if a node attains a larger distance in the current
iteration due to a lost update, the node will be active in the
next iteration and the distance is guaranteed to eventually
be reduced to the true minimum. In the above example
where the current node’s distance is 10, it may be updated
to 7 by thread t7, overwriting the value of 5 that was just
written by thread ts in iteration i. In the next iteration
i + 1, thread t7 does not update the distance as it is al-
ready set to 7. However, thread ts will reduce it to the
correct value of 5. This approach generalizes to multiple
threads, and it can be proven that at least one thread up-
dates data, thus ensuring progress. This guarantees that
a distance will eventually attain the minimum in at most
t — 1 iterations, where t is the number of threads racing to
update the distance.



// Topology driven
repeat
changed = false;
for all graph elements e do
if e is active then

// Data driven

worklist.init();

while !worklist.empty() do
e = worklist.pop();

newelems = process(e); process(e);
worklist.pushall(newelems); changed = true;
end if

until !changed
Figure 8: Data-driven versus topology-driven

// with atomics
dsrc = dist[src];
for all edges <src,dst,wt> do
ddst = dist[dst];
if ddst > dsrc + wt then
atomicMin(&dist[dst],
dsrc + wt);

// atomic-free
dsrc = dist[src];
for all edges <src,dst,wt> do
ddst = dist[dst];
if ddst > dsrc + wt then
dist[dst] = dsrc + wt;

Figure 9: SSSP operator with and without atomics

Thus, a topology-driven implementation can be made atomic-

free if the underlying computation is monotonic. Figure 9
shows the SSSP computation for a node src that involves
relaxing all its outgoing edges. When monotonicity is not
exploited, we are forced to use atomicMin to ensure correct
computation. However, by making use of the monotonicity
property, coupled with a topology-driven approach, we can
remove the synchronization and update the distance directly.

Apart from SSSP, monotonicity is exhibited by breadth-
first search (BFS) and survey propagation (SP). In BFS, the
level number of a node never increases. In SP, the propaga-
tion of surveys involves multiplication of the probabilities of
several literals (the probability indicates how close to a truth
value a literal is). Since each probability is a real number
in the range 0..1, multiplication by a probability never in-
creases the value, even if the probability of a literal changes
arbitrarily. We exploit this fact to avoid atomics in SP when
storing the results of these multiplications.

The work efficiency of an atomic-free implementation can
be poor due to stale reads since a thread may read and prop-
agate an outdated value. For instance, in SSSP, it can take
several iterations until the actual minimum distance of a
node becomes available. This results in wasted work, leading
to poor work efficiency. On a multi-core system, a topology-
driven approach is not only work inefficient but may also
result in inferior performance. However, on a massively par-
allel GPU, significant performance can be achieved at the
cost of some work inefficiency by removing the bottleneck of
a centralized worklist (due to the topology-driven implemen-
tation) and the cost of using atomics (due to monotonicity).

Monotonic size In some algorithms, instead of the value
being computed, the size of the computed information in-
creases monotonically. Flow-insensitive, context-insensitive
inclusion-based pointer analysis [1] is an example. In this al-
gorithm, more and more points-to information is computed
as the analysis progresses, but no points-to information is
ever deleted, leading to a points-to solution that monotoni-
cally increases in size.

Consider the example shown in Figure 10 where the pro-
gram consists of the points-to constraints shown in the left-
most column. Each column on the right shows the corre-
sponding points-to information computed by the constraints

Points-to information
Program | Iteration 0 Iteration 1 Iteration 2

a = &x a— X a— X a— X
q= &b q—b q—b q—b
*q=c b—x
c=a c— X cC— X

Figure 10: PTA exhibits monotonicity

in each iteration of the analysis. Note that the points-to in-
formation only increases due to flow-insensitive analysis.

When implemented on a GPU, PTA takes points-to con-
straints as input (e.g., p = &q) and outputs a set of points-
to facts (e.g., p — q). The set of points-to facts computed
at the end of the analysis constitutes the points-to solution
of the input program. Since the analysis is performed on
the GPU, the final solution needs to be copied to the CPU.
Since computing a points-to fact and copying it are conflict-
ing tasks, there is a need for synchronization.

Usually, the synchronization is implemented as an implicit
barrier — when the GPU threads complete the processing,
the analysis kernel terminates and the CPU commences the
copying of the points-to solution. However, the CPU can ini-
tiate the copying as soon as some (although not all) points-
to information is available. To avoid races, shared access to
the points-to information must be synchronized between the
CPU and the GPU. Current NVIDIA GPUs do not support
inter-device atomic instructions, which poses a challenge to
this asynchronous copying of points-to information.

Monotonicity comes to the rescue once again. Since the
points-to information increases monotonically in size, it is
okay to copy stale points-to information from the GPU to
the CPU. Any missed information will be copied in a future
iteration and, due to the monotonicity, the CPU is guaran-
teed to see a consistent copy of the information. This allows
us to avoid synchronization for accessing the points-to in-
formation — the GPU can safely write to it while the CPU
asynchronously copies it. In our set of programs, the copying
time per iteration is always less than the per-iteration anal-
ysis time. Therefore, the copying time can be hidden except
for the small amount of points-to information computed in
the last iteration. This asynchronous copying provides con-
siderable performance benefits in PTA.

4.2 Idempotency

The second algebraic property we exploit to avoid syn-
chronization is idempotency. A computation is idempotent
if its repeated application is equivalent to a single applica-
tion. Formally, Vz : f(f(z)) = f(x). For instance, all our
topology-based computations of irregular algorithms make
use of idempotency to detect termination — an extra round
of processing is performed in the end and if no changes are
detected, then the fixed-point solution has been reached.
Since the computation is idempotent, this extra round does
not change the computed solution.

We now discuss how idempotent computations enable atomic-

free implementations. Consider the example of a worklist
in a data-driven SSSP implementation. In the absence of
any race-and-resolve mechanism (described in Section 3.2), a
graph node may occur multiple times in the worklist. There-
fore, when the worklist items are assigned to threads, two
threads may end up operating on the same node and may
relax the same set of edges.



In general, this scenario is avoided using synchronization.
For example, each thread can atomically mark its assigned
nodes. If the marking succeeds, the thread owns the node
and processes it. If the marking does not succeed, some
other thread owns and processes the node. An alternative
way of solving this issue is using the race-and-resolve mech-
anism. However, in SSSP, the relax-edge kernel performs an
idempotent operation. Therefore, even if multiple threads
operate on the same graph node and relax the same set of
edges, the effect is as if the operation is performed only once.
Hence, we can afford to implement the worklist as a multiset
(avoiding the cost of converting it to a duplicate-free set) and
still avoid synchronization between threads. This is possible
solely due to the idempotency of the computation.

The example of spurious data-races in BFS from Sec-
tion 3.3 may also be viewed as an artifact of idempotent
computation — since data updates from multiple threads
are idempotent (same value), synchronization across those
threads is unnecessary.

Another application with idempotent processing is points-
to analysis. Recall from Section 4.1 that the CPU can asyn-
chronously copy points-to information while the GPU con-
tinues the analysis. This copying is typically done by merg-
ing the newly computed points-to information of each node
with its previously copied information. Merging of points-
to sets is an idempotent operation. Therefore, it is okay to
copy the same points-to fact multiple times from the GPU
to the CPU. In the absence of idempotency (e.g., had the
data structure been a list instead of a set), one would be
forced to keep track of the last element added and copy
only the new information following the last element. This
would necessitate synchronization in the form of an atomic
compare-and-swap instruction (atomicCAS).

Discussion. One may think that implementing a worklist
as a multiset may go on propagating the duplicate items
in the worklist over several iterations. However, note that
although multiple threads operate on a node, only one would
succeed in updating a node’s distance. This is because a
worklist-based SSSP relies on atomic instructions to update
a node’s distance. Therefore, although duplicates continue
to get added to the worklist, they do not get propagated.

Exploiting idempotency usually involves redundant work,
making the computation work-inefficient. However, it of-
ten enables avoiding synchronization as we discussed above.
Therefore, idempotency must be exploited by balancing the
cost of redundant computation against the synchronization
cost. On a multi-core system running with at most a few
hundred threads, the redundant work can quickly become a
considerable factor. However, on a GPU running with hun-
dreds of thousands of threads, computation is often cheap
whereas the synchronization cost is high. Therefore, exploit-
ing idempotency is especially suited to GPUs.

4.3 Associativity

The third algebraic property we exploit for avoiding atom-
ics is associativity. A computation is associative if two appli-
cations of the computation can be reordered without chang-
ing the result. Formally, f(a, f(b,c¢)) = f(f(a,b),c). For
instance, hierarchical reductions and prefix sums exploit the
associativity of the computation. Similarly, the merging step
in parallel merge-sort is associative, i.e., irrespective of the
order in which individual sorted lists are merged, the end

result is the same (assuming unique elements).

We now explain how associativity can help avoid atomics.
Consider, once again, points-to analysis. In PTA, points-
to information is propagated along pointers represented as
nodes in a constraint graph. When a node has multiple in-
coming edges, points-to information may be propagated to
it by multiple threads in parallel. A naive way to imple-
ment this propagation is to have each thread atomically in-
crease an offset at the destination node by the number of new
points-to facts it wants to add. However, because merging
of points-to sets is an associative operation, one can elim-
inate the use of atomic instructions by computing a prefix
sum of the number of points-to facts each thread wants to
add. This avoids atomics and may improve performance.

S. OTHER METHODS

There are other well-known ways to avoid atomics in irreg-
ular computations. These methods are often based on the
single-writer policy (also called the owner-computes rule),
wherein the work distribution to threads is performed in
such a way that threads can operate without conflicts.

5.1 Graph Partitioning

Graph partitioning divides the underlying graph into sets
of nodes and each partition is assigned to a thread. This en-
sures that if a thread only operates on the nodes in its par-
tition, it does not need to synchronize with other threads.
Regular, matrix-based codes often exhibit this behavior nat-
urally, which can be exploited through blocking and tiling.
In contrast, a node-ID-based partitioning is often ineffective
on graphs due to their input-dependent connectivity.

Consider, for instance, Delaunay mesh refinement (DMR).
Each bad triangle in the mesh is assigned to a thread, which
forms a cavity around the bad triangle. Since refining a cav-
ity requires exclusive access to all the involved triangles, it is
beneficial to perform the work distribution in such a manner
that each cavity falls entirely into one partition. In general,
this is impossible to achieve since cavities may overlap arbi-
trarily. The goal of graph partitioning, then, is to minimize
the overlap so that the maximum number of cavities may
be processed in each iteration. Such a partitioning needs to
take into account a node’s connectivity for assigning nearby
nodes to the same partition.

Unfortunately, such a layout-based graph partitioning re-
quires traversing the graph, which quickly becomes a per-
formance bottleneck. The partitioning itself can be paral-
lelized (e.g., with ParMetis [13]), but the partitioning time
is still much larger than the total running times of our al-
gorithms. Therefore, we do not evaluate partitioning in this
paper. However, when the partitioning cost is not a concern,
layout-based graph partitioning can help reduce conflicts.

In cases where the processing can be restricted to a single
item (vis-a~vis multiple triangles as in DMR), it is possi-
ble to partition the graph across threads based on the node
identifiers. The processing can then be modified to ensure a
single-writer policy. This leads to pull-based (as opposed to
push-based) implementations of graph algorithms.

For instance, SSSP’s operator can be restricted to a single
item, i.e., a thread may operate on a single node. Typi-
cally, the operator performs edge relaxations on all outgoing
edges of a node, potentially modifying distances of multiple
(neighboring) nodes. This is a push-based approach. But
the SSSP computation can be altered such that the operator
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Figure 11: Push- versus pull-based processing

reads the distances of the incoming neighbors when updat-
ing the distance of a node. This is a pull-based approach.
The two approaches are shown in Figure 11. A pull-based
approach may be beneficial in certain cases as it enables
avoiding atomics by exploiting the single-writer policy. In a
pull-based approach, a node’s distance is updated only by
the single thread operating on that node. In contrast, in
a push-based approach, a node’s distance may be updated
by multiple threads operating on the incoming neighbors of
that node. Therefore, a push-based approach requires syn-
chronization for updating the distance of a node, whereas
it is possible to eliminate synchronization in a pull-based
approach (as long as the read-write races do not affect the
result). This approach has been used to accelerate PTA [16].

5.2 Scatter Gather

Consider once more the example of threads that wish to
insert elements into a global worklist. As described earlier,
this can be implemented in an atomic-free fashion using a
barrier-based prefix-sum computation, cf. Section 3. In cer-
tain cases, the cost of the global barrier, which is an ex-
pensive operation, can be reduced by pushing elements in a
scatter-gather like manner as we discuss next.

If the maximum number of elements a thread may push is
bounded by a small constant, it may be possible to push el-
ements directly in parallel without performing a prefix-sum
computation. Several practical algorithms bear this prop-
erty. For instance, many road networks have a small maxi-
mum degree, which can be utilized as bounds in SSSP, BF'S,
etc. Similarly, in DMR, each cavity comprises no more than
12 triangles for all our meshes, which can be used as this
small constant. Given such a constant, work items can be
pushed onto the worklist as follows. Each thread is assigned
a c-element wide range in the worklist, where ¢ is the maxi-
mum number of elements to be pushed by a thread. No two
ranges overlap. Threads push their work items in parallel
into their range, marking any holes (places in the worklist
range with no elements) with a special value. At this stage,
the worklist contains all the work items to be processed, but
they are scattered. A post-processing step then removes the
holes from the worklist, thereby compacting (or gathering)
the set of active work items. This scatter-gather processing
does not require atomics. Note, however, that a barrier is
needed between the two phases. In some cases, a gather op-
eration may not be required at all. For instance, one may
keep the holes in the worklist and simply process all the
work items, ignoring the holes during processing.

6. EXPERIMENTAL EVALUATION

We perform our experiments on a Fermi- and a Kepler-
based GPU. The Fermi-based GPU is a 1.45 GHz Quadro
6000 with 6 GB of main memory and 448 CUDA cores dis-
tributed over 14 SMs. The Kepler-based GPU is a 0.7 GHz

B/M  #K Inputs

BFS 2 RMAT?22 (4 M nodes, 32 M edges),
RANDOM?23 (8 M nodes, 32 M edges),
USA road network (23 M nodes, 58 M edges)
DMR 4 1M, 2M, 3M triangles with ~50% bad
PTA 40  vim (172,188 pointers, 246,944 constraints),
pine (406,990 pointers, 612,928 constraints),
tshark (642,333 pointers, 1,555,840 constraints)
SP 3 1M — 5 M literals, clauses/lit.=4.2, 3 lit./clause
SSSP 2 RMAT22 (4 M nodes, 32M edges),

RANDOM?23 (8 M nodes, 32 M edges),
USA road network (23 M nodes, 58 M edges)

Table 1: Applications and their input characteris-
tics. B/M = benchmark, #K = number of kernels

Tesla K20 with 5 GB of main memory and 2496 CUDA cores
distributed over 13 SMXs. Both GPUs have 64 kB of fast
memory per SM that is split between the L1 data cache and
the shared memory. We compiled the CUDA programs with
nvce v5.0 using the -O3 -arch=sm_20 flags on the Fermi and
the -O8 -arch=sm_35 flags on the Kepler.

Our benchmark programs stem from the LonestarGPU
suite and their inputs are listed in Table 1. We chose three
types of graphs for BFS and SSSP, three randomly gener-
ated meshes for DMR, three open source programs for PTA,
and five randomly generated 3-SAT formulae for SP. Survey
propagation was proposed to deal especially with SAT for-
mulae that take particularly long to assess [5]. 3-SAT prob-
lems are known to be hard (time-consuming) to solve when
the ratio of the number of clauses to the number of literals
is around 4.2. In our evaluation, we chose the number of
clauses and literals to generate such hard-SAT instances.

6.1 Effect of Barrier-based Processing

Figure 12 shows the effect of barrier-based worklist pro-
cessing in SSSP on the Fermi and Kepler GPUs. In the base
version, threads push the newly updated nodes onto the
worklist using atomic instructions, whereas in the atomic-
free version threads perform a prefix sum for adding items
to the worklist (¢f. Section 3.1). We observe that atomic-
free SSSP performs consistently better than the base version
with atomics. The performance improvement is more pro-
nounced for the USA road network on Fermi and for the
RANDOM graph on Kepler. On average, the atomic-free
version requires 16% and 8% less time than the base version
for computing the shortest paths on the two GPUs.

The considerable performance difference between Fermi
and Kepler for the RMAT graph is due to an interplay of ar-
chitectural differences and input-graph characteristics. The
RMAT graph is denser and has a higher out-degree per node.
Therefore, more (sequential) work per thread needs to be
done in terms of uncoalesced memory accesses. Our Kepler
has a narrower bus (320 bits) in comparison to our Fermi
(384 bits). Therefore, application performance is more sus-
ceptible to (irregular) memory accesses on Kepler, of which
there are many in memory-bound kernels like SSSP. We sus-
pect some inputs like RMAT to exacerbate this situation,
which is why it takes longer to execute on the Kepler.

Figure 13 shows the effect of barrier-based locking in DMR
on Fermi and Kepler GPUs. In the base version, threads
use atomic instructions to ensure exclusive ownership of a
cavity’s triangles, whereas in the atomic-free version threads
perform a race-and-resolve operation (cf. Section 3.2). We
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Figure 12: Effect of barrier-based processing on SSSP for different input graphs (Fermi and Kepler)
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Figure 13: Effect of barrier-based processing on DMR for different input meshes (Fermi and Kepler)

observe that atomic-free DMR performs consistently better
than the base version with atomics.

Interestingly, DMR runs faster on a larger mesh (with 2
million triangles) than a smaller mesh (with 1 million trian-
gles) on the Fermi. This effect is mainly due to the geome-
try of the randomly-generated input mesh, which affects the
non-deterministic DMR execution. However, we note that
the Kepler does not exhibit this anomaly.

To confirm that the change in performance is, in fact,
due to the different ways of synchronizing (with and with-
out atomics), we plot the percentage of triangles refined in
each iteration of DMR in Figure 14. The profile is obtained 1 2 3 4 5 6 7 8 9 10
on the Fermi GPU when running the two DMR versions Computation step
on the input mesh with 1 million initial triangles. We ob-
serve that the two superimposed line graphs follow almost
the same execution pattern. The differences are minor and
are primarily due to the non-deterministic execution, which
affects the order in which triangles are processed. This plot

H base
[ atomic-free

Number of triangles refined (%)

Figure 14: Processing of triangles in DMR (Fermi)

indicates that the performance difference between the base cantly reduce the optimization opportunities in DMR.
version and the atomic-free version shown in Figure 13 is
mainly due to the cost of the atomics. 6.2 Effect of Exploiting Algebraic Properties

In case of atomic-free DMR, the usage of a global barrier
poses the constraint that the number of blocks is limited by
the number of blocks that can simultaneously be running in atomic instructions to update the product of the probabili-
the GPU, requiring a persistent-thread-based implementa- ties at each clause node, whereas in the atomic-free version
tion. There is no such requirement for the base case using threads update it directly (cf. Section 4.1). We observe that
atomics. However, using a global barrier does not signifi- the benefit of avoiding atomics grows with the size of the

Figure 15 shows the effect of exploiting monotonicity in SP
on Fermi and Kepler GPUs. In the base version, threads use
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Figure 16: Effect of exploiting algebraic properties on BFS for different input graphs (Fermi and Kepler)

input SAT formula. In particular, by increasing the number
of literals from 1 to 5 million, the performance between the
two SP versions varies from 14% to 43% on the Kepler.

We also note that SP executes faster on Kepler than on
Fermi. This is mainly due to more registers being available
per thread block on Kepler (64K) compared to Fermi (32K).
The additional registers considerably help compute-intensive
kernels like SP, resulting in more than a 2x speedup.

Figure 16 shows the effect of exploiting idempotency in
BFS on Fermi and Kepler GPUs. In the base version, ad-
ditional processing is performed to keep only the unique
items in the worklist, whereas in the atomic-free version no
such step is included and multiple threads may operate on
the same node (cf. Section 4.2). We observe that avoiding
atomics results in consistently better performance, with the
maximum impact on the USA road network. On average,
atomic-free BFS executes 11% and 22% faster on the Fermi
and Kepler, respectively, compared to the base versions.

We also note that level-by-level BFS is neither memory-
bound nor compute-intensive. Hence, its relative perfor-
mance on the two GPUs is quite similar.

Figure 17 shows the percentage of nodes finalized in each
iteration of BFS on the USA road network. The plot is
obtained on the Fermi and is the same for both the base and
the atomic-free versions. The processing follows a profile

similar to a normal distribution, with a small number of
nodes finalized in the initial iterations, exponential growth
in the middle, and dropping off as the threads start running
out of work. The plot is also indicative of the amount of
parallelism exhibited by BFS on road networks.

Figure 18 shows the effect of monotonicity on PTA. The
plot depicts the savings due to overlapping communication
and computation of points-to information. The left set of
bars shows the additional GPU-to-CPU (d2h) communica-
tion time in milliseconds in the non-overlapped processing.
The right set of bars indicates the additional non-hidden
GPU-to-CPU memory transfer amount in megabytes. These
overheads are avoided by exploiting monotonicity in copying
the points-to information to the CPU (cf. Section 4.1).

In summary, avoiding atomic instructions in irregular al-
gorithms using barrier-based processing and exploiting alge-
braic properties offers considerable performance benefits.

7. RELATED WORK

There are many implementations of parallel graph algo-
rithms on a variety of architectures, including distributed-
memory supercomputers [25], shared-memory supercomput-
ers [2], and multi-core SMP machines [14].

GPUs have also been used for the acceleration of irregular
programs. Harish and Narayanan [10] describe implemen-
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tations of important graph algorithms such as BFS, Single-
Source Shortest Paths, Minimum Spanning Tree, etc. Vineet
et al. [23] and Nobari et al. [20] propose computing the min-
imum spanning tree and forest, respectively, on GPUs. All
of these approaches rely on atomic instructions for updating
shared data, and none of them exploit algebraic properties.

Martin et al. [15] propose a GPU implementation of Dijk-
stra’s algorithm to compute the shortest paths. Their algo-
rithm is synchronous and is based on computing a frontier.
Similar to others, they use atomicMin instructions to update
the node distances.

Hong et al. [11] propose a warp-centric approach for the
parallelization of BFS. Our approach is orthogonal to their
work and the two techniques can likely be combined to
achieve improved performance.

Merill et al. [17] present a worklist-based work-efficient
BFS. Theirs and the previous approaches to BFS rely on
level-synchronous updates of nodes. This avoids the use of
atomic instructions since the data-races inside a level are
benign. It is a special case of the approach we propose in
Section 3.3, which is more general and encompasses other
interesting cases that are common in irregular computations.

Garland [9] proposes sparse matrix computations on GPUs
and discusses how matrix multiplication can be used for
computing the shortest paths in a sparse graph.

Nasre et al. [19] discuss morph algorithms on GPUs. Their
focus is on supporting graph operations like node insertion
and deletion and not about the removal of atomics. We use

their barrier-based race-and-resolve scheme for overlapping
accesses and extend it to support OR contexts for owning
any of the work items of interest (cf. Section 3.2).

Putta and Nasre [22] exploit algebraic properties to im-
prove parallelization. They take advantage of monotonicity
and the unordered nature of flow-insensitive points-to anal-
ysis to design a replication-based algorithm. Their work
involves creating multiple copies of shared data and targets
multi-core CPUs. Our work deals with a single data copy,
targets GPUs, and focuses on avoiding atomics.

Previous research on GPU implementations of irregular
algorithms has focused on optimizing a specific feature of
irregular programs for GPU execution. This includes work
on removing dynamic irregularities from irregular applica-
tions [26] and on optimizing CPU-GPU transfers for dynam-
ically managed data [12]. G-Streamline is a software-based
runtime approach to eliminate control-flow and memory-
access irregularities from GPU programs [26]. DyManD is
an automatic runtime system for managing recursive data
structures (like trees) on GPUs [12]. These approaches are
orthogonal to our work.

This paper is the first proposal targeting atomic-free im-
plementation of irregular algorithms on GPUs.

8. CONCLUSIONS

Accelerating irregular applications is a challenging task,
in particular on GPUs. A critical optimization in address-
ing this challenge is to minimize the use of atomic instruc-
tions. Towards this goal, we present key methods to avoid
atomic primitives. Specifically, we focused on eliminating
atomics using barrier-based synchronization and by exploit-
ing algebraic properties of computations. For each method,
we discuss several real-world scenarios and the associated
techniques for eliminating atomic operations. Using Fermi
and Kepler GPUs, we illustrate the efficacy of our meth-
ods by applying them to five well-known graph algorithms
that represent a range of complexity and pose different sets
of challenges. The techniques presented in this paper offer
substantial performance benefits on these irregular applica-
tions. For example, using barrier-based processing improves
the running time of Delaunay mesh refinement by 29% on
Fermi, and exploiting algebraic properties improves the run-
ning time of survey propagation by 43% on Kepler. We be-
lieve that other irregular codes will likely also obtain good
speedups when incorporating the discussed techniques.
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