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Abstract

In this paper, we present the progress in the growth of nanoscale semiconductors grown via
atomic layer deposition (ALD). After the adoption by semiconductor chip industry, ALD became
a widespread tool to grow functional films and conformal ultra-thin coatings for various
applications. Based on self-limiting and ligand-exchange-based surface reactions, ALD enabled
the low-temperature growth of nanoscale dielectric, metal, and semiconductor materials. Being
able to deposit wafer-scale uniform semiconductor films at relatively low-temperatures, with
sub-monolayer thickness control and ultimate conformality, makes ALD attractive for
semiconductor device applications. Towards this end, precursors and low-temperature growth
recipes are developed to deposit crystalline thin films for compound and elemental
semiconductors. Conventional thermal ALD as well as plasma-assisted and radical-enhanced
techniques have been exploited to achieve device-compatible film quality. Metal-oxides,
III-nitrides, sulfides, and selenides are among the most popular semiconductor material families
studied via ALD technology. Besides thin films, ALD can grow nanostructured semiconductors
as well using either template-assisted growth methods or bottom-up controlled nucleation
mechanisms. Among the demonstrated semiconductor nanostructures are nanoparticles, nano/
quantum-dots, nanowires, nanotubes, nanofibers, nanopillars, hollow and core–shell versions of
the afore-mentioned nanostructures, and 2D materials including transition metal dichalcogenides
and graphene. ALD-grown nanoscale semiconductor materials find applications in a vast amount
of applications including functional coatings, catalysis and photocatalysis, renewable energy
conversion and storage, chemical sensing, opto-electronics, and flexible electronics. In this
review, we give an overview of the current state-of-the-art in ALD-based nanoscale
semiconductor research including the already demonstrated and future applications.

Keywords: atomic layer deposition, semiconductor, nanoscale, nanostructured, metal-oxide, III-
nitride, self-limiting
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1. Introduction

Information age, digital revolution, age of computersK No
matter how we name it, the latest technology revolution
which still continues and deeply impacts our daily life was
triggered by a key enabling device technology, i.e., the
transistor. Germanium (Ge) was the semiconductor used
throughout the early development phase, which later was
replaced by another group-IV elemental semiconductor, sili-
con (Si), mainly due to its superior native oxide. Si-based
integrated circuit (IC) technology (CMOS) began its journey
in 1959 with only a single transistor/chip and 30 μm line-
width. Nearly 60 years of continuous and successful minia-
turization effort led to more than three orders of magnitude
shrinkage of the transistor gate lengths and about ten orders of
magnitude increase in transistor density. Atomic layer
deposition (ALD) played a crucial role in keeping the pace of
Moore’s law, particularly for the sub-65 nm technology nodes
by providing novel materials and processing solutions
including but not limited to ALD-grown high-k gate dielec-
trics and spacer-defined double patterning.

ALD is a chemical vapor deposition (CVD) technique
where conventional gas-phase reactions are eliminated either
by temporally or spatially separated half-cycles. Instead,
within the ALD growth window, film deposition proceeds via
self-saturating ligand-exchange surface reactions only. The
unique surface-chemistry driven self-limiting growth char-
acter of ALD enables precision atomic-scale thickness con-
trol, ultimate three-dimensional conformality, and large-area
uniformity, all being highly critical features for current and
future atomic-scale precision device engineering and nano-
manufacturing needs.

Originally developed and named as atomic layer epitaxy
and molecular layering, initial efforts focused on sulfide and
oxide semiconductor thin-film synthesis for electro-lumines-
cent displays, sensors, catalytic materials, and thin-film solar
cells. Early history details of ALD research can be found in
the recently completed ‘Virtual Project on the History of
ALD’ work and publications pioneered by Puurunen et al

[1, 2]. Since then, both materials and applications list of ALD
has been enriched tremendously: oxide, metal, nitride, sulfide,
selenide, carbide, fluoride, polymer, and biomaterial growth
recipes have been developed for applications including
moisture barriers for light emitting devices/displays, surface
passivation of solar cells, diffusion barriers for Li-ion bat-
teries, anti-tarnishing jewelry coatings, anti-corrosion coat-
ings of electronic circuit-boards/LEDs/sensors, gate
insulators and nano-patterning of CMOS transistors, flexible/
wearable electronics, surface functionalization for implants,
nano-catalysts for remediation, hydrogen generation, solid-
oxide fuel-cells, and self-cleaning surfaces.

When compared with ALD-grown semiconductors, di-
electric and metallic ALD-materials constitute the majority of
ALD literature, mainly due to the intense research efforts in
high-k dielectrics, passivation/protection coatings, and rela-
tively easy forming metallic nanocatalysts. Semiconductors,
on the other hand, suffer mainly from low-temperature self-
limiting growth windows, resulting in poly-crystalline or

amorphous-like films with high levels of impurities which are
incompatible with high-performance devices. In this respect,
ALD-grown semiconductors can hardly compete with the
material quality of mainstream epitaxial films grown via high-
temperature metal-organic chemical vapor deposition
(MOCVD) or molecular beam epitaxy (MBE). Instead, ALD-
grown semiconductors might find significant use in precision
coating of low-temperature compatible and highly porous/
high surface-area substrates/templates, as well as in fabri-
cating highly controlled functional nanostructures. Already
demonstrated device applications of such low-temperature
grown nanoscale semiconductors include solar cells, catalysis,
energy storage, photocatalysis, flexible electronics, and che-
mical gas sensors.

Although excellent review articles on general ALD
overview [3–8], specific ALD methods [9–11], nano-materi-
als [12–15], and application areas [16–19] exist in the lit-
erature, an effort focusing on ALD-grown nanoscale
semiconductors and their applications is yet missing. The aim
of this review is to present the status and summary of the
ALD semiconductor research activity by covering critical
findings and contributions in the field. First, thin-film semi-
conductor growth reports are reviewed, followed by the
efforts for the ALD synthesis of 0D, 1D, 2D, and core–shell
nanostructured semiconductors. Finally, reported device
applications are summarized along with a future perspective
on ALD semiconductor research outlining the important
challenges and opportunities.

2. Semiconductor thin-film synthesis via ALD

Among the semiconductor thin films grown via ALD, oxides,
nitrides, and sulfides constitute the vast majority of reported
literature. In addition to these three compound semiconductor
material families, ALD of selenides, tellurides, and arsenides
have been studied as well to a lesser extent. Low-temperature
ALD efforts of group-IV elemental semiconductors, Si and
Ge, are rather scarce with very limited studies available. An
overview of the literature on semiconductor thin films grown
via ALD is summarized in table 1.

2.1. Oxides

ALD of ZnO has been studied quite extensively [12, 20–26].
While H2O has been the predominant choice for oxygen
precursor, the first Zn precursor used for ALD of ZnO was
zinc acetate, however it required high substrate temperatures
(lowest reported is 280 °C) [27]. The most common Zn pre-
cursor used for ZnO ALD growth is diethylzinc (DEZn),
which significantly lowered the growth temperatures (typi-
cally 100 °C–200 °C) due to its high reactivity and exother-
mic reaction for the formation of ZnO [21–24, 26, 28–68].
Dimethylzinc is another precursor used for ZnO growth
which produces slightly higher ZnO growth per cycle (GPC)

values when compared with diethylzinc [69]. Besides these
common precursors, elemental zinc and ZnCl2 have also been
used as Zn source for ZnO ALD, they however required
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Table 1. Overview of the growth conditions employed to deposit semiconductor thin films using ALD. The materials deposited, precursors used, the temperature during ALD, substrate, and type
of ALD are mentioned.

Material Reactant A Reactant B
Growth
temperature Substrate Type of ALD References

ZnO Diethyl zinc ((C2H5)2Zn) H2O 106 °C–165 °C Glass Thermal [204]
(C2H5)2Zn H2O, O3 170 °C–300 °C SiO2/Si Thermal,

ozone
assisted

[67]

(C2H5)2Zn H2O 90 °C–200 °C Glass and Si (100) Thermal [57]
Zinc acetate H2O 280 °C–400 °C Sapphire and lime glass Thermal [24]
Zn(CH3)2 and (C2H5)2Zn H2O 90 °C–270 °C Glass Thermal [68]
(C2H5)2Zn H2O 150 °C–400 °C SiO2/Si and Si Thermal [28]
(C2H5)2Zn H2O 180 °C Sapphire Thermal [205]
(C2H5)2Zn H2O 180 °C Sapphire Thermal [206]
(C2H5)2Zn H2O and O2 200 °C Glass and Si (100) Plasma

assisted
[66]

Zn(CH3)2, H2O 250 °C–300 °C Si Thermal [207]
(C2H5)2Zn H2O2 200 °C, 300 °C Si (100) and SiO2 Thermal [208]
(C2H5)2Zn H2O 160 °C Borosilicate glass Thermal [209]
(C2H5)2Zn H2O 150 °C–300 °C GaN/sapphire Thermal [210]
(C2H5)2Zn H2O 115 °C–235 °C Sapphire Thermal [211]
(C2H5)2Zn H2O 250 °C M plane Sapphire Thermal [212]
(C2H5)2Zn NH4OH, H2O 100 °C Si (100) Thermal [213]
(C2H5)2Zn H2O 280 °C–325 °C GaN/sapphire Thermal [214]
(C2H5)2Zn H2O 280 °C GaN/sapphire Thermal [215]
(C2H5)2Zn H2O 200 °C GaAs (100) Thermal [216]
(C2H5)2Zn H2O 180 °C

and 240 °C
Si (100) and Si (111) Thermal [217]

(C2H5)2Zn H2O 70 °C–130 °C Sapphire (001) Thermal [218]
(C2H5)2Zn H2O 150 °C Glass Thermal [219]
(C2H5)2Zn H2O 100 °C–300 °C Glass Thermal [220]
(C2H5)2Zn H2O 180 °C Sapphire (0001) Thermal [221]
(C2H5)2Zn H2O 200 °C Si (100) Thermal [222]
(C2H5)2Zn H2O 140 °C–220 °C Si (100), borosilicate glass, and sapphire Thermal [223]
(C2H5)2Zn H2O 200 °C SiO2/Si and glass Thermal [224, 225]
(C2H5)2Zn H2O 120 °C–300 °C Soda glass and Si (100) Thermal [226]
(C2H5)2Zn O3 250 °C SiO2/Si and Si (100) Ozone

assisted
[25]

(C2H5)2Zn H2O 110 °C, 250 °C Polymer template and Si Thermal [227]

TiO2 Titanium ethoxide (Ti4(OCH2CH3)16) H2O 110 °C–350 °C Si (100) and fused silica Thermal [99]
Titanium isopropoxide (Ti{OCH(CH3)2}4) H2O, H2O2 100 °C–300 °C Si (100) and fused silica Thermal [88]
TiCl4 H2O 100 °C–400 °C Si (100) and amorphous silica Thermal [89]
Til4 H2O 135 °C–375 °C Si (100) and amorphous silica Thermal [90]
Titanium tetramethoxide H2O 200 °C–400 °C Glass Thermal [91]
Titanium isopropoxide (Ti{OCH(CH3)2}4) O2 50 °C–300 °C Si, glass, Pt, and RuO2 Plasma

enhanced
[101]

Tetrakis dimethyl-amidotitanium and Titanium isopropoxide H2O 50 °C–325 °C Si (100) Thermal [100]
Tetrakis dimethyl-amidotitanium H2O 150 °C Si (100) Thermal [228]
TiCl4 H2O 350 °C Soda lime glass Thermal [103]
Cp*Ti(OMe)3 Ozone 235 °C–350 °C Si (100) Ozone

assisted
[92]

TiCl4 H2O 80 °C–120 °C Si and polycarbonate Thermal [97]
TiCl4 O2 25 °C–200 °C Si Plasma

enhanced
[94]

TiCl4 H2O 100 °C Si (100) and SiO2 Thermal [95]
TiCl4 Ammonium hydro-

xide water
solution

350 °C Soda lime glass Thermal [96]

Titanium isopropoxide (Ti{OCH(CH3)2}4) H2O 225 °C–250 °C Strontium titanate/Si(001) Thermal [98]
Tetrakis dimethyl-amidotitanium H2O 200 °C Si, cooper Thermal [229]
TiCl4 O3 225 °C–450 °C RuO2 Ozone

assisted
[230]

TiCl4 O3 225 °C–600 °C Si (100) Ozone
assisted

[231]

Titanium isopropoxide (Ti{OCH(CH3)2}4) O2 50 °C–350 °C Si (100) Plasma
assisted

[232]

Titanium isopropoxide (Ti{OCH(CH3)2}4) Acetic acid and O3 200 °C Si (100) Ozone
assisted

[87]

Titanium isopropoxide (Ti{OCH(CH3)2}4) O2 Room
temperature

Si and glass Plasma
assisted

[233]

Star-Ti O2 150 °C–400 °C Si (100) Plasma
assisted

[234]
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Table 1. (Continued.)

Material Reactant A Reactant B
Growth
temperature Substrate Type of ALD References

TiCl4 O2, H2O 30 °C–180 °C Si (111) Plasma
assisted

[235]

Tetrakis dimethyl-amidotitanium H2O 200 °C–250 °C Si Thermal [104]
Tetrakis dimethyl-amidotitanium O3 75 °C–400 °C Si Ozone

assisted
[236]

Titanium tetraisopropoxide O2 70 °C–100 °C Si (100) and fused silica Plasma
assisted

[237]

TiCl4 H2O 150 °C–400 °C Fluorine doped tin oxide glass (FTO) and Si (100) Thermal [238]
Tris(dimethylamido)-(dimethylamino-2- propanolato)titanium(IV) (TDMADT). O2 60 °C Polyethylene-terephthalate (PET) and Si Plasma

assisted
[239]

Ga2O3 Ga(acac), (acac=pentane-2,4-dionate) H2O, O3 350 °C–400 °C Si (100), soda lime glass, and corning glass Thermal [105]
Ga2(NMe2)6 H2O 150 °C–300 °C Si (100) Thermal [106]
[(CH3)2GaNH2]3 O2 200 °C Si (100) and sapphire (001) Plasma

assisted
[240]

[(CH3)2GaNH2]3 O2 200 °C Si (100) Plasma
assisted

[241]

[(CH3)2GaNH2]3 O2 50 °C, 150
°C, 250 °C

Si (100) Plasma
assisted

[242]

Ga(CH3)3 O3 200 °C–450 °C Si (100) and SiO2 Ozone
assisted

[243]

Ga2(NMe2)6 H2O — TiO2 Thermal [244]
Gallium tri-isopropoxide H2O 150 °C–250 °C Si, glass, and carbon Thermal [107]
Ga(CH3)3 O2 100 °C–400 °C Si (111) Plasma

assisted
[108]

Ga(CH3)3 O3 150 °C–400 °C Si (100) Ozone
assisted

[245]

Tris (2,2,6,6-tetramethyl-3,5-heptanedionato) gallium(III) O2 100 °C–400 °C SiO2/Si Plasma
assisted

[246]

Ga(CH3)3 O2 250 °C Si (111) Plasma
assisted

[247]

Ga(CH3)3 O2 50 °C–150 °C Si (100) Plasma
assisted

[109]

Ga(CH3)3 H2O 550 °C Sapphire, GaN, and (111)- and (001)-oriented 3C–SiC Thermal [248]
Ga(CH3)3 O2 250 °C SiC Plasma

assisted
[249]

In2O3 InCl3 H2O 500 °C Corning glass Thermal [250]
Cyclopentadienyl indium O3 200 °C–450 °C Si (100) and glass Ozone

assisted
[111]

In (acac)3 (acac=acetylacetonate, pentane-2,4-dione) H2O, O3 160 °C–300 °C Si (100), fused silica, and soda lime glass Ozone assis-
ted and
thermal

[112]

Cyclopentadienyl indium H2O, O2 100 °C–250 °C Si (100), fused silica, and quartz Thermal [114]
In(CH3)3 H2O 150 °C–325 °C Si and SiO2/Si Thermal [113]
[In[(iPr)2CNR2]3] where R=Et (1) and Me (2), namely tris-(N,N′-diisopropyl-2-diethylamido-guanidinato)-

indium(III)(1) and tris-(N,N′-diisopropyl-2-dimethylamido- guanidinato)-indium(III)
H2O 160 °C–320 °C Si (100), Al2O3 (0001), and glass Thermal [251]

Et2InN(SiMe3)2 H2O 225 °C–250 °C SiO2/Si Thermal [115]
Cyclopentadienyl indium H2O, O2 100 °C SiO2/Si Thermal [252]
Cyclopentadienyl indium H2O, O2 100 °C SiO2/Si Thermal [253]
[3-(dimethylamino)propyl] dimethyl indium H2O 275 °C Si Thermal [254]
Dimethylamino- dimethylindium H2O 300 °C Si (100) Thermal [255]
Dimethyl(N-ethoxy- 2,2-dimethylpropanamido)indium O2 70 °C–250 °C Si and glass Plasma

assisted
[256]

In(CH3)3 O3, O2, H2O, H2O2 100 °C–250 °C Si(100), fused quartz, and glass Thermal,
ozone
assisted

[257]

[1,1,1-trimethyl-N-(trimethylsilyl)silanaminato]- indium (InCA-1) H2O2 150 °C Polyimide Thermal [116]

NiO Ni(dmamp)2 (dmamp=1-dimethylamino-2-methyl-2-propanolate) H2O 80 °C–240 °C Si (001) Thermal [258]
Ni(Cp)2 (Cp=cyclopentadienyl, C5H5) or Ni(EtCp)2 [EtCp=ethylcyclopentadienyl, (C2H5)(C5H4)] O3 150 °C–300 °C Si (100) Ozone

assisted
[259]

Bis(2,2,6,6-tetramethyl- 3,5-heptanedionato)Ni(II) H2O 205 °C–275 °C MgO (100) and Al2O3 (00 l) Thermal [260]
bis(2,2,6,6-tetramethylheptane-3,5- dionato)nickel(II) (Ni(thd)2) H2O 205 °C–290 °C SiO2 Thermal [261]
Ni(Cp)2 O3 230 °C Si (100) Ozone

assisted
[262]

Bis- methylcyclopentadienyl-nickel ([MeCp]2Ni) O2 150 °C–350 °C Pt, Ru, and W Plasma
assisted

[263]

Nickel amidinate H2O 175 °C Fluorine-doped tin oxide-coated glass substrates (FTO) Thermal [264]
Nickel bis(N,N′- di-tert-butylacetamidinate) [Ni(tBu-MeAMD)2] H2O 200 °C Si Thermal [265]
Ni(Cp)2 O3 275 °C FTO Ozone

assisted
[266]
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Table 1. (Continued.)

Material Reactant A Reactant B
Growth
temperature Substrate Type of ALD References

Bi2O3 Bi(thd)3 (thd: 2,2,6,6-tetramethyl-3,5- heptanedionato) H2O 200 °C–350 °C Si Thermal [267]

SnO2 SnI4 O2 400 °C–750 °C SiO2/Si (100) Thermal [118]
SnCl4 H2O 400 °C–500 °C Pyrex glass and sapphire Thermal [119]
Dibutyl tin diacetate O2 200 °C–400 °C Si (100) Plasma

enhanced
[126]

Dibutyl tin diacetate O2 300 °C (100), (110), and (111) yttria-stabilized zirconia (YSZ)

substrates
Plasma

enhanced
[125]

GaN GaCl3 NH3 550 °C (001) GaAs Thermal [268]
Ga(CH3)3 NH3 550 °C (0001) Sapphire Thermal [127]
Ga(CH3)3 NH3 500 °C–650 °C (001) GaAs Thermal [128]
GaCl3 NH3 400 °C–750 °C Si (100) Thermal [129]
Ga(CH3)3 NH3 100 °C–500 °C Si Plasma

enhanced
[130]

Ga(C2H5)3 N2/H2 200 °C, 450 °C Si (100) and quartz Plasma
enhanced

[133, 269]

Ga(CH3)3, Ga(C2H5)3 N2/H2 200 °C Si (100) and quartz Plasma
enhanced

[69, 132, 133, 139–269]

Ga(C2H5)3 N2/H2 200 °C Si (100), Si (111), and c-plane sapphire Plasma
enhanced

[138]

Ga(C2H5)3 N2/H2 200 °C Si (100) Plasma
enhanced

[136]

Ga(CH3)3 and H radicals NH3 100 °C and
room
temperature

Si (111) Electron
enhanced

[139]

Ga(CH3)3 N2/H2 and NH3 200 °C Si (100), Si (111), and c-plane sapphire substrates Plasma
enhanced

[131]

Ga(C2H5)3 N2/H2 plasma 150 °C–425 °C C-plane sapphire substrates Plasma
enhanced

[270]

Ga(C2H5)3 N2/H2 plasma 275 °C C-plane sapphire Plasma
enhanced

[137]

Ga(C2H5)3 NH3 200 °C–500 °C Si (100) Plasma
enhanced

[271]

InN In(CH3)3 N2 plasma 150 °C–350 °C Si (100) and quartz Plasma
enhanced

[157]

In(CH3)3 N2 plasma 160 °C–260 °C a-plane sapphire, Si(111), and GaN/sapphire Plasma
enhanced

[158]

In(CH3)3 N2 plasma 200 °C–260 °C Si (100), Si (111), and sapphire (0001) Plasma
enhanced

[272]

C5H5In and In(CH3)3 N2/H2 plasma or N2
plasma

200 °C Si (100), Si (111), and AlN/Si (100) Plasma
enhanced

[154]

BN BCl3 NH3 630 °C SiO2/Si (100) Thermal [273]
BBr3 NH3 400 °C

and 750 °C
SiO2 Thermal [159]

BCl3 NH3 227 °C ZrO2 particles Thermal [160]
(C2H5)3B NH3 500 °C–900 °C sapphire and Si (001) Thermal [274]
(C2H5)3B N2/H2 plasma 250 °C–450 °C Si (100)and quartz Plasma

enhanced
[162]

BBr3 NH3 250 °C–750 °C SiO2 Laser assisted
and
thermal

[161]

BBr3 NH3 327 °C Ru (0001) Thermal [164]
BCl3 NH3 327 °C Co (0001) Thermal [163]

AlN AlCl3 NH3/H2 350 °C Si (100) Plasma
enhanced

[146]

Al(CH3)3 NH3 325 °C–470 °C Glass Thermal [147]
Al(CH3)3 NH3 240 °C–370 °C Si (100) UV-assisted [148]
Al(CH3)3 N2/H2 350 °C Si (111) Thermal and

plasma
enhanced

[144]

Al(CH3)3 N2/H2 250 °C Si (100), Si (111), and sapphire Plasma
enhanced

[152]

Al(CH3)3 N2/H2 210 °C
and 250 °C

Si (100), Si (111), and sapphire (001) Plasma
enhanced

[153]

Al(CH3)3 N2/H2 150 °C–300 °C Si (100) and SiO2 Plasma
enhanced

[275]

Al(CH3)3 N2 500 °C Pt/HfO2/Si(100) Plasma
enhanced

[276]
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Table 1. (Continued.)

Material Reactant A Reactant B
Growth
temperature Substrate Type of ALD References

Al(CH3)3 NH3 100 °C–500 °C Si (100), Si (111), c-plane sapphire, MOCVD-grown Thermal and
plasma
enhanced

[141]

GaN on c-plane sapphire, and glass (Pyrex)
Al(CH3)3 N2/H2 200 °C Si (100) Plasma

enhanced
[150]

AlCl3 or Al(CH3)3 NH3 80 °C–260 °C Si (111) Plasma
enhanced

[143]

Al(CH3)3 N2/H2 or N2 or NH3 200 °C Si (100), Si (111), and c-plane Plasma
enhanced

[149]

Sapphire
Al(CH3)3 N2/H2 or N2 or NH3 200 °C Si (111) Plasma

enhanced
[140]

Al(CH3)3 NH3 280 °C Ti/Si (100), Si (100), and glass Plasma
enhanced

[151]

Al(CH3)3 NH3 200 °C Polytetrafluoroethylene (PTFE)/SiO2 Plasma
enhanced

[277]

Al(CH3)3 N2/H2 250 °C Si (111) Plasma
enhanced

[142]

Al(CH3)3 N2/H2 200 °C Si (100) Plasma
enhanced

[145]

ZnS (C2H5)2Zn H2S 200 °C–350 °C Glass Thermal [173]
(C2H5)2Zn H2S 250 °C–400 °C Al2O3 Thermal [172]
(C2H5)2Zn H2S 60 °C–400 °C Si (100) Thermal [171]
(C2H5)2Zn H2S 25 °C–160 °C Au (111) Thermal [168]
(C2H5)2Zn H2S 100 °C–300 °C Si (100) Thermal [169]
Bis(2,2,6,6-tetramethyl-3,5-heptanedionato)zinc (Zn(TMHD)2) H2S 150 °C–375 °C Quartz glass Thermal [175]
(C2H5)2Zn H2S 100 °C Soda lime glass and Si Thermal [167]
Zn S 100 °C–350 °C Si (100), Si (110), and Si (111) Thermal [278]
ZnI2 or ZnCl2 H2S 300 °C–490 °C Al2O3/InxSnyOz/AlxTiyOz covered soda lime glass Thermal [166]
Zn(CH3)2 or (C2H5)2Zn H2S 100 °C–200 °C Si (100) Thermal [69]
(C2H5)2Zn H2S/Ar 60 °C–300 °C SiO2/Si(100) Plasma

enhanced
[246]

CdS Cd(CH3)2 H2S Room
temperature

ZnSe (100) Thermal [177]

Cd S 340 °C (100)GaAs Thermal [176]
Cd(CH3)2 H2S 100 °C–400 °C Si (100) and glass Thermal [178]

CuxS Cu(thd)2 (thd=2,2,6,6-tetramethyl-3,5-heptanedione) H2S 125 °C–250 °C Soda lime glass and Si(100) Thermal [184]
Cu(thd)2 H2S 160 °C–260 °C Corning 7059 glass, SnO2:F, and TiO2 films on SnO2:F

glass.
Thermal [183]

Bis(N,N-di-sec-butylacetamidinato)dicopper(I) Cu2(DBA)2, H2S 130 °C Si (100) and fused silica Thermal [182]
Cu2(DBA)2, H2S 80 °C or 135 °C Fused quartz and silicon substrates Thermal [181]
Cu(thd)2 H2S 200 °C Quartz glass Thermal [180]
Cu(acac)2 (acac=acetylacetonate=2,4- pentanedionate) H2S 130 °C–220 °C Borosilicate glass and Si Thermal [179]

PbS Pb(tmhd)2 H2S 140 °C–220 °C Si (100) Thermal [186]
Pb(tmhd)2 H2S 160 °C Si (100) Thermal [185]
Pb(tmhd)2 H2S 160 °C Si/SiO2 substrates Thermal [187]

SnS Tin(II) 2,4-pentanedionate (Sn(acac)2) H2S 175 °C Si and Al2O3 Thermal [188]
Bis(N,N′-diisopropylacetamidinato)tin(II) [Sn(MeC(N-iPr)2)2], Sn(amd)2 H2S 100 °C–200 °C SiO2 and Au Thermal [189]
Sn(amd)2 H2S 200 °C a-SiO2 Thermal [279]
Tetrakis(dimethylamino)tin (TDMASn, [(CH3)2N]4Sn) H2S 60 °C–180 °C SiO2, Si, and glass Thermal [190]

In2S3 Indium acetylacetonate H2S 150 °C–160 °C Si Thermal [192]
In(III) N,N′ Diisopropylacetamidinate [In-(amd)3] H2S 140 °C–240 °C Si (100) Thermal [191]

GaSx Hexakis(dimethylamido)digallium H2S 125 °C–225 °C Si, Fused silica Thermal [193]

ZnSe Zn Se 430 °C GaAs and lime glass Thermal [195]
Zn Se 430 °C Quartz, glass, and GaAs Thermal [196]
ZnCl2 (R3Si)2Se 400 °C SiO2 and glass Thermal [194]

CdSe Cd Se 150 °C–350 °C Si Thermal [197]

PbSe Lead(II)bis(2,2,6,6-tetramethyl-3,5-heptanedionato) (Pb(C11H19O2)2) Bis-(triethyl silyl)
selane
((Et3Si)2Se)

150 °C–250 °C Si (100) Thermal [280]

Cu2Se,
CuSe

CuCl, Cu(II) pivalate (R3Si)2Se 165 °C
and 400 °C

SiO2 and glass Thermal [194]

In2Se3 InCl3 (R3Si)2Se 295 °C SiO2 and glass Thermal [194]
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Table 1. (Continued.)

Material Reactant A Reactant B
Growth
temperature Substrate Type of ALD References

ZnTe Zn Te 250 °C GaAs (100) Thermal [281]
ZnCl2 (Et3Si)2Te 400 °C SiO2 and glass Thermal [194]

Bi2Te3 BiCl3 (Et3Si)2Te 165 °C SiO2 and glass Thermal [194]
BiCl3 (Et3Si)2Te 160 °C–300 °C SiO2/Si and soda lime glass Thermal [282]

GaAs GaCl3 (Et3Si)3As 125 °C–250 °C SiO2/Si and soda lime glass substrate Thermal [198]

Si Si2H6 SiCl4 355 °C–385 °C SiO2 Thermal [202]

Ge GeCl4 1,4-bis(trimethylsi-
lyl)-1,4-
dihydropyrazine

150 °C–300 °C Pt Thermal [203]

GeCl2 Atomic hydrogen 300 °C, 420 °C Si (100) Thermal [199]
Epitaxy

GeCl4 Atomic hydrogen 300 °C Si (100) Thermal [200]

7

S
e
m
ic
o
n
d
.
S
c
i.
Te

c
h
n
o
l.
3
2

(2
0
1
7
)
0
9
3
0
0
2

To
p
ic
a
l
R
e
v
ie
w



significantly higher growth temperatures and resulted in
relatively low GPC values [70]. The ALD window for a
typical ZnO ALD process using DEZn and H2O as precursors
can nonetheless be estimated to be around 110 °C–170 °C.
However, there are variations in ALD growth window even
when using the same precursors in different reports [21–24,
26–70]. Although a rather ‘forgiving’ technique, it is quite
possible that reactor design also affects the resulting ALD
temperature window. Generally, as-grown ALD ZnO films
showed intrinsic n-type conductivity which was originating
from the presence of defects and impurities in the ZnO
crystal. Elevated deposition temperature increased the con-
ductivity of the films, however at high growth temperatures
where CVD-growth regime takes over, film resistivity starts
to increase again [21–24, 26–70]. Instead of H2O, when O2

plasma was used as oxygen source, ZnO films became more
stoichiometric as O2 plasma can oxidize Zn more effectively,
confirming that plasma-enhanced ALD (PEALD) can be used
to control the stoichiometry of ZnO films [12]. Reduction in
oxygen vacancies and interstitial Zn decreases the intrinsic
n-type carrier concentration of ZnO, yielding in films with
higher resistivity. The growth of epitaxial ZnO films by
atomic layer epitaxy is reported on c-plane sapphire substrate
and GaN [71–85]. Despite the considerable lattice mismatch
between sapphire and ZnO (∼18%), still no buffer layer was
necessary to obtain epitaxial ZnO films. The lattice mismatch
between ZnO and GaN is lower which makes deposition of
epitaxial high quality ZnO on GaN possible as well [86].

ALD of TiO2 has been reported using several different
compounds of Ti as precursors [87–101]. TiCl4 is the most
commonly used precursor which allows deposition of high
quality TiO2 material (refractive index as high as 2.6) at
substrate temperatures ranging from 27 °C to 600 °C
[89, 99, 102]. However, TiCl4 is corrosive and chlorine
contamination has been observed in the films grown below
100 °C [102]. Titanium alkoxides (titanium isopropoxide and
titanium ethoxide) have been utilized as alternative Ti pre-
cursors for ALD of TiO2 [88, 99, 100, 102, 103]. TiO2 grown
using titanium ethoxide showed low GPCs (0.3–0.4 Å) at
substrate temperatures below 300 °C. Lower GPC obtained
using titanium ethoxide might be due to larger molecular size
compared with TiCl4. However, other reasons such as
incomplete ligand exchange reactions and low number of
activated absorption sites might also implicate low GPCs with
titanium ethoxide [99]. Moreover, alkoxides start to self-
decompose around 300 °C, losing the self-limiting deposition
characteristic of ALD and entering CVD growth regime [92].
Among the organometallic Ti precursors, cyclopentadienyl
group based precursors have the advantage of higher thermal
stability. ALD of TiO2 has been reported using Cp*Ti(OMe)3
and ozone reactants where ALD growth window was
achieved at growth temperatures higher than 300 °C [92]. A
comparative study of TiO2 nucleation on SiO2 and hydrogen
terminated Si showed that higher GPC can be achieved
mainly due to the presence of hydroxyl groups on SiO2 sur-
face which serve as reactive sites [95]. Tetrakis-(dimethylamido)
titanium (TDMAT) and oxygen reactants were also used to grow
TiO2 and the deposited film showed p-type conductivity [104]. It

was hypothesized that p-type conductivity of TiO2 is a result of
native excess of oxygen interstitials in the grown film.

There have been a fair amount of efforts to grow Ga2O3

via ALD, a wide bandgap oxide material attracting recent
interest for potential power device applications. In the very
first report, Ga2O3 was grown using gallium(III) acet-
ylacetonate (Ga(acac)3) and H2O/O3 reactants and growth
was achieved at deposition temperatures higher than 370 °C
[105]. The amine based (Ga2(NMe2)6) precursors and iso-
propoxide precursors have also been utilized to grow Ga2O3

where ALD growth window was relatively narrow [106, 107].
Ga2O3 has been grown using Ga(CH3)3 in combination with
H2O, O2 plasma, and ozone [108, 109]. A wide temperature
window (100 °C–400 °C) was observed for Ga2O3 grown
using Ga(CH3)3 and oxygen plasma with a GPC of ∼0.53 Å.

In2O3 growth has been performed initially using InCl3
and H2O [110]. InCl3 chemistry required relatively high
growth temperatures in the range of 300 °C–500 °C and
yielded a GPC of 0.25–0.40 Å. It has also been reported that
InCl3 can etch the deposited In2O3 which is a limitation
especially in case of coating nanoporous/3D surfaces where
long precursor exposures are required [110, 111]. Nanocrys-
talline cubic phase In2O3 was grown using cyclopentadienyl
indium and ozone reactants where growth temperatures were
reported in the range of 200 °C–450 °C with GPCs of
1.3–2.0 Å [111]. It was reported that In2O3 films grown using
ozone as oxygen precursor have film resistivity values higher
than 10−2

Ω cm due to the removal of native donors such as
oxygen vacancies (Vo2+) and In interstitials Ini

3+( )

[111, 112]. In another study, In(CH3)3 and H2O reactants
were used to perform ALD of In2O3 in the temperature range
between 200 °C and 250 °C, resulting in film resistivity
values as low as 2.8×10−3

Ω cm along with significantly
Hall mobility values reaching 84 cm2V−1 s−1

[113]. Yet in
another interesting study, cyclopentadienyl indium and com-
binations of both molecular oxygen and water as co-reactants
were used to grow In2O3 [114]. Relatively low GPC values
were obtained in the temperature range of 100 °C–250 °C
when oxygen or water were used individually as oxygen
source. Measurements revealed that H2O performs the func-
tion of releasing ligands from the surface while oxygen acts
as an oxidizing agent and therefore a synergy between water
and oxygen resulted in increased GPC (1.0−1.6 Å) values
[114]. Et2InN(SiMe3)2 precursor in combination with H2O
was used to perform ALD of In2O3 at substrate temperatures
of 225 °C−250 °C where very low film resistivity (2.3×
10−4

–5.16× 10−5
Ω cm) values were obtained which was

mainly attributed to the oxygen deficient InOx phases [115].
More recently, In2O3 films were grown using [1,1,1-tri-
methyl-N-(trimethylsilyl)silanaminato]-indium (InCA-1) and
hydrogen peroxide precursors; as grown films showed high
conductivity (∼10−4

Ω cm) however, it was shown that
N2O plasma treatment can be applied on films to control the
conductivity of materials leading to oxidation of InOx,
where oxygen vacancies act as shallow electron donors at a
relatively low temperature of 150 °C [116].

Another significant oxide semiconductor is SnO2, parti-
cularly utilized in chemical/gas sensors. Thermal ALD of
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SnO2 thin films was performed using tin halide and H2O/O2

precursors combination which resulted in polycrystalline
SnO2 films with (100) and (120) orientations [117–124].
Epitaxial SnO2 films were reported using PEALD in which
dibutyl tin diacetate and O2 plasma combination was utilized
[125, 126].

2.2. Nitrides

GaN growth via thermal ALD was initially reported using
organometallic precursors—either Ga(CH3)3 or Ga(C2H5)3—

and NH3 as Group-III and Group-V reactants respectively, at
relatively high growth temperatures ranging from 450 °C up
to 900 °C [127, 128]. Thermal ALD of GaN films was also
demonstrated using GaCl3 and NH3 within a temperature
range of 500 °C–750 °C. Better thermal stability of GaCl3
yielded a relatively wide ALD temperature window, while in
addition to oxygen, Cl impurities were detected as well [129].
In order to decrease the substrate temperature substantially,
PEALD of GaN was first demonstrated using Ga(CH3)3 and
NH3 plasma, resulting in a self-limiting growth character
within 185 °C–385 °C, which produced amorphous films
with high oxygen content [130]. In an effort to decrease the
oxygen contamination, hollow-cathode plasma-assisted ALD
(HCPEALD) of GaN was demonstrated using Ga(CH3)3 and
N2/H2 or NH3 plasma reactants at substrate temperatures as
low as 200 °C. Deposited films on Si (100) were poly-
crystalline with hexagonal (002) preferred orientation, how-
ever, the same preferred orientation was not observed on
c-plane sapphire substrates [131]. Use of HCPEALD was
found to be quite effective in decreasing the oxygen impurity
within GaN films by more than two orders of magnitude
[131–136]. Motamedi et al reported PEALD of GaN with
Ga(C2H5)3 and forming gas mixture (95% N2/5% H2) plasma
reactants at 275 °C. Transmission electron microscopy (TEM)

images revealed that the GaN films were epitaxial at the
sapphire substrate interface vicinity (5 nm), transforming to
polycrystalline structure for higher thickness values [137].
Interestingly, electrical conductivity measurements showed
that deposited GaN films were p-type with a resistivity of
0.033Ω cm, 1.68×1018 cm3 carrier concentration, and a
quite striking hole mobility of 110 cm2V−1s−1

[137]. Si(111)
might be a better substrate for HCPEALD of GaN using
Ga(C2H5)3 and N2/H2 plasma reactants as better crystalline
quality and higher film density were obtained from GaN
grown on Si(111) as compared to films grown on Si(100) and
sapphire, which is attributed to the lower lattice mismatch and
hexagonal nature of Si(111) substrate surface [138]. Another
study showed that Ga(CH3)3 might be a better gallium source
in comparison with Ga(C2H5)3 for HCPEALD of GaN at low
substrate temperatures, yielding GaN films with higher crys-
talline quality and larger grain sizes [132]. Recently, electron-
enhanced ALD of GaN is reported at 100 °C and room
temperature using Ga(CH3)3, hydrogen (H) radicals, and NH3

as reactants [139]. The deposited films at 100 °C were poly-
crystalline with hexagonal wurtzite crystal structure. No
oxygen contamination was reported while very significant 10

−35 at% carbon contamination was found inside GaN,
leading to nanocrystalline and amorphous films. The growth
mechanism for such a low temperature GaN growth is
believed to result from the electron stimulated desorption
(ESD) of hydrogen which produces dangling bonds facil-
itating Ga−N bond formation [139].

Within the III-nitride semiconductor family, ALD of AlN
has been most extensively studied [140–145]. PEALD of AlN
has been studied using AlCl3 and NH3/H2 plasma reactants
which produced AlN wurtzite (100) microcrystallites in an
amorphous matrix [146]. Thermal [147] and UV assisted
ALD [148] of AlN has been reported in a temperature range
of 320 °C–470 °C and 240 °C–370 °C, respectively. How-
ever, in these studies self-limiting behavior was not observed
as surface reactions between Al(CH3)3 and NH3 takes places
with sufficient rates only at those temperatures where
Al(CH3)3 decomposition takes place. Generally, PEALD of
AlN has been investigated extensively due to superior reac-
tivity of plasma reactants which decreases the growth temp-
erature significantly. In thermal ALD of AlN, NH3 has been
the most common nitrogen source whereas in plasma-assisted
ALD of AlN, either NH3 or N2/H2 plasma have been
employed as nitrogen source [144]. ALD of AlN with self-
limiting growth behavior has been demonstrated using a
combination of Al(CH3)3 and N2/H2 plasma reactants by
several research groups [141–144, 149–151]. Grown films
were polycrystalline with wurtzite structure. Optical analysis
was carried out and an optical band edge of 5.8–6.04 eV has
been reported [141–145, 149–152]. Refractive index values
of the films were reported in the range of 1.94–2.05
[141–145, 149–152]. A comparison of thermal and plasma-
enhanced ALD of AlN has been reported, where it has been
shown that incubation period only occurred for thermal ALD,
while growth initiated without any nucleation delay with
PEALD, which is attributed to higher nuclei density due to
plasma [144]. PEALD grown AlN films also showed higher
refractive index below 30 nm which saturated as film thick-
ness was increased above 30 nm [144]. A comparison of as-
deposited and annealed AlN films was presented which
revealed that hydrogen impurities in the as grown films des-
orb after annealing at �400 °C and films started to oxidize
after 600 °C [145]. In another report, it was argued that AlN
films grown at low temperatures on sapphire have higher
crystallinity when compared to the same films grown on
silicon substrates [153]. Current transport mechanism was
evaluated by fabricating and measuring metal-insulator-
semiconductor (MIS) capacitor devices whereby ohmic con-
duction, trap assisted tunneling, and Frenkel–Poole (FP)

emission were determined to be the main electrical transport
mechanisms [150]. Trap levels in AlN films were attributed to
nitrogen vacancies and DX centers formed with involvement
of Si atoms in the film [150]. A comparison of different
plasma chemistries for AlN ALD growth showed that N2-only
plasma is not suitable for AlN growth while films grown with
NH3 and N2/H2 were nitrogen rich and heavily hydrogenated
[140]. Additionally, higher carbon content was found in films
grown with N2/H2 plasma which might be originating from
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an undesirable reaction occurring during the plasma step
between nitrogen species and surface CH groups [140].

The most common precursors for ALD of InN are
In(CH3)3 and N2 plasma [154–157]. Atomic layer epitaxy of
InN has been reported using In(CH3)3 and N2 plasma as
reactants and novel cubic or a hexagonal phase of InN were
synthesized [158]. Two different atomic layer epitaxy growth
temperature windows were found between 175 °C−185 °C
and 220 °C−260 °C; cubic phase was grown in the low
temperature window whereas common hexagonal phase of
InN was found in the films grown within the higher temper-
ature window [158]. In another investigation, it was reported
that addition of H2 plasma with N2 plasma as nitrogen pre-
cursor produced InN films with poor crystalline quality, high
level of C and O impurities, and significant void structures
[154]. Films grown with N2/H2 plasma contained a combi-
nation of turbostratic and hexagonal phases, while films
grown with N2-plasma only were single-phase hexagonal InN
[154]. A detailed PEALD optimization study of InN has been
reported using In(CH3)3 and N2 plasma as reactants and it was
found that longer N2 plasma exposure time helped in
removing carbonaceous ligands more effectively, which at the
same time reduced the GPC of InN [157]. In contrast to band
gap of single crystal InN (0.7 eV), an effective optical band
gap of ∼1.9 eV was extracted for ALD-grown InN [157].

Finally, boron nitride (BN) has been deposited using
BCl3/BBr3 and NH3 reactants by thermal ALD within 230
°C–750 °C [159, 160]. Films grown were either amorphous or
turbostratic, in which BBr3/NH3 and BCl3/NH3 reactants
were utilized. In another report, BN was deposited via laser-
assisted ALD using BBr3/NH3 reactants which produced
turbostratic BN with a relatively high deposition rate [161].
BN was also grown using (C2H5)3B and N2/H2 plasma
reactants at 350 °C and 450 °C, yielding hexagonal poly-
crystalline film with relatively low impurities [162]. Thermal
decomposition of (C2H5)3B was found to start around 350 °C
and therefore the deposition regime of BN at higher tem-
peratures was not self-limiting. BN has been grown by atomic
layer epitaxy on Co (0001) template at 327 °C using
BCl3/NH3 reactants, resulting in epitaxial p-type BN with an
average domain size of at least 1900 Å [163]. More recently,
atomic layer epitaxy of stoichiometric BN was accomplished
at 600 K using BCl3/NH3 precursors with very low impurity
levels [164].

2.3. Sulfides

One of the very first ALD process (known as atomic layer
epitaxy at that time) was demonstrated in early 1975s by Suntola
et al for the deposition of ZnS for thin-film electro-luminescent
displays [165]. Despite ZnS being one of the first ALD coated
semiconducting films, the literature on ALD of sulfides is nar-
rower when compared to the vast literature on oxide ALD.
Initial atomic layer epitaxy of ZnS process used elemental Zn
and S as reactants at 500 °C [165]. Soon, molecular precursors
such as ZnI2 or ZnCl2 replaced the elemental precursors which
provide better ligand exchange mechanisms leading to ideal
self-limiting surface reactions [166]. However, halide precursors

required higher source temperatures for vaporization and
therefore higher deposition temperatures which cause halide
impurity contamination, posing challenges for critical device
applications [166]. In order to overcome these issues, organo-
metallic precursors have been used to develop ZnS ALD pro-
cesses. In almost all the cases, H2S was used as S source
whereas (C2H5)2Zn was used as Zn precursor [167–173]. Use of
metal-organic precursors enabled a wide growth temperature
range and considerably higher GPCs owing to their higher
reactivity and thermal stability [167–173]. When (C2H5)2Zn and
H2S reactants were employed, GPC of ZnS decreased mono-
tonically with increasing growth temperature which was attrib-
uted to the decrease in surface functional group coverage with
temperature [69, 171]. ZnS grown with metal organic/H2S
precursor at low temperatures was generally cubic while a
change in phase appeared at higher growth temperatures
(>300 °C) leading to formation of hexagonal ZnS [171, 172].
In situ monitoring of ZnS film growth was investigated during
the initial cycles of ALD using scanning tunneling microscopy
(STM) technique [168]. It was found that grain morphology is
temperature-dependent and grain size increases with deposition
temperature from 100 °C to 160 °C [168]. H2S has been com-
monly used as S source because of its volatility and reactivity
with metalorganic precursors [174]. Nevertheless, H2S presents
several challenges which includes its flammable, corrosive, and
toxic character [174]. Therefore, ALD reactors need to be
designed carefully for H2S compatibility. In some reports, H2S
was generated in situ for ZnS ALD to eliminate the need to store
high pressure H2S gas [171, 175]. The H2S precursor was
generated by heating thioacetamide to 150 °C in an inert
atmosphere, producing acetonitrile and H2S [171].

There are only a few reports on ALD of CdS. Atomic
layer epitaxy of CdS is reported where Cd and S precursors
were used at substrate temperature of 340 °C [176]. Atomic
layer epitaxy of CdS is also performed using Cd(CH3)2 and
H2S on a ZnSe (100) substrate at room temperature [177].
Annealing of CdS is performed at 250 °C which produced
zincblende CdS, a crystal structure similar to the substrate
[177]. Bakke et al reported ALD of CdS using Cd(CH3)2 and
in situ generated H2S on Si (100) or glass substrate in a
temperature range of 100 °C–400 °C [178]. Films grown at
low temperatures were a mixture of wurtzite and zincblende
crystal structures while films grown at higher temperature
(400 °C) were dominantly wurtzite [178].

CuxS exists in five solid phases at room temperature: chal-
cocite (x=2), djurleite (x=1.96), digenite (x=1.8), anilite
(x=1.75), and covellite (x=1). ALD of CuxS has been
reported by using three different Cu precursors: Cu(thd)2
(thd=2,2,6,6-tetramethyl-3,5-heptanedione), bis(N,N-di-sec-
butylacetamidinato)dicopper(I) Cu2(DBA)2, and copper(II) acet-
ylacetonate [179–184]. In all these studies, H2S was used as the
sulfur precursor. Depending on different process parameters and
precursors employed, different stoichiometry and compositions
of CuxS were obtained. With the use of Cu2(DBA)2 precursor as
Cu source material, mainly chalcocite phase (Cu2S) of CuxS was
obtained [181, 182]. On the other hand, with the use of Cu(thd)2
precursor, either covellite (CuS) phase or digenite (Cu1.8 S) phase
of CuxS was synthesized [183, 184]. When Cu(acac)2 precursor
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was employed, researchers obtained p-type CuxS film with either
multiphase compounds (made of digenite Cu1.8S, chalcocite
Cu2S, djurleite Cu31S16, and covellite CuS) or single-phase
digenite Cu1.8S film depending on number of growth
cycles [179].

ALD of PbS films has been studied by only one research
group [185–187]. Bis(2,2,6,6-tetramethyl-3,5-heptanedio-
nato)lead(II) (Pb(tmhd)2) and H2S were the precursors
employed at a growth temperature of 160 °C [185–187]. The
grown PbS film was polycrystalline with grain sizes ranging
from 30 to 150 nm. Effect of size quantization on band gap of
ALD grown PbS were demonstrated by fabricating PbS
quantum wells with sub-10 nm thickness [185]. Bandgap of
the films was varied from 0.4 to 2.75 eV by varying only the
number of ALD cycles [185].

ALD of another sulfide semiconductor, SnS was initially
reported by Kim et al using (Sn(acac)2) and H2S reactants
[188]. GPC of SnS was relatively low (0.24 Å); the reason
might be that Sn–O bonds (532 kJ mol−1

) are stronger than
Sn–S bonds (464 kJ mol−1

) which results in an unfavorable
thermodynamic enthalpy change [188]. SnS growth on Al2O3

substrate had nucleation issues and displayed very small
GPCs which might be caused by Al(acac)* site blocking
surface species [188]. Films contained 15–20 at% oxygen
after air exposure and such oxidized SnS films exhibited a
band gap of ∼1.87 eV, higher than the reported SnS bulk
band gap value (∼1.3 eV) [188]. Higher GPCs (0.86–0.90 Å)

were obtained with the use of Bis(N,N′-diisopropylacetami-
dinato)tin(II) [Sn(MeC(N-iPr)2)2], Sn(amd)2 tin precursor at
lower growth temperatures [189]. Impurities in the film
deposited with Sn(amd)2 precursors were negligible and films
were p-type with a band gap value of 1.30–1.42 eV which is
closer to bulk band gap value of SnS films [189]. ALD of SnS
has also been reported with tetrakis(dimethylamino)tin
(TDMASn, [(CH3)2N]4Sn) precursor where it has been shown
that crystal structure of SnSx can be tuned by changing the
growth temperature [190]. Below 120 °C, SnSx films were
amorphous while SnSx films were SnS2 hexagonal at 140 °C
and 150 °C, and orthorhombic above 160 °C [190].

ALD of In2S3 has been reported by McCarthy et al using
In(III) N,N′-diisopropylacetamidinate (In(amd)3) and H2S
reactants in a temperature range of 140 °C–240 °C [191].
Deposited films were n-type with free electron concentrations
up to 1018 cm−3 and carrier mobilities in the order of
∼1 cm2V−1 s−1

[192]. There is a single report for ALD of
GaSx in which films were synthesized using hexakis(dime-
thylamido)digallium and H2S reactants at a growth temper-
ature range of 125 °C–225 °C [193]. Growth was self-limiting
in the temperature range of 125 °C–225 °C while the films
were amorphous as promising lithium ion battery anode
material. For further reading about ALD of sulfides, reader
may consult to the review of Dasgupta et al which specifically
focuses on ALD of metal sulfide materials [174].

2.4. Selenides and tellurides

ALD of selenides and tellurides have been only limited to
selenides and tellurides of Zn and Cd, as those are rare cases

where constituent elements can be used as precursors
[194–197]. Selenides and tellurides are less explored because
their hydride compounds are toxic and would require exten-
sive safety precautions. Alkyl compounds of selenium and
tellurium have been more commonly employed as CVD
reactants but in ALD they are unable to provide efficient
ligand exchange reactions with the common metal precursors
[194]. In a breakthrough discovery, ALD of various selenides
and tellurides has been reported using alkylsilyl compounds
of Se and Te [194]. Compared to common alkyls and alky-
lamides of Se and Te, (R3Si)2Se and (R3Si)2Te offered
straight forward elimination of ligands of the metal pre-
cursors. In (R3Si)2Se and (R3Si)2Te, there is an unfavorable
hard-soft Lewis acid-base pair, as in these compounds a hard
Lewis acid is bonded to the heavy group 16 elements which
are soft Lewis bases. When there is an exchange reaction of
these compounds with metal chlorides, silicon becomes
bonded to harder base thus allowing an easy ligand exchange
reaction [194].

2.5. Arsenides

To date, there is only one recent report on ALD of arsenide
compounds where synthesis of GaAs was demonstrated.
Dechlorosilylation reaction between GaCl3 and (Et3Si)3As
precursors was found to be successful in depositing GaAs
films via ALD [198]. The films were uniform, amorphous,
and stoichiometric, while film crystallization was achieved by
post-deposition annealing process [198].

2.6. Elemental semiconductors

ALD of elemental semiconductors is less explored due to the
challenge of synthesizing crystalline group-IV semiconductor
films with low impurities [199, 200]. ALD of Si was initially
explored using Si(C6H10)2 precursor [201]. Upon reacting
with substrate, hydrocarbon rings of Si(C6H10)2 precursor
transform into dimethylbutadiene (C6H10), which is very
volatile and readily desorb. This chemistry provided Si with
high level of carbon impurities. ALD of Si was demonstrated
using Si2H6 and SiCl4 precursors in temperature range of 355
°C–385 °C [202]. Films were smooth with arithmetic average
roughness of 0.26 nm, however, no elemental characterization
data was reported from the bulk of film.

Ge ALD was performed using alternating exposures of
GeCl4 and atomic hydrogen. After the first self-limiting
exposure of GeCl4, atomic hydrogen extracted surface ter-
minating chlorine in the second exposure which resulted in
Ge film growth [200]. Recently, Ge ALD was demonstrated
using GeCl4 and 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine
as reducing agent. Smooth continuous films were obtained
only on platinum substrates. X-ray photoelectron spectrosc-
opy (XPS) and x-ray diffraction (XRD) data revealed the
formation of PtGe2 alloy initially, followed by smooth Ge
film growth [203].
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3. Nanostructured semiconductor growth via ALD

Mainly two approaches exist for nanostructured materials
growth via ALD: (i) Bottom-up growth via catalyst-assisted
or catalyst-free method (ii) Template-assisted growth. In
template-assisted strategy, material growth is carried out on
nanostructured templates (figure 1) such as carbon nanotubes,
polymers, or anodic aluminum oxide (AAO) [283–285].
Subsequent to growth, template material might be removed
via high-temperature treatment (calcination) or physical/
chemical etching to obtain various kinds of freestanding
functional nanostructures.

Bottom up growth method can be further classified into
mainly two types: catalyst-assisted and catalyst-free methods.
Catalyst-assisted growth typically occurs via vapor liquid
solid growth where nanostructures are fabricated along a
supersaturated catalytic liquid metal such as Ni or Au [283].
Catalyst free methods generally utilize selective area growth
of preferential growing crystallographic planes over non-
preferential planes by altering the processing conditions in
order to favor growth of material in one dimension
[286, 287]. In certain chemistries of ALD, growth of islands
is observed rather than formation of continuous films during
the initial stages of deposition [288–290]. Quantum dots and
nanoparticles are synthesized by taking advantage of the so-
called incubation period of ALD. This way of synthesizing
0D nanostructures can also be classified as catalyst-free bot-
tom up growth approach. Below we summarize the reported
major achievements in the field of 0D, 1D, 2D, and core–shell
structured semiconductor materials.

3.1. 0D structures

Table 2 provides a summary of ALD-grown 0D semi-
conductor nanostructures. ALD of ZnO has been carried out
on SiO2 film having nanoscale voids between them which
allow subsequent deposition within the voids of the films
[291, 292]. ZnO nanodots were fabricated in this way within
SiO2 film and resulted in a significant blue shift in the pho-
toluminescence properties of ZnO, mainly due to the quantum
confinement effect. ZnO filling between voids of a SiO2 film

has affected the mechanical, photoluminescence, and photo-
sensitivity properties of the film [291, 292]. Nanoparticular
TiO2 growth has been reported on CNTs during the incuba-
tion period of TiO2 growth [293]. TiO2 was grown in uniform
thin film form on CNTs at 100 °C, but the growth at 300 °C
resulted in nanoparticles during the initial cycles of the ALD
process [293]. It was argued that island ALD growth mode at
300 °C occurred because of recombination between the
byproducts and TiCl4 molecules [293]. Fabrication of TiO2

nanoparticle chains has been reported on CNTs by calcination
of conformally TiO2 coated multi-walled carbon nanotubes
(MWCNTs) [294]. During annealing process, thin tubular
layer of TiO2 has been transformed into nanoparticle chains
with an enhanced ultra-high surface area [294].

Quantum dots of semiconducting PbS (figure 2) and CdS
have been synthesized by utilizing the incubation period
observed during the initial stages of ALD where growth of
islands is observed rather than formation of continuous films
[288–290]. Note that this type of growth mode has only been
observed in certain ALD chemistries [288, 289]. This very
strategy of synthesizing quantum dots using ALD provides
several unique advantages. Size of quantum dots can be
varied by simply changing the number of growth cycles.
Excellent infiltration of quantum dots can be obtained on
high-surface area nanostructured templates by utilizing the
high conformality of ALD processes. Moreover, as opposed
to conventional quantum dot fabrication techniques, ALD
eliminates the use of solutions and solution-based byproducts
[288–290]. Islands with sub-10 nm diameters were observed
during the initial ALD cycles (10–40 growth cycles) of PbS
on Si nanowire array (figure 2) and PL measurements showed
a blue shift when number of ALD cycles are decreased
confirming successful quantum confinement in PbS quantum
dots (figure 3) [290].

3.2. 1D structures

ALD grown 1D nanostructures are summarized in table 3.
Majority of reports on ZnO nanostructures utilized nanoscale
templates with the intention of disposing the template after
deposition in order to obtain various kinds of ZnO

Figure 1. Various nanostructured templates used for template assisted ALD. (a) SEM image of nylon 6,6 polymeric nanofibers. (b) TEM
image of single wall carbon nanotubes. (c) SEM image of porous AAO template. Reprinted with permission from [284, 335]. Copyright
(2014, 2015) AIP publishing, Elsevier.
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Table 2. Overview of the growth conditions employed to synthesize 0D nanostructures using ALD. The materials deposited, the morphology, precursors used, the temperature during ALD, and
preparation method are mentioned.

Material 1st precursor
2nd
precursor

Growth
temperature Morphology Preparation method References

ZnO Zn(C2H5)2 H2O 180 °C Quantum dots ALD of ZnO on silica nanoparticles [292]
Zn(C2H5)2 H2O2 200 °C, 300 °C Nanodots ALD of ZnO on Si and SiO2 films [208]
Zn(C2H5)2 H2O 200 °C Nanoparticles ALD of ZnO on nylon nanofibers [295]

TiO2 Tetrakis(dimethylamido) titanium (TDMAT) O3 100 °C Nanoparticle chains TiO2 growth on carbon nanotubes fol-
lowed by annealing

[294]

TiCl4 H2O 200 °C, 300 °C Nanoparticles Growth during initial growth cycles of
TiO2 on carbon nanotubes

[293]

CdS Dimethyl cadmium H2S 150 °C Quantum dots Utilizing the incubation period of CdS
growth by ALD on TiO2

[288]

PbS Bis(2,2,6,6-tetra-methyl-3,5-heptanedionato)lead(II) (Pb(tmhd)2) H2S 160 °C Quantum dots Utilizing the nucleation stage of ALD
PbS growth

[290]

Bis(2,2,6,6-tetra-methyl-3,5-heptanedionato)lead(II) (Pb(tmhd)2) H2S 160 °C Quantum dots Utilizing the nucleation stage of ALD
PbS growth

[289]

SnSe Et4Sn H2O 200 °C–450 °C Sphere shaped
particles

Growth temperature dependent morph-
ology of SnSe structures

[296]
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nanostructures [297–301]. Mainly three types of templates
have been used: anodized alumina (AAO) templates, poly-
meric templates, and bio-nano-templates made out of biolo-
gical materials [298, 301–304]. These templates have also
been used to study the conformality of ZnO as well as to
make multi-segmented ZnO nanotubes [305, 306]. ZnO
growth inside the pores of AAO was limited by precursor
diffusion into the high aspect ratio wells and therefore long
exposure times were necessary to obtain conformal coatings
(120 s exposure time for aspect ratio of ∼5000) [305, 306].
Moreover, with the utilized long exposure times, also exten-
sive purging times were required to ensure the complete
removal of the excess reactants and byproducts which will
ensure the elimination of any unwanted gas-phase CVD
reaction.

ZnO 1D structures such as nanorods or nanowires have
been fabricated by utilizing lithography techniques or by
performing growth directly on nanostructured templates
[307–312]. In one study, combination of phase-shift litho-
graphy and plasma was utilized to synthesize a photoresist
nanodot pattern on Si which was used to etch Si afterwards

Figure 2. TEM images of Si nanowires coated by ALD PbS shown at different magnifications after (a) 10 cycles, (b) 20 cycles, and (c) 40
cycles. Also shown is the effect of 20 min e-beam irradiation on the dot-coated Si nanowires. (As a result of the e-beam irradiation process,
the crystallite morphology changes to a dome shape to lower the surface to volume ratio providing better contrast in TEM imaging.)
Reprinted with permission from [290]. Copyright (2011) American Chemical Society.

Figure 3. Photoluminescence spectra for bare Si nanowires (blue), 10
cycles of ALD PbS (black), and 30 cycles of ALD PbS (red).
Reprinted with permission from [290]. Copyright (2011) American
Chemical Society.
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Table 3. Overview of the growth conditions employed to synthesize 1D nanostructures using ALD. The materials deposited, the morphology, precursors used, the temperature during ALD, and
preparation method are mentioned.

Material 1st precursor 2nd precursor
Growth
temperature Morphology Preparation method References

ZnO Zn(C2H5)2 H2O 250 °C Nanotube and
nanorod arrays

Deposition of ZnO on AAO/Si templated
followed by AAO etching

[308]

Zn(C2H5)2 H2O 150 °C Nanotubes ALD of ZnO on aerogels fibrils followed by
calcination

[316]

Zn(C2H5)2 H2O 150 °C Nanotubes ALD of ZnO on Polyacrylonitrile fibers
followed by annealing or O2 plasma
treatment

[299]

Zn(C2H5)2 H2O 120 °C Nanotubes ALD of ZnO on SAMs-AAO [306]
Zn(C2H5)2 H2O 200 °C Nanotubes ALD of ZnO on Polyvinylacetate and AAO

followed by annealing or etching
[337]

Zn(C2H5)2 H2O 150 °C Rod like morphology ALD ZnO on MgO films [338]
Zn(C2H5)2 H2O 177 °C Nanorods Hydrothermal ZnO growth on ALD ZnO

seed layer
[321]

Zn(C2H5)2 H2O 100 °C Nanorods Hydrothermal ZnO growth on ALD ZnO
seed layer

[300]

Zn(C2H5)2 H2O 70 °C Nanorods Using polymer/Si porous structures to direct
ALD of ZnO

[297]

Zn(C2H5)2 H2O 100 °C Nanorods Wet chemical procedure on ALD
grown ZnO

[320]

Zn(C2H5)2 H2O 200 °C Nanorods ZnO deposition on high aspect ratio Si
microwire arrays

[324]

Zn(C2H5)2 H2O 200 °C Nanorods ALD of ZnO on AAO [310]
Zn(C2H5)2 H2O 200 °C Nanorods ALD of ZnO on AAO followed by chemical

etching of AAO
[312]

Zn(C2H5)2 H2O 70 °C–300 °C Nanofibers ALD of ZnO on inner shell membrane of
hen’s egg

[303]

Zn(C2H5)2 H2O 150 °C Nanofibers ALD of ZnO on Polyvinylacetate nanofibers
followed by annealing

[298]

Zn(C2H5)2 H2O 200 °C Nanofibers ALD of ZnO on nylon nanofibers [302]
Zn(C2H5)2 H2O 150 °C Nanofibers ALD of ZnO on polyvinylpyrroli- done

(PVP) fibers followed by annealing
[301]

Zn(C2H5)2 H2O 200 °C Nanofibers ALD of ZnO on nylon nanofibers [295]
Zn(C2H5)2 H2O 50 °C–130 °C Nanofibers ALD of ZnO on polyacrylonitrile nanofibers [339]
Zn(C2H5)2 H2O 180 °C, 300 °C Nanopillars Preferential ALD of ZnO on ZnO seed layer [304]
Zn(C2H5)2 H2O 200 °C Nanowires Hydrothermal growth of ZnO on ALD

grown ZnO seed layer
[323]

Zn(C2H5)2 H2O 115 °C Nanowires Substitution of Si nanowires by ZnO NWs
with a dry etching technique and atomic
layer deposition

[307]
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Table 3. (Continued.)

Material 1st precursor 2nd precursor
Growth
temperature Morphology Preparation method References

Zn(C2H5)2 H2O 200 °C Nanoneedles Hydrothermal growth of ZnO on ALD ZnO/
PAN nanofibers

[325]

Zn(C2H5)2 H2O 200 °C Nanofibers ALD of ZnO on nylon nanofibers during
incubation period

[295]

TiO2 Titanium(IV) isopropoxide H2O 70 °C Nanotubes TiO2 growth into AAO membranes [326]
TiCl4 H2O 100 °C Nanotubes TiO2 growth into AAO membranes [328]
Titanium tetraisopropoxide H2O 150 °C, 250 °C Nanotubes TiO2 growth into AAO membranes and

carbon nanotubes
[327]

TiCl4 H2O 250 °C Nanotubes TiO2 growth on carbon nanotubes [329]
TiCl4 H2O 250 °C–300 °C Nanotubes TiO2 growth into AAO membranes [340]
TiCl4 H2O 150 °C Nanotubes TiO2 growth into AAO membranes [330]
TiCl4 H2O 600 °C Nanorods TiO2 growth into AAO membranes [341]

Ga2O3 Gallium (III) alkyl amidinate [mono-
acetamidinatodiethylgallium(III), compound 1]

H2O, O2 450 °C Nanowires Self-seeding growth [342]

SnO2 SnCl4 H2O 150 °C–400 °C Nanotubes SnO2 growth into AAO membranes fol-
lowed by polishing and etching

[331]

Tin(IV) alkoxides Carboxylic
acid

75 °C–250 °C Nanotubes SnO2 growth on carbon nanotubes and boron
nitride nanotubes

[332]

SnCl4 H2O 200 °C–400 °C Nanotubes SnO2 growth on carbon nanotubes [343]
Tin tert-butoxide Acetic acid 200 °C Nanotubes SnO2 growth on carbon nanotubes [344]

GaN Ga(CH3)3 N2/H2 plasma 200 °C Flexible nanofibers GaN growth on electrospun nanofibers [285]

AlN Al2(CH3)6 NH3 plasma 200 °C Nanofibers GaN growth on electrospun nanofibers fol-
lowed by calcination

[333]

ZnS Zn(C2H5)2 H2S 75 °C–180 °C Nanotubes ZnS growth on AAO template [334]

Cu2S Bis(N,N’-disec-butylacetamidinato)dicopper(I)
(CuAMD)

H2S 135 °C Nanotubes ALD of Cu2S on single walled carbon
nanotubes

[335]

GaSx Ga2(NMe2)6 H2S 150 °C Nanotubes ALD of GaSx on single walled carbon
nanotubes

[336]
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[307]. Another coating of photoresist and subsequent etching
of Si nanowires resulted in a mask for ALD of ZnO nano-
wires. In another report, polymer templates synthesized
through a combination of block copolymer lithography (BCL)

and nanoimprint lithography (NIL) were used as a nano-
template for subsequent ALD to obtain highly oriented and
high-quality ZnO nanopatterns (illustration of fabrication
steps are summarized in figure 4) [297]. The fabricated uni-
form array of ZnO nanostructures possessed sub-100 nm
feature and spatial resolutions, exhibiting narrow distributions
in size and separation, and superior mechanical stability.
AAO template has been commonly used for ZnO nanorod
fabrication; AAO features long-range ordered vertically
aligned nanopores with varying aspect ratios whose dimen-
sions can be easily controlled by adjusting the process con-
ditions [308, 310, 312, 313]. It is a fairly simple technique to
obtain ZnO nanorods by growing on these templates followed
by the removal process of AAO, usually accomplished by
chemical wet etching. The pulse/exposure time of the pre-
cursors needed to conformally coat inside the AAO pores is
typically long as precursor molecules needs time to diffuse-in
and react with the available adsorption sites within the high
aspect ratio template walls.

Low temperature ALD of ZnO has enabled the use of bio-
templates in ZnO nanostructuring. Cicada wings have been
used as templates to fabricate ZnO nanopillars by taking
advantage of the fact that nanopillars on the wing surface block
ZnO growth [314, 315]. Other studies utilized fibrils of hen’s
egg shell and nanocellulose fibers as bio-nanotemplates for
ZnO coating [303, 316]. Figure 5 shows the fabricated ZnO
nanotubes through bio templating; in this strategy, first nano-
cellulose hydrogel is dried to aerogel, followed by coating with
ZnO ALD to form composite organic/inorganic nanofibers,
and finally calcinated to inorganic hollow nanotubes [316].
Peptide amphiphile nanofibrous templates were used as a soft
template for ALD of ZnO and TiO2 and resulting functional
nanonetworks (figure 6) found applications in photocatalysis
for organic dye degradation and as anodic material in dye
sensitized solar cells [317, 318]. Overall, the use of bio-tem-
plates in ZnO nano-structuring is relatively less explored and
this field might hold potential for future device applications.

There also are studies in which fabrication of ZnO
nanorods or nanodots has been reported without using any
templates. These studies take advantage of the incubation
period of ZnO growth to form ZnO islands which can then be
used as seeds for the growth of nanopillars [208, 304, 319]. In
some reports, ALD-grown ZnO thin films have been utilized

Figure 4. (i)–(v) Illustration of steps to fabricate ZnO nanoarrays using selective area ALD within templates defined by copolymer-derived
NIL molds. (i) High-resolution silicon nanopillar molds (as shown in panel (a) as field effect scanning electron microscope (FESEM) image
measured at 45° tilt). (ii) Nanoporous polymethylmethacrylate (PMMA) films obtained upon NIL (as shown in panel (b) by tapping mode
atomic force microscope (AFM) image) and subsequently exposed to controlled O2 plasma reactive ion etching (RIE) to obtain (iii) porous
templates with through-holes. (iv) ALD of ZnO on the nanoporous templates (as shown by FESEM image in panel (c)), followed by removal
of templates to obtain (v) ZnO nanoarrays (as shown by tapping mode AFM image in panel (d)). Reprinted with permission from [297].
Copyright (2012) American Chemical Society.
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as template for the subsequent growth of ZnO nanorods using
hydrothermal process [320–324]. In these reports, ALD-
grown ZnO provides a high-quality textured film to either act
as a seed layer for nanorod growth or to protect the substrate
from reagents of hydrothermal process. In another approach,
ALD ZnO coated polyacrylonitrile (PAN) nanofibers were

used as a template for over growth of ZnO nanoneedles via
hydrothermal growth (figure 7) [325].

Nanostructured TiO2 fabrication has been reported
mostly in the form of nanotubes and the most common pre-
cursors utilized are TiCl4 and H2O [326–330]. Majority of
reports utilized AAO as a template for TiO2 growth which

Figure 5. (a) A thin uniform ZnO layer formed on nanocellulose fibrils after initial exposure to the zinc precursor. (b) ZnO layer thickness is
increased upon the ALD process (here 50 cycles). (c) Calcinated, hollow ZnO nanotubes are visibly rough. (d) Close-ups on ZnO nanotubes
show that they are hollow. Reprinted with permission from [316]. Copyright (2011) American Chemical Society.

Figure 6. Characterization of as-synthesized TiO2 and ZnO nanonetworks deposited with 350 and 100 ALD cycles, respectively. (a) and (b)
Scanning electron microscope (SEM) images, (c) energy dispersive x-ray spectroscopy (EDX) spectrum, and (d) XRD pattern of TiO2

nanonetworks. (e) and (f) SEM images, (g) EDX spectrum, and (h) XRD pattern of ZnO nanonetworks. Reprinted with permission from
[318]. Copyright (2013) Nature publishing group.
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was subsequently etched using NaOH solution to obtain TiO2

nanotubes [326–328]. Crystal morphology of TiO2 nanotubes
has been tuned from amorphous to anatase phase when
growth temperature was increased from 150 °C to 250 °C
[327]. Figure 8 shows TiO2 nanotubes fabricated via titania
deposition into AAO membranes followed by AAO removal
through etching [328].

SnCl4 and H2O precursors were employed to grow SnO2

nanotubes using AAO as a template followed by etching of
AAO [331]. Interestingly, three temperature-dependent growth
modes were observed (figure 9): (i) layer-by-layer growth at
temperature T<200 °C; (ii) layer-by-particle growth at
temperature 200 °C�T<400 °C; (iii) evolutionary particles

at temperatures T�400 °C [331]. It was believed that layer-
by-layer growth occurred at low temperatures because of
ligand exchange reactions and negligible change in reactive
sites. Layer-by-particle growth occurred because of competing
effects between ligand exchange and chlorination, i.e., lower
growth temperatures prompt ligand exchange while higher
temperatures can cause chlorination. Lastly, the evolutionary
particle growth occurred at high growth temperatures mainly
because of chlorination effects which caused certain nucleation
sites on the substrate [331]. The layers were amorphous
whereas particles were identified as crystalline. Hence in this
way, morphology and phase of SnO2 nanotubes were con-
trolled via ALD growth temperature [331]. In another report it

Figure 7. Representative SEM images of (a1 and 2) pristine PAN, (b1 and 2) PAN/ZnO seed, and (c1 and 2) PAN/ZnO needle nanofibers at
different magnifications. Reprinted with permission from [325]. Copyright (2014) Elsevier.
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was demonstrated that the use of a tin(IV) alkoxide and car-
boxylic acid precursors are highly suitable for the fabrication of
SnO2 nanotubular structures at temperatures as low as 75 °C
using templates such as carbon nanotubes (CNTs) and boron
nitride nanotubes [332].

Flexible polymer–GaN organic–inorganic core–shell
nanofibers (figure 10) were synthesized by performing remote
PEALD growth of GaN on electrospun nylon 6,6 nanofibers at
200 °C [285]. The fabrication process resulted in ∼28 nm thick
conformal polycrystalline wurtzite GaN shell layer on poly-
meric-core nanofibers with an average fiber diameter of
∼70 nm. The low process temperatures enabled the preserva-
tion of the flexibility of the resulting core–shell polymer/GaN
nanofiber templates [285]. Polycrystalline hexagonal AlN
hollow nanofibers (figure 11) were fabricated via PEALD
using similar sacrificial electrospun polymeric nanofiber tem-
plates [333]. Deposition of AlN was carried out again at 200 °C
on electrospun nylon 6,6 nanofibers followed by a high-
temperature in situ calcination at 500 °C for 2 h to remove the
sacrificial polymeric nanofiber template [333]. Recently, ver-
tically aligned GaN, AlN, and InN hollow nano-cylindrical
arrays (HNCs) on Si substrates were fabricated using anodized
aluminum oxide (AAO) membrane based template-assisted
plasma-assisted atomic layer deposition (PEALD). Fabrication
scheme consisted of the following steps: (i) Electrochemical
anodization of aluminum foil to obtain free-standing AAO
membrane, followed by transfer and sticking of AAO mem-
brane to Si substrate, (ii) Si patterning with Ar and CHF3 based
reactive ion etching (RIE) using AAO membrane as hard mask

material to achieve nanoporous network on Si substrate, (iii)
Conformal growth of GaN, AlN, and InN on nanoporous Si via
low-temperature PEALD, (iv) Ar based RIE of PEALD coated
III-nitride material from top surface of Si and SF6 based iso-
tropic RIE of surrounding Si to attain highly ordered vertical
GaN, AlN, and InN hollow nano-cylinder arrays. Materials
characterization revealead that ordered vertical arrays of
III-nitride hollow nanocylinders were successfully integrated
inside Si(100); a representative image of GaN HNCs fabricated
using this strategy is given in figure 12.

High aspect ratio (�300) ZnS nanotubes were fabricated
by performing growth into highly ordered pores of AAO
templates at deposition temperatures as low as 75 °C [334].
The tubes exhibited smooth wall surface and their dimensions
can be precisely tailored by varying the electrochemical and
ALD processing parameters [334]. Cu2S was grown on net-
works of single walled carbon nanotubes (SWCNTs) to
obtain SWCNT-n-Cu2S composite nanotube structure [335].
The resulting structures demonstrated an intimate contact
between SWCNTs and Cu2S, yet preserving the porosity for
efficient transport of charges [335]. Similar strategy has been
utilized to obtain GaxS-SWCNTs composite nanotubular
structure [336]. Figure 13 shows TEM images of ALD-coated
GaxS on SWNCTs yielding highly conformal GaxS-SWCNT
core–shell 1D templates with the outer shell thickness
depending on the number of GaxS growth cycles. The EELS
maps in figures 13(g)–(i) correspond to the boxed region in
Figure 13(f), and reveal that the coating is uniform and
comprised of Ga and S.

Figure 8. SEM images of (a), (c) TiO2 in the AAO template, and (b), (d) pure TiO2 nanotubes after removal of the AAO template. Reprinted
with permission from [328]. Copyright (2011) American Chemical Society.
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3.3. 2D structures

Although ALD is known to be self-limiting, initial nucleation
generally occurs through the formation of multi-layer islands
which makes it difficult to achieve the layer controllability
needed to deposit 2D semiconductors such as transition metal
dichalcogenides (TMDs) [345–348]. It is therefore essential to
maximize the self-limiting behavior of ALD process in order to
achieve the layer controllability needed for 2D structures which
requires careful selection of precursors and optimization of
process conditions. Initial reports of WS2 ALD growth

employed WF6 and H2S reactants where zinc catalyzed the
adsorption and reaction of WF6 [349, 350]. In later reports,
single crystal WS2 nanosheets on SiO2 substrates were syn-
thesized by the sulfurization of a WO3 film prepared by ALD.
Utilization of ALD for preparation of WO3 meant that WS2
layers retained inherent characteristics of ALD processes such
as thickness controllability, reproducibility, high conformality,
and uniformity [351, 352]. MoS2 thin films were deposited by
ALD using Mo(CO)6 and H2S plasma as precursors which
resulted in hexagonal nanocrystalline films [346]. In another
report, MoCl5 and H2S were employed to grow MoS2 where

Figure 9. Three growth models for ALD-SnO2 nanotube arrays. At a temperature lower than 200 °C, the ALD-SnO2 was built up in AAO
pores in a mode of (a) layer-by-layer growth, as schematically shown in (a1-4) with uniform films of increasing thickness; in the range
200 °C–400 °C, the ALD-SnO2 experienced a mode of (b) layer-by-particle growth: (b1) amorphous layers prevailed at the initial stage but
random nucleation happened with increased films, (b2) crystals grew laterally and radially while new nuclei appeared with increased films,
(b3) crystals saturated on the surface and amorphous layers stopped growing, (b4) crystals stopped their lateral growth and competed with
each other for their radial growth; at a temperature no less than 400 °C, the ALD-SnO2 transferred to a mode of (c) evolutionary particle: (c1)
nuclei formed immediately on the substrate surface at the starting of the ALD process, (c2) crystals grew quickly with increased ALD-cycles,
(c3) crystals saturated on the substrate surface, (c4) crystals grew predominantly in their radial direction. In (a5), (b5), and (c5), the produced
nanotubes were schematically illustrated. Reprinted with permission from [331]. Copyright (2011) The Royal Society of Chemistry.
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number of layers formed were controlled by varying the
growth temperature [348]. It is believed that lack of dangling
bonds on MoS2 surface caused the growth to self-terminate
after few layers of MoS2 have been grown at a certain temp-
erature [348].

Recently, low temperature (400 °C) growth of graphene
has also been demonstrated using PEALD [353]. Hexagonal
carbon rings and carbon atoms were observed (figure 14)
using aberration-corrected transmission electron microscopy
which indicated highly crystalline structure of graphene.

Figure 10. Representative (a) and (b) TEM, (c) high-resolution TEM images, (d) selected area electron diffraction (SAED) pattern, and (e) EDX
spectrum of nylon–GaN core–shell nanofiber(s). Reproduced with permission from from [285]. Copy right (2015) The Royal Society of Chemistry.
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Benzene is chosen as the carbon source and authors demon-
strated that benzene molecules can be dehydrogenated and
connected to each other to form the graphene structure [353].
An overview of semiconductor 2D nanostructures synthesized
using ALD is presented in table 4.

3.4. Core–shell structures

Core–shell structures are formed when a 0D or 1D nanos-
tructure, such as a nanoparticle or nanorod is coated with a
thin layer of another material. Such core–shell nanostructures

Figure 11. AlN hollow nanofibers synthesized by the deposition of 800 cycles AlN, followed by in situ calcination. (a) Bright field TEM
image of hollow nanofibers synthesized using nylon 6,6 template having an average fiber diameter of ∼70 nm. (b)–(d) TEM images of
hollow nanofibers synthesized using templates with average fiber diameters of ∼70, ∼330, and ∼740 nm, respectively. (e) High-resolution
TEM image, and (f) SAED pattern of AlN hollow nanofibers synthesized using a template having ∼330 nm average fiber diameter. Reprinted
with permission from [333]. Copyright (2013) John Wiley and Sons.

Figure 12. (a) SEM image of conformally coated GaN on porous Si structure using PEALD. (b) SEM image of GaN hollow nano-cylinders
obtained after RIE etching of top GaN layer and surrounding Si substrate material. (c) High-resolution TEM image of GaN nano-cylinder,
(Inset) TEM image of a single GaN hollow nano-cylinder.
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might show enhanced material properties when compared to
the core-only nanostructure, which provide significant
potential for numerous applications

ALD of ZnO has been implemented to coat particles of Si
[358], SiO2 [359–362], TiO2 [363], and Al2O3 [364] for
applications in photocatalysis. A viscous flow or fluidized bed
reactor configuration is suitable for coating nanoparticles using
ALD. More commonly, ALD of ZnO has been performed on
1D structures such as nanorods, nanotubes, nanofibers, and
nanowires made of Si or SiO2 [365–372], SnO2 [373–376],
TiO2 (figure 15) [377], and Al2O3 [378, 379]. Alternatively,
ALD of TiO2 has been performed on ZnO nanofibers
(figure 15) to produce TiO2–ZnO core–shell nanofibers [377].
Generally, the fabrication of these structures are more appli-
cation centered and concentrated on photoluminescence and
chemo-resistive properties of the fabricated nanostructures
[358, 361, 368, 369, 378, 379]. Typically, 1D core part of these
structures is prepared using alternative techniques such as
hydrothermal or vapor liquid solid (VLS) growth due to the
relative difficulty of fabricating 1D structures directly with
ALD [362, 363, 365, 367, 370, 373, 376, 380–383]. Taking
advantage of high conformality and uniformity of ALD

coatings, shell portions of these structures are commonly
grown using ALD [368, 375, 382, 384–386]. AlN/BN core
shell hollow nanofibers (HNFs) (figure 16) have been synthe-
sized by successive ALD of AlN and low temperature
sequential CVD of BN on electrospun nylon polymer nanofi-
brous templates [284]. Material characterization showed that
crystalline BN/AlN nanofibers were fabricated with relatively
low impurity content. The nanoneedle-like 3D morphology of
BN ALD-coating is particularly noteworthy in this study [284].
Overview of core–shell nanostructures prepared inpart or
totally by ALD is provided in table 5.

4. Applications of ALD-grown nanostructured

semiconductors

Material/crystalline properties of low-temperature ALD-
grown thin-film semiconductors are considerably weaker than
high-temperature epitaxial counterpart films grown via
MOCVD, CVD, MBE, etc. Therefore, its quite hard for
ALD-grown semiconductor films to compete with epitaxial
films in terms of device performance. Despite this drawback,

Figure 13. TEM (a)–(d) and STEM (e)–(i) images of: (a) SWCNTs and their bundles; SWCNTs coated by (b) 50-cycle, (c) 100-cycle, and (d)
150-cycle ALD GaSx; (e), (f) ADF-STEM images; and STEM-EELS mapping of (g) gallium, (h) sulfur, and (i) both gallium and sulfur.
Reprinted with permission from [336]. Copyright (2014) John Wiley and Sons.
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ALD-grown thin-film semiconductors might find use particularly
in applications where low-temperature deposition is critical.
Flexible electronics is such a field which can be utilized in
wearable and implantable devices including chemical and optical
sensors, active matrix displays with integrated thin-film transis-
tors (TFT), etc. ZnO and GaN have been the main materials of
choice for the development of ALD-grown active device layers
for TFT, photodetector, and sensors [397–401].

On the other hand, as overviewed in section 3, ALD is an
attractive method for the fabrication of complex and high-
surface area 0D, 1D, 2D, and core–shell nanostructures which
can be hardly accomplished via conventional high-temperature
epitaxial growth techniques. For this reason, in this part, we
would like to overview the device applications where only
nanostructured semiconductors grown/fabricated by ALD are

utilized. Among various device applications demonstrated in
literature based on nanostructured semiconductors, energy
storage, catalysis, photocatalysis, solar cells, opto-electronics,
and chemical sensing constitute the vast majority of reports.

4.1. Energy storage

Many of the deficiencies of Li-ion batteries such as limited
power density, storage capacity, and slow charging/dischar-
ging can be alleviated to certain extent by nanostructuring the
electrode which can implicate shorter Li+ and electron
diffusion paths. By having a large contact area with the
electrolyte (low thickness) and/or the current collector may
allow the use of materials with low conductivity which will
result in high power capability. Besides, certain nano-scale

Figure 14. High-resolution images of the graphene deposited by 10 ALD cycles. The atomic-resolution image was obtained using an FEI
Titan G2 60–300 at an acceleration voltage of 300 kV (the scale bar is 2 nm). Inset (A): filtered image of the area within the red rectangular
frame. Inset (B): pixel intensity profile of the graphene along the blue line in inset (A), which was used to calculate the distance between the
second-nearest neighboring carbon atoms in the hexagonal carbon rings using the Digital Micrograph software. Reprinted with permission
from [353]. Copy right (2014) The Royal Society of Chemistry.
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Table 4. Overview of the growth conditions employed to synthesize 2D nanostructures using ALD. The materials deposited, the morphology, precursors used, the temperature during ALD, and
preparation method are mentioned.

Material 1st precursor 2nd precursor Growth temperature Morphology Preparation method References

MoS2 Molybdenum hexacarbonyl (Mo(CO)6) H2S 120 °C–200 °C Nanosheets ALD of MoS2 on Si [354]
Mo(CO)6 H2S 175 °C–225 °C Nanosheets ALD of MoS2 on SiO2 [346]
MoCl5 H2S 475 °C Nanosheets ALD of MoS2 on SiO2/Si and quartz [355]
MoCl5 H2S 350 °C–450 °C Nanosheets ALD of MoS2 on SiO2/Si [347]
MoCl5 H2S 500 °C–900 °C Nanosheets ALD of MoS2 on SiO2/Si [348]
Mo(CO)6 Dimethyl disulfide 100 °C Nanosheets ALD of MoS2 on Carbon fiber papers

and Si
[356]

Mo(NMe2)4 (HS(CH2)2SH) 50 °C followed by
annealing

Nanosheets ALD of MoS2 on SiO2/Si and silica
nanoparticles

[345]

WS2 WF6 H2S 300 °C–350 °C Nanosheets ALD of WS2 on Si, SiO2, stainless steel,
and polycrystalline Si

[350]

WF6 H2S 250 °C–300 °C Nanosheets ALD of WS2 on Rolling element
bearing

[349]

WH2(iPrCp)2 O2 300 °C followed by
sulfurization of WO3

Nanosheets ALD of WS2 on SiO2/Si substrates [351]

WH2(iPrCp)2 O2 300 °C followed by
sulfurization of WO3

Nanosheets ALD of WS2 on SiO2/Si substrates [352]

Bis(tert-butylimido)-bis(dimethylamido) tungsten
(((tBuN)2(Me2N)2W))

O2 150 °C followed by CS2
vulcanization

Nanosheets ALD of WS2 on Quartz [357]

Graphene Benzene H2 400 °C Layer of
graphene

ALD of graphene on Cu foil [353]
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quantum-size effects can increase the electrode storage
capacity as well. Moreover, nanostructured electrodes can
withstand stresses due to volume expansion and contraction
which enables enhanced reversible cycling of the electrode
material [404–408].

As described in previous sections, ALD with its con-
formal growth mechanism, can be effectively used to produce
nanostructures via template-assisted strategy. Such nanos-
tructures can then be used as electrode materials to enhance
the energy storage capacity of Li-ion and other alternative
(Li–O2, Li-polymer, Li-air, etc) batteries. Conformal and
ultra-thin ALD-grown coatings can also be used as electrode
protection/passivation layers to reduce electrolyte decom-
position on the surface of the electrode and dissolution of
electrode material into the electrolyte [415–418]. Some
examples from the literature are presented in this section.

Battery application of ALD nanocoatings was first
demonstrated in energy storage devices using particle based
electrodes where TiN was coated on Li4Ti5O12 aimed for
improving inter-particle electrical conductivity [402]. The

film in this study was quite thin (∼6 nm) and therefore, did
not cause any performance problems with Li+ ion diffusion
process [402]. ALD has also assisted in making composite
nanoparticle electrodes for Li-ion batteries. In one such
report, SnO2/graphene nanosheets composite electrode was
fabricated by performing SnO2 ALD on graphene nanosheet
powder [403]. ALD-grown TiO2 has also been employed in
Li-ion batteries [404, 405]. TiO2 has been used as an anode
material and features the advantage of relatively high redox
potential [392, 406–414]. TiO2 was coated on peptide nano-
fibers followed by calcination at high temperature which
removed peptide material as well as crystallized the TiO2 to
anatase phase [405]. The resulting TiO2 hollow nanonetwork
demonstrated higher storage capacity and charge rate per-
formance (figure 17) when compared with TiO2 nanopowder
electrodes, which was attributed to prominent nanosize effects
in TiO2 nanonetwork [405]. In another study, TiO2 coated on
Au nanoparticles was utilized as Li ion battery anode material
(figure 18) [413]. Power performance of the electrode
improved with the decrease in TiO2 thickness by reducing the

Figure 15. Representative TEM images of the core–shell heterojunction nanofibers (a) ZnO–TiO2, (b) TiO2–ZnO; (c) and (d) HRTEM
images of the ‘shell’ regions of (a) and (b), respectively. Reprinted with permission from [377]. Copy right (2014) The Royal Society of
Chemistry.
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Li+ diffusion pathway, enhancing the Li+ solid solubility, and
minimizing the voltage drop across the electrode/electrolyte
interface (figure 19) [413].

For Li–S batteries, ALD has been used to develop a 3D
structured thin TiO2 shell which acts as a cathode material
and provides high electronic and ionic conductivity [415]. An
inverse opal structure has been formed which aids against
polysulfide dissolution due to O2 vacancies which facilitate
S–Ti–O interactions. These oxygen vacancies were created
from reduction of TiO2 with hydrogen [415]. Polysulfide
dissolution or shuttle effect is a common problem with Li–S
batteries where polysulfides react with Li metal at electrode to
form lower order polysulfides. This phenomena leads to the
formation of a high-impedance solid–electrolyte interface
(SEI) layer that consumes the electrolyte and active material
and causes anode decay eventually leading to battery cell
failure.

TiN and TaN grown using remote plasma ALD have
been applied in 3D all-solid-state micro-batteries as Li dif-
fusion barrier layers [416, 417]. The Li diffusion barrier
properties of ALD TiN was significantly better than sputtered
TiN barriers. ALD grown TiN in Si pores was shown to
behave as excellent barrier layer and current collector [418].
In that study, low pressure chemical vapor deposition
(LPCVD) grown Si was used as an anode material and was

coated with ALD TiN to serve as Li barrier and current col-
lector [418]. ALD grown V2O5 was demonstrated to be a
good alternative cathode material [419]. Especially, the V2O5

annealed at 400 °C offered excellent electrochemical stability
and cyclability for Li+ ions [419]. ALD grown Co3O4 was
shown to be a decent anode material as well where good
cycling performance and high storage capacity were obtained
in electrochemical tests [420].

4.2. Photocatalysis

Hydrogen produced from water splitting is a potentially clean
fuel with its high energy density and environmental friendli-
ness. Production of hydrogen from water splitting needs an
external energy source and solar energy is an attractive
choice, forming a complete renewable energy cycle. Photo-
electrochemical splitting of water on semiconductor electrode
materials (n-type TiO2) is an efficient and inexpensive way of
producing clean hydrogen fuel [421–430]. The major chal-
lenges in this research field range from reactor design to the
discovery of novel high-surface area nanostructured materials
that can achieve decent activity levels [421–430]. ALD has
played a significant role in fabricating a large variety of
nanostructured semiconductor materials for applications in
photocatalysis.

Figure 16. (a) and (b) Representative bright field TEM images of AlN HNFs. (c) and (d) Representative bright field TEM images of AlN/BN
bishell HNF having an average inner fiber diameter of ∼100 nm with an average wall thickness of ∼20 nm and ∼35 nm of AlN and BN,
respectively. (e) Representative HR-TEM image of AlN/BN bishell HNF. (f) EDX elemental map of aluminum, boron, and nitrogen from an
individual AlN/BN HNF. Reprinted with permission from [284]. Copyright (2014) AIP publishing.
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Table 5.Overview of the growth conditions employed to synthesize core–shell nanostructures using ALD. The materials deposited, the morphology, precursors used, the temperature during ALD,
and preparation method are mentioned.

Core–shell Materials Precursors for 1st material Precursors for 2nd material Growth temperature Morphology Preparation method References

ZnSe–CdSe Elemental Zn and Se Elemental Cd and Se 400 °C–420 °C Nanowires Growth initiation using gold
nanoparticles and the
vapor–liquid–solid
mechanism

[387]

ZnO–ZrO2 Zn(CH2CH3)2 and H2O — 177 °C Nanoparticles ZnO growth on ZrO2

nanoparticles
[388]

ZnO–BaTiO3 Zn(CH2CH3)2 and H2O — 177 °C Nanoparticles ZnO growth on BaTiO3

nanoparticles
[388]

SiOx–ZnO (C2H5)2Zn and H2O SiOx growth through CVD 170 °C Nanowires ZnO shell layer growth on
SiOx nanowires

[365]

ZnO–SiO2 (C2H5)2Zn and H2O Commercially purchased SiO2

particles
177 °C Nanoparticles ZnO growth on SiO2

nanoparticles
[362]

ZnO–TiO2 (C2H5)2Zn and H2O Commercially purchased TiO2

particles
177 °C Nanoparticles ZnO growth on TiO2

nanoparticles
[362]

ZnO–TiO2 (C2H5)2Zn and H2O2 Commercially purchased TiO2

nanopowder
50 °C, 100 °C,
and 177 °C

Nanoparticles ZnO growth on TiO2

particles
[363]

ZnO–polystyrene (PS) Zn(CH2CH3)2 and H2O — 80 °C and 90 °C Nanocrystals ZnO growth on
monodisperse

[380]

PS colloidal nanospheres
ZnO–SnO2 (C2H5)2Zn and H2O SnO2 nanofibers prepared by

electrospinning
150 °C Nanofibers ZnO growth on SnO2

nanofibers
[373]

TiO2–ZnO (C2H5)2Zn and H2O TiO2 nanofibers prepared by
electrospinning

150 °C Nanofibers ZnO growth on TiO2

nanofibers
[381]

Bi2O3–ZnO (C2H5)2Zn and H2O Thermal evaporation of Bi2O3

nanowires
Nanowires ZnO growth on Bi2O3

nanowires
[383]

ZnO–Si (C2H5)2Zn and H2O Si nanowires growth using CVD 25 °C Nanowires ZnO growth on Si
nanowires

[367]

CoFe2O4–TiO2 Titanium Directed assembly of colloidal
CoFe2O4 in a Langmuir–Blodgett
monolayer

200 °C Nanoparticles/film
composites

TiO2 growth on CoFe2O4

nanoparticles/film
composites

[384]

Isopropoxide and acetic acid
CoFe2O4–ZnO (C2H5)2Zn and H2O Directed assembly of colloidal

CoFe2O4 in a Langmuir–Blodgett
monolayer

70 °C Nanoparticles/film
composites

ZnO growth on CoFe2O4

nanoparticles/film
composites

[384]

ZnTe–ZnO (C2H5)2Zn and H2O ZnTe nanowires growth using gold
catalyzed vapor–liquid–solid
mechanism

60 °C, 100 °C, 150 °C
and 200 °C

Nanowires ZnO growth on ZnTe
nanowires

[382]

ZnO–Si (C2H5)2Zn and H2O Si nanopillars fabricated by self-
masking dry etching in hydrogen-
containing plasma

200 °C Nanopillars ZnO growth on Si
nanopillars

[370]
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Table 5. (Continued.)

Core–shell Materials Precursors for 1st material Precursors for 2nd material Growth temperature Morphology Preparation method References

ZnMnTe/ZnO (C2H5)2Zn and H2O ZnMnTe nanowires fabricated
through MBE technique using
gold-catalyzed vapor– liquid–solid
mechanism.

200 °C, 250 °C,
and 300 °C

Nanowires ZnO growth on ZnMnTe
nanowires

[389]

ZnO–SnO2 SnCl4 and H2O ZnO nanorods prepared by thermal
evaporation

350 °C Nanorods SnO2 growth on ZnO
nanorods

[376]

ZnO–Al2O3 Al2(CH3)6 and H2O ZnO nanorods synthesized by aqu-
eous chemical route

180 °C Nanorods Al2O3 growth on ZnO
nanorods

[385]

ZnO–ZnO (C2H5)2Zn and H2O ZnO nanorods synthesized by aqu-
eous chemical route

180 °C Nanorods ALD ZnO growth on ZnO
nanorods

[385]

ZnO–Si (C2H5)2Zn and H2O Si nanopillars obtained by dry etching
using silver nanodots as mask

200 °C Nanopillars ZnO growth on Si
nanopillars

[371]

ZnO–SiO2 (C2H5)2Zn and H2O Silica nanosprings grown using vapor
liquid solid mechanism

175 °C Nanosprings ZnO growth on silica
nanosprings

[368]

ZnO–SnO2 (C2H5)2Zn and H2O SnO2 nanowires growth via vapor
liquid solid mechanism

150 °C Nanorods ZnO growth on SnO2

nanorods
[375]

ZnO–SnO2 (C2H5)2Zn and H2O SnO2 nanowires growth via vapor
liquid solid mechanism

Nanowires ZnO layer growth on SnO2 [386]

Nanowires
ZnO–Si (C2H5)2Zn and H2O Si nanotips fabrication using high-

density electron cyclotron reso-
nance (ECR) plasma etching

90 °C Nanotips ZnO layer growth on Si [372]

Nanotips
SnO2–TiO2 TiCl4 and H2O Rod-like SnO2 300 °C Nanoparticles TiO2 grown on SnO2

particles
[390]

Particles prepared through a basic
synthetic route.

ZnO–Si (C2H5)2Zn and H2O Si nanowires fabrication through
electroless metal deposition

50 °C Nanowires ZnO growth on Si
nanowires

[369]

ZnO–ZnSnO4 (C2H5)2Zn and H2O Synthesis of Zn2SnO4 nanorods
through thermal evaporation of a
mixture of ZnO, SnO2, and gra-
phite powders

150 °C Nanorods ZnO growth on ZnSnO4

nanorods
[374]

ZnO–Al doped ZnO (C2H5)2Zn, Al2(CH3)6, and
H2O

Fabrication of ZnO nanowires using
thermal evaporation

150 °C Nanowires Al-doped ZnO growth on
ZnO nanowires

[378]

ZnO–Cu (C2H5)2Zn and H2O Cu e-beam evaporation 120 °C Nanoclusters ZnO growth on Cu
nanoclusters

[391]

ZnO–TiO2 (C2H5)2Zn and H2O Tetrakis(dimethylamido)titanium and
H2O

200 °C Nanofibers ALD of TiO2 and ZnO on
electrospun polymer
fibers

[377]
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Table 5. (Continued.)

Core–shell Materials Precursors for 1st material Precursors for 2nd material Growth temperature Morphology Preparation method References

ZnS–CuS Bis (2,2,6,6-tetramethyl-3,5-
heptanedionato)zinc and
H2S

Bis(2,2,6,6-tetramethyl-3,5 heptane-
dionato)copper and H2S

200 °C Multilayer films ZnS and CuS deposited on
top of each other

[180]

TiO2–SnO2 Tetrakis(dimethylamino)tin
(IV) and H2O

Titanium(IV) isopropoxide and H2O 175 °C and 160 °C for
SnO2 and TiO2

growth, respectively.

Nanotube arrays TiO2-SnO2 nanotubes fabri-
cated using porous alu-
mina membrane template

[392]

ZnO–HfO2 Hafnium tetrakis(ethylmethy-
lamino) and H2O

ZnO nanowires prepared through
hydrothermal method

200 °C Nanowires HfO2 growth on ZnO
nanowires

[393]

ZnO–Al2O3 Al2(CH3)6 and H2O ZnO nanorods prepared through
hydrothermal method

100 °C Nanorods Al2O3 growth on ZnO
nanorods

[394]

ZnO–Fe2O3 (C2H5)2Zn and H2O Thermal oxidation of Fe foils to
obtain Fe2O3 nanorods

150 °C Nanorods ZnO growth on Fe2O3

nanorods
[395]

ZnO–TiO2 TiCl4 and H2O (C2H5)2Zn and H2O 120 °C, 160 °C, 200
°C, or 240 °C

Multilayers ZnO and TiO2 deposited on
top of each other

[396]

ZnO–TiO2, TiO2–ZnO Tetrakis(dimethylamino)tin
(IV) and H2O

(C2H5)2Zn and H2O 200 °C Nanofibers ZnO ALD on TiO2 nanofi-
bers or vice versa

[377]

BN-AlN TMA and N2/H2 (C2H5)3B and N2/H2 AlN at 100 °C and BN
at 450 °C

Nanofibers AlN growth on polymeric
nanofibers followed by
BN growth

[284]
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ALD-grown nanostructured TiO2 and ZnO semi-
conductors are active materials for applications in photo-
catalysis for organic dye degradation, photoelectrochemical
water splitting, and metal-insulator-semiconductor (MIS)

photocatalysts for hydrogen generation [421–430]. A good
example features TiO2/TiSi2 core/shell nanostructures which
were fabricated by combining CVD and ALD [431]. High
surface area material network was particularly useful in
improving photon absorption which in combination with high
electrical conductance, provides superior charge transport
properties. Photoelectrochemical water splitting was shown
with this nanonetwork with a peak efficiency of 16.7% [431].
In another study, CdS/TiO2 nanotube-array coaxial hetero-
geneous structures were fabricated and characterized for
photocatalytic reactions such as water splitting and degrada-
tion of organic pollutants [432]. CdS was deposited con-
formally on TiO2 nanotubes using electrochemical ALD; an
analog of ALD based on surface limited reactions using
under-potential deposition method [432]. The coaxial
CdS/TiO2 hetereostructure significantly enhanced active
contact area with electrolyte which reduced the distance that
electrons and holes must travel resulting in enhanced photon
absorption and photocurrent generation [432]. ALD of
hematite was reported on TiSi2 nanonets [433]. The nanonets
performed a dual role of structural support and charge col-
lector, allowing for an enhanced photon to charge conversion
and resulting in enhanced photocurrents [433].

Paracchino et al reported a highly active photocathode
for solar H2 production which consisted of electrodeposited
cuprious oxide protected against photocathodic decomposi-
tion in water by a thin ALD coating of Al-doped ZnO and
TiO2 [434]. Finally, electrodeposited Pt nanoparticles acti-
vated the nanostructures for hydrogen evolution. The elec-
trodes showed photocurrents up to −7.6 mA cm−2 at a
potential of 0 V versus the reversible hydrogen electrode at
mild pH [434].

Pan et al fabricated TiO2 porous structures by depositing
TiO2 on a reticular sponge template followed by a subsequent
heat treatment [429]. Annealing of free standing TiO2 porous
structure resulted in phase transition and production of oxy-
gen vacancies [429]. The porous TiO2 structure demonstrated
excellent photocatalytic ability owing to co-action of high
surface area, oxygen vacancies, and the optimal crystal
structure [429]. Singh et al reported design and fabrication of
high-surface-area photocatalysts by depositing TiO2 on
fibrous nanosilica (KCC-1) using ALD [427]. Size quantiza-
tion effects were observed from TiO2 nanoparticles which
were obtained after heat treatment of these ALD-coated
samples of KCC-1 [427]. Enhanced photocatalytic activity
was observed which was attributed to unique textural prop-
erties and morphology of KCC-1 and TiO2 nanoparticle for-
mation and their size quantization. Zhang et al fabricated
novel model of MIS photocatalysts for hydrogen generation
in the ultraviolet to near-infrared region [421]. The MIS
photocatalysts consisted of metal co-catalyst (Pt), electron
tunneling layer (ALD grown TiO2), and photoactive non-
stoichiometric core (Ti3+ dopedTiO2 nanocrystal). The MIS
photocatalysts exhibited efficient hydrogen generation
(52 μmol h−1 g−1

), good reusability (16 h), and long-term
stability (>7 d) [421]. ALD of ZnO was conducted on elec-
trospun nylon 6,6 nanofibers (figure 20) and the core–shell
nylon 6,6-ZnO nanofiber mats were utilized as a filtering/
membrane material for treatment of organic pollutants for
water purification (figure 21) owing to their efficient photo-
catalytic properties, structural flexibility, and stability [302].
ALD growth cycles numbers were changed to grow either
ZnO nanoparticles or a continuous film on electrospun
polymeric nanofibers (figure 22) for the fabrication of flexible
photocatalytic nanofibrous membranes [295].

4.3. Photovoltaics and optoelectronics

Solar cell device technology have been under continuous
development over the past five decades. Their wide spread
usage is hindered by two main factors; limited conversion
efficiency and high cost. ALD as a conformal thin film
coating technique has been extensively utilized for surface
passivation and humidity barrier of Si-based solar cells to
improve cell efficiency [435]. Here, we will focus on the use
of ALD to fabricate semiconductor nanostructures for appli-
cations in photovoltaics and optoelectronics.

ALD has been used to fabricate high surface area ZnO
nanotube photoanodes using AAO templates for application in
dye sensitized solar cells (DSSCs) [436]. ALD was used to
coat AAO pores which provides a path for charge collection
over tens of micrometer thickness. ZnO nanotube cells showed
superior photovoltage and fill factor (FF) as compared to
similar ZnO based devices [436]. In another study, ALD was
used to deposit ITO in a porous template as a high-surface area
photoelectrode, which was sequentially coated with amorphous
TiO2 [437]. Due to radial collection of electrons, this new
photoelectrode architecture revealed higher current densities as
compared to their counterpart control devices which lack efficient
current collection [437]. Hamann et al fabricated photoanodes

Figure 17. Rate capability of the TiO2 nanonetwork, the 25 nm- and
100 nm-TiO2 nanopowders from C/5 to 5 C for 10 cycles. Reprinted
with permission from [405]. Copyright (2009) American Chemical
Society.
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using high surface area mesoporous aerogel thin films as
templates [438]. ZnO with a controlled variable thickness was
conformally deposited on aerogels using ALD [438]. The
electrodes used in DSSCs showed enhanced light harvesting
and power conversion efficiency compared to other ZnO
based DSSCs. Owing to its ease of fabrication, flexibility of
design, and excellent initial performance, ALD-coated aero-
gel-based photoanodes are promising alternatives to nano-
particle based electrodes in DSSCs [438]. In another report,
Park et al fabricated ZnO nanocrystallites coated with ultra-
thin TiO2 ALD layer to increase the power conversion effi-
ciency of DSSCs [438]. TiO2 layer increased both FF and
open circuit voltage as a result of decreased surface charge
recombination without compromising on photocurrent density
[438]. Foong et al employed a liquid-phase atomic layer
deposition (LALD) process to coat TiO2 in porous anodic
alumina templates followed by alumina dissolution for

application in hybrid solar cells [439]. The LALD overcomes
the vacuum conditions needed in conventional gas phase
ALD and provides yet an ALD-like GPC and high con-
formality [439]. The viability of TiO2 nanotube arrays grown
on indium tin oxide (ITO)–glass electrodes was also exam-
ined for use in model hybrid poly(3-hexylthiophene)
(P3HT):TiO2 solar cell devices [439].

Chandiran et al fabricated mesoscopic photoanodes for
solid-state perovskite absorber solar cells by employing ALD
grown TiO2 overlayer on the mesoporous nanoparticle TiO2

films [440]. The nanoparticle-TiO2-ALD TiO2 film is infil-
trated with perovskite absorber. Authors showed that their
structured photoanodes block electron recombination effec-
tively and it overrides the commonly used multi-step passi-
vation prevailing in the DSC community [440]. Observations
revealed that even a 2 nm thick TiO2 can impede the electron
back reaction effectively from FTO and TiO2 surface

Figure 18. Relevant transport processes and microstructure of 3D np-Au/TiO2 electrodes for lithium ion batteries. (a) An illustration of
relevant transport processes in 3D porous LIB electrodes: (1) Li+ transport through the electrolyte; (2) charge transfer at the electrolyte/
electrode interface; (3) Li+ transport in the active material; (4) electron transport in the current collector; (5) electron transfer from the current
collector to the active material; (6) Li+/electron recombination. (b) Scanning electron micrograph (SEM) of np-Au with a pore size of
750 nm. (c), (e)–(i) SEM images of TiO2 ALD coated np-Au samples after annealing at 600 °C for various pore size (75, 225, and 750 nm)

and TiO2 film thickness (2, 7, and 20 nm). All SEM images were taken at the same magnification. (d) Raman spectra from a TiO2-coated np-
Au sample measured before and after annealing at 600 °C revealing the phase transition from as-deposited amorphous TiO2 to anatase.
Reprinted with permission from [413]. Copyright (2015) American Chemical Society.
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resulting in a photovoltaic power conversion efficiency of
11.5% [440]. In another similar work, authors examined the
passivation effect of ALD TiO2 on hydrothermally grown
one-dimensional (1D) TiO2 nanorod (NR) arrays (figure 23)
for solid-state perovskite-sensitized solar cells [441]. Their
findings revealed that 4 nm thick ALD-grown TiO2 passi-
vated NR sample controls the back flow reactions and shows
a power conversion efficiency as high as η=12.53% for the
CH3NH3PbI3 perovskite absorbing layer [441].

Nanostructured ALD ZnO and TiO2 are the leading
materials used for UV photodetection owing to their suitable
band gap [339, 442–446]. High-quality ZnO–TiO2 core
shell nanowires revealed enhanced UV sensing properties
owing to superior anti-reflection properties and electron–hole

separation mechanism. The preparation comprised of two
steps: ZnO nanowires fabrication by hydrothermal synthesis
followed by ALD of TiO2. The photoresponsivity was 495
A/W at 373 nm under −10 V which is ∼8 times higher than
photodetector fabricated from bare ZnO NWs (figure 24)
[445]. Three-dimensional polyacrylonitrile/ZnO material
were prepared by combination of electrospinning and atomic
layer deposition. The UV photoresponse current for this
configuration was enhanced by a factor of 250 compared to a
flat electrode [339]. TiO2/Ag nanorods (figure 25) were
fabricated by successive glancing angle deposition of Ag on
Ag film/Si template and ALD of TiO2. Nanostructured
devices showed a photo response enhancement factor of
1.49×102 under 3 V reverse bias (figure 26) [442].

Figure 19. Effect of the TiO2 layer thickness on (a) charge/discharge voltage profiles (measured at 0.1 C) and (b) the rate performance of
nanoparticle-Au/TiO2 electrodes with 750 nm pores. (c) Potential separation and miscibility gap measured at 0.1 C as a function of the TiO2

layer thickness. (d) IR drop/TiO2 layer thickness dependency for various pore sizes measured by the current interrupt method. The inset
shows a typical charge-rest-discharge voltage profile collected from a 750/7 nm sample (charge/discharge at 10 C, interrupted at 3 V). Note
the linear correlation between IR drop and TiO2 layer thickness. Reprinted with permission from [413]. Copyright (2015) American
Chemical Society.
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4.4. Chemical sensing

Gas sensors work on the basis of the modulation of the
materials’ physical properties (e.g., electrical, optical) in
presence of the target species/molecules. Thin-film and
nanostructured metal-oxide semiconductors are most widely
used as active layers in chemo-resistive gas sensors, where
SnO2 is one of the most intensely studied semiconductor
material [312, 395, 447–454]. Owing to the strong correlation
between grain size and sensor response, use of ALD-grown
nanostructured and heterostructured materials show promise
in the enhancement of gas sensing capacity.

Chemical sensors find important applications in every-
day life which modify their properties (e.g., electrical,
optical) in presence of target species. In general, ALD-
grown semiconductor metal oxides have been utilized as
active layers in chemo-resistive sensors and the most pro-
minent one is SnO2 [312, 395, 447–454]. One of the recent
notable work in this area was from Kim et al who reported
superior toluene sensing properties of SnO2–ZnO core–shell
nanowires functionalized with Pt nanoparticles (figure 27)

[453]. SnO2 nanowires were fabricated via vapor–liquid–
solid growth on patterned electrode and ZnO shell layers
were grown subsequently via ALD process. Pt nanoparticles
were attached to core–shell nanowires via γ-ray radiolysis
[453]. An exceptional sensitivity of 279 was obtained for
100 ppb of toluene, where the response was measured
Ra/Rg, where Ra and Rg represent the device resistance
values in the absence and presence of an analyte gas,
respectively. The dual effect of the expanded electron-
depleted region in the ZnO layer and the catalytic effect of
the functionalized Pt NPs are the reason behind exceptional
toluene sensitivity and selectivity [453].

Park et al examined the ethanol gas sensing properties of
In2O3/ZnO core–shell nanowires [450]. The core–shell
nanowires were grown by evaporation of indium powder in
an oxidizing atmosphere and subsequent atomic layer
deposition of ZnO [450]. The In2O3/ZnO core–shell nano-
wires exhibited more than 6-fold higher response to 1000 ppm
ethanol at 300 °C than pristine In2O3 nanowires
(figure 28) [450].

Figure 20. Representative TEM images of (a) 8%-nylon 6,6/FA-ZnO, (b) 5%-nylon 6,6/HFIP-ZnO, (c) 8%-nylon 6,6/HFIP-ZnO core
−shell nanofibers; (d) representative SAED pattern of the core−shell nylon 6,6-ZnO nanofibers (8%-nylon 6,6/HFIP-ZnO NF). Reprinted
with permission from [302]. Copyright (2012) American Chemical Society.
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Katoch et al reported fabrication of TiO2/ZnO double-
layer hollow fibers (DLHFs) as superior sensing materials for
reducing gases [447]. The DLHFs were synthesized by
sequentially growing TiO2 and ZnO on sacrificial polymer
templates followed by a final thermal treatment [447]. The
outer ZnO layer becomes more resistive after donating elec-
trons to inner TiO2 layer. After the exposure of reducing
gases such as CO, the outer resistive ZnO layer partially
regains its original resistivity [447].

5. Conclusions and outlook

ALD-grown nanoscale compound semiconductor materials
have already demonstrated significant potential for energy
conversion and storage, opto-electronics, flexible/wearable
electronics, photocatalysis, and sensing applications. ALD
shows its superiority particularly in high-surface area nano-
templated semiconductors, where lack of precise thickness
control and 3D conformality are detrimental. However, the

Figure 21. (a) UV–vis spectra of the Rh–B solution with and without core–shell nylon 6,6-ZnO nanofibers as a function of the UV irradiation
time for 1st cycle experiment, (b) the rate (C/C0) of Rh–B degradation of the Rh–B solution with and without core–shell nylon 6,6-ZnO
nanofibers by exposing UV light with 365 nm wavelength for 1st and 2nd cycle experiments; (c) representative photographs of the flexible
nylon 6,6-ZnO core–shell nanofibers before UV treatment and after 2nd cycle of UV treatment. Reprinted with permission from [302].
Copyright (2012) American Chemical Society.

Figure 22. Representative TEM images of nanofibers: (a) nylon–ZnO nanoparticles, (b) nylon–ZnO nanoparticles (highly dense), and (c)
nylon–ZnO nanocoating. Reprinted with permission from [295]. Copyright (2013) Royal Society of Chemistry.
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full potential of these materials is hampered by the insufficient
crystalline quality due to relatively high impurity incorpora-
tion within the films as a result of low substrate temperatures
and incomplete ligand-exchange surface reactions. Never-
theless, there is an increasing effort in developing novel ALD

recipes for semiconductor materials using alternative pre-
cursor chemistries, innovative reactor designs, and finely
tuned deposition parameters. As materials and device engi-
neering rapidly approaches the atomic-scale era, there is an
increasing need for precisely engineered atomic-scale mate-
rials covering an even wider spectrum of alternative set of
materials. Device sizes and individual layer dimensions are
shrinking towards single-digit nm and even sub-nm scale,
where poly-crystalline material might even meet local epi-
taxial quality by featuring sufficiently large crystal sizes.
Moreover, the needed device layer thicknesses are reducing
below the critical thickness values which might eliminate the
lattice mismatch problem for semiconductor heterostructures.
As a result, ALD will most probably be an even stronger
contender to deliver new materials solutions at the atomic-
scale, including compound and elemental semiconductors for
future complex device architectures.

Finally, we would like to share our opinions regarding
future perspectives, challenges, and opportunities for ALD-
grown nanoscale semiconductors:

• The crystalline quality of low-temperature ALD-grown
layers should be further improved via systematic studies
featuring various alternative activation mechanism includ-
ing plasma, radical/electron, UV/photo/e-beam-assisted

Figure 23. TEM and HRTEM images of TiO2 nanorods coated with CH3NH3PbI3. (a) TEM image of a CH3NH3PbI3-covered TiO2 nanorod.
(b) HRTEM image of a TiO2 nanorod. The inset shows the SAED pattern. (c) Highly magnified HRTEM image of the CH3NH3PbI3 and
TiO2. The ALD layers and TiO2 nanorods are indicated by the respective colors. (d) HRTEM image and (inset) live FFT pattern of the
selected area of CH3NH3PbI3 nanoparticles in (c). Reprinted with permission from [441]. Copyright (2015) American Chemical Society.

Figure 24. Photoresponsivity spectra of the photodetectors fabricated
from the bare ZnO NWs and from the ZnO–TiO2 core–shell NWs.
Reprinted with permission from [445]. Copyright (2014) Elsevier.
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approaches, substrate bias, optimized reactor designs, and
novel precursor chemistries

• In the post-Moore era, CMOS technology needs more
than ever novel materials solutions with atomic-scale
precision engineering. ALD is already an integral part of
CMOS processing and will play an even more critical role
in feature sub-10 nm or single-digit nm technology nodes
(7, 5, 3, 2 nm), where low-temperature grown atomic-
scale semiconductors might find use within the 3D device
architectures.

• Atomic-scale materials processing era will unleash
quantum-size effects in low-dimensional semiconductors,
thereby introducing challenges as well as opportunities
for novel device designs. ALD-grown semiconductors
might play a significant role at such reduced dimensions.
Moreover, even non-semiconducting materials such as
certain semi-metals might exhibit semiconductor-like
properties due to quantum confinement effect at few
atomic-layer dimensions [455]. The exploitation of
materials at the atomic level will enable an unprecedented
power of materials and device engineering.

• ALD-grown semiconductors might enable a wide range
of emerging device applications for future internet of
things (IoT) platform and cyber-physical systems, which
necessitates compact, autonomous sensors with integrated
energy harvesting and storage systems, and wireless

communication transmitter/receiver modules on cost-
effective substrates such as flexible and low-temperature
compatible polymers

• ALD know-how in semiconductor materials will trigger
other atomic layer processing techniques including
atomic layer etching and atomic layer doping to form a
complete semiconductor processing toolbox with atomic-
scale precision and control

• In order to develop atomic-scale device structures without
the need for highly complex and expensive advanced
lithography techniques, an ultimate advancement in
materials processing would be to develop self-aligned
processes, which necessitates selective material deposi-
tion and etching recipes. Towards this lithography-free
device fabrication goal, selective atomic layer processing
of dielectrics, metals, and semiconductors should be
developed. Such a bottom-up processing tool-box will
lead to atomic-level precision manufacturing capability.

Figure 25. (a) Tilted and (b) top view SEM images of TiO2 deposited
on Ag nanorods/Ag thin film/Si by ALD, respectively. Reprinted
with permission from [442]. Copyright (2015) AIP publishing.

Figure 26. Relative responsivity values measured versus applied
reverse bias of the fabricated (a) Al/TiO2/Ag(NRs)/Ag(TF)/Si and
(b) Al/TiO2/Ag(TF)/Si photodiodes under illumination of different
laser diodes. Reprinted with permission from [442]. Copyright
(2015) AIP publishing.
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Figure 27. TEM images of the Pt NP-functionalized SnO2–ZnO core–shell NWs with a ZnO shell thickness of 50 nm. (a) A low-
magnification TEM image. (b), (c) High-resolution lattice images. (d) EDS line profiles for O, Sn, Zn, and Pt. Reprinted with permission from
[453]. Copyright (2015) American Chemical Society.

Figure 28. Electrical responses of the gas sensors fabricated from (a) pristine In2O3. (b) In2O3-core/ZnO-shell nanowires. Reprinted with
permission from [450]. Copyright (2014) American Chemical Society.
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