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Abstract 

The crucial role of protein interactions and the difficulty in characterising them 

experimentally strongly motivates the development of computational approaches for 

structural prediction. Even when protein-protein docking samples correct models, current 
scoring functions struggle to discriminate them from incorrect decoys. The previous 

incorporation of conservation and coevolution information has shown promise for 

improving protein-protein scoring. Here, we present a novel strategy to integrate atomic-

level evolutionary information into different types of scoring functions to improve their 

docking discrimination. 
We applied this general strategy to our residue-level statistical potential from InterEvScore 

and to two atomic-level scores, SOAP-PP and Rosetta interface score (ISC). Including 

evolutionary information from as few as ten homologous sequences improves the top 10 

success rates of these individual scores by respectively 6.5, 6 and 13.5 percentage points, on 

a large benchmark of 752 docking cases. The best individual homology-enriched score 
reaches a top 10 success rate of 34.4%. A consensus approach based on the complementarity 

between different homology-enriched scores further increases the top 10 success rate to 

40%. 

All data used for benchmarking and scoring results, as well as pipelining scripts, are available 

at http://biodev.cea.fr/interevol/interevdata/ 
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1 INTRODUCTION 

Proteins are key actors in a great number of cellular functions and often work in collaboration 

with others, thereby forming interaction networks. Knowledge of the detailed 3D structure 

of protein-protein interfaces can help to better understand the mechanisms they are 

involved in. Difficulties in the experimental determination of protein assembly structures 

have prompted the development of in silico prediction strategies such as molecular docking. 

When no homologous interface structure can be identified and used as a template, free 

docking is used instead, involving a systematic search where many interface conformations 

called decoys are sampled (Huang, 2014; Porter, et al., 2019). These decoys are then scored 

according to properties such as interface physics, chemistry, and statistics (Huang, 2015; 

Moal, et al., 2013). Guided docking approaches integrating complementary sources of 

information are also becoming increasingly popular (Koukos and Bonvin, 2019). 

Over time, protein interfaces are submitted to evolutionary pressure to maintain functional 

interactions. Thus, protein interfaces tend to be more conserved than other regions on their 

surface (Mintseris and Weng, 2005; Teichmann, 2002) and signs of coevolution can be 

detected at protein interfaces, where potentially disrupting mutations are compensated for 

with mutations in contacting positions on the protein partner. These phenomena of 

conservation and coevolution can provide useful information in the analysis and prediction 

of their 3D interface structures (Andreani, et al., 2020). For example, evolutionary information 

is at the heart of increasingly popular covariation-based approaches, such as statistical 

coupling analysis (SCA) (Socolich, et al., 2005) or direct coupling analysis (DCA) (Morcos, et 

al., 2011), for structural proximity prediction of residues based on multiple sequence 

alignments (MSAs). These approaches can be used to guide protein folding or to supplement 

predictions of macromolecular interactions (Cocco, et al., 2018; Cong, et al., 2019; Simkovic, 

et al., 2017). The vast majority of protein interaction site predictors successfully use 

evolutionary information, be it by sequence conservation, sequence co-evolution, or through 

homologous structures (Andreani, et al., 2020). 
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Evolutionary information can also be especially useful to guide molecular docking (Geng, et 

al., 2019). The InterEvDock2 server implements a docking pipeline that uses evolutionary 

information (Quignot, et al., 2018; Yu, et al., 2016). It takes advantage of the spherical Fourier-

based rigid-body docking programme FRODOCK2.1 (Ramírez-Aportela, et al., 2016) for the 

sampling step and hands out a set of ten most probable interfaces based on a consensus 

between three different scores, FRODOCK2.1’s mostly physics-based score, SOAP-PP’s 

atomic statistical potential (Dong, et al., 2013) and InterEvScore (Andreani, et al., 2013). 

InterEvScore extracts co-evolutionary information from joint multiple sequence alignments 

of the binding partners (called coMSAs), but unlike covariation-based approaches such as 

DCA cited above, InterEvScore needs only a small number of homologous sequences to 

improve discrimination between correct and incorrect decoys, by combining coMSAs with a 

multi-body residue-level statistical potential. As seen in the benchmarking of InterEvDock2, 

InterEvScore presents a high complementarity with SOAP-PP (Quignot, et al., 2018). As both 

scores are based on statistical potentials but SOAP-PP has an atomic level of detail, we 

hypothesised that a score integrating evolutionary information at an atomic scale might pick 

up on finer properties to better distinguish near-natives from the rest of the decoys.  

In InterEvScore, evolutionary information is given implicitly at residue-level through coMSAs 

and combined with a coarse-grained statistical potential. A major challenge in deriving 

evolutionary information to an atomic level of detail is finding a suitable way of representing 

residue-scale information from coMSAs at an atomic level. Here, we present a novel strategy 

to couple evolutionary information with atomic scores to improve decoy discrimination. We 

reconstruct an equivalent and hypothetical interfacial atomic contact network for each 

interface decoy and each pair of homologs present in the coMSAs, by using a threading-like 

strategy to generate explicit backbone and side-chain coordinates. These models can, in 

turn, be scored with non-evolutionary atomic-resolution scoring functions such as SOAP-PP 

(Dong, et al., 2013) or Rosetta interface score (ISC) (Chaudhury, et al., 2011; Gray, et al., 2003).  

Here, we show that including explicit evolutionary information improves the top 10 success 

rate of SOAP-PP and ISC by 6 and 13 percentage points respectively, on a large benchmark 
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of 752 docking cases for which evolutionary information can be used (Yu and Guerois, 2016). 

It also improves the top 10 success rate of the residue-level statistical potential from 

InterEvScore by 6.5 percentage points. We then use a consensus approach to take advantage 

of the complementarity between different scores. The top 10 success rate of a consensus 

integrating FRODOCK2.1 with InterEvScore and SOAP-PP increases from 32% to 36% when 

including the homology-enriched score variants. A more time-consuming consensus 

combining all scores with an explicit homolog representation reaches 40% top 10 success 

rate.  

2 METHODS 

2.1 Docking benchmark 

We evaluated docking methods using the large docking benchmark PPI4DOCK (Yu and 

Guerois, 2016), where unbound structures unavailable from experiments were modelled by 

homology from unbound homologous templates. Each case in PPI4DOCK is associated to a 

coMSA, i.e. a pair of joint MSAs for the two docking partners. To focus on cases with enough 

co-evolutionary information, we excluded antigen-antibody interactions and cases with less 

than 10 sequences in their coMSAs. Sampling was performed using FRODOCK2.1 (see 

supplementary methods section 5.1.1) and only the top 10,000 decoys were kept. Near-

native decoys were defined as being of Acceptable or better quality following the criteria 

from CAPRI (Critical Assessment of PRediction of Interactions) (Mendez, et al., 2003). To focus 

the study on scoring performance, only cases that have a near-native within the top 10,000 

FRODOCK2.1 decoys were used for benchmarking. This resulted in a final benchmark of 752 

cases (supplementary Table 5-1). 

Performance was measured by top N success rate, i.e. the percentage of cases with at least 

one near-native in the top N ranked decoys. We especially focus on the top 10 success rate 

traditionally used as a docking metric, and the top 50 success rate since consensus 
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computation typically involves the top 50 decoys of each score (see section 2.2.1). Additional 

metrics are available in the supplementary information (section 5.1.2). 

2.2 Scoring functions  

In addition to FRODOCK2.1’s integrated score (Ramírez-Aportela, et al., 2016), we rescored 

decoys and their threaded homologs with InterEvScore, SOAP-PP, and Rosetta interface 

score (ISC). 

InterEvScore combines co-evolutionary information taken from coMSAs with a residue-level 

statistical potential (Andreani, et al., 2013). It was re-implemented to accelerate the scoring 

step (see supplementary methods section 5.1.3).  

SOAP-PP is an atomic statistical-based score integrating distance-dependent potentials 

learnt on a set of real complex structures and normalised on a set of incorrect PatchDock 

decoys (Dong, et al., 2013). Here, we use a faster in-house implementation of this score (see 

supplementary methods section 5.1.3).  

Rosetta interface score (ISC) includes a linear combination of non-bonded atom-pair 

interaction energies and empirical and statistical potentials among other terms (Chaudhury, 

et al., 2011; Gray, et al., 2003). This score is calculated by subtracting the total energy of both 

monomeric structures from the total energy of the complex structure. Since Rosetta ISC is 

sensitive to small variations and clashes at the interface, we included high-resolution 

interface side-chain optimisation as a scoring option (see supplementary methods section 

5.1.3). Decoys for which Rosetta scoring did not converge after 10 iterations were assigned 

the worst score for that case. As Rosetta ISC scoring can take up to a couple of minutes per 

structure, we scored only the top 1,000 FRODOCK2.1 decoys (noted later 1k) per case rather 

than 10,000 (noted 10k).  
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2.2.1 Consensus scores 

The aim of the consensus is to preferentially select decoys supported by several scores. 

Consensus calculations were performed similarly to InterEvDock2 (Quignot, et al., 2018) to 

obtain a set of 10 most likely decoys depending on the agreement between several scoring 

functions. Here, we apply consensus scoring to combinations of 3 to 5 different scoring 

functions. For a given set of scoring functions, ordered according to their individual 

performances from best to worst performing, the top 10 decoys of each scoring function 

receive a convergence count based on the number of similar decoys (defined as L-RMSD ≤ 

10 Å) that are found in the top 50 decoys of each other scoring function. The final 10 

consensus decoys are selected iteratively by decreasing convergence count (if > 1). In the 

case of a tie, decoys are selected according to the ranking order of their respective scoring 

functions. Note that decoys are added to the top 10 consensus only if they are not 

structurally redundant with the already selected ones (L-RMSD > 10 Å). If necessary, the 

consensus list is completed up to 10 decoys by selecting the top 4, 3, 3 decoys for a 

consensus between three scoring functions (or the top 3, 3, 2, 2 or top 2, 2, 2, 2, 2 decoys 

for a consensus between four or five scoring functions, respectively). 

2.3 Docking strategy to integrate evolutionary 

information  

The proposed homology-enriched docking pipeline consists of four steps outlined in Figure 

2-1. First, we dock query proteins A and B for which we are trying to predict the 3D structure 

of the complex using FRODOCK2.1 (Ramírez-Aportela, et al., 2016). This results in a set of 

rotational and translational transforms that define a maximum of 10,000 complex decoys 

(Figure 2-1A). In parallel, we construct coMSAs and subsample them to a subset of M pairs 

of homologs (proteins A1 and B1, A2 and B2, ..., AM and BM, homologs of query proteins A and 

B respectively) (see section 2.3.1). We model the unbound structures of this subset of M pairs 

of homologs, using the threading function from RosettaCM’s pipeline (Song, et al., 2013) 
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and the unbound query protein structures as templates (see Figure 2-1B and section 2.3.2). 

We then generate complex equivalents to each query decoy by applying the translational 

and rotational transforms obtained in the docking step to each pair of homologs. Figure 

2-1C illustrates this reconstruction for the first pair of homologs (proteins A1 and B1). Finally, 

we average scores over the query decoy itself and its equivalent homolog decoys to obtain 

a final per-decoy score that integrates all the information (Figure 2-1D). Note that for one 

case, we have to compute (M+1) x N scores to obtain the final ranking of N decoys. The 

scoring functions we used are described in section 2.2. All steps of the pipeline are easily 

parallelisable to reduce end-user runtime, whether through MPI (sampling step) or by 

splitting over decoys (scoring steps).  

 

Figure 2-1: Docking pipeline with explicit modelling of decoy homologs. (A) Upon docking of query 
unbound structures (proteins A and B in green and blue), FRODOCK2.1 outputs a rotation and translation 
matrix to reconstruct the corresponding decoys.  (B) To generate their homologous counterparts, the unbound 
structures of each homolog (proteins A1 and B1, A2 and B2, ..., AM and BM, in various shades of orange and 
magenta) are threaded based on the query unbound structures (proteins A and B) and the homologous 
sequence alignments in the coMSAs of the query proteins. (C) For each homolog pair (such as homolog 1 
illustrated here), decoys can be reconstructed using the same rotation and translation matrix as for the query. 
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(D) The final score of each decoy (left column) corresponds to the average score over itself and its M homolog 
equivalents for a given scoring function. 

2.3.1 Subsampling homologs in the coMSAs 

Homologous sequences used in scoring were taken from the coMSAs provided with the 

PPI4DOCK benchmark, reduced to maximum M=40, and then to M=10 sequences (plus the 

query sequence) to limit computational time. Indeed, it was already seen with InterEvScore 

that co-evolutionary information can be extracted from alignments with as few as 10 

sequences (Andreani, et al., 2013). The sequences in the coMSAs are ordered by decreasing 

average sequence identity with the query sequences. This is taken into account when sub-

selecting sequences to keep a representative subset of sequences in both reduced coMSAs. 

Sequence selection was performed in three steps. First, the number of sequences was cut at 

100, as in the InterEvDock2 pipeline. Then the alignment was filtered with hhfilter 3.0.3 

(Remmert, et al., 2011) from the hh-suite package. hhfilter was applied with the “-diff X” 

option on the concatenated coMSAs and the value of X was adjusted for each case to return 

a reduced alignment with no more than 41 sequences (i.e. the query + 40 homologs). At this 

stage, we obtain the first set of reduced coMSAs with maximum 40 sequences, which we call 

coMSA40, and that are representative of the full diversity of the initial coMSAs. Finally, 11 

equally distributed sequences (i.e. the query + 10 homologs) were uniformly selected within 

coMSA40 in order to preserve sequence diversity compared to the initial coMSAs (see 

supplementary methods section 5.1.4). The final set of reduced coMSAs is called coMSA10. 

2.3.2 Threading models 

Pairwise alignments between the template structure and the homolog sequence to be 

modelled were directly extracted from the reduced coMSAs. The templates used for 

threading were the unbound template structures provided in the PPI4DOCK benchmark (Yu 

and Guerois, 2016) (see supplementary methods section 5.1.5). 

Rosetta’s threading programme, the first step in the RosettaCM pipeline (Song, et al., 2013), 

was used to thread the homologous sequences onto the template structure. We used 
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Rosetta 3.8 (version 2017.08.59291). No insertion, N- or C-terminus were modelled. This 

resulted in gapped and mainly structurally conserved threaded models of the homologs, 

where backbone coordinates remained unchanged and side-chain rotamers were different 

from the template’s side-chains only if the residue type changed between the template and 

the homologous sequence (Figure 2-1B).  

3 RESULTS 

3.1 Consensus approach with implicit homology scoring 

In previous work, we integrated evolutionary information implicitly at the coarse-grained 

level by scoring decoys with residue-based InterEvScore (noted IES) (Andreani, et al., 2013). 

In IES, for each decoy, we enumerate all residue-level interface contacts. We then use a res-

idue-level statistical potential to score decoys by considering all sequences in a coMSA and 

assuming the same contacts were conserved in all homologous interfaces. 

We also combined InterEvScore with complementary scores FRODOCK2.1 and SOAP-PP 

(supplementary Figure 5-1A) in a three-way consensus score, denoted Cons3, which prefer-

entially selects decoys supported by several scores (section 2.2.1) (Quignot, et al., 2018; Yu, 

et al., 2016). Compared to individual scores, we observed a notable boost of about 8 points 

in the top 10 success rate using Cons3, which captures a near-native in the top 10 decoys in 

32% of the cases (Table 3-1 and Figure 3-1A).  

Table 3-1: Performance of consensus scores including InterEvScore implicit homology scoring. Scores 
used in three-way consensus score Cons3 were SOAP-PP on the top 10,000 FRODOCK2.1 decoys (SPP/10k), 
InterEvScore on full coMSAs and on the top 10,000 FRODOCK2.1 decoys (IES/10k) and FRODOCK2.1 (FD2.1). 
Performances of individual scores used in the consensus are reported in terms of top 10 and top 50 success 
rates since consensus calculation relies on the top 50 decoys ranked by each component score. 

Score Top 10 success rate Top 50 success rate 

FD2.1 164 (21.8%) 292 (38.8%) 
IES/10k 182 (24.2%) 287 (38.2%) 
SPP/10k 183 (24.3%) 328 (43.6%) 
Cons3 241 (32.0%) / 
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Figure 3-1: Success rate as a function of the number of selected decoys for individual and consensus 

scores. Illustration of the success rate on an increasing number of top N decoys with N going from 1 to 100. 
(A) FRODOCK2.1 (FD2.1), SOAP-PP (SPP) and InterEvScore (IES) individual and consensus scores (dashed lines) 
and their homology-enriched variants on coMSA40 and 10,000 decoys (10k) (solid lines). (B) Rosetta ISC scores 
(dashed lines) together with homology-enriched variants of individual scores on coMSA10 and 1,000 decoys 
(1k) and selected homology-enriched consensus scores (solid lines). Performances were measured on 752 
benchmark cases. Note that consensus scores produce only a selection of 10 decoys, hence they stop at N=10. 

 

This complementarity between the examined scores, in particular SOAP-PP and InterEvScore, 

(supplementary Figure 5-1A) prompted us to attempt a more explicit integration of 

evolutionary information into the various scores. Following the pipeline described in 

methods section 2.1 (Figure 2-1), in the next sections, we include evolutionary information 
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into individual scores InterEvScore and SOAP-PP through explicit atomic-level models of 

homologous decoys. 

3.2 InterEvScore with explicitly modelled homologs 

For efficiency, we represent homologs at atomic resolution by threading their sequences 

onto the query structure (section 2.3.2). As a first step to validate this new representation of 

evolutionary information, we test the performance of InterEvScore on these threaded models 

and compare it with the original InterEvScore. With the threaded models, atomic contacts 

are re-defined in each homolog at an explicit level, rather than implicitly deduced from the 

coMSAs as in the original InterEvScore. In practice, we calculate the threaded homolog 

version of InterEvScore (denoted IES-h) by scoring query decoys and their threaded homolog 

equivalents with the InterEvScore statistical potentials (section 2.3). The final score of each 

query decoy corresponds to the average score over the query decoy itself and its homologs.  

Table 3-2 and Figure 3-1A show the performance of IES-h40, i.e. IES-h computed using 

threaded homologs from the set of reduced coMSAs with a maximum of 40 sequences 

(coMSA40, see section 2.3.1). Results for the original InterEvScore with complete coMSAs (IES) 

and coMSAs40 (IES40) are also shown for comparison. Reducing the number of sequences to 

40 does not strongly affect performance in terms of the top 10 and top 50 success rates. 

However, the top 10 success rate increases from 23.8% to 27.0% when using explicit 

threaded models (IES-h40) instead of only implicit coMSA information (IES40). Of note, a 

variant of InterEvScore without evolutionary information, where only the query decoy gets 

scored by the statistical potential, has a much lower top 10 success rate of 20.5% 

(supplementary Table 5-2). 

The difference in performance between IES40/10k and IES-h40/10k can be explained by the 

fact that, in IES-h40, contacts are not extrapolated from the query interface network anymore 

but are redefined in each homolog based on their modelled interface structure. 
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Table 3-2: Performance of InterEvScore using coMSAs without or with threaded models. Top 10 and top 
50 success rates of InterEvScore on complete coMSAs (IES, reported in section 3.1 and Table 3-1) and coMSA40 
(IES40) compared to InterEvScore using explicit threaded models of homologs in coMSA40 (IES-h40) on 10,000 
decoys (/10k). Performances were measured on 752 benchmark cases. 

 Top 10 success rate Top 50 success rate 

IES/10k 182 (24.2%) 287 (38.2%) 

IES40/10k 179 (23.8%) 284 (37.8%) 

IES-h40/10k 203 (27.0%) 335 (44.5%) 

 

3.3 Homology-enriched SOAP-PP  

Having explicit structures at atomic resolution corresponding to each homolog enables us 

to score them directly using an atomic potential such as SOAP-PP (Dong, et al., 2013), which 

might be able to better exploit the atomic detail of homologs for the final ranking of query 

decoys. As for the threaded version of InterEvScore, homology-enriched SOAP-PP (SPP-h40) 

consists in the average SOAP-PP score over all homologs including the query decoy itself. 

SPP-h40 performs better than SOAP-PP on the query decoys alone (Table 3-3 and Figure 

3-1A). Using threaded homology models in this way gives a large performance boost to 

SOAP-PP (+6 percentage points on the top 10 success rate). SPP-h40 also outperforms 

InterEvScore and IES-h40 (section 3.2) as well as the FRODOCK2.1 score (section 3.1).  

Table 3-3: Performance of SOAP-PP against SPP-h40. Top 10 and top 50 success rates of SOAP-PP (SPP) 
compared to its homology-enriched version SPP-h40 over sequences in coMSA40 on 10,000 decoys (/10k). 
Performances were measured on 752 benchmark cases. 

 Top 10 success rate Top 50 success rate 

SPP/10k 183 (24.3%) 328 (43.6%) 
SPP-h40/10k 228 (30.3%) 365 (48.5%) 
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3.4 Homology-enriched Rosetta interface score (ISC) 

Since we build atomic-level homolog models of decoys, we can score them explicitly using 

a physics-based score such as Rosetta ISC. As Rosetta scoring is much more computationally 

expensive (about 750 times slower) than SOAP-PP and InterEvScore, to compute homology-

enriched ISC, the number of decoys was reduced to 1,000 (as ranked by FRODOCK2.1) and 

the number of homologs to 10 (coMSAs10, section 2.3.1). 

As above, homology-enriched ISC consisted in the average score of the query and its 

homologous decoys (ISC-h10). For easier comparison, homology-enriched InterEvScore and 

SOAP-PP were evaluated in the same conditions (i.e. 1,000 decoys and coMSAs10) (Table 3-4 

and Figure 3-1B). Their success rates are very similar to those with 10,000 decoys and 

coMSAs40 (supplementary Table 5-3). Even though ISC on query decoys performs worse than 

SPP-h and IES-h, ISC-h10 largely outperforms the best-performing individual score, SPP-h10, 

with 34.4% top 10 success rate (259 cases) compared to 30.2% (227). With only 165 

successful cases in common, SPP-h10 and ISC-h10 remain very complementary 

(supplementary Figure 5-1B). 

Note that for scores calculated on the top 1,000 FRODOCK2.1 decoys, success rates are 

technically capped to 77.1%, as only 580 cases out of the 752 in our benchmark have a near-

native within this subset of decoys. In light of this, the ISC-h10/1k performance is all the more 

remarkable.  

Table 3-4: Scoring performance of Rosetta homology-enriched ISC. Scoring performance of ISC on query 
decoys only and using the threaded homology models (ISC-h10) on top 1,000 FRODOCK2.1 decoys (1k) and 
coMSA10 as well as the performance of SPP-h10 and IES-h10 on 1,000 FRODOCK2.1 decoys with coMSA10 for 
easier comparison. Performances were measured as the top 10 and top 50 success rates on 752 benchmark 
cases. 

 Top 10 success rate Top 50 success rate 

IES-h10/1k 200 (26.6%) 338 (44.9%) 
SPP-h10/1k 227 (30.2%) 362 (48.1%) 

ISC/1k 157 (20.9%) 301 (40.0%) 
ISC-h10/1k 259 (34.4%) 361 (48.0%) 
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3.4.1 Using ISC to re-score homology-enriched decoys 

ISC-h10 showed the highest top 10 success rate from all scores tested above, but scoring 

1,000 x 11 decoys with Rosetta ISC is excessively time consuming in a generalised docking 

context as it takes approximatively 137 CPU hours per case (supplementary Table 5-4). One 

way to alleviate the total scoring time is to score only a pre-selected amount of decoys, using 

Rosetta ISC as a second step in the scoring pipeline.  

In Cons3, we pre-selected the top 50 decoys of FRODOCK2.1, InterEvScore, and SOAP-PP. 

Similarly, here we use the top 50 decoys of the top-performing homology-enriched score 

variants tested above, namely SPP-h40/10k and IES-h40/10k, as well as FRODOCK2.1. These 

scores have a high complementarity in terms of top 10 success rate with only 67 cases found 

in common between all three (supplementary Figure 5-1C). Using this subset of 150 pre-

selected decoys for ISC scoring (referred to with /150h) reduced scoring times approximately 

by a factor 7. We enrich near-natives in this set of 150 decoys since they were pre-selected 

by three already well-performing scores, but only 476 out of 752 cases in our benchmark 

possess a near-native in this subset.  

In terms of the top 10 success rate, both ISC-h10 and ISC perform better on 150 than 1,000 

decoys with 36.0% and 29.0% top 10 success rate instead of 34.4% and 20.9%, respectively 

(Table 3-5 and Figure 3-1B). Here again, the addition of evolutionary information to ISC 

through the threaded homolog models remarkably increases its performance. ISC-h10/150h 

has the best performance of all tested scores so far, for a much lower computational cost 

than ISC-h10/1k. 

Table 3-5: Performance of ISC and ISC-h10 on 150 pre-selected decoys. Below are summarised the top 10 
success rates of ISC and ISC-h10. Top 10 success rates of ISC/150h and ISC-h10/150h were calculated after a 
pre-selection of a maximum of 150 decoys taken from the 3 x top 50 decoys of IES-h40/10k, SPP-h40/10k, and 
FRODOCK2.1. Scoring was performed on all 752 benchmark cases. 

Score Top 10 success rate Top 50 success rate 

ISC/150h 218 (29.0%) 394 (52.4%) 
ISC-h10/150h 271 (36.0%) 411 (54.7%) 
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3.5 Homology-enriched consensus scoring 

As a first step, we calculate Cons3-h, the homology-enriched variant of the Cons3 base 

consensus score presented in section 3.1. Calculating a three-way consensus using higher-

performing homology-enriched variants (Cons3-h) instead of their original counterparts 

(Cons3) increases the top 10 success rate from 32% to 36% (Table 3-6 and Figure 3-1A). 

Consensus Cons3-h performs as well as ISC-h10/150h, while calculated on the same top 150 

decoys, and computation is about 20 times faster for Cons3-h than for ISC-h10/150h.  

Out of the 271 successful cases for Cons3-h and ISC-h10/150h, only 199 cases are common. 

Moreover, ISC and ISC-h10 remain complementary to SPP-h40/10k, IES-h40/10k, and FRO-

DOCK2.1 (supplementary Figure 5-1D and Figure 5-1E). This led us to test four- and five-way 

consensus approaches to combine ISC optimally with other homology-enriched scores. We 

tested two four-way consensuses that integrate ISC without homology on 1,000 or 150 de-

coys (Cons4-h/1k and Cons4-h/150h respectively) and two five-way consensuses that inte-

grate ISC both with and without homology on 1,000 or 150 decoys (Cons5-h/1k and Cons5-

h/150h respectively). Performances are reported in Figure 3-1B and Table 3-6, together with 

time estimates when parallelising the whole pipeline on 4 CPUs.  

Table 3-6: Performance of homology-enriched consensus scores. Performance of three-, four- and five-
way consensus scores in terms of top 10 success rates on 752 benchmark cases and approximate timescales 
for the whole pipeline (including sampling with FRODOCK2.1, homology model generation, scoring steps, and 
consensus calculation). Scores used in Cons3 were SOAP-PP/10k, InterEvScore/10k, and FRODOCK2.1. Scores 
used in all homology-based consensuses (ConsX-h) were FRODOCK2.1, SPP-h40/10k, IES-h40/10k, ISC and ISC-
h10. The three-way consensus included the first three scores, four-way consensuses included all scores up to 
ISC and five-way consensuses included all of them. ConsX-h/150h included ISC scores over 150 decoys only 
and ConsX-h/1k included ISC scores over 1k decoys.  

Consensus 
Top 10 success 

rate 

Whole pipeline time 

estimates on 4 CPU* 

Cons3 241 (32.0%) 15 min 

Cons3-h 271 (36.0%) 15 min 

Cons4-h/150h 276 (36.7%) 45 min 
Cons4-h/1k 282 (37.5%) 3 h 15 
Cons5-h/150h 289 (38.4%) 5 h 30 
Cons5-h/1k 304 (40.4%) 34 h 30 

* all steps are parallelisable using MPI (sampling) or over the decoys (scoring) 
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With five-way consensus Cons5-h/1k, the top 10 success rate rises to 304 cases (40.4%). 

Unfortunately, computation time strongly increases, since we have to compute ISC-h10 on 

1,000 decoys. The most time-effective consensus, Cons3-h, has 36.0% top 10 success rate 

and the same top 1 success rate as Cons5-h/1k (Figure 3-1B and supplementary Table 5-5). 

4 DISCUSSION 

In InterEvScore (Andreani, et al., 2013), evolutionary information improved protein-protein 

scoring performance when given implicitly through coMSAs and coupled with a coarse-

grained, residue-level statistical potential. Combining InterEvScore with complementary 

scoring functions FRODOCK2.1 and SOAP-PP by computing a consensus (Quignot, et al., 

2018; Yu, et al., 2016) improved over the individual scores, reaching 32% top 10 success rate 

(see Table 3-1). However, this strategy did not take full advantage of the three scores’ 

complementarity and we thus decided to combine directly evolutionary information from 

coMSAs with atomic scores such as SOAP-PP. To this aim, we threaded coMSA homologs of 

docked query proteins and scored homologous decoys together with each query decoy.   

With this new explicit implementation of evolutionary information, we tested a variant of 

InterEvScore where we scored decoys and their modelled homologs with a residue-level 

statistical potential. This modified version (named IES-h) had a slightly improved success rate 

compared to the implicit homology version (see Table 3-2). The explicit representation of 

homologous decoys enabled us to build homology-enriched versions of atomic scores 

SOAP-PP (SPP-h) and Rosetta ISC (ISC-h). For both, adding homology drastically improved 

top 10 success rates (see Table 3-3 and Table 3-4) even when coMSAs were down-sampled 

to a maximum of 10 homologous sequences. The Rosetta homology-enriched version, ISC-

h10, had outstanding performances, but it also was the most time-consuming score, about 

750 times slower than SOAP-PP or InterEvScore. The first compromise between computation 

time and performance was to run ISC-h10 on a pre-selection of 150 decoys defined by the 

top 50 decoys of SPP-h40/10k, IES-h40/10k, and FRODOCK2.1 (see Table 3-5). This score had 
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the same top 10 success rate (36%) as a much faster consensus score involving the same top 

150 decoys. Taking further advantage of this complementarity, different four- and five-way 

consensus calculations managed top 10 success rates from 36.7% to 40.4% at runtimes 

ranging from 45 minutes to 34.5 hours on four CPUs (Table 3-6). 

Our homology enriched scoring scheme is robust to change in the definition of near-natives 

(supplementary Table 5-6) and in evaluation metrics (supplementary Table 5-7). Using a 

more stringent definition of near-natives (as being of at least Medium quality according to 

CAPRI criteria) still allows homology enrichment to boost predictive performance of scoring 

functions. However, consensus scores become less efficient than the best individual scoring 

functions, probably because when grouping decoys with a relatively loose similarity criterion 

(see methods section 2.2.1), we do not manage to selectively up-rank Medium quality decoys 

(supplementary Table 5-6). 

We further tried to understand the origin of the large performance improvements obtained 

through homology enrichment. Scoring performance improves when near-natives are 

recognised better (positive selection) or when wrong decoys are down-ranked (negative 

selection). In the homology-enriched scores described in this work, correct decoys could be 

up-weighted by conserved interfaces in the homologous decoys and, at the same time, 

incorrect decoys could be discredited by statistically incompatible, clashing, or incomplete 

homologous decoys (since insertions in reference to the query structures were not 

modelled). We decided to first explore the simplest explanations, namely, deletions and/or 

clashes at the interface of homologs that would pull down the average score of the incorrect 

decoys. However, this does not seem to be the main driving force of ISC-h10’s success over 

ISC, as the number of gaps or the number of clashes (defined as heteroatom contacts under 

1.5 Å) at the interface of homologous decoys do not strongly correlate with the given scores. 

Additionally, ranking using only the repulsive van der Waals component of the Rosetta score 

(fa_rep) performs very poorly in comparison to other scoring schemes with at most 34 out 

of 752 cases with correctly identified near-natives in the top 10 (supplementary Table 5-8). 

Finally, IES-h, SPP-h, or ISC-h variants where only the worst homologous decoys are taken 
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into account when scoring each query decoy showed systematically worse performance than 

using the full range of homologous decoys for each query decoy (supplementary Table 5-8). 

This means that the performance of the homology-enriched scores is positively driven by 

the recognition of correct decoys rather than the exclusion of incorrect decoys through the 

presence of clashes or gaps.  

Improvement of the SOAP-PP and Rosetta ISC scoring functions by homology enrichment is 

significant (supplementary Figure 5-2) and consistent over difficulty categories 

(supplementary Table 5-9). When splitting results over PPI4DOCK difficulty categories, we 

observe that the strongest relative gain for the SPP-h and ISC-h homology-enriched scores 

compared to their versions without homology occurs on “very_easy” cases, followed by 

“easy” cases (supplementary Table 5-9). A few cases are gained in the “hard” category, but 

the “very_hard” category remains largely inaccessible to the tested scores, even though our 

benchmark is limited to cases where at least one near-native decoy was sampled in the top 

10,000 FRODOCK2.1 decoys (there are only 16 such “very_hard” cases). Consensus scoring 

also consistently improves results over the “very_easy”, “easy” and “hard” categories, in order 

of decreasing improvement. We hypothesise that correct ranking of very_easy and easy 

decoys is mainly dependent on the ability to score positively native-like models while more 

difficult categories would also require integration of flexibility, an ongoing challenge of 

protein docking (Desta, et al., 2020; Torchala, et al., 2013).  

In this work, we developed a strategy to enrich scoring functions with evolutionary 

information by including atomic-level models for as few as ten homologs. This strategy 

improves the performance of several scores with different properties: InterEvScore 

(supplementary Table 5-10), SOAP-PP, and Rosetta ISC. This means that homology 

enrichment can in principle be applied to any scoring function with at most a ten-fold 

increase in runtime. This enrichment works with a very small number of sequences compared 

e.g. to the large MSAs needed by covariation methods to pick up coevolutionary signal, 

highlighting complementarity between the two approaches, which may be exploited by 

using additional DCA-derived constraints, e.g. in intermediate cases with a few hundred 
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homologous sequences (Cong, et al., 2019; Simkovic, et al., 2017). The docking success boost 

also opens interesting perspectives regarding the large-scale application of structural 

prediction to interaction networks. Finally, with the rise of machine learning techniques in 

computational biology, one can expect interesting future developments using these 

approaches to further enhance the extraction of (co)evolutionary signal from coMSAs. 
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5 SUPPLEMENTARY INFORMATION 

5.1 Supplementary methods 

5.1.1 Docking parameters 

In the docking pipeline based on FRODOCK2.1, all parameters were set to default except for 

the following. Docking with the frodock executable used the “-t O” option for “other” com-

plexes (not enzyme and not antibody-antigen). Clustering with frodockcluster was run with 

the –d 4 option, i.e. setting a LRMSD threshold of 4 Å for clustering. 

5.1.2 Alternative evaluation metrics: DockQ and nDCG 

 A more recent evaluation of decoy quality is given by the continuous DockQ score (Basu 

and Wallner, 2016), a metric going from 0 (bad quality) to 1 (high quality), which closely 

reflects the already-existing CAPRI quality categories. To integrate the DockQ score into a 

general performance measurement over our benchmark, we made use of the discounted 

cumulative gain (DCG) as in (Geng, et al., 2019). The DCG for each case is calculated as 

follows: 

𝐷𝐶𝐺 =  ∑ 2(𝐷𝑜𝑐𝑘𝑄𝑟𝑎𝑛𝑘) − 1𝑟𝑎𝑛𝑘𝑁𝑟𝑎𝑛𝑘=1  

where rank is the rank of the decoy, DockQrank
 is the DockQ score of the decoy with that rank 

and N is the top N decoys that are taken into account for this measurement. The 1/rank 

factor gives more importance to the quality of the top scoring decoys. An ideal DCG (iDCG) 

is also calculated in order to normalise the DCG by reordering all decoys by decreasing 

DockQ score. A final normalised value (nDCG) for each case is deduced by dividing the DCG 

by the iDCG and can be extrapolated into a single value by calculating the average nDCG 

over all cases in the benchmark. Note that to speed up computations, decoys with a fraction 

of native contacts under 0.1 were given a default DockQ score of 0. 
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5.1.3 Scoring functions 

We employed an in house implementation of SOAP-PP that enables much more efficient 

scoring since decoy coordinates do not need to be explicitly generated. Note that only a 

slight reduction in performance on the 752 benchmark cases compared to the original 

SOAP-PP implementation has been observed (supplementary Table 5-11).  

We also re-implemented InterEvScore for efficiency reasons. We introduced two variations 

compared to the best original InterEvScore (Andreani, et al., 2013): we defined interface 

contacts through distance thresholds (“distance mode”), instead of tessellation (“alpha 

mode” in InterEvScore) and we took evolutionary information into account for all interface 

residues instead of apolar patches only (so-called “standard mode” in the original 

implementation). InterEvScore outputs several scoring variants; here, we used the 2/3𝐵 𝑒𝑣𝑜𝑙𝑏𝑒𝑠𝑡 
and the 2𝐵  𝑏𝑒𝑠𝑡 (Andreani, et al., 2013). In 2/3𝐵 𝑒𝑣𝑜𝑙𝑏𝑒𝑠𝑡, each interface residue contributes to 

the final score through the potential of its best 2- or 3-body contact and the potential of its 

equivalents in the homolog sequences. 2/3𝐵 𝑒𝑣𝑜𝑙𝑏𝑒𝑠𝑡 was found to perform best when scoring 

with homolog sequences (InterEvScore with implicit homology) (Andreani, et al., 2013) and 

thus was used in this context. 2𝐵  𝑏𝑒𝑠𝑡 was used when scoring explicitly modelled side-chain 

models of our homologs (InterEvScore with explicit homology, IES-h). Indeed, we found that 

3-body potentials are less discriminative than 2-body potentials in the context of explicitly 

modelled decoys (supplementary Table 5-12). 

We use Rosetta 3.8 (version 2017.08.59291) and the beta_nov15 Rosetta score. Before 

scoring with Rosetta ISC, we perform high-resolution interface side-chain optimisation by 

using ‘use_input_sc’ and ‘docking_local_refine’ options of Rosetta’s docking_protocol 

executable. We also tried adding the ‘dock_min’ option (for even more conservative 

modelling and shorter scoring runtimes) but scoring results were degraded. 
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5.1.4 Details on coMSA calculation 

Compared to the original PPI4DOCK database (Yu and Guerois, 2016), coMSAs were slightly 

adjusted by realigning the first sequence (query) with all other sequences (considered as a 

block) using MAFFT (Katoh and Standley, 2013). 

When building reduced coMSA40 from the readjusted PPI4DOCK coMSAs, coMSAs that 

already had under 40 sequences before the hhfilter step were not filtered. 

The 10 sequences in coMSA10 were selected from coMSA40 as follows: Euclidian division was 

performed of the number of sequences in the coMSAs40 (including the query) over 10 with 

q and r, the quotient and remainder of this division. Starting from the first sequence, the 

next sequence is selected every q+1 for the first r steps, then every q until the end, including 

the last sequence resulting in 11 sequences with the first being the query and other 10, the 

homolog sequences. 

5.1.5 Threading models 

The PPI4DOCK benchmark contains docking targets based on unbound homology models 

of pairs of binding partners for which an experimental complex structure is available. The 

use of homology modelling for unbound partners enables to expand the benchmark, by 

alleviating the need to identify complexes for which experimental structures of the interface 

and the exact two binding partners have been solved. This makes the benchmark larger, but 

as a counterpart, in PPI4DOCK the unbound structures used for docking are themselves, 

homology models. 

In a docking context where we know the structures of the unbound partners, we would build 

homology models for all sequences in the coMSA by using the two query structures as 

modelling templates. However, since in PPI4DOCK the unbound query structures are 

themselves homology models, this would mean building a model by using a homology 

model as a template, and we felt this succession of modelling steps would lead to a loss in 
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model precision. Therefore, the templates used for threading coMSA sequences were the 

unbound templates used to build the PPI4DOCK unbound models.  

Template protein sequences were directly extracted from their structures and aligned onto 

the coMSAs using MAFFT (sequence-profile alignment) (Katoh and Standley, 2013) from 

which the pairwise homolog-template alignments were directly extracted. coMSAs were 

stripped down to positions that were covered by the query sequence. In order to ensure that 

the template structure exactly matched the template sequences in the stripped pairwise 

alignments, both template sequences were re-aligned using clustalw (Larkin, et al., 2007), 

and identified irrelevant residues in the template structure were removed. 

Threading implies that the side-chains of our homologs are mapped very conservatively 

onto the query template structure. 

5.2 Supplementary results 

5.2.1 Supplementary tables 

Table 5-1: List of the 752 docking cases used as a benchmark set in this study. This subset of the 1417 
cases in PPI4DOCK contains all cases with at least 10 sequences in the coMSAs and at least one acceptable 
decoy in the top 10,000 FRODOCK2.1 decoys. 

1a2y_AB 
1a4y_CD 
1a9n_CB 
1agr_AB 

1aro_AB 
1ava_AB 
1awc_CD 
1axi_BD 
1azs_FD 
1b4u_AD 

1b6c_AB 
1blx_AB 
1bqh_AE 
1bqq_AB 
1buh_AB 

1bzx_AB 
1c1y_AB 
1c4z_AD 
1cg5_BC 
1cgi_AB 
1cmx_AB 

1co7_AB 

1d4v_BF 
1de4_AC 
1dkf_AB 
1dl7_AB 

1dlf_AB 
1dvf_BD 
1e50_AB 
1e96_AB 
1eaw_AB 
1ebd_BC 

1em8_AB 
1euv_AB 
1ewy_AB 
1ezv_TS 
1f45_AB 

1f6f_AB 
1f6m_AC 
1fle_AB 
1flt_BC 
1fm0_AB 
1fo0_ED 

1fq1_AB 

1fqj_AB 
1fr2_AB 
1fvu_CB 
1fx0_CD 

1g3n_AB 
1g3n_AC 
1g8k_AB 
1gaq_AB 
1gcq_AC 
1gcq_BC 

1gcv_CB 
1ggp_AB 
1gl4_AB 
1gla_DH 
1got_AB 

1gpw_AB 
1gxd_AB 
1h1v_AB 
1hcf_BC 
1he8_AB 
1hx1_AB 

1hyr_BC 

1i1q_BD 
1i2m_AB 
1i4d_AC 
1i85_BD 

1i8k_AB 
1i8l_AB 
1iar_AB 
1ib1_BD 
1ikn_AB 
1ikn_CB 

1iod_CB 
1ixs_AB 
1j05_AB 
1j2j_AB 
1j7d_AB 

1jb0_AE 
1jb0_CE 
1jk0_AB 
1jql_AB 
1jr3_CD 
1jtd_AB 

1jwy_AB 

1jzd_BC 
1k5d_AC 
1k9o_AB 
1ka9_AB 

1kb5_AB 
1kcg_AC 
1kgy_AC 
1ki1_AB 
1ksh_AB 
1ktz_BD 

1kxq_AB 
1kz7_AB 
1l0o_AC 
1l9b_BD 
1lb1_AB 

1m2o_C
D 
1m2t_AB 
1m2v_AB 
1ma9_AB 
1mbx_AB 

1mfa_AB 

1mox_BD 
1mqk_AB 
1n4x_AB 
1nb5_AC 

1nbf_AB 
1npe_AB 
1nql_AB 
1nvv_AC 
1nvv_BC 
1oaq_AB 

1oc0_AB 
1oey_AB 
1of5_AB 
1ofu_AB 
1oph_AB 

1out_BC 
1p2j_AB 
1p4l_BH 
1p4l_CG 
1p8v_AF 
1pk1_AB 

1ppf_AB 

1pvh_AB 
1q5q_GN 
1qa9_AB 
1qdl_BD 

1qo3_CB 
1qop_BD 
1r0r_AB 
1r8s_AB 
1rbl_AH 
1rjc_AB 

1rv6_BC 
1s1q_AB 
1sg1_AC 
1sg1_BC 
1shw_AB 

1shy_AB 
1spg_BC 
1spp_AB 
1sq0_AB 
1stf_AB 
1sv0_AB 

1t0p_AB 

1t8o_AB 
1ta3_AB 
1taw_BD 
1tco_AC 

1tdq_AB 
1te1_AB 
1tfx_AB 
1tgs_AB 
1tgz_AB 
1to2_AB 

1tue_AB 
1tx4_AB 
1u0s_AB 
1u2g_BC 
1u75_AB 

1u7f_AB 
1uac_AB 
1uad_AB 
1uea_AB 
1uex_CB 
1us7_AB 

1usu_AB 

1uw4_AB 
1uzx_AB 
1v4x_AD 
1v7p_AC 

1vg0_AB 
1w98_AB 
1wdw_AB 
1wmh_A
B 
1wmu_B

C 
1wpx_AB 
1wq1_AB 
1wqj_AB 
1wr6_AB 

1wrd_AB 
1wt5_BD 
1x75_BD 
1x86_AB 
1x9f_EF 
1xcg_AB 

1xd3_AB 

1xg2_AB 
1xqs_AB 
1y8x_AB 
1yc0_AB 

1ycs_AB 
1yvb_AB 
1z3e_AB 
1z5x_AB 
1z5y_AB 
1z7k_AB 

1z7m_BG 
1z7x_AB 
1zc3_AB 
1ze3_AB 
1zhh_AB 

1zjd_AB 
1zr0_AB 
2a19_AB 
2a1j_AB 
2a40_AB 
2a5d_AB 

2a9m_AB 
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2ast_CB 

2atp_AC 
2aw2_AB 
2b4s_CD 
2b5i_AC 
2ba0_CH 

2bcg_AB 
2bcj_AD 
2bcn_AB 
2bex_AB 
2bkk_AB 

2bkr_AB 
2bky_AC 
2blf_AB 
2bo9_AB 
2bto_BH 
2btq_BD 

2c2v_AE 
2c5l_AB 
2cch_AB 
2cg5_AB 
2cjs_BC 

2ckh_AB 
2czv_BD 
2d5r_AB 
2d7t_AB 
2de6_AD 

2dsq_CB 
2dzn_AB 
2e27_AB 
2e2d_AB 
2e3x_AB 
2efe_AB 

2ejf_AB 
2eke_AB 
2ey4_AB 
2f5z_BC 
2f8x_CD 

2fd6_AD 
2fep_BD 
2fju_AB 
2fnj_CB 
2fu5_AB 
2g45_AB 

2goo_DF 
2gtp_AB 
2gwf_AB 
2gzd_AC 
2h62_AD 

2h62_BC 
2hle_AB 
2hrk_AB 
2htm_AC 
2hue_AB 

2hy5_BC 

2hy5_FC 
2ibg_AB 
2ie4_AB 
2ih3_DL 
2ihb_AB 

2inc_BF 
2io0_AB 
2io5_AB 
2iy0_AC 
2iy1_AB 

2j0s_AB 
2j0t_AB 
2j3t_AC 
2j59_AB 
2jb0_DH 
2jdi_AD 

2jdi_GH 
2jgz_AB 
2ngr_AB 
2nps_AB 
2npt_AB 

2nqd_AB 
2nxx_AB 
2nz8_AB 
2o25_AB 
2o26_BD 

2o2v_AB 
2o8v_BD 
2ocf_BD 
2ode_AB 
2oi9_CB 
2omz_AB 

2otu_AB 
2oul_AB 
2oxg_AB 
2oxq_BD 
2oz4_AB 

2ozb_CB 
2p45_AB 
2pbd_AB 
2pop_CD 
2ptt_AB 
2pu9_AC 

2puk_AB 
2pvg_AC 
2q5w_BD 
2qe7_AD 
2qho_AB 

2qi9_AE 
2qi9_BE 
2qkl_AB 
2qwo_AB 
2r0l_CB 

2r25_AB 

2r40_AB 
2rex_AB 
2sic_BD 
2uyz_AB 
2v1y_AB 

2v3b_AB 
2v4z_AB 
2v5q_AB 
2v7q_BE 
2v8s_AB 

2vje_BD 
2vol_BD 
2vrw_AB 
2vso_AB 
2vut_AB 
2vxs_FA 

2w19_DH 
2w83_DB 
2wbl_AC 
2wdt_AB 
2wiu_AB 

2wnv_AB 
2wnv_AC 
2wnv_BC 
2wo2_AB 
2wo3_AB 

2wp8_AC 
2wqa_DE 
2ws9_32 
2wus_AB 
2x5i_CB 
2xac_BC 

2xbb_AB 
2xko_BD 
2xqr_AB 
2xwu_AB 
2yc2_AB 

2yho_AB 
2ynm_DF 
2yvj_AB 
2z0d_AB 
2z35_AB 
2z3q_AB 

2z5c_AC 
2z7f_AB 
2za4_AB 
3a33_BC 
3a4u_AB 

3a6p_AC 
3a7a_AB 
3a8k_AB 
3a8y_AB 
3ab0_CB 

3agj_AB 

3aji_AB 
3alq_BF 
3amj_AD 
3bbp_AD 
3bdw_AB 

3bh7_AB 
3bik_AB 
3bp6_AB 
3bp8_AC 
3bpl_AC 

3bs5_AB 
3bt2_BE 
3buk_AC 
3bwu_AB 
3bx1_AB 
3bx7_BD 

3by4_AB 
3c5w_CB 
3cbj_AB 
3cji_CB 
3cki_AB 

3cph_AB 
3cpj_AB 
3cx8_AB 
3d1k_BD 
3d2f_AB 

3d2u_CB 
3d3b_AB 
3d65_AB 
3d7t_AB 
3daw_AB 
3dbh_CB 

3dge_BC 
3dlq_AB 
3dur_AB 
3dwg_AC 
3e1z_AB 

3ejb_AB 
3eno_AB 
3er9_AB 
3evs_BC 
3f1p_AB 
3f1s_AB 

3f5c_AB 
3f5c_AC 
3f7p_AB 
3f9k_BC 
3fap_AB 

3fc6_AB 
3ff7_BD 
3ff8_AC 
3fga_AB 
3fmo_AB 

3fn1_AB 

3fpn_AB 
3g33_CD 
3g3a_AB 
3g9v_AB 
3gjx_BC 

3gni_AB 
3gpr_AC 
3gqb_AB 
3gqi_AB 
3gym_AB 

3h11_AB 
3h2u_AB 
3h9r_AB 
3hax_DC 
3hct_AB 
3hei_AB 

3hh2_AB 
3hhs_AB 
3icq_AC 
3ifw_AB 
3ima_AB 

3imz_CD 
3jv4_AB 
3jv6_AB 
3jw0_AB 
3jw0_CB 

3k1i_AB 
3k2m_AB 
3k51_BF 
3k9m_AB 
3k9o_AB 
3kb3_AB 

3kbt_AB 
3kdj_AB 
3kfd_AF 
3kld_AB 
3kmu_AB 

3knb_AB 
3ks0_AC 
3kse_AB 
3kud_AB 
3kyc_CB 
3kyj_AB 

3l1z_AB 
3lb8_AB 
3lbx_AB 
3ldq_AB 
3lpe_AB 

3lqc_AB 
3ltf_CD 
3lvj_BD 
3lvl_BD 
3m0a_CD 

3m0d_D

C 
3m18_AB 
3m7f_AB 
3m7q_AB 
3mca_AB 

3mdy_AB 
3mhv_BD 
3mi9_AB 
3mkb_CB 
3msx_AB 

3n1f_AB 
3n3a_BD 
3n3k_AB 
3n5b_CD 
3n9y_AB 
3nig_AC 

3nmv_AB 
3ny7_AB 
3o2p_AB 
3of6_BD 
3oky_BD 

3or1_CE 
3p5t_AD 
3p71_AB 
3pb1_AB 
3pv6_AB 

3q3j_DH 
3q66_BA 
3q9n_AB 
3qb4_AB 
3qb7_AB 
3qht_AB 

3qn1_AB 
3qq8_AB 
3qt2_AC 
3qvg_AB 
3qwq_AB 

3qwr_AC 
3r07_AB 
3r1g_AB 
3r2c_AB 
3rpf_BD 
3t62_AB 

3tg1_AB 
3tjz_AB 
3tmp_AB 
3tx7_AB 
3u7u_AB 

3uai_AB 
3udw_AB 
3uir_AB 
3ulq_AB 
3ulr_AB 

3uou_AB 

3v2a_BC 
3v2a_BD 
3v64_AC 
3vmf_AB 
3von_AC 

3vpb_AF 
3vr4_CB 
3vti_BD 
3vyt_BD 
3wxw_CB 

3ygs_AB 
3zdm_EF 
3zhp_AB 
3zl7_AB 
3zo0_AC 
3zu7_AB 

43c9_AB 
4a49_AB 
4a63_AB 
4a8x_AC 
4ag1_AB 

4auq_FE 
4b8a_AB 
4bfi_AB 
4bgd_AB 
4bi8_AB 

4bmo_B
D 
4bnr_AB 
4bos_AC 
4bos_AD 
4bsr_AD 

4bv4_AC 
4bvx_AB 
4c4k_BA 
4c9r_CD 
4ccg_BA 

4cdk_AB 
4crw_AB 
4ct4_AB 
4cxa_AB 
4cym_AD 
4cym_BD 

4czx_BD 
4d0k_AB 
4d0l_AB 
4d0n_AB 
4dcn_AB 

4dfc_AB 
4dhi_AB 
4djd_BF 
4doh_AB 
4doh_AC 

4doh_CB 

4dri_AB 
4ds8_AB 
4dss_BC 
4dxe_BD 
4e4d_CE 

4eb5_AD 
4ekd_AB 
4emj_AB 
4es4_BD 
4etw_AB 

4ext_AC 
4ezm_BD 
4ffb_CB 
4ffy_BC 
4fjv_AB 
4fou_AB 

4fq0_AB 
4fqx_AC 
4ged_AB 
4gh7_AB 
4gmj_AB 

4goj_AB 
4gok_AB 
4grw_DB 
4grw_EA 
4gs7_AC 

4gs7_AD 
4gsl_AD 
4h2w_AD 
4h3k_AB 
4h5s_AB 
4hdo_AB 

4hgm_BA 
4hr6_CB 
4hr7_AB 
4hrl_AB 
4hrn_DC 

4i18_AC 
4i2l_CD 
4i2l_CF 
4i5l_AB 
4i6l_AB 
4i6m_AB 

4i6n_AB 
4ii2_AB 
4ij3_AB 
4ij3_AC 
4ilh_AB 

4ilw_AB 
4imi_AB 
4iop_AB 
4iso_AB 
4iyp_AB 

4j4l_AB 

4jd2_FH 
4jd2_GH 
4je4_AB 
4jeg_AB 
4jgh_CD 

4jhp_AB 
4jqw_AB 
4jx1_AB 
4k1r_AB 
4k5a_AB 

4k71_AB 
4k81_AB 
4kax_AB 
4kgq_HJ 
4kml_AB 
4kng_AC 

4kng_EC 
4krp_AD 
4ksk_AB 
4kt0_CE 
4kt1_AB 

4kvg_AB 
4l0p_AB 
4l41_AB 
4l41_CB 
4lcd_AC 

4ldt_AB 
4ldt_CA 
4lhu_AC 
4lld_AB 
4lnu_CB 
4lry_AC 

4lw4_AC 
4lx0_AB 
4lxr_AB 
4m4r_AB 
4m69_AB 

4mcx_AC 
4mdk_AB 
4mjs_AB 
4mmz_C
B 
4mn4_D

C 
4mn8_AC 
4mng_CB 
4ms4_AB 
4msv_CF 

4n0g_AB 
4n3y_AC 
4n6e_BD 
4n6o_AB 
4naw_AB 

4ni2_AB 

4nif_AB 
4nik_AB 
4nkg_AB 
4nl9_AB 
4nqa_AB 

4ocm_CB 
4oic_AB 
4p1b_FD 
4p2a_AB 
4p5o_BD 

4p78_AD 
4pbv_AB 
4per_AB 
4pky_AB 
4qci_AC 
4qt8_AB 

4qts_AB 
4qtt_AB 
4qxf_AB 
4rca_AB 
4rku_NG 

4rr2_AB 
4rsu_IJ 
4tu3_AB 
4tvs_AB 
4tx3_AB 

4txo_AB 
4txv_AB 
4u30_AB 
4u32_AB 
4u5y_AB 
4u65_AC 

4u65_BC 
4ui0_AC 
4ut7_AB 
4ut9_CB 
4v3l_AD 

4v3l_DB 
4wlr_AC 
4wqo_CD 
4ww7_AB 
4x0l_AC 
4x0l_CB 

4xh9_AB 
4xl1_AB 
4y8d_AB 
4ydy_AB 
4yfc_AB 

4yii_AB 
4yn0_AB 
4ypg_CA 
5aie_AB 
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Table 5-2: InterEvScore statistical potential. The IESquery score represents only the statistical potential part 
of InterEvScore (2Bbest) without any evolutionary information, used to rerank either the top 10,000 (10k) or the 
top 1,000 (1k) FRODOCK2.1 decoys. These results are shown for comparison with the homology-enriched IES-
h variants described in the main results. 

 Top 10 success rate Top 50 success rate 

IESquery/10k 154 (20.5%) 284 (37.8%) 

IESquery/1k 165 (21.9%) 297 (39.5%) 

IES-h40/10k 203 (27.0%) 335 (44.5%) 

IES-h10/1k 200 (26.6%) 338 (44.9%) 

 

Table 5-3: Scoring performance of homology-enriched SCORES. Scoring performance of ISC on query 
decoys only and using the threaded homology models (ISC-h10) on top 1,000 FRODOCK2.1 decoys (1k) and 
coMSA10 as well as the performance of SPP-h40 and IES-h40 on top 10,000 (10k) with coMSAs40 and the 
performance of SPP-h10 and IES-h10 on 1,000 FRODOCK2.1 decoys with coMSAs10 for easier comparison. 
Performances were measured as the top 10 success rate on 752 benchmark cases. This table is the same as 
Table 3-4 except that it includes coMSA40/10k success rates for comparison purposes. 

 Top 10 success rate Top 50 success rate 

 coMSA40/10k coMSA10/1k coMSA40/10k coMSA10/1k 
IES-h 203 (27.0%) 200 (26.6%) 335 (44.5%) 338 (44.9%) 
SPP-h 228 (30.3%) 227 (30.2%) 365 (48.5%) 362 (48.1%) 

ISC / 157 (20.9%) / 301 (40.0%) 
ISC-h / 259 (34.4%) / 361 (48.0%) 

 

Table 5-4: Numbers and timescales (on one CPU) of various elements and programmes. Times and 
numbers correspond to measurements on our 752-case PPI4DOCK benchmark. Decoys and docking 
mentioned below all refer to FRODOCK2.1 docking. The number of decoys generated per case changes 
according to the size of the complex, it averages at 9,651 with a maximum threshold of 10,000. Docking and 
decoy generation times are size-dependent but an average value is shown below. 

Number of cases in our benchmark 752 
Average number of sequences in our coMSAs 134 
Average number of residues per case (receptor + ligand) 389 
Maximum number of decoys generated in docking 10,000 
Average number of decoys per case  9,651 
Docking time with FRODOCK2.1 45 min - 1 h 
Structure generation time for 1,000 decoys with 

FRODOCK2.1 
1 min 

Threading time with Rosetta per structure 1-2 min 
SOAP-PP scoring time for 1,000 decoys 1 min 
Original SOAP-PP scoring time for 1,000 decoys 15 min 
InterEvScore scoring time for 1,000 decoys 1 min 
Rosetta’s ISC scoring time for 1,000 decoys 12 h 30 
Consensus calculation time per case 20 s (3 scores) –  

20 min (5 scores) 
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Table 5-5: Top 1 and top 5 compared to top 10 success rates for consensus scores. 

 Top 1 success rate Top 5 success rate Top 10 success rate 

Cons3 95 (12.6%) 190 (25.3%) 241 (32.0%) 
Cons3-h 113 (15.0%) 228 (30.3%) 271 (36.0%) 
Cons4-h/150h 104 (13.8%) 223 (29.7%) 276 (36.7%) 
Cons4-h/1k 111 (14.8%) 230 (30.6%) 282 (37.5%) 
Cons5-h/150h 109 (14.5%) 230 (30.6%) 289 (38.4%) 
Cons5-h/1k 113 (15.0%) 247 (32.8%) 304 (40.4%) 

 

 

Table 5-6: Performance with a more stringent near-native definition. Top 10 success rate with near-natives 
defined as being of at least Medium quality according to CAPRI criteria. 

 Top 10 success rate Top 50 success rate 

FD 61 (8.1%) 103 (13.7%) 
IES/10k 49 (6.5%) 84 (11.2%) 
IES40/10k 50 (6.6%) 87 (11.6%) 
IES-h40/10k 60 (8.0%) 112 (14.9%) 
IES-h10/1k 66 (8.8%) 107 (14.2%) 
SPP/10k 60 (8.0%) 101 (13.4%) 
SPP-h40/10k 87 (11.6%) 145 (19.3%) 
SPP-h10/1k 85 (11.3%) 136 (18.1%) 
ISC/1k 50 (6.6%) 93 (12.4%) 
ISC/150h 70 (9.3%) 138 (18.4%) 
ISC-h10/1k 94 (12.5%) 130 (17.3%) 
ISC-h10/150h 99 (13.2%) 159 (21.1%) 

Cons3 62 (8.2%) / 
Cons3-h 76 (10.1%) / 
Cons4-h/150h 77 (10.2%) / 
Cons4-h/1k 84 (11.2%) / 
Cons5-h/150h 84 (11.2%) / 
Cons5-h/1k 86 (11.4%) / 
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Table 5-7: Performance in terms of top 150 nDCG. Average nDCG were calculated and normalised over the 
top 150 decoys for each individual scores over 752 cases (see section 5.1.2). 

 

Top 150 success rate nDCG /150 

nDCG /150 

(excluding cases 

with nDCG = 0) 

FD 387 0.118 0.147 
IES/10k 377 0.135 0.180 
IES40/10k 371 0.134 0.180 
IES-h40/10k 417 0.157 0.195 
IES-h10/1k 431 0.165 0.201 
SPP/10k 444 0.138 0.157 
SPP-h40/10k 455 0.180 0.207 
SPP-h10/1k 458 0.186 0.213 
ISC/1k 437 0.115 0.137 
ISC/150h 476 0.149 0.169 
ISC-h10/1k 451 0.182 0.213 
ISC-h10/150h 476 0.208 0.236 

 

 

 

Table 5-8: Performance of the repulsive term in Rosetta’s score and ISC-h10/1k on the worst third or 

worst homologs Top 10 success rate of the fa_rep van der Waals repulsive terme in Rosetta’s scoring without 
(fa_rep /1k) and with homology through threaded homologs (fa_rep-h10/1k) as well as ISC-h10/1k using only 
the worst scoring third of homologs selected for each decoy individually (ISC-h10/w3/1k) or the worst scoring 
homolog for each decoy (ISC-h10/w1/1k) over 752 cases. 

 
Top 10 

success rate 

fa_rep/1k 9 (1.2%) 
fa_rep-h10/1k 34 (4.5%) 
ISC/1k 157 (20.9%) 
ISC-h10/1k 259 (34.4%) 
ISC-h10/w3/1k 227 (30.2%) 
ISC-h10/w1/1k 200 (26.6%) 
SPP/10k 183 (24.3%) 
SPP-h40/10k 228 (30.3%) 
SPP-h40/w3/10k 207 (27.5%) 
SPP-h40/w1/10k 188 (25.0%) 
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Table 5-9: Performance over PPI4DOCK difficulty categories. Top 10 success rates separated over the four 
difficulty categories in our benchmark for FRODOCK2.1, InterEvScore and its threaded-homology variants, 
SOAP-PP and ISC and their evolutionary variants and the six consensus scores presented in section 3.5. 
Performances were measured on 752 benchmark cases. 

    total very_easy easy hard very_hard 

    752 169 473 94 16 

In
d

iv
id

u
a
l 

sc
o

re
s 

FD2.1 164 (21.8%) 55 (32.5%) 102 (21.6%) 5 (5.3%) 2 (12.5%) 

IES / 10k 182 (24.2%) 55 (32.5%) 118 (24.9%) 8 (8.5%) 1 (6.2%) 

IES40 / 10k 179 (23.8%) 52 (30.8%) 118 (24.9%) 8 (8.5%) 1 (6.2%) 

IES-h40 / 10k 203 (27.0%) 52 (30.8%) 141 (29.8%) 10 (10.6%) 0 (0.0%) 

IES-h10 / 1k 200 (26.6%) 56 (33.1%) 133 (28.1%) 10 (10.6%) 1 (6.2%) 

SPP / 10k 183 (24.3%) 52 (30.8%) 120 (25.4%) 11 (11.7%) 0 (0.0%) 

SPP-h40 / 10k 228 (30.3%) 65 (38.5%) 146 (30.9%) 15 (16.0%) 2 (12.5%) 

SPP-h10 / 1k 227 (30.2%) 65 (38.5%) 146 (30.9%) 16 (17.0%) 0 (0.0%) 

ISC / 1k 157 (20.9%) 52 (30.8%) 99 (20.9%) 6 (6.4%) 0 (0.0%) 

ISC-h10 / 1k 259 (34.4%) 86 (50.9%) 158 (33.4%) 14 (14.9%) 1 (6.2%) 

ISC / 150h 218 (29.0%) 71 (42.0%) 139 (29.4%) 8 (8.5%) 0 (0.0%) 

ISC-h10 / 150h 271 (36.0%) 83 (49.1%) 173 (36.6%) 13 (13.8%) 2 (12.5%) 

C
o

n
se

n
su

se
s 

Cons3  241 (32.0%) 75 (44.4%) 152 (32.1%) 13 (13.8%) 1 (6.2%) 

Cons3-h 271 (36.0%) 82 (48.5%) 174 (36.8%) 13 (13.8%) 2 (12.5%) 

Cons4-h/150h 276 (36.7%) 84 (49.7%) 180 (38.1%) 11 (11.7%) 1 (6.2%) 

Cons4-h/1k 282 (37.5%) 82 (48.5%) 184 (38.9%) 16 (17.0%) 0 (0.0%) 

Cons5-h/150h 289 (38.4%) 93 (55.0%) 181 (38.3%) 14 (14.9%) 1 (6.2%) 

Cons5-h/1k 304 (40.4%) 94 (55.6%) 191 (40.4%) 18 (19.1%) 1 (6.2%) 

 

Table 5-10: Performance of consensus scores including InterEvScore implicit homology scoring. 
Performance of three- and four-way consensus scores in terms of top 10 success rates on 752 benchmark 
cases. Scores used in Cons3 were SOAP-PP on the top 10,000 or top 1,000 FRODOCK2.1 decoys (SPP/10k or 
SPP/1k), InterEvScore on the top 10,000 or top 1,000 FRODOCK2.1 decoys (IES/10k or IES/1k) and FRODOCK2.1 
(FD2.1). Scores used in Cons4 were SPP/10k, IES/10k, FRODOCK2.1 and Rosetta interface score on the top 1,000 
FRODOCK2.1 decoys (ISC/1k). Performances of individual scores used in the consensuses are reported in terms 
of top 10 and top 50 success rates, since consensus calculation relies on the top 50 decoys ranked by each 
component score.  

Score Top 10 success rate Top 50 success rate 

FD2.1 164 (21.8%) 292 (38.8%) 
IES/10k 182 (24.2%) 287 (38.2%) 
IES/1k 196 (26.1%) 295 (39.2%) 
SPP/10k 183 (24.3%) 328 (43.6%) 

SPP/1k 187 (24.9%) 295 (39.2%) 
Cons3 241 (32.0%) / 
ISC/1k 157 (20.9%) 301 (40.0%) 
Cons4 235 (31.2%) / 
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We try to improve the baseline consensus performance by incorporating Rosetta’s physics-

based interface score (ISC) (section 2.2). As Rosetta scoring is more computationally 

expensive than the other two scores (about 750 times slower than SOAP-PP and InterEvScore 

calculations), we score only the top 1,000 decoys (as ranked by FRODOCK2.1) with ISC. This 

score is denoted ISC/1k as opposed to IES/10k and SPP/10k. As such, ISC is individually less 

well-performing than the other scores in terms of top 10 success rate, even when 

InterEvScore and SOAP-PP are computed only on the top 1,000 FRODOCK2.1 decoys 

(supplementary Table 5-10). However, the top 50 success rate is higher for ISC/1k than for 

any other individual score, except for SOAP-PP calculated on 10,000 decoys (supplementary 

Table 5-10). Despite this, integrating the top 50 decoys ranked by ISC/1k with the top 50 of 

the other three scores into a four-way consensus, denoted Cons4, slightly degrades 

performance compared to Cons3 (supplementary Table 5-10) while strongly increasing 

computation time. 

 

 

Table 5-11: Performances as reported in the InterEvDock2 paper.  Top 10 success rates of original scores 
in InterEvDock2 with percentages calculated over the same 752 cases compared with equivalent scores in this 
article. Original InterEvScore was run on the original PPI4DOCK coMSA and on the realigned coMSAs used 
throughout the present study (see section 5.1.4). Original SOAP-PP was run using the much slower Python 
implementation from the original publication. 

 Top 10 success rate of original 

scores in InterEvDock2 

Top 10 success rate of 

new scores 

FRODOCK2.1 164 (21.8%) 164 (21.8%) 

InterEvScore 
171 (22.7%) (original coMSAs) 

177 (23.5%) (realigned coMSAs) 182 (24.2%) 
SOAP-PP 194 (25.8%) 183 (24.3%) 
3-way consensus 239 (31.8%) 241 (32.0%) 
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Table 5-12: Performances of InterEvScore with 2-body and 2/3-body potentials. Top 10 success rates of 
InterEvScore with complete coMSAs (IES) on 10,000 decoys, InterEvScore using homology models (IES-h) on 
coMSA40 and 10,000 decoys and on coMSA10 and 1,000 decoys using only 2-body potentials or 2- and 3-body 
potentials. 

 𝟐/𝟑𝑩  𝒃𝒆𝒔𝒕 𝟐𝑩  𝒃𝒆𝒔𝒕 
IES/10k 182 (24.2%) 164 (21.8%) 
IES/1k 196 (26.1%) 192 (25.5%) 
IESquery/10k 147 (19.5%) 154 (20.5%) 
IESquery/1k 172 (22.9%) 165 (21.9%) 
IES-h40/10k 161 (21.4%) 203 (27.0%) 

IES-h10/1k 182 (24.2%) 200 (26.6%) 

 

5.2.2 Supplementary figures 

Figure 5-1: Venn diagrams between scores. Top 10 success rate intersections between scores on 752 cases. 
FD: FRODOCK2.1, IES: InterEvScore on complete coMSAs, SPP: SOAP-PP and ISC: Rosetta interface score. /10k 
and /1k denote that 10,000 and 1,000 decoys were scored. –h10 and –h40 denote homology-enriched scores 
with 10 or 40 homolog models (coMSA10 or coMSA40). 
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Figure 5-2: Bootstrap performance distributions. Bootstrap top 10 success rate distributions for 10,000 
iterations over the 752 cases in our benchmark (blue). Measured top 10 success rates are marked in red and 
average success rates over all bootstrap iterations are marked as yellow crosses. Black bars indicate 25th and 
75th percentiles of the bootstrap distribution. A two-sample t-test with unequal variances (Welch’s t-test) on 
all score pairs in this plot systematically outputs p-values < 10-10 except for Cons3-h against ISC-h10/150h, thus 
all distribution means are statistically different relative to each other except for these two scores. 

 

 

 

 

 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 26, 2020. ; https://doi.org/10.1101/2020.10.26.355073doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.355073


33 

 

REFERENCES 

Andreani, J., Faure, G. and Guerois, R. InterEvScore: a novel coarse-grained interface scoring 

function using a multi-body statistical potential coupled to evolution. Bioinformatics 

2013;29(14):1742-1749. 

Andreani, J., Quignot, C. and Guerois, R. Structural prediction of protein interactions and 
docking using conservation and coevolution. Wires Comput Mol Sci 2020. 

Basu, S. and Wallner, B. DockQ: A Quality Measure for Protein-Protein Docking Models. PLoS 
One 2016;11(8):e0161879. 

Chaudhury, S., et al. Benchmarking and analysis of protein docking performance in Rosetta 

v3.2. PLoS One 2011;6(8):e22477. 
Cocco, S., et al. Inverse statistical physics of protein sequences: a key issues review. Rep Prog 
Phys 2018;81(3):032601. 

Cong, Q., et al. Protein interaction networks revealed by proteome coevolution. Science 

2019;365(6449):185-189. 

Desta, I.T., et al. Performance and Its Limits in Rigid Body Protein-Protein Docking. Structure 
2020;28(9):1071-1081 e1073. 

Dong, G.Q., et al. Optimized atomic statistical potentials: assessment of protein interfaces 

and loops. Bioinformatics 2013;29(24):3158-3166. 

Geng, C., et al. iScore: A novel graph kernel-based function for scoring protein-protein 
docking models. Bioinformatics 2019. 

Gray, J.J., et al. Protein–Protein Docking with Simultaneous Optimization of Rigid-body 

Displacement and Side-chain Conformations. Journal of Molecular Biology 2003;331(1):281-

299. 

Huang, S.Y. Search strategies and evaluation in protein-protein docking: principles, advances 
and challenges. Drug Discov Today 2014;19(8):1081-1096. 

Huang, S.Y. Exploring the potential of global protein-protein docking: an overview and 

critical assessment of current programs for automatic ab initio docking. Drug Discov Today 

2015;20(8):969-977. 

Katoh, K. and Standley, D.M. MAFFT multiple sequence alignment software version 7: 
improvements in performance and usability. Mol Biol Evol 2013;30(4):772-780. 

Koukos, P.I. and Bonvin, A. Integrative modelling of biomolecular complexes. J Mol Biol 2019. 

Larkin, M.A., et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23(21):2947-2948. 

Mendez, R., et al. Assessment of blind predictions of protein-protein interactions: current 

status of docking methods. Proteins 2003;52(1):51-67. 
Mintseris, J. and Weng, Z. Structure, function, and evolution of transient and obligate 

protein-protein interactions. Proc Natl Acad Sci U S A 2005;102(31):10930-10935. 

Moal, I.H., et al. The scoring of poses in protein-protein docking: current capabilities and 

future directions. BMC Bioinformatics 2013;14:286. 

Morcos, F., et al. Direct-coupling analysis of residue coevolution captures native contacts 
across many protein families. Proc Natl Acad Sci U S A 2011;108(49):E1293-1301. 

Porter, K.A., et al. What method to use for protein-protein docking? Curr Opin Struct Biol 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 26, 2020. ; https://doi.org/10.1101/2020.10.26.355073doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.355073


34 

 

2019;55:1-7. 

Quignot, C., et al. InterEvDock2: an expanded server for protein docking using evolutionary 

and biological information from homology models and multimeric inputs. Nucleic Acids Res 

2018;46(W1):W408-W416. 
Ramírez-Aportela, E., López-Blanco, J.R. and Chacón, P. FRODOCK 2.0: Fast Protein-Protein 

docking server. Bioinformatics 2016:btw141. 

Remmert, M., et al. HHblits: lightning-fast iterative protein sequence searching by HMM-

HMM alignment. Nat Methods 2011;9(2):173-175. 

Simkovic, F., et al. Applications of contact predictions to structural biology. IUCrJ 2017;4(Pt 
3):291-300. 

Socolich, M., et al. Evolutionary information for specifying a protein fold. Nature 

2005;437(7058):512-518. 

Song, Y., et al. High-resolution comparative modeling with RosettaCM. Structure 

2013;21(10):1735-1742. 
Teichmann, S.A. The constraints protein-protein interactions place on sequence divergence. 

J Mol Biol 2002;324(3):399-407. 

Torchala, M., et al. SwarmDock: a server for flexible protein-protein docking. Bioinformatics 

2013;29(6):807-809. 

Yu, J. and Guerois, R. PPI4DOCK: large scale assessment of the use of homology models in 
free docking over more than 1000 realistic targets. Bioinformatics 2016;32(24):3760-3767. 

Yu, J., et al. InterEvDock: a docking server to predict the structure of protein-protein 

interactions using evolutionary information. Nucleic Acids Res 2016;44(W1):W542-549. 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 26, 2020. ; https://doi.org/10.1101/2020.10.26.355073doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.355073



