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Atomic-level passivation mechanism of ammonium
salts enabling highly efficient perovskite solar cells
Essa A. Alharbi1, Ahmed Y. Alyamani2, Dominik J. Kubicki1,3, Alexander R. Uhl1,6, Brennan J. Walder3,
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Mohammad Hayal Alotaibi 2, Jacques-E. Moser 4, Shaik M. Zakeeruddin1, Fabrizio Giordano1,

Lyndon Emsley3 & Michael Grätzel1

The high conversion efficiency has made metal halide perovskite solar cells a real break-

through in thin film photovoltaic technology in recent years. Here, we introduce a straight-

forward strategy to reduce the level of electronic defects present at the interface between the

perovskite film and the hole transport layer by treating the perovskite surface with different

types of ammonium salts, namely ethylammonium, imidazolium and guanidinium iodide. We

use a triple cation perovskite formulation containing primarily formamidinium and small

amounts of cesium and methylammonium. We find that this treatment boosts the power

conversion efficiency from 20.5% for the control to 22.3%, 22.1%, and 21.0% for the devices

treated with ethylammonium, imidazolium and guanidinium iodide, respectively. Best per-

forming devices showed a loss in efficiency of only 5% under full sunlight intensity with

maximum power tracking for 550 h. We apply 2D- solid-state NMR to unravel the atomic-

level mechanism of this passivation effect.
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M
etal halides perovskite are one of the most promising
light harvesting materials among emerging photovoltaic
technologies1–5 solar to electric power conversion effi-

ciencies (PCEs) reaching presently 23.7%6. Their ease of manu-
facturing together with low cost fabrication and high performance
have made metal halide perovskites a true breakthrough in the
thin film solar cell technology. However, solution deposition
methods are prone to produce pinholes and defects whether at
the grain boundaries or at the surface, which is considered one of
the reasons behind a low device performance and stability7,8. One
major obstacle to the development and commercialization of this
technology continues to be the operational stability of the pho-
tovoltaic devices. Despite the vast progress that has been achieved
on the synthesis of high quality multi-crystalline films, some
complex problems have only been partially mitigated3. The often
observed hysteretic behavior during J–V characterization, caused
by ion mobility, can be considered a primary indication for the
intrinsic long-term steady-state instability9. In that respect, the
phase stabilization of specific perovskite formulations has been
the object of thorough investigation2,10,11. Recently, the reduction
of defects at the surface and grain boundaries of the perovskite
film as well as at the interfaces with the electrical contacts, has
attracted great interest for its dramatic impact on the operational
stability and efficiency of the device7,12. Mitigation of surface
defects, whether at the interface of perovskite/HTL or perovskite/
electron transport layer (ETL), provides the added benefit of
improving the open-circuit voltage (Voc) without affecting the
charge carrier transport or the fill factor (FF). Previous studies
have employed several types of ammonium cations in order to
impede the charge carrier recombination losses occurring at the
interfaces or throughout the bulk of the perovskite film. Among
those, formamidinium bromide (FABr) was used as an electron
blocking layer, forming a wide band gap over layer (FAPbBr3-xIx)
at the interface between the perovskite/HTL and consequently
improving Voc by approximately 60 mV13. In a similar manner
methylammonium iodide (MAI) was thermally evaporated at the
interface perovskite/HTL, enhancing efficiency from 14.5% to
17.2% with a high reproducibility14. Lately, quaternary ammo-
nium halides were found to decrease the ionic defects at the
perovskite surface and significantly improve efficiency and sta-
bility7. Furthermore, phenylalkylamine molecules15,16, and poly-
mers17 have been used to improve the efficiency and moisture
tolerance of perovskite solar cells (PSC). Moreover, guanidi-
nium18–21, ethylammonium22,23, and imidazolium24,25 have been
used as additive to improve different aspects of PSC operation.

Herein we report a facile strategy to tailor the interface between
the perovskite and the HTL (Fig. 1). We show that the mod-
ification of the perovskite surface via the addition of organic
ammonium salts, namely, ethylammonium iodide ([(C2H5)NH3]
I, (EAI)), imidazolium iodide ([C3N2H5]I, (IAI)), and guanidi-
nium iodide ([C(NH2)3]I, (GuaI)), considerably increases the
device performance. We use mixed-cation/halide perovskite

formulations of the composition (FA0.9Cs0.07MA0.03Pb
(I0.92Br0.08)3) with 3% excess of PbI2. These agents greatly reduce
the hysteresis in the JV curve improving the solar to electric
power conversion efficiency from 20.5% for the control device to
22.3, 22.1, and 21.0% for the EAI-, IAI-, and GuaI-treated device,
respectively. Moreover, defect mitigation improves the opera-
tional stability for the PSC’s, which was tested at full solar
intensity under maximum power tracking condition for 550 h
with a small loss of only 5% for the best performing devices.

Results
Characterization and fabrication of perovskite thin films. We
employed a device architecture comprising an FTO glass sub-
strate, on top of which we deposited a compact TiO2 layer fol-
lowed by mesoporous TiO2/perovskite/passivation layer/spiro-
OMeTAD/gold. The complete procedure for the device fabrica-
tion is detailed in the method section. In short, the perovskite film
was annealed at 150 °C for 30–40 min. After cooling down to
room temperature, the passivation layer was immediately
deposited by spin-coating a solution of ammonium salt (EAI, IAI,
and GuaI) in isopropanol and subsequent annealing at 70 °C for
10–15 min. The concentration of the solution was optimized for
each compound investigated (Supplementary Table 1) and the
different treatments were compared at their best condition. We
note that the high annealing temperature could potentially drive
off methylammonium from the thin film. Solid-state NMR
quantification26 of the cation content of our films yielded 0.97
mol % FA and 0.03 mol % MA, which agrees with the stoichio-
metry of the precursor solution, indicating that MA is fully
retained in the final perovskite composition even after the high
annealing (Supplementary Fig. 1 and Supplementary Note 1).

The surface treatment described above significantly modifies
the perovskite composition and surface morphology due to a
chemical reaction with the perovskite. This was traced by
crystallographic structure analysis of the perovskite film using
X-ray diffraction (XRD). Fig. 2a and Supplementary Fig. 2a, b, c,
reveal the presence of unreacted PbI2 (2θ= 12.7°) which is
expected, since the precursor solution contains 3% excess of PbI2.
All three surface treatments have a similar effect on the XRD
pattern. In particular, for concentrations above 3 mg/ml for all
treatments, the PbI2 peaks completely disappear (Fig. 2a and
Supplementary Fig. 2a–c), presumably via formation of a thin
non-perovskite cover layer of EA/IA/Gua lead halide on top of
the perovskite film. We have recently shown that solid-state
magic angle spinning (MAS) NMR can be used to probe this kind
of atomic-level microstructure of multi-component lead halide
perovskites21,26–28. We therefore test the hypothesis by carrying
out solid-state NMR measurements on a thin film of
FA0.93Cs0.07PbI3 (further referred to as CsFA(I)) treated with
EAI (5 mgml−1). We used the pure-iodide CsFA(I) composition
to avoid the overlap between MA and EA 1H signals and the
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Fig. 1 Scheme of our method for treating perovskite films by spin-coating of different organic ammonium salts (EAI, IAI, and GuaI) and consecutive

annealing
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formation of mixed iodide-bromide phases, which would complicate
the interpretation. Figure 2b shows a 1H solid-state MAS NMR
spectrum of the CsFA(I) thin film treated with 5mgml−1 EAI and
identifies the presence of two organic cations in the film: FA
(8.1 ppm (CH) and 7.3 ppm (NH2

+)) as well as EA (6.3 ppm
(NH3

+), 3.6 ppm (CH2) and 1.8 (CH3)). There is no unreacted
EAI in the film (Fig. 2c), which would give signals at 7.7, 3.3,
and 1.6 ppm with a full width at half maximum (FWHM) of
1.5–2.0 ppm due to strong 1H–1H dipole-dipole couplings. The EA

signals in the thin film have FWHM of 0.1–0.2 ppm, consistent with
lower 1H density in the EA-containing phase29. The new EA species
in the thin film have a spectral signature similar to that of EAPbI3
(Fig. 2d, 6.4, 3.8, and 2.0 ppm). We thus confirm that EAI is fully
converted into EA-containing lead halide phases during the
passivation treatment.

That said, the EA signals are slightly shifted, indicating a small
structural difference with respect to the pure 1D EAPbI3 phase29.
This can be potentially caused by the formation of mixed FA/EA,
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Fig. 2 Structural characterization of the passivated perovskite films: a XRD patterns of the treated films compared to the control. Solid-state 1H MAS NMR

measurements at 21.1 T, 300 K and 20 kHz MAS (unless noted otherwise): b thin film of CsFA(I) treated with 5 mg ml−1 EAI (at 60 kHz MAS), c neat EAI,

d bulk mechanochemical EAPbI3, (e) bulk mechanochemical FA0.9EA0.1PbI3, f thin film of FA0.93Cs0.07Pb(I0.92Br0.08)3 (CsFA(I,Br)), g
1H–1H spin diffusion

(20 kHz MAS) experiment evidencing atomic-level proximity between FA and EA in the mixed FA/EA phase; one of the EA/FA cross-peaks has been

indicated with dashed lines. h 1H–1H spin diffusion experiment (60 kHz MAS) evidencing atomic-level proximity between FA and EA in the

FA0.93Cs0.07PbI3, thin film treated with 5 mg ml−1 EAI (FA/EA cross-peaks in red circles), i schematic representation of the 1D/3D heterostructure

evidenced by solid-state NMR proximity measurements
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Cs/EA, and/or Cs/EA/FA phases. We demonstrate this by
preparing α-FAPbI3 substitutionally doped with 10 mol% EAI
(FA0.9EA0.1PbI3) (Fig. 2e). The spectrum of this material shows a
distribution of environments for each of the EA sites (CH3:
0.6–2.3 ppm, CH2: 3.0–4.3 and NH3

+: 5.3–6.7 ppm). This
distribution is likely caused by the formation of mixed FA/EA
structures with a varying number of FA slabs separated by EA
spacers, in structures similar to those reported for 2-(1H-pyrazol-
1-yl)pyridine-doped 1D/3D30 and butylammonium- and
phenylethylammonium-based 2D/3D materials31. We further
evidence the formation of mixed FA/EA phases by performing
two-dimensional 1H–1H spin diffusion experiments, which
correlate signals based on their spatial proximity (up to around
10Å)32 (Fig. 2g). The peaks lying on the diagonal correspond to
the species presented in the 1D projection above. On the other
hand, off-diagonal peaks indicate that two chemical environ-
ments are in atomic-level proximity (an example is illustrated by
the dashed orange line). Beside trivial intramolecular contacts,
every EA environment (CH3, CH2 and NH2) is correlated to each
of the two FA environments (CH and NH2

+), demonstrating
unambiguously that EA and FA are microscopically mixed within
the same phase.

We then carried out the 1H–1H spin diffusion measurement on
the EAI-treated CsFA(I) thin film and found through-space
atomic-level contact between FA and EA (Fig. 2h, red circles),
confirming that the formation of mixed EA/FA phases is general,
regardless of the processing conditions. We also show that
analogous atomic-level proximities are present in the case of IAI
and GuaI treatment, confirming the formation of 3D/1D
heterostructures in these cases (Supplementary Figs. 7h–m and
8). While the exact spectral signature of EA in such mixed phases
will depend on the FA/EA ratio and can conceivably be further
modified by the presence of Cs, the chemical shift range and line
widths corresponding to the model FA/EA phase matches that
observed in the EAI-passivated thin film of CsFA(I). This finding
is of paramount importance in that it shows that EAI is fully
converted into new mixed EA/FA phases. Since the reaction is
aided by IPA and as such happens without redissolution and
recrystallization of the perovskite, the new EA/FA phase must
form on the surface of the preexisting perovskite grains and its
similarity from NMR to the 1D EAPbI3 suggests it is a 1D
structure. We note that it is not possible to quantify the EA/FA
ratio in the 1D passivation layer by simply comparing it to
reference 1D FA1-xEAxPbI3 phases (Supplementary Fig. 7c–g), as
in the 3D/1D heterostructure the EA shift is additionally affected
by the presence of the 3D perovskite phase in its immediate
microscopic environment. This supports the formation of a firmly
adhering passivation layer with high ambient stability, owing to
the superior stability of 3D perovskites in hybrids with lower
dimensionality structures (Fig. 2i)31 We also provide a compar-
ison with a EA-treated film but without the second annealing
step, which shows that the final 3D/1D heterostructure is formed
during spin coating (Supplementary Fig. 7a–b). Finally, we note
that solid-state 1H MAS NMR quantification of the cation
content in the passivated thin film revealed that the EA
constitutes 10 mol % of the total organic cation content (with
90 mol % FA). After applying straightforward chemical and
geometrical consideration, this corresponds to 27 nm thick 1D
passivation layer (Supplementary Note 2).

Furthermore, surface morphology of the perovskite films was
recorded via scanning electron microscopy (SEM) (Fig. 3a–d). In
this study, the bulk perovskite composition was kept identical for
all the conditions and only the surface was modified by the
treatment with the 3 different agents. From Fig. 3a–d and
Supplementary Fig. 3 we infer that the surface of the treated films
shows much smaller grains than the control sample. To rule out

etching of the perovskite surface by IPA as a cause of the
roughening, we examined a control film, which was treated by
neat IPA and ascertained that the solvent on its own does not
modify the perovskite surface morphology (Supplementary Fig. 3).
We then investigate surface roughness of the perovskite films
after the surface treatment using atomic force microscopy (AFM)
(Fig. 3f–j). It is apparent that the surface roughness, and thereby
the corresponding specific surface area, has increased significantly
for all the treated samples, with GuaI (5 mgml−1) showing the
highest root mean square (RMS) roughness of 12.7 nm, followed
by EAI (3 mgml−1) with 12.0 nm, IAI (7 mgml−1) with 9.00 nm,
and the control with 6.21 nm.

Figure 4a and Supplementary Fig. 4 show that the absorbance
onset for control/IPA corresponded to that of EAI, IAI, and
GuaI-passivated films indicating that the band gap of the bulk
perovskite was not noticeably affected by the surface treatment.
We investigated the steady-state and time-resolved photolumi-
nescence (PL) of the control and modified perovskite layer.
Fig. 4b and Supplementary Fig. 1a–d show an increase in PL
intensity in response to the post treatments. This suggests a
reduction of the non-radiative recombination losses that could be
explained by defect mitigation induced by cation exchange and
filling of iodide vacancies at the absorber surface in agreement
with previous work on methylammonium lead iodide films14. It is
worth mentioning that the GuaI when applied at 7 mgml−1 and
10 mgml−1 showed a slight red shift as shown in Supplementary
Fig. 5.

We carried out time-resolved photoluminescence (TRPL) on
glass/Al2O3/perovskite samples with and without surface treat-
ment. We excited the sample from the from the perovskite side
using 670 nm wavelength light. By fitting the luminescence decays
in Fig. 4c according to our previously reported procedure27, we
derived lifetimes τ1= 1/k1 for the pseuo-first order trap mediated
(Shockley–Read-Hall) non-radiative PL decay process. From
TRPL data in Fig. 4c, the decay lifetime increased with the
application of our surface treatment from 250 ns for the control to
560 ns, 625 ns, and 333 ns for EAI (3mgml−1), IAI (7 mgml−1),
and GuaI (5 mgml−1), respectively.

Photovoltaic device and performance. We examined the effect of
surface passivation by ammonium salts on the photovoltaic
performance for complete devices in a FTO/c-TiO2/m-TiO2/
perovskite/spiro-OMeTAD/Au configuration (for more details
see Methods). The data are shown in Fig. 5a in comparison to a
control device without passivation (see Supplementary Table 1 for
a comparison of all treatments with different concentrations).

The open-circuit voltages of all treated devices are significantly
increased with an average improvement of 30 mV, 70 mV, and 40
mV, for EAI, IAI, and GuaI, respectively (see Fig. 5d). While the
GuaI-treated devices showed an average reduction of the FF by
2% absolute, the FF increased by 3.5 and 2% for EAI and IAI-
treated devices, respectively, reaching up to 81% on the best
performing EAI device without significant loss of the short circuit
current (Jsc). The short circuit photocurrent densities are barely
modified with a maximum average decrease of 0.4 mA cm−2 for
the IAI-treated devices. Overall, the mean efficiency increased
from 20.5% for the control device to the 22.3%, 22.1%, and 21.0%
for EAI, IAI, and GuaI-treated devices, respectively, with the
champion device treated via EAI achieving up to 22.3% PCE.
Figure 5b further confirms stable power output for all treated
devices during maximum power point tracking under one sun
illumination for one minute. The incident photon-to-current
efficiency (IPCE) and integrated current density as a function of
wavelength are shown in Fig. 5c. In agreement to UV-Vis, no shift
in the onset of the IPCE spectra is detected for treated devices
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while integrated current densities agree well with the Jsc -values
derived from the JV measurements. Moreover, Supplementary
Fig. 6a–d and Supplementary Table 2 show that the use of these
ammonium salts as surface treatment is capable of reducing the
hysteresis. To further analyze the effect of these buffer layers on
the electrical properties, we performed intensity modulated
voltage spectroscopy (IMVS). The data shown in Supplementary
Fig. 6e agree with the trend found for Voc, i.e., the devices
showing higher Voc show a longer electron lifetime at Voc.

Operational stability of perovskite solar cells. We also investi-
gated is the operational stability of our PSCs under working
conditions. This remains a major concern for PSC, which needs
to be urgently addressed33. Best performing devices were sub-
jected to full sunlight intensity with maximum power tracking for
550 h at room temperature in a nitrogen atmosphere.

We note the good stability of the control device preserving 80%
of its initial PCE value. This is attributed to the perovskite
composition employed in this work that has an extremely low
content of MAI and contains a small addition of cesium iodide
(CsI) to stabilize the predominately formamidinium lead iodide
perovskite phase. From Fig. 6a, the passivated devices show a
different behavior, a small initial performance drop being
followed by a stable power output. Remarkably for the EAI-
treated device the overall loss in PCE is only 5%. By contrast the
control device shows a small but constant drop over the whole
duration of the test. It is well-established that this behavior is due

to the migration of ions from the HTM (LiTFSI) and gold from
the gold electrode into the perovskite layer and to the TiO2

working electrode34. The fact that the efficiency loss for the
passivated devices ceases after an initial decrease, it is reasonable
to assume that that the passivating layer introduces a barrier at
the HTM/perovskite interface that prevents the diffusion of HTM
additives and gold diffusion into the perovskite layer. From cross-
sectional SEM images (Fig. 6b–e) we can see that before aging
both control and modified devices appeared to have compact
absorber layers. After 550 h or MPP testing, however, the
appearance of voids at the interface between the mesoporous
TiO2 and perovskite in the control and few voids also in the IAI-
and GuaI-treated perovskites is visible. These voids, stemming
from the degradation of the perovskite absorber, may affect the
photon absorption and act as recombination centers to hinder
charge carrier collection during operation of the solar cell.
Confirming this trend, EAI showed good stability at MPP under
constant illumination with a decrease of only 5% and the absence
of voids in the cross section SEM image of the aged devices shown
in Fig. 6c.

Discussion
In summary, we investigated the effect of different ammonium
salts (i.e., EAI, IAI, and GuaI) as surface passivation agents
on mixed-cation and mixed-halide perovskite films. Solid-state
NMR has evidenced that they form a tightly adhering low-
dimensionality passivation layer of on the preexisting perovskite
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grains. The introduction of these buffer layers showed a sig-
nificant enhancement of the open-circuit voltage by 30 mV (EAI),
70 mV (IAI), and 40 mV (GuaI), leading to the realization of
PCEs as high as 22.3%, 22.1%, and 21.0% for EAI, IAI, and GuaI-
treated devices, respectively. EAI and IAI showed an improve-
ment also on the FF (+3.5% and +2%, respectively) with EAI
reaching a FF of 81% on the best performing device. In contrast
to the control sample, all passivated devices, after an initial drop,
stabilized their efficiency with the EAI-treated device only losing
5% of its initial value after 550 h of MPP tracking. This work
exemplifies the importance of interface engineering for perovskite
solar cells and should stimulate other successful developments in
the future.

Methods
Materials. All materials were purchased from Sigma-Aldrich and used as received,
unless stated otherwise.

Solar cell preparation. Fluorine-doped tin oxide (FTO)-glass substrates (TCO
glass, NSG 10, Nippon sheet glass, Japan) were cleaned by ultrasonication in
Hellmanex (2%, deionized water), rinsed thoroughly with deionized water and
ethanol, and then treated in oxygen plasma for 15 min. Thirty nanometer blocking
layer (TiO2) was sprayed on the cleaned FTO by at 450 °C using a commercial

titanium diisopropoxide bis(acetylacetonate) solution (75% in 2-propanol, Sigma-
Aldrich) diluted in anhydrous ethanol (1:9 volume ratio). A 150 nm mesoporous
TiO2 layer (diluted paste (1:6 wt. ratio) (Dyesol 30NRD: ethanol)) spin coated at
5000 rpm for 15 s, and then sintered at 450 °C for 30 min in dry air.

Synthesis of perovskite films. The perovskite films were deposited using a single-
step deposition method from the precursor solution, which was prepared in Argon
atmosphere and containing 1.35M of FAI, FABr, MAI, CsI, PbI2 and PbBr2 in
anhydrous dimethylformamide/ dimethylsulphoxide (4:1 (volume ratio)) to
achieve the desired composition: FA0.9Cs0.07MA0.03Pb(I0.92Br0.08)3 (3% PbI2
excess). The device fabrication, including the surface treatment step, was carried
out inside a dry air box, under controlled atmospheric conditions with humidity
<2%.Perovskite solution was spin-coated in a two-step program at 1000 and 6000
rpm, respectively. Two hundred microliter of chlorobenzene was dropped on the
spinning substrate. This was followed by annealing the films at 150 °C for 30–40
min. After preparing the initial perovskite layer (control) as described above, the
film was cooled down at room temperature. Then, the surface treatment was
performed by spin-coating a EAI, IAI, and GuaI-solution in isopropanol at dif-
ferent concentrations of 0 mgml−1, 3 mg ml−1, 5 mg ml−1, 7 mg ml−1, and 10 mg
ml−1 at 6000 rpm for 30 s, followed by annealing at 70 °C for 10~15 min. For
completing the fabrication of devices, 85 mg of 2,2′,7,7′-tetrakis(N,N-di-p-meth-
oxyphenylamine)-9,9-spirobifluorene (spiro-OMeTAD) was dissolved in 1 ml of
chlorobenzene as a hole-transporting material (HTM). The HTM was spin coated
at 4000 rpm for 20 s. The HTM was doped with bis(trifluoromethylsulfonyl)imide
lithium salt (17.8 µl prepared by dissolving 520 mg LiTFSI in 1 ml of acetonitrile),
and 28.8 µl of 4-tert-butylpyridine. Finally, a ~80 nm gold (Au) layer was thermally
evaporated.
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Device characterization. The current-voltage (J–V) characteristics of the per-
ovskite devices were recorded under ambient temperature and air conditions with a
digital source meter (Keithley model 2400, USA). A 450W xenon lamp (Oriel,
USA) was used as the light source for photovoltaic (J–V) measurements. The
spectral output of the lamp was filtered using a Schott K113 Tempax sunlight filter
(Präzisions Glas & Optik GmbH, Germany) to reduce the mismatch between the
simulated and actual solar spectrum to less than 2%. The photo-active area of
0.16 cm2 was defined using a dark-colored metal mask.

Incident photon-to-current efficiency (IPCE). It was recorded under a constant
white light bias of approximately 5 mW cm−2 supplied by an array of white light
emitting diodes. The excitation beam coming from a 300W Xenon lamp (ILC
Technology) was focused through a Gemini- 180 double monochromator (Jobin
Yvon Ltd) and chopped at ~2 Hz. The signal was recorded using a Model SR830
DSP Lock-In Amplifier (Stanford Research Systems).

Scanning electron microscopy (SEM). It was performed on a ZEISS Merlin HR-
SEM.

Atomic force microscopy (AFM). AFM images were obtained using a Bruker
Dimension Icon Atomic Force Microscope in tapping mode.

X-ray powder diffractions were recorded on an X’Pert MPD PRO (Panalytical)
equipped with a ceramic tube (Cu anode, λ= 1.54060 Å), a secondary graphite
(002) monochromator and a RTMS X’Celerator (Panalytical).

UV–Vis measurements (Uv-Vis) were performed on a Varian Cary 5.

Photoluminescence spectra (PL) were obtained with a Florolog 322 (Horiba
Jobin Ybon Ltd) in the wavelength range from 500 to 850 nm by exciting at
460 nm.

Time-resolved photoluminescence (TRPL) was measured with a spectrometer
(FluoroLog-3, Horiba) working in a time-correlated single-photon counting mode
with less than ns time resolution. A picosecond pulsed diode laser head NanoLED
N-670L (Horiba) emitting less than 200 ps duration pulses at 670 nm with a
maximum repetition rate of 1 MHz was used as excitation source. The
measurements were carried out under ambient conditions and no change in PL was
observed during the course of the measurements (several hours) indicating no
appreciable decomposition.

Solid-state NMR measurements. Room temperature 1H (900.0 MHz) NMR
spectra were recorded on a Bruker Avance Neo 21.1 T spectrometer equipped with
a 3.2 mm and 1.3 mm CPMAS probe. 1H chemical shifts were referenced to solid
adamantane (δ= 1.91 ppm). Quantitative 1H spectra were acquire with a recycle
delay of 150 s. The CsFA and CsMAFA samples were prepared as thin films on
glass slides using the same deposition technique as for PSC fabrication and
scratched off the slides into a rotor. EAPbI3 and FA0.9EA0.10PbI3 were prepared
using mechanosynthesis, according to previously published procedures21,26,35–37.
1H–1H spin diffusion measurements at 20 kHz MAS were carried out using a
mixing period of 50 ms and a recycle delay of 1 s (FA0.90EA0.10PbI3). 1H–1H spin
diffusion measurements at 60 kHz MAS used a mixing period of 4 s and a recycle
delay of 3 s (CsFA(I) thin film).

IMVS measurements were performed by Bio-Logic SP300 in combination with
the Galvano Staircase Spectroscopy routine from EC-Lab Software. Further
description of the technique is provided in Supplementary Note 2.
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Long-term light soaking test. Stability measurements were performed with a
Biologic MPG2 potentiostat under a full AM 1.5 Sun-equivalent white LED
lamp. The devices were measured with a maximum power point (MPP) tracking
routine under continuous illumination at room temperature. The MPP was
updated every 10 s by a standard perturb and observe method. Every minute a
JV curve was recorded in order to track the evolution of individual JV
parameters.

Data availability
Data that support the findings of this study are available in separate Supplementary Data
Files in Supplementary Information section. All other relevant data are available from the
corresponding authors upon reasonable request.

Received: 24 November 2018 Accepted: 28 May 2019

References
1. Burschka, J. et al. Sequential deposition as a route to high-performance

perovskite-sensitized solar cells. Nature 499, 316–319 (2013).
2. Saliba, M. et al. Cesium-containing triple cation perovskite solar cells:

improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9,
1989–1997 (2016).

3. Park, N.-G., Gratzel, M., Miyasaka, T., Zhu, K. & Emery, K. Towards
stable and commercially available perovskite solar cells. Nat. Energy 1, 16152
(2016).

4. Tsai, H. et al. High-efficiency two-dimensional Ruddlesden– Popper
perovskite solar cells. Nature 536, 312–316 (2016).

5. Bi, D. et al. Efficient luminescent solar cells based on tailored mixed-cation
perovskites. Sci. Adv. 2, e1501170–e1501170 (2016).

6. chart, NREL. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg. (2019).
7. Zheng, X. et al. Defect passivation in hybrid perovskite solar cells using

quaternary ammonium halide anions and cations. Nat. Energy 2, 17102–17109
(2017).

8. Dar, M. I. et al. Function follows form: correlation between the growth and
local emission of perovskite structures and the performance of solar cells. Adv.
Funct. Mater. 27, 1701433–1701439 (2017).

9. Dualeh, A. et al. Impedance spectroscopic analysis of lead iodide perovskite-
sensitized solid-state solar cells. ACS Nano 8, 362–373 (2013).

10. Arora, N. et al. Intrinsic and extrinsic stability of formamidinium lead
bromide perovskite solar cells yielding high photovoltage. Nano Lett. 16,
7155–7162 (2016).

11. Chen, J., Seo, J.-Y. & Park, N.-G. Simultaneous improvement of photovoltaic
performance and stability by in situ formation of 2D perovskite at (FAPbI 3)
0.88(CsPbBr 3) 0.12/CuSCN. Interface Adv. Energy Mater. 8,
1702714–1702715 (2018).

12. R. J., S. et al. Enhancing defect tolerance and phase stability of high-
bandgap perovskites via guanidinium alloying. ACS Energy Lett. 3, 1261–1268
(2018).

13. Cho, K. T. et al. Highly efficient perovskite solar cells with a compositionally
engineered perovskite/hole transporting material interface. Energy Environ.
Sci. 10, 621–627 (2017).

14. Hawash, Z. et al. Interfacial modification of perovskite solar cells using an
ultrathin MAI layer leads to enhanced energy level alignment, efficiencies, and
reproducibility. J. Phys. Chem. Lett. 8, 3947–3953 (2017).

15. Wang, F. et al. Phenylalkylamine passivation of organolead halide perovskites
enabling high-efficiency and air-stable photovoltaic cells. Adv. Mater. 28,
9986–9992 (2016).

16. Han, G. et al. Additive selection strategy for high performance perovskite
photovoltaics. J. Phys. Chem. C. 122, 13884–13893 (2018).

17. Wang, Q., Dong, Q., Li, T., Gruverman, A. & Huang, J. Thin insulating
tunneling contacts for efficient and water-resistant perovskite solar cells. Adv.
Mater. 28, 6734–6739 (2016).

18. De Marco, N. et al. Guanidinium: a route to enhanced carrier lifetime and
open-circuit voltage in hybrid perovskite solar cells. Nano Lett. 16, 1009–1016
(2016).

19. Hou, X. et al. Effect of guanidinium on mesoscopic perovskite solar cells.
J. Mater. Chem. A 5, 73–78 (2017).

20. Jodlowski, A. D. et al. Large guanidinium cation mixed with
methylammonium in lead iodide perovskites for 19% efficient solar cells. Nat.
Energy 2, 972–979 (2017).

21. Kubicki, D. J. et al. Formation of Stable mixed
guanidinium–methylammonium phases with exceptionally long carrier
lifetimes for high-efficiency lead iodide-based perovskite photovoltaics. J. Am.
Chem. Soc. 140, 3345–3351 (2018).

22. Hsu, H.-L. et al. High-performance and high-durability perovskite
photovoltaic devices prepared using ethylammonium iodide as an additive.
J. Mater. Chem. A 3, 9271–9277 (2015).

23. Poorkazem, K. & Kelly, T. L. Compositional engineering to improve the
stability of lead halide perovskites: a comparative study of cationic and anionic
dopants. ACS Appl. Energy Mater. 1, 181–190 (2017).

24. Wang, Q. et al. Enhancing efficiency of perovskite solar cells by reducing
defects through imidazolium cation incorporation. Mater. Today Energy 7,
161–168 (2018).

25. Zhang, Y. et al. Auto-passivation of crystal defects in hybrid imidazolium/
methylammonium lead iodide films by fumigation with methylamine
affords high efficiency perovskite solar cells. Nano Energy 58, 105–111
(2019).

26. Kubicki, D. J. et al. Cation dynamics in mixed-cation (MA) x(FA) 1– xPbI
3Hybrid perovskites from solid-state NMR. J. Am. Chem. Soc. 139,
10055–10061 (2017).

27. Tavakoli, M. M. et al. Adamantanes enhance the photovoltaic performance
and operational stability of perovskite solar cells by effective mitigation
of interfacial defect states. Adv. Energy Mater. 8, 1800275–1800277
(2018).

28. Bi, D. et al. Multifunctional molecular modulators for perovskite solar cells
with over 20% efficiency and high operational stability. Nat. Commun. 9,
4482 (2018).

29. Im, Jeong-Hyeok, Chung, Jaehoon, Kim, Seung-Joo & Park, Nam-Gyu
Synthesis, structure, and photovoltaic property of a nanocrystalline 2H
perovskite-type novel sensitizer (CH3CH2NH3)PbI3. Nanoscale Res. Lett. 7,
353 (2012).

30. Fan, J. et al. Thermodynamically self-healing 1D-3D hybrid perovskite solar
cells. Adv. Energy Mater. 8, 1703421–1703428 (2018).

31. Chen, Y. et al. 2D Ruddlesden-Popper perovskites for optoelectronics. Adv.
Mater. 30, 1703487–15 (2017).

32. Elena, B., Pintacuda, G., Mifsud, N. & Emsley, L. Molecular structure
determination in powders by NMR crystallography from proton spin
diffusion. J. Am. Chem. Soc. 128, 9555–9560 (2006).

33. Domanski, K., Alharbi, E. A., Hagfeldt, A., Gratzel, M. & Tress, W.
Systematic investigation of the impact of operation conditions on the
degradation behaviour of perovskite solar cells. Nat. Energy 3, 61–67
(2018).

34. Domanski, K. et al. Not all that glitters is gold: metal-migration-
induced degradation in perovskite solar cells. ACS Nano 10, 6306–6314
(2016).

35. Prochowicz, D. et al. Mechanosynthesis of the hybrid perovskite CH 3NH
3PbI 3: characterization and the corresponding solar cell efficiency. J. Mater.
Chem. A 3, 20772–20777 (2015).

36. Kubicki, D. J. et al. Phase segregation in Cs-, Rb- and K-doped mixed-cation
(MA) x(FA) 1– xPbI 3hybrid perovskites from solid-state NMR. J. Am. Chem.
Soc. 139, 14173–14180 (2017).

37. Kubicki, D. J. et al. Phase segregation in potassium-doped lead halide
perovskites from 39K solid-state NMR at 21.1 T. J. Am. Chem. Soc. 140,
7232–7238 (2018).

Acknowledgements
E.A. and A.Q.A gratefully acknowledge King Abdulaziz City for Science and Tech-
nology (KACST) for a fellowship. M.G. and S.M.Z thank the King Abdulaziz
City for Science and Technology (KACST) for the financial support. A.R.U.
acknowledges the financial support from the Swiss National Science Foundation
(SNSF) under project number P3P3P2_177790. D.J.K., B.J.W., and L.E. acknowledge
Swiss National Science Foundation Grants No. 200021_160112 & 200020_178860 and
the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 764047. E.A. and F.G. acknowledge Dr. Daniel Prochowicz and
Anand Agarwalla for help with XRD and stability measurements, respectively.
Authors appreciate the support of Guido Rothenberger (EPFL) on devising the model
for the kinetic analysis of time-resolved photoluminescence decay.

Author contributions
E.A. and M.G. conceived the idea. E.A. optimized the composition and designed the
experiments. J.L. took the SEM images. F.G. conducted the IMVS measurements. A.Q.A.
and M.H.A. contributed in the device fabrications. A.Y.A., A.A., and H.A. prepared
the films and the recorded the AFM measurements. A.R.U. assessed sample
roughness and analyzed AFM results. A.B. conducted TRPL measurements. D.J.K,
B.J.W., and L.E. carried out and analysed the solid-state NMR measurements. J-E.M.
supervised A.B. E.A. wrote the first manuscript. M.G., S.M.Z., F.G., and A.Y.A. super-
vised the project and results discussion. All the authors contributed to the preparation of
the manuscript.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10985-5

8 NATURE COMMUNICATIONS |         (2019) 10:3008 | https://doi.org/10.1038/s41467-019-10985-5 | www.nature.com/naturecommunications

http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
www.nature.com/naturecommunications


Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-10985-5.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Peer review information: Nature Communications thanks Jong Hyeok Park and other
anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10985-5 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3008 | https://doi.org/10.1038/s41467-019-10985-5 | www.nature.com/naturecommunications 9

https://doi.org/10.1038/s41467-019-10985-5
https://doi.org/10.1038/s41467-019-10985-5
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells
	Results
	Characterization and fabrication of perovskite thin films
	Photovoltaic device and performance
	Operational stability of perovskite solar cells

	Discussion
	Methods
	Materials
	Solar cell preparation
	Synthesis of perovskite films
	Device characterization
	Incident photon-to-current efficiency (IPCE)
	Scanning electron microscopy (SEM)
	Atomic force microscopy (AFM)
	Solid-state NMR measurements
	Long-term light soaking test

	References
	References
	Acknowledgements
	Author contributions
	ACKNOWLEDGEMENTS
	Competing interests
	ACKNOWLEDGEMENTS


