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An atomic mass formula is constructed as the sum of a gross part and empirical shell 
terms. The gross part is adjusted so that the shell terms may remain small and accord with 
the charge symmetry of nuclear forces. The shell terms show marked dips at the magic 
numbers 28, 50, 82 and 126, but not at 8 and 20. The standard deviation is 300 ke V for 
even-even and odd-mass nuclei with mass number 1 to 257. For odd-odd nuclei the mass 
formula includes additional terms and the standard deviation is 435 keV. 

§ 1. Introduction 

Many authors made attempts to construct the atomic mass formula includ­
ing effects of the nuclear shell structure. Among them, Cameron et al.1l~s) as­
sumed purely empirical shell terms in addition to a liquid-drop formula. Myers 
and Swiatecki4),o) and Seeger6l' 7l calculated shell energies as arising from the 
nonuniformity of single-nucleon levels of spherical or deformed nuclei and added 
them to their own liquid-drop formulas. Kiimmel et al. 8l started from a formal 
summation of single-particle energies in each shell; by dividing it into the liquid­
drop part and the shell part and applying some corrections to them, they con­
structed a mass formula. While these formulas include the liquid-drop part as 
representing the general tendency of atomic masses, there are other formulas 
which lack such a part. Zeldes et al.9l described atomic masses as a simple ex­
pression in valence nucleon numbers; the parameters in it are directly related 
to the matrix elements of the effective interaction. Garvey et aJ.l0l proposed a 
kind of mass relation from another viewpoint. A detailed review of these for­
mulas was given by Comay et al.11l At the present stage, 'each has both merits 
and demerits and there seems to be room for improvement. 

In this paper we construct a mass formula from a somewhat different view­
point. We start from the Yamada-Matumoto systematics of nucleon separation 
energies, SP (proton separation energy) and Sn (neutron separation energy) .12l 

It is summarized as follows : 
A. Cases in which no odd-odd nucleus is concerned (Z: proton number, N: 
neutron number): 

SP (fi.xed-Z, even-N) increases smoothly (almost linearly) with N. 
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S,.(even-Z, fixed-N) increases smoothly (almost linearly) with Z. 
B. Cases in which odd-odd nuclei are concerned: 

B-1. The following inequality holds for those separation energies (a, b, c, 
· · ·) as shown in Fig. 1: 

(2b-a-c)- (2e-d-f) = (2h-g-i)- (2k- j--l) >O. (1) 

This can be rewritten in terms of the masses (00), (01), · · ·: 

[ (11)- H (01) + (10) + (21) + (12)} J - [H (01) + (10) + (21) + (12)} 

-t{ (00) + (02) + (20) + (22)}] <O. (2) 

B-2. SP(odd-Z, even-N) is not much smaller than Sp(Z, N-1) and S,.(even­
Z, odd-N) is not much smaller than S,. (Z -1, N). 

We attempt to embody this systematics in a mass formula. We are mainly 
concerned with even-even and odd-mass 
nuclei because odd-odd nuclei exhibit 
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Fig. 1. An odd-odd nucleus and eight nuclei 
surrounding it. The letters between the 
nuclei stand for the proton and neutron 
separation energies and (10), (12), etc. 
represent the masses. 

somewhat complicated properties due to 
residual neutron-proton interactions. We 
assume that our mass formula consists 
of two parts, the gross part and the 
shell part. U pan this shell part we im­
pose two conditions: it should be small, 
and should accord with charge symmetry 
of nuclear forces. The gross part is ad­
justed so that these conditions may be 
satisfied. In the following two sections 
we construct the mass formula along 
this line and discuss its properties. In 
the last section we present a mass for­
mula for odd-odd nuclei which is obtain­
ed from the above formula by adding 
two simple terms. 

§ 2. Construction of mass formula 

As mentioned in § 1, we first consider even-even and odd-mass nuclei. Ac­
cordingly, we pick out only the systematics A because the systematics B is 
mainly concerned with odd-odd nuclei. In order to embody the systematics A, 
we take the following form for the mass excess: 

ME (Z, N) =MEg (Z, N) + P z(N) + QN (Z). (3) 

Here MEg (Z, N) represents the gross part which is a smooth function of Z and 
N; Pz(N) and QN(Z) are proton and neutron shell terms, respectively. In 
order that this expression may satisfy the systematics A, the proton shell term 
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Pz(N) should be smooth functions of N, whereas they may not necessarily be 

smooth with respect to the subscript Z. Similarly, QN (Z) should be smooth 

with respect to Z, but not necessarily so with respect to N. Furthermore, the 

derivatives of P z(N) and QN (Z) should be relatively small. It is easily seen 

that these conditions on Pz(N) and QN (Z) are sufficient for the validity of the 

systematics A. 

As the first step along this line, we take the simplest form for these shell 

terms in this paper; we assume P z(N) and QN (Z) to be constant parameters 

Pz and QN neglecting their dependence on N and Z, respectively. It should be 

noted that there are about one hundred P :!s and one hundred and fifty QN's. 

At this stage the parametrization of our shell terms becomes the same as that 

of Cameron et al.'s. 1l~8l 

We determine the values of parameters P z and QN by the method of least 

squares with respect to experimental masses. Moreover, we require them to 

satisfy the following two conditions: 

(1) Gross properties of atomic masses are represented by MEg (Z, N) in Eq. (3) 

and only the remaining mass excesses are attributed to P z and QN; accordingly, 

the magnitudes of Pz and QN should be relatively small. 

(2) In the region of light nuclei (Z, N<20), where the charge symmetry of 

nuclear forces manifests itself most clearly, the values of Pz should be approxi­

mately equal to those of the corresponding parameters QN. 

Special emphasis laid upon these conditions is the principal point to distin­

guish our formula from those of Cameron et al. 1J~BJ 

Our procedure for calculating Pz and QN is as follows. First, we assume 

a zeroth-order approximation of MEg (Z, N) taking into account gross features 

of odd-mass data. Then, we determine the shell terms P z and QN by the method 

of least squares using the data on even-even as well as odd-mass nuclei. Actu­

ally, these leastcsquares calculations have been made by an iteration method. 

Next, the values of Pz and QN thus obtained are examined in the light of the 

above-mentioned two conditions. If they do not fulfil these conditions, we change 

the gross part. Such trial and error procedures are repeated until no further 

appreciable improvement in the gross part and the shell terms is possible. 

To begin with, we tested Kodama's formula13l as our gross part. In that 

case, however, the second condition was not fulfilled at all although the first 

one was satisfied fairly well. Consequently, we have partially modified Kodama's 

formula13l as follows C2C standard, in MeV) : 

MEu(Z,N) =7.68046A+0.39123I+a(A) ·A+b(A) ·Ill 

+c(A) ·12/A+Ec(Z, N), (4) 

where 

A=Z+N, l=N-Z, 
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b (A) = bA - 213, 

c(A) =c1 +c2A - 113 +c8A - 2; 3/(1 +c4A -l/8), 

Ec(Z, N) =0.7854545(~)" {1+ ~ (;r +! (;r +! (;r 

(5) 

(6) 

(7) 

(8) 

with 

Equation (8) is the Coulomb energy of the trapezoidal , charge distribution as 
shown in Fig. 2; its last term is the approximate Coulomb exchange energy 
calculated on the Fermi-gas model. We use the parameter values r 0 = 1.1 fm and 

filr-------,. 
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Fig. 2. The trapezoidal charge distribution. 

z = 1.5 fm. The, adjustable parameters 
a; and c; sh,ould be determined in accor­
dance with the above-mentioned two con-
ditions. 

In the course of the determination 
of parameter values, we often obtained 
quite unsatisfactory results; Pz and QN, 
as functions of Z and N respectively, 
oscillated with rather large amplitudes or 
they exhibited completely different be-

The central density {Jo 1s related to ro by 
(Jo=3/(4rrro 3). 

havior from each other in the region of 
light nuclei. It has become clear through analyses that this behavior of Pz and 
QN critically depends on the location of the JSl-stability line, namely on the val­
ues of the symmetry-term coefficient c (A).. This observation has been helpful 
for our analysis. It should also be noted that the sum of the two shell terms 
(Pz+ QN) does not change under the substitution; Pz' =Pz+D, QN' =QN-D, 
where D is an arbitrary constant independent of Z and N. We have utilized 
this property, too. _ 

We have picked out mass data with errors less than 100 ke V from the mass 
table of W apstra and Gove14l and have used them with equal weight. 

§ 3. Final parameter values and discussion 

The finitl values of the shell terms, Pz and QN, and the parameters of the 
gross part, a;, b and c; are tabulated in Tables I, II and III. In order to see 
the behavior of Pz and QN as functions of Z and N respectively, we plot them 
in Figs. 3 and 4. 
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Table I. Values of proton shell term Pz (in MeV). 

z Pz I Z Pz I Z Pz I Z Pz I Z Pz I Z Pz I Z 

0 -9.474 I 15 -0.588 30 -1.105 45 0.637 60 1.5191 75 2.669 90 3.107 

1 3.367 16 -1.759 31 0.866 46 -1.400 61 2.903 76 1.719 91 3.742 

2 -2.818 17 0.315 32 -o.o98 
1

. 47 -0.617 62 1.798 77 2.309 92 2.292 

3 2.822 18 -1.012 33 1.906 48 -2.668 63 2.937 78 1.089 93 2.742 

4 0.002 19 0.966 34 0.700 49 -1.871 64 1.748 79 1.203 94 1.442 

5 2.369 20 -1.168 35 2.538· 50 -4.1231 65 2.861 80 -0.465 95 1.62f 

6 -1.527 21 1.296 36 1.050 51 -2.3491 66 1.714 81 -0.392 96 0.381 

7 0.469 22 -0.433 37 2.717 52 -2.951 67 2.811 82 -1.648 97 0.604 

8 -1.363 23 1.319 38 0.859 53 -1.335 68 1.874 83 0.343 98 -0.64:3 

9 2.239 24 -0.665 39 2.130 54 -1.928 69 2.898 84 0.476 99 -0.438 

10 -0.066 25 0.640 40 0.599 55 -0.149 70 2.007 85 2.316 100 -1.620 

11 1.760 26 -1.384 41 2.199 56 -0.526 71 3.067 86 2.190 101 -1.413 

12 -0.943 27 -0.156 42 0.639 57 1.202 72 2.333 87 3.681 102 -2.489 

13 0.634 28 -2.314 43 1.778 58 0.790 73 3.161 88 3.177 

14 -2.084 29 -0.504 44 -0.225 59 2.509 74 2.062 89 4.253 

Table II. Values of neutron shell term QN (in MeV). 

0 -8.861 23 2.594 46 -0.700 69 5.336 I 92 1.492 115 -0.477 138 -0.752 

1 3.548 24 0.184 47 0.130 70 3.938 '93 2.323 116 -1.830 139 0.171 

2 -3.664 25 1.033 48 -2.350 71 4.999 94 1.190 117 -1.489 140 -0.690 

3 2.010 26 -1.351 49 -1.752 72 3.312 95 2.073 118 -2.841 141 -0.164 

4 -0.836 27 -0.658 50 -4.440 73 4.250 96 0.889 119 -2.719 142 -0.808 

5 2.050 28 -3.343 51 -2.684 74 2.235 97 1.681 120 -4.004 143 -0.139 

6 -1.847 29 -1.930 52 -2.913 75 3.022 98 0.511 121 -3.728 144 -0.819 

7 0.394 30 -2.721 53 -1.143 76 1.259 99 1.296 122 -5.374 145 -0.285 

8 -1.761 31 -0.729 54 -1.389 77 1.936 100 0.321 123 -5.282 146 -0.670 

9 1.870 32 -1.672 55 0.309 78 -0.099 101 0.970 124 -6.825 147 -0.043 

10 0.139 33 0.209 56 -0.129 79 0.363 102 0.080 125 -6.870 148 -0.562 

11 2.055 34 -0.887 57 1.775 80 -1.575 103 0.683 126 -7.658 149 -0.033 

12 -0.501 35 1.246 58 1.341 81 -1.295 104 -0.079 127 -5.780 150 -0.526 

13 1.259 36 -0.117 59 3.239 82 -3.107 105 0.514 128 -5.480 151 0.105 

14 -1.590 37 1.853 60 2.291 83 -1.214 106 -0.142 129 -3.684 152 -0.520 

15 -0.028 38 0.359 61 4.184 84 -1.214 107 0.470 130 -3.566 153 0.337 

16 -1.511 39 2.369 62 3.149 85 0.361 108 -0.441 131 -1.901 154 0.001 

17 0.192 40 0.735 63 4.959 86 0.213 109 0.313 132 -1.986 155 0.927 
18 -1.105 41 2.338 64 3.875 87 1.739 110 -0.348 133 -1.115 156 0.618 

19 0.935 42 0.564 65 5.341 88 1.492 111 0.373 134 -1.207 157 1.526 

20 -0.785 43 1.978 66 4.213 89 2.941 112 -0.510 135 -0.614 

21 2.182 44 0.092 67 5.684 90 1.860 113 0.241 136 -0.780 

22 0.856 45 1.311 68 4.335 91 2.860 114 -0.848 137 0.016 
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Table III. Values of parameters 
in MEu (Z, N). 

a, -17.1157 
a, 27.4348 
a, -14.1609 
a, - 2.0918 
b 15.0 
Ct 35.8276 
c. -87.8265 
Co 84.4186 
c. 0.730136 

MeV 

-6 

-8 

0 20 40 

0 20 40 
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In these figures the shell effects show up 
clearly. Marked dips are seen at the magic num­
bers 28, 50, 82 and 126 but not at 8 and 20. It 
is also seen that P z and QN each separate clearly 
into two lines owing to the even-odd effect; our 
shell terms, Pz+ QN, include the usual even-odd 
term. Although this formula fairly well satisfies 
our two conditions in most mass regions, its be­
havior in the heaviest region is unsatisfactory; Pz 
decreases with Z, and QN increases with N. This 
tendency is closely connected with the fact that 

60 80 100 
z 

60 80 100 

Fig. 3. The proton shell term Pz 
plotted against Z. 

Fig. 4. The neutron shell term QN 
plotted against N. 
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Fig. 5. The differences between the experimental and calculated masses 
(MEexp-MEcaic). e: odd-Z-even-N nucleus, x: even-even nucleus. 
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the j)'-stability line has not been well reproduced by most mass formulas in the 
heaviest region.18>' 15> It is not known at present whether this defect is due to 
the gross part or to the shell part. Anyway, this situation is unfavorable for 
predicting the masses of superheavy nuclei. 

The differences between the experimental and the calculated masses are 
shown in Figs. 5 and 6. . In Fig. 5, those of odd-Z-even-N. as well as even-even 
nuclei are plotted against N; in Fig. 6, those of even-Z-odd-N as well as even­
even nuclei are plotted against Z. These figures show that the differences are 
larger for magic nuclei, and smaller for nonmagic nuclei. The standard devi­
ation is 300 ke V for 857 nuclides with 1 <A <257, and 254 ke V for 819 nu­
clides with 17<A <257. This is somewhat smaller than that of Truran et al.8> 
(about 300 keV for A>20) and larger than that of Garvey et al.10> (about 160 
keV for A>17). Note that the number of parameters in our formula, =250, 
is much smaller than that of the Garvey-Kelson formula/0> =450. We can expect 
that the deviation will be reduced by taking into account the N-dependence of 
Pz(N) and the Z-dependence of QN(Z). 

§ 4. Formula for odd-odd nuclei 

In constructing our mass formula we have excluded odd-odd nuclei because 
their masses behave somewhat irregularly due to residual neutron-proton interac­
tions. On the average, the distance between the mass surfaces of odd-odd and 
odd-mass nuclei is smaller than that between the mass surfaces of odd-mass and 
even-even ones. 

In order to see this situation, we first calculate the left-hand side of in-

MeV 

E 
57 

0 50 100 150 200 250 
A 

Fig. 7. The left-hand side of inequality (2) (referred to as E) calculated 
with experimental mass data for all the nuclei concerned. Isotopes 
are connected by solid lines a!).d are labeled by Z. 
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equality (2) (referred to as e) using experimental mass data for all the nuclei 
concerned, and plot it in Fig. 7. This figure shows that inequality (2) actually 
holds for almost all odd-odd nuclei with only few possible exceptions, f?r which 
the e's are nearly equal to zero. 

Second, we calculate the mass excesses of odd-odd nuclei using the formula 
obtained in the previous sections, and subtract them from the experimental ones. 
Only the experimental· data with errors less than 100 ke V are used. The quan­
tities thus obtained are essentially the semitheoretica:l values of e and are plotted 
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Fig. 8. The differences between the experimental and calculated masses (Msexp-M:ica;c) for 
odd-odd nuclei, where M:icaic are calculated from the formula in §§ 2 and 3. These dif­
ferences are essentially the semi theoretical values of E. The dashed line is Eo (A). 

in Fig. 8. Although the majority of data points lie below zero in agreement 
with inequality (2), not a few points lie above zero. In consideration of Fig. 
7, this disagreement seems to be due to ina~curacy of our formula. The dash­
ed line in Fig. 8 is the average curve, which is approximated as*> 

(A) [ 11719.21 
eo = - . (A+ 31.4113Y 

1321495 J 
(A+ 48.1170Y . 

(10) 

*> According to the shell model, the interaction energy between the last proton and neutron 
is, on the average, proportional to A_,_ This mass-number dependence is not much different from 
that of Eo (A) as given by Eq. (10) as far. as heavy nuclei (A>60) are concerned. While it is an 
interesting problem to discuss the deviation of E from the average curve Eo.(A) in connection with 
nuclear models, the semitheoretical values of E shown in Fig. 8 are not sufficiently accurate for this 
purpose. 
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Thus, we recommend to calculate the mass excesses of odd-odd nuclei by adding 
s0 (A) to the mass formula (3): 

M(ZN)=M(ZN)+P+Q-[ 11719.21 _ 1321495] (11) 
E ' Eg ' z N (A+ 31.4113Y (A+ 48.1170/ . 

The standard deviation of 246 odd-odd mass data (2<A <254) from Eq. (11) 
is 435 keV. 
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