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Abstract

Atomic radii and charges are two major parameters used in implicit solvent elec-

trostatics and energy calculations. The optimization problem for charges and radii is

under-determined, leading to uncertainty in the values of these parameters and in the

results of solvation energy calculations using these parameters. This paper presents a

method for quantifying this uncertainty in solvation energies using surrogate models

based on generalized polynomial chaos (gPC) expansions. There are relatively few

atom types used to specify radii parameters in implicit solvation calculations; there-

fore, surrogate models for these low-dimensional spaces could be constructed using

1

ar
X

iv
:1

70
5.

10
03

5v
1 

 [
q-

bi
o.

B
M

] 
 2

9 
M

ay
 2

01
7



least-squares fitting. However, there are many more types of atomic charges; therefore,

construction of surrogate models for the charge parameter space required compressed

sensing combined with an iterative rotation method to enhance problem sparsity. We

present results for the uncertainty in small molecule solvation energies based on these

approaches. Additionally, we explore the correlation between uncertainties due to

radii and charges which motivates the need for future work in uncertainty quantifica-

tion methods for high-dimensional parameter spaces. The method presented in this

paper is a promising approach for efficiently quantifying uncertainty in a wide range

of force field parameterization problems, including those beyond continuum solvation

calculations.

1 Introduction

Implicit solvent models and their applications have been the subject of numerous previous

reviews.1–3 Such solvation models require the coordinates of the solute atoms as well as

atomic charge distributions and a representation of the solute-solvent interface. Charges and

interfaces are generally modeled through parameterized empirical representations; however,

these parameterizations are often under-determined, leading to uncertainty in the resulting

parameter sets.4–6 The Poisson equation is a popular model for implicit solvent electrostatics

and serves as a good example for exploring the influence of this uncertainty on properties such

as molecular solvation energy.1–3 This is a partial differential equation for the electrostatic

potential ϕ : Ω 7→ R

−∇ · ǫ(x)∇ϕ(x) = ρ(x) for x ∈ Ω (1)

ϕ(s) = ϕD(s) for s ∈ ∂Ω, (2)

where Ω ⊂ R
3 is the problem domain, ∂Ω is the domain boundary, ǫ : Ω 7→ [1,∞) is a

dielectric coefficient, ρ : Ω 7→ R is the charge distribution, and ϕD is a reference potential
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function (e.g., Coulomb’s law) used for the Dirichlet boundary condition. The dielectric

coefficient ǫ is usually defined implicitly7–10 with respect to the solute atomic radii {σi} and

solvent properties such that the coefficient reaches two limiting constant values: ǫu inside

the solute and ǫv away from the solute in bulk solvent. The solvation energy is calculated by

∆G =

∫

Ω

ρ(x) (ϕ(x)− ϕ0(x)) dx, (3)

where ϕ is the Poisson equation solution for the system with a bulk value of ǫ correspond-

ing to the solvent of interest and ϕ0 is the solution for the system with a bulk value of ǫ

corresponding to a vacuum. For atomic monopoles, the solute charge distribution has the

(numerically unfortunate) form ρ(x) =
∑NA

i qiδ(x− xi) for NA solute atoms with positions

{xi} and charges qi. The δ terms are formally defined as Dirac delta functionals but usually

approximated by functions with finite support (e.g., when projected onto a grid or finite ele-

ment basis). The delta functional approximation leads to a simplified form for the solvation

energy in Eq. 3,

∆G =

NA
∑

i

qi (ϕ(xi)− ϕ0(xi)) . (4)

Atomic charge models are designed to approximate the “true” vacuum electrostatic po-

tential due to quantum mechanical electron and nuclei charge distributions. While quantum

mechanical charge distributions can be incorporated directly in implicit solvent models,11,12

atomic point charge distributions are generally used.2 These point charges can include in-

ducible and fixed multipoles13,14 but monopoles are the most common form. For the purposes

of assigning charges, atoms are grouped into sets based on molecular connectivity and envi-

ronment.15 The charge values for atoms in these sets are usually determined by numerical

fitting to quantum mechanical vacuum electrostatic potentials. Such charge optimization

is ill-posed and fitting requires careful choice of the objective function and regularization

constraints.16–19 While sophisticated fitting procedures have been developed, significant in-

formation reduction occurs in the transformation of the continuous quantum mechanical
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electron density into a discrete set of atomic point charges.

Solute-solvent interface models are much more empirical than the charge distribution

models; the definition of a solvent “interface” is imprecise at length scales comparable to the

size of water molecules. Therefore, such models are generally developed to represent a reason-

able description of the solute geometry while also optimizing agreement with experimental

quantities such as solvation energy. A large number of solute-solvent interface models exist,

including van der Waals,10 solvent-accessible,20 solvent-excluded (or Connolly),21 Gaussian-

based,22 spline-based,23 and differential geometry surfaces.9,24–28 All of these interface models

represent atoms as spheres and require information about the radii of these spheres. These

radii are generally assigned to sets of atoms based on their “type” as determined by the

local molecular connectivity. Unlike atomic charges, there are relatively few sets of atom

types used to assign radii.15,29 These radii parameters are determined by optimization of

properties such as solvation energy against experimental data.15,29 Additionally, many of

these models also require information about solvent characteristics, generally in the form of

a solvent radius, characteristic solvent length scales, or bulk solvent pressure/surface tension

properties.

In the present work, we quantify the uncertainty in solvation energy calculated by the

Poisson equation and induced by the uncertainty of the input radii and charge parameters.

In particular, we construct two surrogate (or statistical regression) models of the solvation

energy in terms of the radii and the atomic charges, respectively. These surrogate models

enable us to estimate the solvation energy with different input parameters quickly and to

evaluate the statistical information of the target properties (e.g., probability density func-

tion) efficiently. We model the input parameters as independent (i.i.d.) Gaussian random

variables with different means and standard deviations. To construct the surrogate of the

Poisson model, we use a generalized polynomial chaos (gPC)30,31 expansion to represent the

dependence of the solvation energy on uncertain parameters such as the atomic charge and

radii. The efficacy of the gPC method for elliptic problems such as the Poisson equation has
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been extensively studied with robust results for its efficiency and accuracy.32,33 This approach

is straightforward to apply to the relatively low-dimensional parameter sets. However, the

main challenge of applying this method to implicit solvent calculation parameter uncertainty

is the high-dimensionality of parameter sets (especially the atomic charges): the surrogate

models require more basis functions and, therefore, more expansion coefficients need to be

identified. To address this challenge, we adopt a compressive sensing method combined with

the rotation-based sparsity-enhancing method first proposed by Lei et al.34 and extended by

Yang et al.,35 which enable us to construct the surrogate with relatively few sample outputs

of the numerical Poisson solver.

2 Methods

We demonstrated the framework using a test set of 17 compounds from the SAMPL com-

putational challenge for solvation energy prediction15 (see Table 1).

Table 1: List of 17 compounds from the SAMPL computational challenge for solvation energy
prediction.

ind. compound ind. compound
1 glycerol triacetate 10 1, 4-dioxane
2 benzyl bromide 11 diethyl propanedioate
3 benzyl chloride 12 dimethoxymethane
4 m-bis(trifluoromethyl)benzene 13 ethylene glycol diacetate
5 N,N -dimethyl-p-methoxybenzamide 14 1, 2-diethoxyethane
6 N,N − 4-trimethylbenzamide 15 diethyl sulfide
7 bis-2-chloroethyl ether 16 phenyl formate
8 1, 1-diacetoxyethane 17 imidazole
9 1,1-diethoxyethane

2.1 Uncertain parameters

Many parameterization approaches for atomic charge use ESP (electrostatic potential)36 or

related methods (e.g., RESP18). These methods optimize atomic charges by least-squares

5



fitting of the charges’ Coulombic potential to the electrostatic potential obtained from quan-

tum mechanical calculations. This under-determined optimization is performed subject to

various constraints, including the requirement that the atomic charges sum to the integer

formal charge of the molecule. More specifically, the calculated ESP V̂i at the i-th grid

point is the electrostatic potential given by Coulomb’s law summed over the charge qj at

the centers of the j-th atoms. Least-squares fitting is performed by minimizing
∑

i(Vi− V̂i)
2

with constraints, where Vi is the electrostatic potential computed by ab initio calculations.

Least-squares fitting implies a Gaussian noise model wherein the atomic charges qj can be

modeled as Gaussian random variables.

In the present work, we modeled the uncertainty in atomic charges by considering atomic

charges obtained by 11 different approaches: AM1BCC,37 CHELP,38 CHELPG,39 CM2,40

ESPMK,36 Gasteiger,41 PCMESP,42 QEQ,43 RESP,18 MMFF94,44 Mulliken.45 The Hartree-

Fock method and the 6-31G*basis set were used to optimize molecular geometries. The

methods we selected here are popular ones from different approaches that have been proposed

for the derivation of atomic charges. For instance the General Amber force field use atomic

charges which are fitted by RESP, the GLYCAM force field employs the CHELPG method,

and CHARMM force field developers used both approaches. We note that some of these

resutls are known to be sensitive to details in the molecular modeling, which increases the

uncertainties in the input (atomic charge). We demonstrate that even with this less favorite

scenario, our method is still able to investigate the uncertainty in the solvation energy with

relatively few Monte Carlo samples.

We assumed that the variation of atomic charges across different methods can be modeled

by a Gaussian random field with covariance kernel

Cov(xi,xj) = ηiηj exp

(

−
‖xi − xj‖

p
2

θ

)

, (5)

where ηi is the standard deviation of the i-th atomic charge, xi is the position of the i-th
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atom, and 0 < p < 2. We used atomic charges from 11 different methods to estimate ηi and

then used the maximum likelihood estimate (MLE) method to estimate θ and p. Since the

sum of NA charges in a molecule is constrained (to its formal molecular charge Q ∈ Z), we

modeled the Gaussian random field with NA−1 atoms by removing the last hydrogen in the

PDB file. Additionally, we use symmetry in the molecular structure to reduce the number

of independent atomic charge types before applying the MLE to identify the random field.

For example, in a benzene, there is only one type of carbon and one type of hydrogen due

to the symmetry of this molecule. Therefore, we considered the charges of its atoms as a

Gaussian random field with only two entries instead of 12 ones (the total number of atoms

in benzene).

After obtaining the covariance matrix by integrating across methods, we represented the

atomic charge as

q = 〈q〉+Lcγ, (6)

where q = (q1, q2, · · · , qNA−1
) are the atomic charges, 〈q〉 is the mean of q estimated from the

11 different charge values, γ = (γ1, γ2, · · · , γNA−1
) are i.i.d. zero-mean unit-variance Gaussian

random variables, and Lc is a lower triangular matrix from the Cholesky decomposition of the

covariance matrix (Eq. 5). We note that for the atoms in the test set used in the present work,

the covariance matrices of these random field are almost diagonal: the off-diagonal entries

are smaller than 10−12. This suggests the correlation between atomic charges is effective

removed during their symmetry-based grouping. The atomic charge for the remaining atom

is obtained by summation of the other random charge variables based on the constraint

qi = Q−
∑NA

j 6=i qj.

Similarly, we used multiple force fields (ZAP-9,15 OPLSAA,46 Bondi47 and PARSE29)

to model uncertainty in the radii parameters in the same manner. Although radii are non-

negative, we did not explicitly impose constraints on the radii. After obtaining the covariance
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matrix, we represented the radii as

σ = 〈σ〉+Lrζ, (7)

where σ = (σ1, · · · , σNA
), σi is the radius of atom (type) i, ζ = (ζ1, · · · , ζNA

) are indepen-

dent zero-mean unit-variance Gaussian random variable and Lr is a lower triangular matrix

from the Cholesky decomposition of the covariance matrix. We note that the standard de-

viations here are smaller than 10% of the mean values which implies very low probabilities

for unphysical negative radii values. Therefore, by employing truncated Gaussian random

variables within 4 standard deviations (capturing more than 99.99% of the probability), we

guaranteed that the radii are always positive and that the distributions of the truncated

Gaussian variables were almost identical to the original Gaussian variates.

Although we use γ and ζ to denote the random variables used for modeling the uncer-

tainties in qj and σj, in what follows, we still use ξ = (ξ1, ξ2, · · · ) to denote general uncertain

inputs when introducing the algorithm and reporting results.

2.2 Solvation energy surrogate models

We used generalized polynomial chaos (gPC) expansions as surrogate models for the solvation

energy. The goal of surrogate construction is to estimate the variations in quantities of

interest, such as solvation energy, much more efficiently than solving the original problem,

such as solving the Poisson equation. The details for these expansions are provided in

Supporting Information.

2.3 Poisson equation solver

We used the Adaptive Poisson-Boltzmann Solver (APBS)48 to solve the Poisson equation

for solvation energies.
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3 Results and discussion

For each test case, we used Monte Carlo simulations to generate 10, 000 samples of the input

parameters ξq and then solved PB equation using APBS to obtain output samples of the

solvation energy Eq = E(ξq). We used these outputs as “ground truth” reference solutions

to examine the performance of the surrogate models. More precisely, given a surrogate model

Ẽ, we use two different root-mean-squared error (RMSE) measures to examine its accuracy:

RMSE1 =

√

√

√

√

√

∑10000

q=1

(

Ẽ(ξq)− Eq
)2

∑10000

q=1 (Eq)2
, RMSE2 =

√

√

√

√

∑10000

q=1

(

Ẽ(ξq)− Eq
)2

10000
. (8)

We also use box-whisker plots to demonstrate the statistics. The line in the middle is the

median of 16 molecules, the tops and bottoms of the boxes are 25th and 75th percentiles,

and the whisker plots cover more than 99% probability.

3.1 Influence of radii uncertainties on solvation energies

We investigated the effect of the uncertainties in the radii with fixed atomic charges obtained

from AM1-BCC.37 As an example, there are eight different sets of radii for N,N -dimethyl-

p-methoxybenzamide across the ZAP-9, Bondi, OPLSAA, and PARSE parameter sets, as

shown in the support material. We modeled the solvation as a function of eight i.i.d. Gaussian

random variables. We constructed gPC surrogate models with multi-variate normalized

Hermite polynomials up to third order. The surrogate model consisted of C4
8+4 = 495 basis

functions. Figure 1 (a) presents the RMSE obtained by our method with respect to different

numbers of samples Eq. Figure 1 (b) compares the solvation energy probability distribution

function (PDF) obtained by our method and the reference solutions. The numerical results

are obtained by constructing the surrogate model with the 36 output samples first, then

sampling the surrogate model 10, 000 times with random samples to estimate the PDF. The

reference solution is computed from the 10, 000 outputs of Eq.

9
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Figure 1: Performance of the surrogate model for radii uncertainties for N,N -dimethyl-p-
methoxybenzamide. (a): RMSE with different numbers of samples M . (b): comparison of
the solvation energy PDFs estimated by the numerical surrogate method (“Numeric”) based
on 40 output samples of APBS; dash line (“Experiment”) is the experimental result; dia-
monds are the results by using radii from ZAP-9, Bondi, OPLSAA and PARSE, respectively.
The diamond closest to the experiment was obtained from ZAP-9.

We performed the same analysis for all the molecules in the test set and present the results

in Figure 2. For most molecules, we can build an accurate surrogate model (RMSE< 0.05)

for the solvation energy with only a few samples (less than 40) of the input parameters.

However, m-bis-trifluoromethylbenzene (TFMB) required significantly more samples. In

particular, the RMSE for the TFMB solvation energy surrogate model was close to 0.15

with 40 samples and required 100 samples to reduce the RMSE to less than 5%. This

variability arises from the radius of fluorine: in the ZAP force field it is 2.4 Å; however, it is

only ∼ 1.4 Å for the other force fields. Hence, the standard deviation of this radius is around

25% of the mean and fluorine requires more terms in the surrogate model for an accurate

description and therefore more samples to parameterize those terms. The influences of the

uncertainties in the input radii on the solvation energy for each molecule are demonstrated

in box-whisker plots in Figure 3. The experiment results are presented for comparison. We

note that some experiments results are “outliers” of the box-whisker plots, this is because

that the atomic charges are computed from AM1BCC for the purpose of fixing the atomic
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Figure 2: Performance of surrogate models with respect to number of samples. Circles are
the RMSE1 of m-bis-trifluoromethylbenzene (TFMB), box-whisker plots are the RMSE1

of the remaining 16 molecules.

charges and it does not guarantee that the computed solvation energy is sufficiently close

to the experiment results. For example, for the m-bis(trifluoromethyl)benzene AM1BCC

charges yield negative solvation energy while the experiment result is positive.
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Figure 3: Influence of radii uncertainties on molecular solvation energies for the 17-molecule
test set. The red stars are the experiment results.
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3.2 Influence of atomic charge uncertainties on solvation energies

We also examined the influence of charge perturbation for solvation energy calculations with

fixed radii (ZAP-9). As an example, there are 14 different types of atoms in N,N -dimethyl-p-

methoxybenzamide as shown in Supporting Material. We note that we model the surrogate

with 13 inputs due to the constraint on the summation of the charges. The mean and

standard deviation are computed from the results of 11 different charge fitting approaches.

We used no more than 3000 multi-variate normalized Hermite polynomials (up to fourth

order) in the gPC surrogate model for Eg for all the molecules. We use N,N -dimethyl-p-

methoxybenzamide as an example. Figure 4 (a) presents the RMSE obtained by our method

with respect to different numbers of samples Eq. It illustrates that 300 output samples are

needed to reduce the RMSE to less than 5%. Figure 4 (b) compares the PDF obtained by

our method and the reference solution. The numerical results are obtained by constructing

the surrogate model with the 300 output samples first, then sampling the surrogate model

10, 000 times with random samples to estimate the PDF. The reference solution is computed

from the 10, 000 outputs of Eq.

The influences of the uncertainties in the input atomic charges on the solvation energy

for each molecule are demontrated in Figure 5. For most molecules, the experiment results

lie in the whisker plots and some of them are in the box. We also present the number of

output samples needed to construct a surrogate with RMSE less than 5% with respect to

the number of atom types in Figure 6.

3.3 Combined influence of radius and atomic charge uncertainties

Comparing the PDFs in Figures 1 (b) and 4 (b), we notice that the uncertainty in the solva-

tion energy induced by the atomic charges is stronger than that induced by the radii. The

atomic charges vary significantly across different methods while the variation in the radii

is much smaller. To understand the combined influence of charges and radii on solvation

energies, we modeled the correlated uncertainties for these two types of parameters can be
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Figure 4: Performance of surrogate models for charge uncertainties for N,N -dimethyl-p-
methoxybenzamide. (a): RMSE for surrogate model with different number of output sam-
ples. (b): comparison of the PDFs estimated by the numerical surrogate method (“Numeric”)
based on 300 output samples of APBS; dash line (“Experiment”) is the the result by the ex-
periment; diamonds are results by using atomic charges from AM1BCC, CHELP, CHELPg,
CM2, ESPMK, Gasteiger, PCMESP, QEQ, RESP, MMFF94, Mulliken.
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Figure 5: Results of atmoic charge uncertainties. Box-whisker plots demonstraing the un-
certainties in the numerical results of the solvation energy for 17 compounds. The red stars
are the experiment results.
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Figure 6: “◦” : number of output samples need to construct a surrogate model with RMSE
less than 5% with respect to the number of atom types; “-” is the best-fit curve 1.4x2 +
1.9x+ 7.9.

modeled with i.i.d. Gaussian random variables. We use N,N -dimethyl-p-methoxybenzamide

as an example. 480 output samples are needed to reduce the RMSE to less than 5%. Fig-

ure 7 (a) presents the RMSE obtained by our method with respect to different numbers of

samples Eq. Figure 7 (b) compares the PDF obtained by our method and the reference solu-

tion. The numerical results are obtained by constructing the surrogate model from the 480

output samples and then sampling the surrogate model 10, 000 times with random samples

to estimate the PDF. The reference solution is computed from the 10, 000 outputs of Eq.

Not surprisingly, the number of output samples needed to construct an accurate surrogate

increases as we take into account both uncertainties in the charges and radii. The shape

of the solvation energy changes PDF also slightly as the radii variation of the radii across

different methods are much smaller than charge variations.

The influences of the uncertainties in the input atomic charges on the solvation energy

for each molecule are demontrated in Figure 8. This figure is similar to Figure 5 since

the uncertainties in the atomic charges dominate the results. Figure 9 shows the number of

output samples needed to construct a surrogate with less than 5% RMSE for all 17 molecules
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(a): RMSE with different number of output samples M . (b): comparison of the PDFs
estimated by the numerical method (“Numeric”) based on 480 output samples of APBS;
dashed line (“Experiment”) is the experimental result.
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Figure 8: Results of radius and atomic charge uncertainties. Box-whisker plots demonstraing
the uncertainties in the numerical results of the solvation energy for 17 compounds. Red
stars are the experiment results.
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Figure 9: “◦” : number of output samples need to construct a surrogate model with RMSE
less than 5% with respect to the number of atom charge types plus radius types; “-” fitting
curve −0.6x2 + 45x− 188.

to the number of atom types in the molecule.

4 Conclusions

We used a newly developed extension of compressive sensing method to construct surrogate

models of solvation energy based on gPC expansions. These surrogate models allow us

to efficiently and accurately estimate the variation in solvation energy due to uncertainty

in parameter input. Our results demonstrate that for the data sets used in the present

work, the variation of radii across different approaches are small. On the other hand, the

variations of the atomic charges obtained by different methods are much larger. Therefore,

the number of output samples needed for accurate UQ analysis requires are much larger,

growing quadratically with respect to the number of atom types. In addition, modeling

the radii uncertainty and the atomic charges uncertainty are different in that the former

is transferable while the latter is not. More specifically, the radii of atoms are identified
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disregard of which molecule or residual they belong to in practice, hence, the uncertainty

of the radius of a specific atom can be applied to different molecules. However, the atomic

charges are computed by fitting the ab initio results, which does not guarantee that the

same atom in different molecules has the same uncertainty in the charges. This framework

can be applied to estimate the statistics (e.g., mean, variance), PDF, confidence interval,

Chernoff-like bounds,49 etc. of solvation computing and other chemical computing when the

inputs are uncertain. The current study focused on uncertainty in solute charges and radii;

however, this framework could also be applied to other solvation model characteristics such

as dielectric coefficient, solvent radius, and biomolecular surface definition.

In the future, we anticipate that this approach could be used for a much wider range

of force field parameterization activities, including both coarse-grained and atomistic rep-

resentations of biomolecules. Uncertainty quantification methods have begun to be used in

force field parameterization of simple alkane systems;50 this paper demonstrates the ability

to extend the methods to higher-dimensional systems with more diversity of atom types.

Application of these methods offer the benefit of efficiently characterizing parameter space

and understanding the impact of parameter variation on quantities of interest. Additionally,

the iterative method we used in the present work is very suitable for this type of problem,

as the accuracy of the surrogate models are improved significant after iterations. Especially,

the error of the surrogate models for the atomic charge induced uncertainties are reduced

by 40% ∼ 50% compared with the standard compressive sensing method. Also, there is

significant room for development in the numerical methods. For example, the sparsity-

enhancing approaches can be combined with other techniques including improved sampling

strategies,51,52 adaptive basis selection,53,54 and advanced optimization methods.55,56 These

approaches improve the accuracy of the compressive sensing method from different aspects.

As such, they will help to reduce the number of expensive simulations or quantum mechanics

calculations needed for constructing accurate surrogates.
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A Pairwise correlation between different fitting meth-

ods

The pairwise correlation of the atomic charges obtained by different fitting methods was

modeled by the covariance matrix Cov{ma,mb}, described in the main text, where ma and

mb denote two different fitting methods. We used MLE to identify the parameters p and θ
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based on charges from two different methods. The values of p and θ are presented in Tables

S1 and S2, respectively.

Table S1: Estimate of p from MLE. (1-AM1BCC, 2-CHELP, 3-CHELPG, 4-CM2, 5-ESPMK,
6-ANTECHAMBER, 7-PCMESP, 8-QEQ, 9-RESP, 10-MMFF94, 11-Mulliken

1 2 3 4 5 6 7 8 9 10 11
1 - 1.398 1.429 1.431 1.430 1.430 1.460 1.362 1.435 1.419 1.430
2 - 1.398 1.398 1.449 1.402 1.450 1.400 1.397 1.398 1.398
3 - 1.429 1.351 1.371 1.450 1.430 1.343 1.444 1.314
4 - 1.463 1.495 1.449 1.445 1.421 1.371 1.439
5 - 1.390 1.474 1.430 1.397 1.441 1.424
6 - 1.995 1.430 1.393 1.400 1.396
7 - 1.431 1.426 1.444 1.427
8 - 1.447 1.476 1.430
9 - 1.393 1.397
10 - 1.395
11 -

Table S2: Estimate of θ from MLE. (1-am1bcc, 2-chelp, 3-chelpg, 4-cm2, 5-espmk, 6-
antechamber, 7-pcmesp, 8-qeq, 9-resp, 10-mmff94, 11-mulliken)

1 2 3 4 5 6 7 8 9 10 11
1 - 0.048 0.043 0.044 0.043 0.043 0.057 0.060 0.058 0.055 0.043
2 - 0.048 0.048 0.052 0.059 0.052 0.055 0.063 0.048 0.048
3 - 0.043 0.066 0.060 0.052 0.043 0.059 0.056 0.067
4 - 0.064 0.061 0.059 0.058 0.056 0.065 0.066
5 - 0.058 0.063 0.043 0.064 0.058 0.060
6 - 0.283 0.043 0.065 0.065 0.065
7 - 0.042 0.060 0.056 0.064
8 - 0.059 0.059 0.043
9 - 0.061 0.064
10 - 0.060
11 -

The entries of correlation matrix Cma,mb are computed as Cma,mb

ij = Covma,mb

ij /ηiηj, where

ηi is the standard deviation of the i-th (type) atomic charge. For each matrix C{ma,mb}, we

define the correlation magnitude M{ma,mb} by

M{ma,mb} = ‖C{ma,mb}‖F/NA,

2



where ‖ · ‖F represents the Frobenius norm and NA is the total number of atom types. The

correlation magnitude between different fitting methods is presented in Figure S1.
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Figure S1: Correlation magnitude of the atom charge distribution for N,N -dimenthyl-p-
methoxybenzamide between different fitting methods: am1bcc, chelp, chelpg, cm2, espmk,
antechamber, pcmesp, qeq, resp, mmff94, mulliken.

B Setup of the input uncertainties

Example uncertainties for N,N -dimenthyl-p-methoxybenzamide charges and radii are given

in Tables S4 and S3, respectively.
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Table S3: Uncertainties in the radii of N,N -dimenthyl-p-methoxybenzamide.

atoms (index) mean std.
C ({1,2,3,4,5,6}) 1.7613 0.0807
C ({8}) 1.7863 0.0996
C ({9,12,13}) 1.7550 0.0802
O ({7}) 1.4725 0.0585
O ({10}) 1.5400 0.1549
N ({11}) 1.5188 0.0944
H ({14,15,16,17}) 1.1275 0.0984
H ({18,19,20,21,22,23,24,25,26}) 1.1375 0.1109

Table S4: Uncertainties in the charges of N,N -dimenthyl-p-methoxybenzamide.

atoms (index) mean std.
C ({1,3}) -0.2654 0.1328
C ({2}) 0.3606 0.2128
C ({4,6}) -0.0307 0.0937
C ({5}) -0.1578 0.1639
O ({7}) -0.4294 0.1239
C ({8}) 0.6500 0.2122
C ({9}) 0.1026 0.2666
O ({10}) -0.5643 0.1241
N ({11}) -0.4023 0.1705
C ({12,13}) -0.0580 0.2083
H ({14,15}) 0.1585 0.0432
H ({16,17}) 0.1327 0.0460
H ({18,19,20}) 0.0442 0.0805
H ({21,22,23,24,25,26}) - -

C Generalized polynomial chaos expansions

Let E(ξ) denote a quantity of interest, such as the solvation energy, which depends on

uncertain variables ξ. The gPC expansion for E can be written as

E(ξ) = Eg(ξ) + ε(ξ) =
N
∑

n=1

cnψn(ξ) + ε(ξ), (1)

4



where ε is the model error, N is a positive integer, cn are expansion coefficients, and ψn are

multivariate polynomials which are orthonormal with respect to the distribution of ξ:

∫

Rd

ψi(x)ψj(x)ρξ(x)dx = δij, (2)

where ρξ : Γ 7→ [0,∞) is the probability distribution function (PDF) of ξ over domain

Γ ⊆ R
d and δij is the Kronecker delta. In this work, we study systems relying on d-

dimensional Gaussian random vector ξ ∼ N (0, I). Therefore, the gPC basis functions are

constructed by tensor products of univariate orthonormal Hermite polynomials. For a multi-

index α = (α1, α2, · · · , αd), αi ∈ N ∪ {0}, we set

ψα(ξ) = ψα1(ξ1)ψα2(ξ2) · · ·ψαd
(ξd). (3)

For two different multi-indicesαi = ((αi)1 , (αi)2 , · · · , (αi)d) andαj = ((αj)1 , (αj)2 , · · · , (αj)d),

we have the property

∫

Rd

ψαi
(x)ψαj

(x)ρξ(x)dx = δαiαj
= δ(αi)1 (αj)1

δ(αi)2 (αj)2
· · · δ(αi)d (αj)d

, (4)

where

ρξ(x) =

(

1√
2π

)d

exp

(

−x
2
1 + x22 + · · ·+ x2d

2

)

. (5)

For simplicity, we denote ψαi
as ψi and set ψi = 1. The mean and the variance can be

estimated very easily from this expansion: E {E} ≈ E {Eg} = c1,Var{E} ≈ Var{Eg} =
∑N

n=2 c
2
n.

After the basis functions are selected, the surrogate model is constructed by computing

the coefficients cn. The first step is to generate input parameter samples ξq, q = 1, 2, · · · ,M ;

e.g., by using Monte Carlo sampling, and to obtain corresponding output samples Eq by

running the Poisson solver with the input parameters ξq. With this data, the simplest

approach to compute cn is linear regression. However, such approaches only work whenM >

5



N ; i.e., if the compound consists of many atoms and the number of uncertain parameters are

large, we need to include many ψn in the surrogate model to obtain an accurate surrogate

model for the PB solver. In general, we can only obtain relatively small number of output

samples due to limited computational resources such that M < N or M ≪ N . Therefore,

we generally need to solve the under-determined linear system:

Ψc = E + ε, (6)

where E = (E1, E2, · · · , EM)T is the vector of output samples, Ψ is an M ×N matrix with

Ψij = ψj(ξ
i), and ε = (ε1, ε2, · · · , εM)T is a vector of error samples with εi = ε(ξi). The

compressive sensing method is effective at solving this type of under-determined problem

when c is sparse and Ψ satisfies some condition.? ? ? Here “sparse” means that many cn are

close to 0, and only a small number of cn are of large magnitude. There are several approaches

to enhance sparsity;? ? ? ? the compressive sensing method typically approximates c by

solving the following ℓ1 minimization problem:

(P1,τ ) : argmin
c

‖c‖1, subject to ‖Ψc−E‖2 ≤ τ, (7)

where τ = ‖ε‖2 is the magnitude of the truncation error estimated by the cross-validation.?

Standard convex optimization methods are applicable? to this type of minimization problem.

In this work, we used a specifically designed MATLAB package spgl1? ? to solve (P1,τ ). We

implement a newly developed sparsity-enhancing compressive sensing technique? to further

improve the accuracy of the solution to (P1,τ ).

Given a fixed M , the accuracy of the compressive sensing method relies on the structure

of Ψ and the sparsity of c. The former can be improved by special sampling strategies,? ?

and the latter can be improved by sparsity-enhancing techniques.? ? The sparsity-enhancing

techniques find another set of random variables η = (η1, η2, · · · , ηd)T such that the vector c̃,

which are the gPC coefficients of u with respect to η, is sparser. In order words, our goal is

6



to seek η(ξ) with

Eg(ξ) =
N
∑

n=1

cnψn(ξ) =
N
∑

n=1

c̃nψn(η) = Eg(η),

such that c̃ is sparser than c. We use a rotation matrix A to identify η: η = Aξ. Since ξ

are i.i.d. Gaussian, and A is orthonormal (i.e., AAT = I), we have η ∼ N (0, I). Therefore,

Eg(η) is a gPC expansion with respect to η because ψn are orthonormal Hermite polynomials

and ρη(x) = ρξ(x), hence the orthonormal condition Eq. (1) holds. In order to obtain the

rotation matrix A, we first define the “gradient matrix”? ? G:

G = E
{

∇E(ξ) · ∇E(ξ)T
}

= UΛUT , UUT = I, (8)

where G is symmetric, ∇E(ξ) = (∂E/∂ξ1, ∂E/∂ξ2, · · · , ∂E/∂ξd)T is a column vector, U =

(U1,U2, · · · ,Ud) is an orthonormal matrix consisting of eigenvectorsUi, andΛ = diag(λ1, λ2, · · · , λd)

with λ1 ≥ λ2 ≥ · · · ≥ 0 is a diagonal matrix with elements representing decreasing variation

of the system along the respective eigenvectors. We choose A = UT , which is a orthonormal

matrix. Consequently, when the differences between λi are large, g helps to concentrate

the dependence of u primarily on the first few new random variables ηi due to the larger

variation of u along the directions of the corresponding eigenvectors. Therefore, we obtain a

sparser c̃ than c. Since E is unknown, we use Eg computed from standard ℓ1 minimization

method to approximate G:

G ≈ E







∇
(

N
∑

n=1

cnψn(ξ)

)

· ∇
(

N
∑

n′=1

cn′ψn′(ξ)

)T






. (9)

The entries of G can be approximated as:

Gij ≈ E

{

∂

∂ξi

(

N
∑

n=1

cnψn(ξ)

)

· ∂

∂ξj

(

N
∑

n′=1

cn′ψn′(ξ)

)}

= cTKijc, (10)
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where Kij is a “stiffness” matrix with entries

(Kij)kl = E

{

∂ψk(ξ)

∂ξi
· ∂ψl(ξ)

∂ξj

}

. (11)

We note that Kij can be pre-computed since {ψi} are normalized Hermite polynomials. Here

we provide the formula of (Kij)kl and more details can be found in.?

(Kij)kl = E

{

∂ψαk
(ξ)

∂ξi
· ∂ψαl

(ξ)

∂ξj

}

= E
















ψ(αk)i

(ξi)
′

d
∏

m=1
m 6=i

ψ(αk)m (ξm)






·






ψ(αl)j

(ξj)
′

d
∏

m=1
m 6=j

ψ(αl)m (ξm)

















=
√

(αk)i(αl)jδ(αk)i−1(αl)i
δ(αk)j (αl)j−1 ·

∏

m=1
m 6=i,m 6=j

δ(αk)m (αl)m .

(12)

After identifying A and consequently η we solve P (1, γ) to obtain c̃. This procedure can

be performed iteratively; i.e., every time we find a c̃, we identify a new A, then consequently

define new η. Hence, we can solve (P1,γ) to find a new, possibly sparser c̃. The entire

iterative procedure is summarized in Algorithm 1.

In this algorithm, steps 1-4 construct the surrogate model by directly applying the

compressive sensing method to the Monte Carlo sampling output. Steps 5-8 use sparsity-

enhancing techniques to improve the accuracy of the compressive sensing method iteratively.

In step 8, we use τ (l+1) because the estimate of the truncation error by the cross-validation

can be different in each iteration. In step 9, a termination criterion is required such as the

empirical test |∑ij |Uij| − d| < κ where we chose κ = 0.1d.? This criterion implies that if

the (l + 1)-th rotation matrix is close to identity matrix or permutation matrix, we should

stop the iteration. It is usually sufficient to use one or two iterations since further rotations

do not improve the accuracy significantly.? ?

8



Algorithm 1 Compressive sensing method with iterative rotations

1: Generate samples of independent Gaussian random variables ξq, q = 1, 2, · · · ,M .
2: Generate samples of solvation energy Eq = E(ξq) by solving the PB equation with input

ξq.
3: Select multi-variate normalized Hermite polynomials to be used in the gPC surrogate

model (e.g., Hermite polynomials up to a certain order) and construct the measurement
matrix Ψ by setting Ψij = ψj(ξ

i).
4: Solve the optimization problem (P1,τ ) to obtain the gPC surrogate model of solvation

energy Eg(ξ) =
∑N

n=1 ψn(ξ).
5: Set counter l = 0, η(0) = ξ, c̃(0) = c.
6: Construct Gl+1 with c(l) according to Eq. (10). Then decompose G(l+1) as

G(l+1) = U (l+1)Λ(l+1)(U (l+1))T , U (l+1)(U (l+1))T = I.

7: Define η(l+1) = (U (l+1))Tη(l), and compute samples (η(l+1))q = (U (l+1))T (η(l))q, q =

1, 2, · · · ,M . Also, construct the new measurement matrix Ψ(l+1) with Ψ
(l+1)
ij =

ψj((η
(l+1))i).

8: Solve the optimization problem (P1,τ (l+1)):

argmin
c

‖c‖h, subject to‖Ψ(l+1)c−E‖2 ≤ τ (l+1),

and set c̃(l+1) = c.
9: Set l = l + 1. If the termination criterion is satisfied, set A =

(

U {1}U {2} · · ·U {l}
)T

and
stop. Otherwise, go to Step 5.
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