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Two-dimensional (2D) materials have emerged as promising candidates for miniaturized 

optoelectronic devices1-9, due to their strong inelastic interactions with light10,11. On the 

other hand, a miniaturized optical system also requires strong elastic light-matter 

interactions to control the flow of light12. Here, we report giant optical path length (OPL) 

from a single-layer molybdenum disulfide (MoS2), which is around one order of 

magnitude larger than that from a single-layer graphene. Using such giant OPL to 

engineer the phase front of optical beams, we demonstrated, to the best of our knowledge, 

the world’s thinnest optical lens consisting of a few layers of MoS2 less than 6.3 nm thick. 

Moreover, we show that MoS2 has much better dielectric response than good conductor 

(like gold) and other dielectric materials (like Si, SiO2 or graphene). By taking advantage 

of the giant elastic scattering efficiency in ultra-thin high-index 2D materials, we 
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demonstrated high-efficiency gratings based on a single- or few-layers of MoS2. The 

capability of manipulating the flow of light in 2D materials opens an exciting avenue 

towards unprecedented miniaturization of optical components and the integration of 

advanced optical functionalities.   

Interactions between light and matter can be divided into two categories: inelastic and elastic12. 

An inelastic interaction involves energy transfer between photons and electrons or phonons. In 

contrast, elastic interactions do not involve energy transfer, and are responsible for controlling 

the propagation of light. Optical components, such as resonant cavities, waveguides, lenses, 

gratings, and, more recently, optical meta-materials13 and photonic crystals14, all rely on strong 

elastic interactions between light and matter to achieve sophisticated control of the flow of 

light. Strong elastic interactions rely on significant changes of the amplitude and phase of the 

light accumulated over a long optical path and, hence, for very thin materials, such as a 2D 

graphene sheet, the interaction is generally very small15. Considerable effort has been devoted 

to this issue, but success has been only achieved in the mid- to far-infrared where the plasmonic 

resonance in graphene can enhance the elastic optical response16-18. It remains a great challenge 

to manipulate the flow of light using atomically thin 2D materials in the important visible and 

near-infrared spectral regions where 2D materials have most interesting optoelectronic 

properties. Rather surprisingly, as we will show later, the strength of the elastic interaction in 

a thin 2D material increases dramatically with increasing refractive index because of the unique 

geometry associated with an ultra-thin film. Such favorable scaling makes high-index 

transition-metal dichalcogenide (TMD) 2D semiconductors4,19-22, such as MoS2, particularly 

attractive for strong elastic light-matter interactions.  

Refractive optical components rely on the optical path length (OPL) to modify the phase front 

of an optical beam. The OPL is directly related to the geometrical length of light path. As a 



result, it is normally expected that the OPL of an ultra-thin 2D material would be too small to 

have a significant impact on the phase front because of their ultra-thin thicknesses. Here we 

have been able to observe a giant OPL of 38 nm from a single-layer MoS2, which is more than 

50 times larger than its physical thickness of 0.67 nm and around one order of magnitude larger 

than the measured OPL of a single-layer of graphene that was found to be only 4.4 nm (Figure 

1).  

In our experiments, single- or few-layer MoS2 flakes were transferred onto an silicon wafer 

with 275 nm of surface thermal oxide by mechanical exfoliation15,18. The flakes were firstly 

identified by their optical contrast in an optical microscope. Regions with different colors 

corresponded to MoS2 flakes with different thicknesses (Figure 1a). Due to their high refractive 

index, these atomically thin MoS2 layers have significant and layer-dependent OPL values and 

this enables the layers to be easily identified by phase-shifting interferometry (PSI) (Figure 

1b&c). PSI is capable of measuring the vertical OPL to an accuracy of around 0.1 nm, by 

analyzing the digitized interference pattern obtained during a well-controlled phase shift 

(Supplementary information, Figure S1&S2). The measured OPL value of the MoS2 flake on 

a SiO2 substrate at 535 nm was determined by 𝑂𝑃𝐿𝑀𝑜𝑆2 = − 𝜆2𝜋 (𝜙𝑀𝑜𝑆2 − 𝜙𝑆𝑖𝑂2), where 𝜆 is 

the wavelength of the light source, 𝜙𝑀𝑜𝑆2  and 𝜙𝑆𝑖𝑂2 are the PSI measured phase shifts of the 

light reflected from the MoS2 flake and the SiO2 substrate (Figure 1d inset), respectively. We 

characterized multiple samples and obtained statistical values of the OPL for single- and few-

layer MoS2 samples as shown in Figure 1d. For each number of layers of MoS2, at least five 

different samples were characterized in these statistical measurements. The layer number could 

be quickly determined by the measured layer-dependent OPL values and the deduced layer 

number was confirmed by corresponding atomic force microscopy (AFM) images (Figure 

1e&f); Raman microscopy (Figure S3a); and photoluminescence (PL) measurements (Figure 



S3b) on the same samples. For comparison, we performed the same characterizations on 

mechanically exfoliated graphene samples (Figure 1d and Figure S4, S5&S6). The measured 

average and standard deviation error of the OPL values from 1L, 2L, 3L, and 4L MoS2 samples 

were (38.0 ± 2.8) nm, (85.4 ± 2.2) nm, (124.0 ± 6.6) nm, and (162.6 ± 9.0) nm, respectively, 

while those from 1L, 2L, 3L, and 4L graphene samples were (4.4 ± 0.8) nm, (8.2 ± 2.0) nm, 

(13.0 ± 3.2) nm, and (17.2 ± 3.6) nm, respectively, indicating that MoS2 has an OPL per layer 

approximately an order of magnitude larger than graphene.  

This giant OPL is created by relatively strong multiple reflections at the air-MoS2 and MoS2-

SiO2 interfaces. We consider a simple interface between air and SiO2, each occupying half 

infinite space. A layer of 2D material with a real refractive index n is placed in between the 

two media. The high impedance mismatch at these interfaces leads to large reflection 

coefficients, which cause the strong multiple reflections of light in the 2D material (Figure 2a). 

The amplitude of the reflected light is the summation of the multiple reflections off the 

interfaces of the thin high index layer Ri, where i indicates the number of round trips in the 2D 

material. As the index increases so does the reflectivity of the interfaces, which increases the 

effective number of transits of the light through the high index layer and thus the OPL of the 

reflected light (Figure 2a). We verify this intuition with numerical calculation as shown by the 

dashed line in Figure 2c. The magnitude of OPL difference comparing with and without the 

2D material on SiO2 (Supplementary information, Figure S7) increases rapidly with increasing 

n. The OPL is low for low-index 2D materials, where the small reflection coefficients cause Ri 

to be small. This situation in illustrated schematically in Figure 2b. Additionally, in the 

experiment, we used a silicon substrate with a layer of 275 nm thermal SiO2 on its surface, 

which forms a weak Fabry-Perot resonance. As a result of this weak resonant enhancement, 

the OPL is further enhanced by a factor of around 1.5 as shown by the solid line in Figure 2c. 

Figure 2c also shows the OPL for a few other materials. The OPL of high-index 2D materials, 



such as MoS2, is remarkably larger than that of SiO2, graphene, Au or Si. The wavelength used 

for these calculations was 535 nm. The refractive indices used for MoS2
22, silicon, graphene23, 

SiO2 and Au were 5.3+1.3i, 4.15+0.0439i, 2.6+1.3i, 1.46, and 0.467 + 2.4i, respectively. In 

addition, it should be noted that the giant OPL is not a narrow band effect. The calculated OPL 

for 1L MoS2 is above 20 nm at the wavelength ranging from 450 nm to 560 nm (Supplementary 

information, Figure S8). The spectral position for highest OPL can be adjusted by changing the 

thickness of the SiO2.  

Even more remarkably, the OPL of single-, bi-, triple- and quadri-layer MoS2 scales almost 

linearly with the number of layers, offering the exciting opportunity of controlling the OPL 

using a number of layers of MoS2. When the layer thickness increases by 1 nm, the OPL 

increases by over 50 nm. Such a rapid change of OPL with thickness allows us to control the 

phase front of an optical beam very effectively using only an atomically thin structure. The 

theoretical and numerical predictions (Figure 2d) were well supported by the experimental data 

as shown in (Figure 1d).  

Next, we demonstrate phase-front engineering by fabricating the world’s thinnest lens based 

on a few atomic layers of MoS2 (Figure 3). We started with a flake of uniform 9L MoS2 (6.28 

nm in thickness, Figure S9) and then used a focused ion beam (FIB) to mill a pre-designed 

bowl-shape structure (20 μm in diameter) into the flake (Figure 3a&b). The gradual change of 

MoS2 thickness, from the center to the edge, led to a continuous and curved OPL profile for an 

incident beam, and this served as an atomically thin (reflective) concave micro-lens (Figure 

3c). Based on the measured OPL profile, the focal length f of this MoS2 micro-lens was 

calculated to be -248 μm (Supplementary information, Figure S10). In order to realize the 

precise design for this MoS2 micro-lens, we used the statistical calibration curve between the 

OPL values of MoS2 flakes and their layer numbers (Figure 3d). All the OPL values were 



measured by PSI and the layer numbers were confirmed by AFM. The OPL of MoS2 increased 

almost linearly with increasing the layer number when the layer number was less than five.  

We used a far-field scanning optical microscopy (SOM) to characterize the fabricated MoS2 

micro-lens (Supplementary information, Figure S11).  The SOM system used a green laser (at 

532 nm) that was focused onto the focal plane of an Olympus 10X (NA = 0.25, depth of focus 

18 μm) objective lens. The setup offered the best collection efficiency for light emitted from a 

small volume located around the focal plane. The micro-lens was moved along the z-axis in 

steps of 10 μm by a piezo-electrically driven stage. The camera recorded a series of the intensity 

distributions (Figure S12) with the MoS2 micro-lens positioned at different z values. A three-

dimensional dataset was generated by data processing and a cross sectional profile was 

obtained along the x- and z-axes to illustrate the average distribution of the light intensity in 

these directions (Figure 3e). When the MoS2 micro-lens was placed at a distance 2|f | above the 

focal plane, the focused incident light would be exactly reimaged which is equivalent to the 

light coming from a point source (Figure S12d). Therefore, the camera recorded a well-focused 

light spot. The focal length f of the MoS2 micro-lens was measured to be -240 μm (2f  = -480 

μm), which matched very well with the simulated value (-248 μm) using the measured OPL 

profile of the micro-lens. For comparison, we also ran the same characterization by using a 

planar substrate without the MoS2 micro-lens, and obtained the intensity distribution shown in 

Figure 3f and Figure S13. The lensing effect is clearly demonstrated by comparing the 

difference between Figure 3e and 3f. In addition, the measured focal length of the MoS2 micro-

lens shows weak polarization dependence (Figure S14), due to the low anisotropic dielectric 

response of MoS2. This makes MoS2 suitable for ultra-thin optical elements.  

The efficiency of light scattering is another critical parameter for advanced light manipulation. 

Devices that employ photonic band gaps24, Anderson localization25, and light trapping such as 



with thin-film solar cells26 all rely heavily on strong light scattering. Unfortunately, in typical 

2D materials, such as graphene, the scattering efficiency is very small, making it impossible to 

rely on collective scattering of nanostructured graphene to achieve functionalities such as 

gratings. Here, we show that single- and few-layer structured MoS2 film have extraordinarily 

high scattering efficiency, enabled by the combination of high index in a thin structure. The 

scattering efficiency is determined by the strength of the electric field in the material. Normally, 

the electric field inside a bulk material, particularly a high-index material is much weaker than 

that of incident light because of the impedance mismatch. The boundary condition of 

Maxwell’s equations requires the tangential component of the electric field to be continuous 

across any interface. Because the layer is thin, this condition indicates that the electrical field 

inside a 2D material is almost as strong as the tangential component of the incident field. As a 

result, there is a strong polarization 𝑃 = 𝜖0(𝑛2 − 1)𝐸0, where E0 is the electric field of s-

polarized incident light, n is the index of the material and 𝜖0 is the electric permittivity of free 

space. The scattering power is proportional to the 𝑃2 and, therefore, scales roughly as 𝑛4. This 

scaling rule greatly favors high-index materials and is again uniquely available in ultra-thin 

materials. In contrast, for nanoparticles, the scattering power is proportional to (𝑛2−1𝑛2+2)2, which 

does not increase appreciably with the refractive index27.  

Here we use finite element method to explicitly calculate the scattering efficiency of 2D 

ribbons by solving Maxwell’s equations. Figure 4a shows the calculated scattering cross 

section of an infinitely long ribbon (30 nm wide and 0.67 nm thick) in air for s-polarized light 

incident from the normal direction. The scattering cross section has units of nanometers 

because the length of ribbon is considered infinite. The scattering cross section increases by 

orders of magnitude when the index increases by just a few times (Figure 4a). For example, the 

scattering cross section of a single-layer MoS2 ribbon is around 670 times, 54 times and 18 



times of those in 0.67 nm SiO2, a single-layer graphene and 0.67 nm of gold, respectively. 

Metal is generally considered as one of the strongest scattering materials and it is important to 

note that MoS2 even displays much stronger light scattering than gold. Moreover, the angular 

response of the scattering cross section is also isotropic (Figure S15). Such favorable scaling 

for high-index materials is uniquely available in ultra-thin materials. The giant scattering 

efficiency in high-index 2D materials makes it possible to achieve sophisticated light 

manipulation based on collective scattering by nanostructured patterns. Next, we 

experimentally demonstrate efficient optical gratings made from only a few layers of atoms. 

Because of the giant scattering efficiency, the efficiency of MoS2 gratings is orders of 

magnitude greater than those made from conventional materials, such as SiO2 and gold, and 

other low-index 2D materials.  

We used FIB to mill grating patterns on 1L, 2L, 6L and 8L MoS2 flakes (Figure 4 and Figure 

S16, S17&S18). Grating parameters used in experiments, such as the periodicity and filling 

ratio, were based on optimal configuration predicted by simulations (Supplementary 

information, Table S1). The gratings were characterized using an s-polarized green laser (at a 

wavelength of 532 nm). The laser beam has a diameter of around 200 μm, which was large 

enough to fully cover the grating. First-order and second-order diffraction beams were 

observed and the measured diffraction angles agreed with the predictions of the diffraction 

equation 𝑑(𝑠𝑖𝑛𝜃𝑑 + 𝑠𝑖𝑛𝜃𝑖) = 𝑚𝜆 , where 𝜃𝑑  and 𝜃𝑖  are the diffraction angle and incident 

angle respectively; d is the period of the grating elements; and m is an integer characterizing 

the diffraction order. The power of the first-order diffraction beam was measured and the 

grating efficiency 𝜂  was determined by 𝜂 = (𝑃𝑑/𝑃𝑖) ∗ (𝑆𝑏/𝑆𝑔) , where Pd and Pi were the 

measured powers of the diffracted and incident beams, respectively; Sb and Sg were the 

measured areas of the incident beam and the MoS2 grating, respectively. The measured grating 

efficiency is a function of the incident angle, which agrees well with our simulation (Figure 



4g). The maximum grating efficiencies for the 1L, 2L, 6L and 8L MoS2 gratings were measured 

to be 0.3%, 0.8%, 4.4% and 10.1%, respectively, which also agree well with the simulations 

(Figure 4h, Table S1). For comparison, we also fabricated a grating from a graphene sheet 

deposited by large-area chemical vapor deposition (Supplementary information, Figure 

S19a&b). The intensity of diffracted beam from the graphene grating was lower than the noise 

level of our light detection system, and thus had a maximum efficiency no greater than 0.02%. 

From our simulations, the maximum grating efficiency of mono-layer graphene would be only 

0.0078%, which is around 47 times lower than that of a single-layer MoS2 grating. As another 

comparison, a SiO2 grating with 2 nm thickness was also fabricated (Figure S19c&d).  Again 

no diffracted beam could be observed from the SiO2 grating due to the low grating efficiency 

in accordance with our numerical predictions (Figure 4h, Table S1).  

The efficiency of the MoS2 grating can be further improved by using a metallic mirror to 

replace the Si substrate. Based on simulations of optimized designs, the 1st order grating 

efficiency of an 8L MoS2 grating can be up to 23.7% (Table S2, Figure S20&21). In addition, 

an asymmetrical profile as used in high-efficiency gratings is expected to further improve the 

efficiency.  

In conclusion, we have shown that high-index 2D materials have extraordinary elastic 

interactions with light, enabled uniquely by the ultra-thin nature of 2D materials. As a result, 

wavefront shaping28,29 and efficient light scattering can be accomplished with atomically thin 

2D materials, enabling a new class of optical components entirely based on high-index 2D 

materials. Moreover, compared to conventional diffractive optical components, the spatial 

resolution of phase-front shaping is much smaller than the wavelength, and is only limited by 

the nano-fabrication resolution, making it possible to eliminate undesired diffractive orders29. 

2D materials also offer many unique advantages. First, considering the strong tunability of 2D 



materials, advanced beam steering can be envisioned29. Secondly, we also observed similar 

giant OPL in other TMD family YX2 (Y=Mo, W; X=S, Se, Te) semiconductors, such as WS2 

and WSe2 (Figure S22). The availability of different functional materials offer rich 

opportunities for the combination of optical and electronic properties, such as stacked 

atomically thin heterostructures for 2D optoelectronics. Thirdly, high-quality 2D TMD 

semiconductors can be deposited directly onto (or transferred to) various substrates with large 

size by chemical vapor deposition at low cost30 potentially enabling low-cost flexible optical 

components. Lastly, 2D optical components represents a significant advantage in 

manufacturing compared to conventional 3D optical components, because different 

functionalities can all be achieved in a 2D platform sharing the same fabrication processes and 

this will greatly facilitate the large-scale manufacturing and integration. In summary, our work 

here opens an exciting opportunity to use high-index 2D materials to control the flow of light.  

Methods 

Device Fabrication and Characterization. Single- and few-layer TMD semiconductors and 

graphene for the PSI measurements were deposited onto a SiO2/Si substrate (275 nm thermal 

SiO2) by mechanical exfoliation using 3M scotch tape. All Raman and PL measurements were 

conducted with a Horiba Jobin Yvon T64000 micro-Raman/PL system, with a 532 nm green 

laser for excitation. All the OPL characterizations were obtained using a phase-shifting 

interferometer (Vecco NT9100). The atomically thin micro-lens and gratings were fabricated 

in an FEI FIB system (Gallium ion source) using pre-calibrated dosage, optimized beam 

voltage (30 kV) and beam current (9.7 pA). The gratings and micro-lens were characterized 

using a green laser with a wavelength of 532 nm.  

Numerical Simulation. Rigorous Coupled-Wave Analysis (RCWA) was used to calculate the 

phase delay and grating efficiency. The method numerically solves Maxwell’s equations in 



multiple layers of structured materials by expanding the field in the Fourier-space. The finite 

element method was used to calculate the optical scattering cross section of the nano ribbons.  
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FIGURE CAPTIONS 

Figure 1 ǀ Giant optical path lengths (OPLs) from single- and few-layer MoS2. a, Optical 

microscope image of a mechanically exfoliated MoS2 sample on a SiO2/Si substrate (275 nm 

thermal SiO2). Different contrasts correspond to MoS2 flakes of different thicknesses. The areas 

labeled as “1L”, “2L”, “3L”and “4L” are single-, bi-, triple- and quadruple-layer MoS2, 

respectively. b, Phase shifting interferometry (PSI) image of the region inside the box indicated 

by the dashed line in (a). c, PSI measured OPL values versus position for 1L, 2L, 3L and 4L 

MoS2 along the dashed line in (b). d, Statistical data of the OPL values from PSI for 1L, 2L, 

3L and 4L MoS2 and graphene samples. For each layer number of MoS2 and graphene, at least 

five different samples were characterized for the statistical measurements. Inset is the 

schematic plot showing the PSI measured phase shifts of the reflected light from the MoS2 

flake (𝜙𝑀𝑜𝑆2) and the SiO2 substrate (𝜙𝑆𝑖𝑂2). e, Atomic force microscopy (AFM) image of 1L 

and 2L MoS2 from the box enclosed by the dashed line 1 in (b). f, AFM image of 3L and 4L 

MoS2 from box enclosed by the dashed line 2 in (b).  

Figure 2 ǀ High refractive index enabled giant OPL in ultra-thin film. a-b, Schematic plots 

of multiple reflections at the interfaces of ultra-thin 2D materials. High refractive index leads 

to a large reflection coefficient. Light is reflected many times inside the material and leads to 

a highly enhanced light path, indicated as (a). For low refractive index material, the light path 

is much less enhanced because of the small reflection coefficient, indicated as (b). c, Simulated 

OPL values for light reflected from 2D material (0.67 nm in thickness) with different indices 

on a SiO2 (275 nm)/Si substrate (solid line) and SiO2 substrate with infinite thickness (dashed 

line). The calculated OPLs of 0.67 nm Au, 0.67 nm SiO2, 1L (0.34 nm) graphene and 1L (0.67 

nm) MoS2 are represented by markers. d, Simulated OPL values for 1L, 2L, 3L and 4L MoS2 

and graphene on SiO2 (275 nm)/Si substrate, respectively. This deviates slightly from the linear 



relation obtained in experiments as shown in Figure 1d because the refractive index values for 

different layers are expected to be slightly different whilst constant index values were used for 

all simulations. The wavelength used in the simulations was 535 nm.  

Figure 3 ǀ Atomically thin micro-lens fabricated from a few-layers of MoS2. a, PSI image 

of an atomically thin micro-lens fabricated on a 9L MoS2 flake. b, Schematic plot of the micro-

lens structure. The bowl-shape structure of the micro-lens was fabricated by focused ion beam 

(FIB) milling with atomic resolution in the vertical direction and sub-20 nm resolution in lateral 

direction. c, Measured OPL values versus position for the direction indicated by the dashed 

line in (a). d, Measured statistical data of the OPL values for MoS2 flakes with different layers 

ranging from 1L to 11L. For each layer number of MoS2, at least five different samples were 

characterized in the statistical measurements. All the layer numbers were confirmed by AFM. 

e, Intensity distribution pattern of the MoS2 micro-lens measured by scanning optical 

microscopy (SOM). f, Intensity distribution pattern of the planar reference SiO2/Si substrate 

measured by the same SOM setup.  

Figure 4 ǀ Atomically thin high-efficiency gratings made from a single- and a few-layers 

of MoS2. a, Simulated scattering cross section (SCS) versus refractive index for a layer of 0.67 

nm thick material. The SCS values of 0.67 nm Au, 0.67 nm SiO2, 1L (0.34 nm) graphene and 

1L (0.67 nm) MoS2 are represented by markers. The dashed line from equation 𝑦 =0.000167 ∗ 𝑥4  is added as a reference. b, Schematic of the setup of the grating and for 

measurement of its diffraction efficiency. c-d, Optical microscope images of 1L and 2L, and 

8L MoS2 gratings. e-f, AFM images of 1L and 2L, and 8L MoS2 gratings. Note: based on the 

measured grating height, the 1L, 2L and 8L MoS2 were fully etched through and the SiO2 

substrates underneath were over etched by around 1.5 nm. From our control SiO2 grating 

experiments and from simulations, the grating contribution from this over etched SiO2 is 

negligible. g, Simulated and measured efficiency of an 8L MoS2 grating versus incident angle 



of the light beam. h, The comparison of the simulated and measured maximum grating 

efficiencies for different materials. The dash line represents the noise level of our light 

detection system, with the minimum detectable grating efficiency being 0.02%. 
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1. Sample preparation for single- and few-layers of graphene, MoS2, WS2 and WSe2 

The bulk graphite crystal was purchased from SPI Supplies®; the bulk MoS2, WS2 and WSe2 

crystals were purchased from HQ Graphene. The thin-layers of graphene, MoS2, WS2 and 

WSe2 were mechanically exfoliated onto a Si/SiO2 substrate (the SiO2 layer was 275 nm thick) 

using 3M scotch tape, similar to the technique described by other researchers1-3. After 

exfoliation, the thin-layers of graphene, MoS2, WS2 or WSe2 were located with a Leica optical 

microscope. The physical thickness and layer number of the thin graphene, MoS2, WS2 and 

WSe2 layers were all confirmed with a Bruker Ш atomic force microscope (AFM) in tapping 

mode. 
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Figure S1 ǀ Schematic plot of the phase shifting interferometry (PSI) system. a, Schematic 

plot of the PSI system. b, Zoomed view of the Mirau interferometer. 1. Reference mirror; 2. 

First reflection of the reference beam; 3. Third reflection of the reference beam; 4. Reflection 

of the test/objective beam; 5. Semi-transparent mirror. 2-1-3 represents the reference beam and 

2-4-3 represents the test/objective beam. 

Microscope objective 

Mirau interferometer 

Sample 

Filter 

Beam splitter 

Detector 

Field stop 

Aperture stop 
Light source 

  

1 

2 3 

4 

5 

b 

a 



 

2. Phase-shifting interferometry (PSI) working principle 

PSI was used to investigate the surface topography based on analyzing the digitized 

interference data obtained during a well-controlled phase shift introduced by the Mirau 

interferometer4. The PSI system (Vecco NT9100) used in our experiments operates with a green 

LED source centered near 535 nm by a 10 nm band-pass filter5. The schematic of the PSI 

system is shown in Figure S1a. 

 

The working principle of the PSI system is as follows6. For simplicity, wave front phase will 

be used for analysis. The expressions for the reference and test wave-fronts in the phase shifting 

interferometer are: 𝑤𝑟(𝑥, 𝑦) = 𝑎𝑟(𝑥, 𝑦)𝑒𝑖𝜙𝑟(𝑥,𝑦)                       (S1) 𝑤𝑡(𝑥, 𝑦, 𝑡) = 𝑎𝑡(𝑥, 𝑦)𝑒𝑖[𝜙𝑡(𝑥,𝑦)+𝛿(𝑡)]                    (S2) 

where 𝑎𝑟(𝑥, 𝑦) and 𝑎𝑡(𝑥, 𝑦) are the wavefront amplitudes, 𝜙𝑟(𝑥, 𝑦) and 𝜙𝑡(𝑥, 𝑦) are the 

corresponding wavefront phases, and 𝛿(𝑡) is a time-dependent phase shift introduced by the 

Mirau interferometer. 𝛿(𝑡) is the relative phase shift between the reference beam and the test 

beam. 

 

The interference pattern of these two beams is: 𝑤𝑖(𝑥, 𝑦, 𝑡) = 𝑎𝑟(𝑥, 𝑦)𝑒𝑖𝜙𝑟(𝑥,𝑦) + 𝑎𝑡(𝑥, 𝑦)𝑒𝑖[𝜙𝑡(𝑥,𝑦)+𝛿(𝑡)]             (S3) 

The interference intensity pattern detected by the detector is: 𝑰𝑖(𝑥, 𝑦, 𝑡) = 𝑤𝑖∗(𝑥, 𝑦, 𝑡) ∗ 𝑤𝑖(𝑥, 𝑦, 𝑡) = 𝑰′(𝑥, 𝑦) + 𝑰′′(𝑥, 𝑦)cos[𝜙(𝑥, 𝑦) + 𝛿(𝑡)]   (S4) 

where 𝑰′(𝑥, 𝑦) =  𝑎𝑟2(𝑥, 𝑦) + 𝑎𝑡2(𝑥, 𝑦)  is the averaged intensity, 𝑰′′(𝑥, 𝑦) = 2𝑎𝑟(𝑥, 𝑦) ∗𝑎𝑡(𝑥, 𝑦)  is known as intensity modulation and 𝜙(𝑥, 𝑦)  is the wavefront phase shift 𝜙𝑟(𝑥, 𝑦) − 𝜙𝑡(𝑥, 𝑦). 

 



 

From the above equation, a sinusoidally-varying intensity of the interferogram at a given 

measurement point as a function of 𝛿(𝑡) is shown below: 

 

Figure S2 ǀ Variation of intensity with the reference phase at a point in an interferogram. 𝑰′(𝑥, 𝑦) is the averaged intensity, 𝑰′′(𝑥, 𝑦) is half of the peak-to-valley intensity modulation 

and 𝜙(𝑥, 𝑦)is the temporal phase shift of this sinusoidal variation. 

 𝛿(𝑡) is introduced by the Mirau interferometer, which is shown in Figure S1. When the Mirau 

interferometer gradually moves toward the sample platform, the optical path length (OPL) of 

the test beam decreases while the OPL of the reference beam remains invariant.  

 

The computational method of PSI is a four-step algorithm, which needs to acquire four 

separately recorded and digitalized interferograms of the measurement region. For each 

separate and sequential recorded interferograms, the phase shift difference is: 𝛿(𝑡𝑖) = 0, 𝜋2 , π, 3π2 ;   𝑖 = 1,2,3,4                     (S5) 

Substituting these four values into the equation S4, leads to the following four equations 

describing the four measured intensity patterns of the interferogram: 

2𝜋 2𝜋 −  𝜙(𝑥, 𝑦) 
Phase Shift  δ(t) 

𝐼′(x, y) 

𝐼′′(x, y) 

𝐼(x, y) 



 

𝑰1(𝑥, 𝑦) =  𝑰′(𝑥, 𝑦) + 𝑰′′(𝑥, 𝑦)cos[𝜙(𝑥, 𝑦)]                   (S6) 𝑰2(𝑥, 𝑦) =  𝑰′(𝑥, 𝑦) + 𝑰′′(𝑥, 𝑦)cos[𝜙(𝑥, 𝑦) + 𝜋2]                 (S7) 𝑰3(𝑥, 𝑦) =  𝑰′(𝑥, 𝑦) + 𝑰′′(𝑥, 𝑦)cos[𝜙(𝑥, 𝑦) + π]                 (S8) 𝑰4(𝑥, 𝑦) =  𝑰′(𝑥, 𝑦) + 𝑰′′(𝑥, 𝑦)cos[𝜙(𝑥, 𝑦) + 3π2 ]                 (S9) 

After the trigonometric identity, this yields:   𝑰1(𝑥, 𝑦) =  𝑰′(𝑥, 𝑦) + 𝑰′′(𝑥, 𝑦)cos[𝜙(𝑥, 𝑦)]                   S10) 𝑰2(𝑥, 𝑦) =  𝑰′(𝑥, 𝑦) − 𝑰′′(𝑥, 𝑦)sin[𝜙(𝑥, 𝑦)]                   (S11) 𝑰3(𝑥, 𝑦) =  𝑰′(𝑥, 𝑦) − 𝑰′′(𝑥, 𝑦)cos[𝜙(𝑥, 𝑦)]                   (S12) 𝑰4(𝑥, 𝑦) =  𝑰′(𝑥, 𝑦) + 𝑰′′(𝑥, 𝑦)sin[𝜙(𝑥, 𝑦)]                   (S13) 

The unknown variables 𝑰′(𝑥, 𝑦), 𝑰′′(𝑥, 𝑦) and 𝜙(𝑥, 𝑦) can be solved by only using three of 

the four equations; but for computational convenience, four equations are used here. 

Subtracting equation S11 from equation S13, we have: 𝑰4(𝑥, 𝑦) − 𝑰2(𝑥, 𝑦) =  2𝑰′′(𝑥, 𝑦)sin[𝜙(𝑥, 𝑦)]                  (S14) 

And subtract equation S12 from equation S10, we get: 𝑰1(𝑥, 𝑦) − 𝑰3(𝑥, 𝑦) =  2𝑰′′(𝑥, 𝑦)cos[𝜙(𝑥, 𝑦)]                  (S15) 

Taking the ratio of equation S14 and equation S15, the intensity modulation 𝑰′′(𝑥, 𝑦) will be 

eliminated as following: 

𝑰4(𝑥,𝑦)−𝑰2(𝑥,𝑦)𝑰1(𝑥,𝑦)−𝑰3(𝑥,𝑦) = tan[𝜙(𝑥, 𝑦)]                          (S16) 

Rearranging equation S16 to get the wave-front phase shift term 𝜙(𝑥, 𝑦): 𝜙(𝑥, 𝑦) = tan−1 𝑰4(𝑥,𝑦)−𝑰2(𝑥,𝑦)𝑰1(𝑥,𝑦)−𝑰3(𝑥,𝑦)                         (S17) 

This equation is performed at each measurement point to acquire a map of the measured wave-

front. Also, in PSI, the phase shift is transferred to the surface height or the optical path 

difference (OPD): ℎ(𝑥, 𝑦) = 𝜆𝜙(𝑥,𝑦)4𝜋                             (S18) 



 

𝑂𝑃𝐷(𝑥, 𝑦) = 𝜆𝜙(𝑥,𝑦)2𝜋                           (S19) 

Here, the OPL of the MoS2 flake is calculated as:  𝑂𝑃𝐿𝑀𝑜𝑆2 =  −(𝑂𝑃𝐷𝑀𝑜𝑆2 − 𝑂𝑃𝐷𝑆𝑖𝑂2) = − 𝜆2𝜋 (𝜙𝑀𝑜𝑆2 − 𝜙𝑆𝑖𝑂2)       (S20) 

where 𝜆 is the wavelength of the light source, 𝜙𝑀𝑜𝑆2  and 𝜙𝑆𝑖𝑂2  are the measured phase 

shifts of the reflected light from the MoS2 flake and the SiO2 substrate, respectively. In our 

experiments, 𝜙𝑆𝑖𝑂2 was typically set to be zero, as shown in Figure 1c.   

 

3.  Raman and photoluminescence (PL) measurements 

Figure S3 ǀ Raman and PL spectra of the MoS2 flakes. a-b, Raman spectra (a) and PL spectra 

(b) of 1L, 2L, 3L, 4L and bulk MoS2. 

 

All Raman and PL measurements were recorded with a Horiba Jobin Yvon T64000 micro-

Raman/PL system, with 532 nm green laser excitation. Figure S3a shows the Raman spectra of 

our MoS2 sample containing 1L, 2L 3L and 4L, and the Raman spectrum of a very thick piece 

(indicated as “bulk”). Two Raman phonon modes 𝐸2𝑔1  (in-plane vibrations) and 𝐴1𝑔 (out-of-
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plane vibrations) were observed in all layers. With the increase of the layer number, the 𝐸2𝑔1  

peak shows a red shift, while 𝐴1𝑔 peak shows a blue shift, consistent with the results of other 

researchers7,8. Figure S3b shows the PL spectra of our MoS2 sample containing 1L, 2L, 3L and 

4L, and the PL spectrum of a very thick piece (indicated as “bulk”). Peak A (located at around 

625 nm for 1L MoS2) and B (located at around 680 nm for 1L MoS2) were observed and 

indicated on the spectra, similar to previously reported data3,9. These two peaks are associated 

with excitonic transitions at the K point of the Brillouin zone and the energy difference between 

these two peaks can be attributed to the degeneracy breaking of the valence band due to the 

spin-orbit coupling9. These Raman and PL spectra measurement further confirm the 

identification of the layer numbers.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4. Images and characterization of graphene 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4 ǀ Optical microscope and PSI images of mechanically exfoliated graphene. a, c 

and e display the optical microscope images of 1L, 2L&4L, and 3L graphene, respectively. b, 

d and f display the PSI images of the same area in (a), (c) and (e), respectively. 
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Figure S5 ǀ AFM images of graphene flakes and their measured OPLs by PSI. a-d, AFM 

images of 1L to 4L graphene indicated in the dash line boxes in Figure S4b, S4d and S4f. e-h, 

OPLs of 1L to 4L graphene along the dash lines in Figure S4b, S4d and S4f. 
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Figure S6 ǀ Raman spectra of graphene. a-b, Raman spectra showing the G band (a) and G’ 

(b) band from 1L to 4L graphene and bulk graphite samples. 

 

5. Calculations for the optical path length (OPL) of atomically thin 2D materials  
 

 

 

 

 

 

Figure S7 ǀ a, Reflection of a three-layer structure. Medium 1 is air, Medium 2 is the 2D 

material and Medium 3 is an infinite SiO2 substrate. b, The reference configuration. Light is 

incident from air into infinite SiO2 substrate. 

 

The incident light comes from the air resonates inside the 2D material. The total reflection is 

determined by the interference of all reflected beams Ri. To calculate the amplitude of the total 

reflection, we use rij (i,j=1,2,3) to represent the reflection coefficients when light goes from 

medium i to medium j. 
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𝑟𝑖𝑗 = 𝑛𝑖−𝑛𝑗𝑛𝑖+𝑛𝑗                             (S21) 

We use tij (i,j =1,2,3) to represent the transmission from medium i to medium j 𝑡𝑖𝑗 = 2𝑛𝑖𝑛𝑖+𝑛𝑗                            (S22) 

where ni, nj (i,j =1,2,3) is the refractive index of medium i,j. Assuming that the thickness of the 

2D material is d and wave vector of incident light in air is k0, we can calculate the reflection of 

each order,  𝑅0 = 𝑟12 𝑅1 = 𝑡12𝑟23𝑡21𝑒𝑖2𝑘0𝑛𝑑 𝑅2 = 𝑡12𝑟23𝑟21𝑟23𝑡21(𝑒𝑖2𝑘0𝑛𝑑)2 𝑅3 = 𝑡12𝑟23𝑟21𝑟23𝑟21𝑟23𝑡21(𝑒𝑖2𝑘0𝑛𝑑)3                                         (S23) 
 

where 2k0nd is the round trip propagation phase and n is the refractive index of the 2D material.  

 

Then the total reflected amplitude is the summation of all reflections, which is  

              𝑅 = 𝑅0 + 𝑅1 + 𝑅2 +                                     = 𝑟12 + 𝑡12𝑟23𝑡21𝑒𝑖2𝑘0𝑛𝑑 [1 + 𝑟21𝑟23𝑒𝑖2𝑘0𝑛𝑑 + (𝑟21𝑟23𝑒𝑖2𝑘0𝑛𝑑)𝟐 + ⋯ ]     
                                    = 𝑟12 + 𝑡12𝑟23𝑡21𝑒𝑖2𝑘0𝑛𝑑 1 − 𝑟21𝑟23𝑒𝑖2𝑘0𝑛𝑑 

                                 =  1−𝑛1+𝑛 + 4𝑛(1+𝑛)2 (𝑛−1.46)(𝑛+1.46) 𝑒𝑖2𝑘0𝑛𝑑 11−(𝑛−1)(𝑛+1)(𝑛−1.46)(𝑛+1.46)𝑒𝑖2𝑘0𝑛𝑑                                (S24) 

Here we used refractive indices of air and SiO2 as 1 and 1.46, respectively. 

 

The OPL was calculated by comparing the phase difference of the reflected light with and 

without the 2D material. Figure S7b shows the reference setup. Light is incident directly from 

air into infinite SiO2 substrate. In this case the reflected amplitude is 𝑅′ = 𝑛1−𝑛3𝑛1+𝑛3                               (S25)  

So we get: 



 

  𝑂𝑃𝐿 = − (𝑝ℎ𝑎𝑠𝑒(𝑅)−𝑝ℎ𝑎𝑠𝑒(𝑅′))2𝜋 𝜆                        (S26) 

where 𝜆 is the wavelength of light. The magnitude of OPL is plotted in Figure 2. 

 

 

 

 

 

 

 

Figure S8 ǀ Calculated OPL as a function of wavelength for 1L MoS2 placed on a substrate 

consisting of 275 nm SiO2 on a Si wafer. The wavelength dependent dielectric constant is 

obtained from reference10. 

 

We also calculated the OPL as a function of wavelengths for 1L MoS2 as shown in Figure S8. 

The OPL is above 20 nm for wavelengths ranging from 450 nm to 560 nm with a bandwidth 

of around 100 nm. We can adjust the thickness of SiO2 layer to shift this operational bandwidth 

to any desired wavelength range. 
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6. Atomically thin micro-lens fabrication and characterization 

6.1 Micro-lens fabrication 

 

 

 

 

 

 

 

 

 

 

 

Figure S9 ǀ Images and characterization of the MoS2 flake used for the micro-lens before 

FIB milling. a, Optical microscope image of the MoS2 flake used for the micro-lens, before 

FIB milling. b, PSI image of the MoS2 flake used for the micro-lens, before FIB milling, from 

the box within the dashed line indicated in (a). c, OPL measured by PSI along the dash line in 

(b). d, AFM image from the box within the dashed line indicated in (b). 

 

The 9L MoS2 flake (Figure S9) was fabricated into a micro-lens with the FEI FIB system. A 

Gallium ion source (30 kV voltage, 9.7 pA current) was used in the FIB milling process. The 

micro-lens parameters, such as the diameter and the depth, are from our simulation pre-design.  
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6.2 Focal length calculation based on the measured OPL profile in experiment 

 

 

 

 

 

 

Figure S10 ǀ Schematic plot of the focal length calculation for the MoS2 micro-lens. 

 

Figure S10 shows the schematic cross section of the lens. The phase shift 𝜙(𝑥) is impinged 

on the x axis, where point O is the center of the lens. The focal length of the micro-lens can be 

extracted based on the phase shift 𝜙(𝑥) profile measured in experiment. We evaluate the 

interference of light along the perpendicular axis y. For each point on the lens plane, we 

calculated the phase shifts, including the propogation phase and the phase induced by the MoS2 

lens. For example, for a point B, the point A receives light from a point B with an phase as 𝑒𝑖𝜙(𝑥)𝑒−𝑖2𝜋(ℎ2+𝑥2)/𝜆. The minus sign in the exponential term is due to the fact that the phase 

shift profile produces a virtual focus. We can find the focal length by evaluating the maximum 

value of the following term:  𝐼(𝑦) = ∫ 𝑑𝑥 𝑒𝑖𝜙(𝑥)𝑒−𝑖2𝜋(ℎ2+𝑥2)/𝜆𝑟0                     (S27) 

where r is the radius of the lens. Using the experimentally measured OPL profile as shown in 

Figure 3d, we calculated the focal length of the MoS2 micro-lens to be -248 µm.  

 

6.3 Micro-lens characterization details 

We exploited the light path of the Horiba Jobin Yvon T64000 micro-Raman system and set up 

a far-field scanning optical microscope (SOM). The schematic plot of far-field SOM is shown 
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in Figure S11. The SOM system used a green laser (at 532 nm) that was focused by an Olympus 

10X (NA = 0.25, depth of focus 18 μm) objective lens. If the sample was placed in the focal 

plane of the objective, the light coming from the focal spot on the sample converged into a light 

spot at the camera. In these conditions the light path is indicated by the solid line in Figure S11. 

Otherwise, if the sample is out of the focal plane, the light coming the sample will be either 

over-focused into a spot in front of the camera or less-focused, and leave a halo at the camera, 

as indicated by two sets of dashed lines in Figure S11. The setup offers good collection 

efficiency for the light coming from (or effectively coming from) a small volume around the 

focal plane. 

 

In the characterization experiment, the MoS2 micro-lens was moved along the z axis direction 

in steps of 10 μm by a piezo-electrically driven stage. The camera recorded a series of the 

intensity distributions (Figure S12), when the MoS2 micro-lens was put at different z values. 

For comparison, we also ran the same characterization by using a planar substrate without the 

MoS2 micro-lens, and obtained a similar set of intensity distribution images (Figure S13). The 

lensing effect is clearly demonstrated by comparing the difference between Figure S12 and S13. 

 

The characterization principle for the MoS2 micro-lens is shown in Figure S12. Our MoS2 

micro-lens is effectively a (reflective) concave lens and we can use following lens formula to 

characterize the relationship among the focal length f, objective distance f1 and image distance 

f2.  1𝑓 = 1𝑓1 +  1𝑓2                           (S28) 

For this MoS2 micro-lens, the focal length f has a negative value. In our experimental 

characterization, 𝑓1 has a negative value and its absolute value is always the distance between 

the focal plane and the lens, d. With 𝑓1 = −𝑑, equation S28 can be rewritten as: 



 

1𝑓2 = 1𝑑 −  1|𝑓|                           (S29) 

Based on equation S29, we can determine f2 and the corresponding light paths in five cases.  

 

When 0 < 𝑑 < |𝑓|, from equation S29 we can get that 𝑓2 > 0, which means that a real light 

spot will be formed on the upper side of the MoS2 micro-lens, as indicated in Figure S12a left 

panel. Under this condition, the camera will observe a circular disk pattern that is effectively 

coming from the focal plane. The observed intensity pattern distribution by camera at z = -120 

µm, is shown in Figure S12a right panel. 

 

When 𝑑 = |𝑓|, from equation S29 we can get that 𝑓2 = ∞, which means that the light will be 

reflected back as a group of parallel light, as indicated in Figure S12b left panel. The observed 

intensity pattern distribution by camera at z = -240 µm, is shown in Figure S12b right panel. 

 

When |𝑓| < 𝑑 < 2|𝑓|, from equation S29 we can get that 𝑓2 < −2|𝑓|, which means that 

lights will be reflected as indicated in Figure S12c. The observed intensity pattern distribution 

by camera at z = -360 µm, is shown in Figure S12c right panel. 

 

When 𝑑 = 2|𝑓|, from equation S29 we can get that 𝑓2 = −𝑑 = −2|𝑓|, which means that 

lights will be reflected exactly back along the same route of the incident light by the micro-

lens, as indicated in Figure S12d. The observed intensity pattern distribution by camera at z = 

-480 µm, is shown in Figure S12d right panel. 

 

When 𝑑 > 2|𝑓|, from equation S29 we can get that −2|𝑓| < 𝑓2 < −|𝑓|, which means that 

lights will be reflected back as indicated in Figure S12e. The observed intensity pattern 

distribution by camera at z = -600 µm, is shown in Figure S12e right panel. 



 

Figure S11 ǀ Schematic plot of the far-field scanning optical microscope (SOM) used for 

MoS2 micro-lens characterization. 
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Figure S12 ǀ Characterization of the atomically thin MoS2 micro-lens. a-e, Schematic plots 

of the light path (left) and the corresponding recorded intensity distribution pattern images 

(right) by camera, when (a) 𝑑 < |𝑓|, (b) 𝑑 = |𝑓|, (c) |𝑓| < 𝑑 < 2|𝑓|, (d) 𝑑 = 2|𝑓| and (e) 𝑑 > 2|𝑓|. Note: d is the distance between the micro-lens and the focal plane, a positive value; 

f is the focal length of the micro-lens. 

 

For comparison, we ran a control measurement on the planar SiO2/Si substrate using the same 

procedure. The schematic plots and recorded images are indicated in Figure S13. The SiO2/Si 

substrate was considered to be a flat mirror. In Figure S13, three conditions are illustrated: 𝑑 <|𝑓|, |𝑓| < 𝑑 < 2|𝑓| and 𝑑 > 2|𝑓|. In the control measurements, when the distance between 

the planar substrate and the focal plane 𝑑 increased, the radius of the circular disk pattern 

observed by the camera will increase, without any lensing effect. The fringe patterns is the 
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SOM system background noise, which is due to the interference from light beams reflected by 

various interfaces in the optics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S13 ǀ Characterization control experiments using a planar SiO2 substrate. a-c, 

Schematic plots of the light path (left) and the corresponding camera recorded optical images 

(right), when (a) 𝑑 < |𝑓| , (b) |𝑓| < 𝑑 < 2|𝑓|and (c) 𝑑 > 2|𝑓| . Note: d is the distance 

between the micro-lens and the focal plane; f is the focal length of the MoS2 micro-lens. 
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In the experiment, we kept the same laser power for the whole measurement. But as stage 

moves upwards (z absolute value increases), the laser spot size on the stage (micro-lens plane) 

will increase and the power density will decrease appropriately following the scaling of 1/z2. 

In order to make sure that the incident beam has the same power area density at all z values, 

we made the following normalization for all the recorded images: 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 × 𝑧2              (S30) 

where 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 is the normalized intensity, 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is the intensity 

of the spot in the image, and z is the value of height where the image was taken. Then a three 

dimensional dataset was composed of the series of the images along z axis. A cross section 

profile was obtained along the x- and z-axes to illustrate the distribution of the intensity along 

these directions. To better represent the data acquired during the experiment, the intensities of 

the cross section along x- and z-axes were normalized. At a given distance, a virtual circle was 

drawn to the center peak of the spot, and 600 points were chosen evenly on this circle and their 

intensities were averaged. Then the average intensity was selected to represent the value at this 

specific radius to the center. Finally, the data at different heights were assembled, interpolated 

and plotted in contour. All the images in Figure 3e & 3f and images in Figure S12 & S13 are 

based on the normalized intensities.  

 

7. Polarization-dependence characterization on MoS2 micro-lens  

A linearly polarized laser (532 nm wavelength, at normal incidence) was used to characterize 

the focal length of our MoS2 micro-lens. It shows that the measured focal length has very weak 

polarization dependence (Figure S14a). This is because MoS2 has weak anisotropic dielectric 

response. This is consistent with that our measured photoluminescence (PL) from monolayer 

MoS2 has very weak polarization dependence (Figure S14b).  

 
 



 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure S14 | a, Measured focal length polarization dependence of our MoS2 micro-lens. b, 

Measured PL polarization dependence on a monolayer MoS2 sample. Linearly polarized 532 

nm laser at normal incidence was used as the excitation.  

 

 

 

 

 

8. Calculation and experiment details for atomically thin grating 

8.1 Simulations for scattering cross section 

The scattering cross section of a 30 nm wide ribbon was calculated using a finite element 

method, which solves the full-wave Maxwell’s equations numerically. The simulation was 

performed in two-dimensional space. The cross section was calculated for different incident 

angles, showing excellent isotropic response for s-polarized light (Figure S15). 
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Figure S15 ǀ Isotropic scattering cross section of different materials. The scattering cross 

section for a 1L MoS2 (red line) nano-ribbon with a 30 nm width for light illumination from 

different incident angles. The angular response is isotropic. In comparison, the black line 

indicates the scattering cross section for a 10 nm thick SiO2 ribbon with a 30 nm width. 

 

8.2 Grating fabrication and characterization 

Gratings on thin-layers (1L, 2L, 5L, 6L and 8L) of MoS2
 (Figure S16, S17 and S18), control 

gratings on a SiO2 substrate, and on a monolayer of graphene (Figures S19) were all fabricated 

using an FEI focussed ion beam (FIB) system. A Gallium ion source was used in the milling 

process. The grating parameters, such as periodicity, 2D material’s filling ratio, were based on 

our simulation results. A grating diffraction efficiency measurement setup was established, as 

indicated in Figure 4b. The sample chip with the grating on top was mounted onto a turnplate. 

The grating could be rotated and make sure the incident laser beam was always in the plane 

that is normal to the line grating. The incident parallel laser beam (532 nm wavelength) is s-

polarized and has a diameter of around 200 μm, which fully covers the grating. A power meter 

was used to measure the power of the incident laser and diffraction light. In the output power 

measurements, the light was always perpendicular to the power meter. To calculate the grating 

diffraction efficiency, the following formula was used: 𝜂 = 𝑃𝑑𝑃𝑖 ∗ 𝑆𝑏𝑆𝑔                            (S31) 

( )
o



 

where η is the grating diffraction efficiency, 𝑃𝑑  is the diffraction light power, 𝑃𝑖  is the 

incident laser power, 𝑆𝑏 is the area size of the laser beam and 𝑆𝑔 is the area size of the grating. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S16 ǀ Images and characterization of 1L and 2L MoS2 flake before grating FIB 

milling. a, Optical microscope image of 1L and 2L MoS2 before FIB milling. b, PSI image of 

1L and 2L MoS2 before FIB milling, from the dash line box area indicated in (a). c, OPL 

measured by PSI along the dash line indicated in (b). d, AFM image from the dash line box 

indicated in (b). 
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Figure S17 ǀ Images and characterization of 5L and 6L MoS2 grating. a, Optical 

microscope image of 5L and 6L MoS2 flake before FIB milling. b, PSI image of 5L and 6L 

MoS2 before milling. c, Optical microscope image of 5L and 6L grating. d, OPL measured by 

PSI along the dash line indicated in (b). e, AFM image from the dash line box indicated in (b). 

f, AFM image of 5L and 6L grating from the dash line box in (c). Note: based on the measured 

grating height, the 5L and 6L MoS2 were fully etched through and the SiO2 substrates 

underneath were over etched by around 1.2 nm. From our control SiO2 grating experiment and 

simulation, the grating contribution from this over etched SiO2 is negligible.   
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Figure S18 ǀ Images and characterization of 8L MoS2 before grating FIB milling. a, 

Optical microscope image of 8L MoS2 before milling. b, PSI image of 8L MoS2 before milling. 

c, OPL measured by PSI along the dash line indicated in (b). d, AFM image from the dash line 

box indicated in (b). 
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Figure S19 ǀ Images and characterization of control gratings. a, SEM image of the control 

grating on graphene. The single-layer graphene used in the control grating was deposited by 

chemical vapour deposition (CVD) on copper substrate at 1000 oC and then transferred to 

Si/SiO2 substrate, as reported11. b, AFM image of the control grating on graphene. Note: based 

on the measured height, the graphene was fully etched through and the SiO2 substrate 

underneath was over etched by around 0.45 nm. c, Optical microscope image of the control 

grating on SiO2. d, AFM image of the control grating on SiO2. 

 

8.3 Calculation details for grating efficiencies 

The grating efficiencies were calculated using rigorous coupled wave analysis (RCWA). Three 

parameters were scanned in order to search the maximum efficiency: the periodicity, the filling 

ratio of MoS2, and the incident angle. The optimal efficiencies and corresponding parameters 

are given in Table S1. In our simulations, we used the reported refractive index values for 
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MoS2
10 and graphene12, which are n = 5.3 + 1.3i and n = 2.6 + 1.3i, respectively. The optimal 

efficiency and the parameters are listed in table S2. Figure S21 shows the 1st order diffraction 

efficiency for 8 layer MoS2. The efficiency was calculated as a function of periodicity and 

incident angle for a fixed filling ratio. 

 

The grating efficiency can be further improved with a reflective mirror behind the MoS2 grating. 

Here we calculated the efficiency of the 1st order diffraction beam from an 8-layer MoS2 grating. 

The layer structure is shown in Figure S20. The thickness of SiO2 is 223 nm, which corresponds 

to the second Fabry-Perot resonance for the SiO2 layer. We performed a three-dimensional 

parameter scan including the filling ratio of MoS2, the periodicity, and the incident angle.  

 

 

 

 

 

Figure S20 ǀ Layer Structure of the MoS2 grating with an Au reflective mirror. 

 

 

 

 

 

 

 

Figure S21 ǀ 1st order diffraction efficiency map for an 8-layer MoS2 grating with an Au 

reflective mirror. 

0.25 

0.2 

0.15 

0.1 

0.05 

1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 

50 

45 

40 

35 

30 

25 

20 

15 

10 

5 

0 

Refractive index 

A
n

g
le

 (
d

e
g

re
e

) 



 

Table S1 Optimal parameters and 1st order efficiency for gratings with SiO2/Si substrate. 

Materials Filling ratio Periodicity Incident 

angle (o) 

Efficiency-

simulation 

(%) 

Efficiency-

experiments 

(%) 

1L MoS2 0.52 1.8λ 8.7 0.4 0.3 

2L MoS2 0.39 1.2λ 23.9 1.3 0.8 

6L MoS2 0.39 1.2λ 23.9 7.4 4.4 

8L MoS2 0.44 1.2λ 23.9 10.2 10.1 

2 nm SiO2 0.44 1.2λ 21.0 0.0051 - 

1L graphene 0.52 1.9λ 8.0 0.0078 - 

1 nm Au 0.49 1.9λ 7.8 0.0519 - 

 

 

 

Table S2 Optimal parameters and 1st order efficiency for 8L MoS2 grating with an Au 

reflective mirror. 

Material Filling ratio Periodicity Incident angle (o) Efficiency (%) 

8L MoS2 0.43 1.5λ 23.5 23.7 

 

 

 

 

 

 

 



 

9. Measured giant OPL in WS2 and WSe2  

 

 

 

 

 

 

Figure S22 ǀ Statistical OPL data from single- to quadri-layer WS2 (a) and WSe2 (b), 

measured by PSI. At least five samples were measured for each layer number and all the layer 

numbers were confirmed by AFM.  
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