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Atomistic Full-Band Simulations of Si Nanowire Transistors:

Effects of Electron-Phonon Scattering

Mathieu Luisier and Gerhard Klimeck

Network for Computational Nanotechnology and Birck Nanotechnology Center,

Purdue University, 465 Northwestern Ave, West Lafayette, IN 47907, USA

Abstract

An atomistic full-band quantum transport simulator has been developed to study three-

dimensional Si nanowire field-effect transistors (FETs) in the presence of electron-phonon scat-

tering. The Non-equilibrium Green’s Function (NEGF) formalism is solved in a nearest-neighbor

sp3d5s∗ tight-binding basis. The scattering self-energies are derived in the self-consistent Born

approximation to inelastically couple the full electron and phonon energy spectra. The band dis-

persion and the eigenmodes of the confined phonons are calculated using a dynamical matrix that

includes the bond and the angle deformations of the nanowires. The optimization of the numer-

ical algorithms and the parallelization of the NEGF scheme enable the investigation of nanowire

structures with diameters up to 3 nm and lengths over 40 nm. It is found that the reduction of the

device drain current, caused by electron-phonon scattering, is more important in the ON-state than

in the OFF-state of the transistor. Ballistic transport simulations considerably overestimate the

device ON-currents by artificially increasing the charge injection mechanism at the source contact.
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I. INTRODUCTION

Semiconductor nanowires (NW) have emerged as potential active components of future

integrated circuits beyond the conventional metal-oxide-semiconductor field-effect transistor

(MOSFET) technology1. Nanowires made of different materials, crystal orientations, cross

section shapes, and dimensions have been successfully synthesized opening novel perspectives

in both electronics and optoelectronics2–10. As field-effect transistors (FETs), nanowires pro-

vide an excellent electrostatic control of the channel due to their one-dimensional transport

properties and can therefore operate at lower supply voltages than the traditional MOS-

FETs.

The fabrication of nanowire FETs is still a technology under development, that requires

further innovations before challenging state-of-the-art MOSFETs. Physics-based device sim-

ulations can support the experimental work to accelerate the development of NW FETs, re-

duce their cost, identify their strength and weakness, and demonstrate their scalability down

to the sub 20 nm range. Classical and semi-classical approaches like drift-diffusion11 and

the Boltzmann transport equation12 are very popular among the semiconductor industry for

their ability to deliver simulation results in a short time. However, at the nanometer scale,

these methods fail and must be replaced by computationally more intensive, but physically

more accurate quantum mechanical models that include an atomistic device representation.

Ballistic simulations of NW FETs based on an effective mass treatment of the Schrödinger

equation13–15 represent a substantial advancement as compared to drift-diffusion and the

Boltzmann equation, but they do not correctly capture the quantization of the energy levels

in structures with a cross section smaller than 5 nm × 5 nm16. To overcome the limitations

of the effective mass approximation, full-band three-dimensional (3-D) transport simulations

of NW FETs based on tight-binding-like orbital basis have been recently reported17–20. In

these atomistic studies, the diameters of the nanowires do not exceed 1.5 nm, with the

notable exception of Ref.20, where a more efficient numerical approach21,22 has been used,

that enables the simulation of devices with diameters up to 10 nm.

Apart from the electron and hole bandstructure and 3-D electrostatic charging effects, the

interactions of the free carriers with their environment (impurities, open surfaces, or lattice

vibrations) strongly affect the performances of NW FETs. For example, electron-phonon

scattering is expected to drastically deteriorate the ON-current of devices with diameters
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below 5 nm10. Modeling such many-body, inelastic interaction phenomena at a quantum

mechanical level is computationally very challenging. The Non-equilibrium Green’s Function

Formalism (NEGF)23–26 has established itself as a theoretically well established approach

to account for electron-phonon scattering in device simulations. Due to the complexity of

the physical models, the 3-D simulators that include dissipative scattering are based on

the effective mass approximation (no atomistic representation) and decouple the current

transport direction from the transverse directions of confinement (mode-space approach

reducing transport to a 1-D problem)27–31.

There have been some attempts to include both a multi-band tight-binding model and

electron-phonon scattering into a single device simulator using the NEGF formalism, but

they have been restricted to one-dimensional (1-D) structures only, like resonant tunneling

diodes32,33 and quantum well solar cells34 or to molecules composed of very few atoms,

typically less than 2035–37. Finally, alternative methods to NEGF have been considered to

treat electron-phonon scattering in ultrascaled NW FETs like the Pauli Master Equation38

and a modified Monte-Carlo approach39.

In this paper, a 3-D, atomistic simulation approach that combines a full-band model

and electron-phonon scattering in the self-consistent Born approximation is presented. The

nearest-neighbor sp3d5s∗ tight-binding method and the NEGF formalism are used together

to simulate quantum transport in Si nanowire FETs. The electron-phonon interaction is

calculated directly from the tight-binding Hamiltonian and from the band dispersion and

the eigenmodes of the phonons confined in the nanowire structures. Despite the heavy

computational burden of this atomistic approach, circular gate-all-around NW FETs longer

than 40 nm, with diameters up to 3 nm, and composed of more than 14,000 atoms are

considered. The availability of large supercomputers and the efficient parallelization of the

different tasks are essential to reach these dimensions that no other full-band simulator,

even ballistic, has been able to treat so far40. The degradation of the ON-current due to

electron-phonon scattering in Si NW FETs with diameters of 2, 2.5 and 3 nm is investigated

as an application.

The paper is organized as follows: in Section II, the simulation approach is introduced,

from the rigorous calculation of the electron-phonon self-energies and of the Green’s Func-

tions to the necessary simplifications and approximations to keep the computational burden

manageable. Details about the numerical implementation are given in Appendix A. Ap-
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plications of the formalism to different Si NW FET structures and the analysis of their

ON-currents are shown in Section III. The paper is concluded in Section IV and an outlook

on future device simulations is given.

II. THEORY

A. General Formalism Description

Electron-phonon scattering is treated in the framework of the Non-equilibrium Green’s

Function (NEGF) formalism under steady-state conditions23–26,41,42. The lesser (G<), the

greater (G>), and the retarded (GR) Green’s Functions are expressed in a nearest-neighbor

tight-binding basis according to21,32

∑

l

{
[E − En − V(Rn)] δl,n − Hnl − ΣRB

nl (E) − ΣRS
nl (E)

}
· GR

lm(E) = δnm, (1)

G≷
nm(E) =

∑

l1l2

GR
nl1

(E) ·
[

Σ
≷B
l1l2

(E) + Σ
≷S
l1l2

(E)
]

· GA
l2m(E), (2)

ΣR
nm(E) =

1

2
(Σ>

nm(E) − Σ<
nm(E)) + iP

∫
dE ′

2π

Σ>
nm(E ′) − Σ<

nm(E ′)

E − E ′
, (3)

GA
nm(E) = GR†

mn(E). (4)

The indices l, m, and n refer to the atomic positions Rl, Rm, and Rn, respectively. The

matrices E (diagonal, injection energy), En (diagonal, on-site energy), V(Rn) (diagonal,

self-consistent electrostatic potential at position Rn), Hnl (nearest-neighbor coupling be-

tween atom n and l), ΣB
nl(E) (boundary self-energy, different from 0 only if atoms n and l

are directly connected to the semi-infinite device contacts, computed as in Ref.21), ΣS
nl(E)

(scattering self-energy between atoms n and l), and Gnm(E) (Green’s Functions between

atoms n and l) are of size tB × tB, where tB is the number of orbitals of the tight-binding

model. The formulation is general for electron and hole transport. In this work, a sp3d5s∗

basis without spin-orbit coupling is used to describe Si50 so that tB=10. The relatively small

split-off energy of Si (∆0=45 meV) justifies the neglection of spin-orbit coupling when only

electron transport is considered as here. Each atom composing the simulation domain is

treated individually. In Eq. 3, P denotes the Cauchy principal integral value. The definition

and interpretation of the on-site energy En and nearest-neighbor coupling matrix Hnl can

be found in Ref.48–50.
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The nearest-neighbor connection Hnl depends on the relative position of the atoms n and

l, i. e. it is a function of Rl-Rn. If lattice vibrations are neglected, the positions of the atoms

are fixed and time-independent, so that Rn(t)=R0
n. When the lattice starts to vibrate the

atoms oscillate around their equilibrium position R0
n with an amplitude µn(t) and

Rn(t) = R0
n + µn(t). (5)

This implies that Hnl becomes a function of (R0
l -R

0
n)+(µl(t)-µn(t)) and that it can be

expanded around its equilibrium position to lowest order in (µl(t)-µn(t))

Hnl ≈ H0
nl +

∑

i

δHnl

δ(R0
l,i − R0

n,i)
· (µi

l(t) − µi
n(t))

≈ H0
nl +

∑

i

∇iHnl · (µi
l(t) − µi

n(t)). (6)

The index i runs over the x, y, and z directions. In Eq. 6 the lattice vibrations are ap-

proximated as harmonic oscillations. The second, time-dependent term in Eq. 6 is assumed

much smaller than H0
nl and is treated in a perturbative way, leading to the electron-phonon

scattering self-energies35–37.

In the second quantization picture the harmonic oscillations µi
l(t) are given by43,44

µi
l(t) =

∑

λ,q

√

~

2Mlωλ(q)
· f i

λ(Rl,q) · (a†
λ(−q, t) + aλ(q, t)), (7)

where the indices λ and q depict the oscillator mode and wave vector, respectively, Ml is the

mass of the atom at position Rl, while the operator a†
λ(−q, t) (aλ(q, t))) creates (annihilates)

a phonon in mode λ and momentum q. The normalized atomic displacement f i
λ(Rl,q) and

the phonon frequency ωλ(q) are calculated from the following harmonic oscillator eigenvalue

problem51

∑

m,j

Φij
nm(q)√
MnMm

· f j
λ(Rm,q) − ω2

λ(q) · f i
λ(Rn,q) = 0. (8)

The dynamical matrix Φij
nm(q) depends on the geometry of the device structure and deter-

mines the nature of the phonons (bulk, 1-D, 2-D, or 3-D confined phonons).

Starting from the definition of the electron-phonon Hamiltonian in Eq. 6 and using

functional derivatives45–47 the general form of the two-time-dependent electron-phonon self-
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energy Σe−ph
nm (tt′) in the self-consistent Born approximation is obtained as

Σe−ph
nm (tt′) = i~

∑

l1l2

∑

λ,q

Mλ
nl1

(q) · Gl1l2(tt
′) · Mλ∗

l2m(q) · Dλ(q; tt′), (9)

Mλ
nm(q) =

√

~

2ωλ(q)

∑

i

∇iHnm ·
(

f i
λ(Rm,q)√

Mm

− f i
λ(Rn,q)√

Mn

)

(10)

The phonon Green’s Function Dλ(q; tt′) is defined as in Ref.44. To derive Eq. 9 the property

that f i
λ(Rn,−q)=f i∗

λ (Rn,q) has been applied. Equation 9 is valid in 3-D structures only

where electrons are confined along two directions (y and z) and transport occurs along the

third one (x), like nanowires. In this configuration, the Green’s Functions Gnm(tt′) have no

momentum dependence, in contrary to the phonons.

Langreth theorem41, the replacement of the phonon Green’s Function by its unperturbed

definition at equilibrium44, and the consideration of the steady-state regime allow one to

find the energy-dependent self-energy Σ≷,e−ph
nm (E)

Σ≷,e−ph
nm (E) =

∑

l1l2

∑

λ,q

Mλ
nl1

(q) ·
[

Nλ(q)G≷
l1l2

(E ± ~ωλ(q))+

(Nλ(q) + 1)G≷
l1l2

(E ∓ ~ωλ(q))
]

· Mλ∗
l2m(q), (11)

where Nλ(q) is the Bose distribution of the phonons with frequency ωλ(q). In 3-D simulation

domains, Eq. 1 to 4 and 11 cannot be directly solved and require further approximations. In

a small nanowire structure with NA=10,000 atoms, the total size of the Green’s Function and

of the self-energy matrices is NA × tB=100,000 in the sp3d5s∗ tight-binding model without

spin-orbit coupling. Inverting, factorizing, and multiplying such full matrices for multiple

energies goes beyond the capabilities of currently available supercomputers.

B. Simplifications and Approximations

To investigate realistic nanowire structures with electron-phonon scattering some sim-

plifications and/or approximations have to be considered in the calculation of the Green’s

Functions, the self-energies, and the dispersion relation of phonons.

The dynamical matrix Φij
nm(q) in Eq. 8 is based on a modified Keating model including

four terms (bond stretching, bond bending, angle-angle, and bond-bond interactions)52.

This model uses four material constants that are optimized to accurately reproduce the bulk
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phonon dispersion of different semiconductors like Si or Ge. The original bulk formalism has

been first verified and then extended to calculate the confined phonon modes of nanowires,

similarly to Ref.53,54, automatically accounting for the acoustic and the optical phonon

branches. For that purpose, the nanowire structure is assumed to be infinite and composed

of identical unit cells. The 3-D wave vector q reduces to its single x-component q aligned with

the NW transport direction. As a second approximation, the environment of the nanowires

(dielectric layers, substrate, metallic gate) is omitted in the computation of the phonon

bandstructure and eigenmodes. The surface atoms are therefore free to move. Discussions

about the influence of the boundary conditions on the calculation of the phonon spectra can

be found in Ref.53–55.

To minimize the required memory to store the Green’s Functions and the self-energies as

well as to reduce the computational burden, the Σe−ph
nm (E) are limited to on-site interactions

only, i. e. n=m, but remain tB × tB blocks. There is no physical justification to this

approximation, but it appears to be the only way to numerically treat 3-D structures like

nanowires composed of more than a dozen of atoms. Each additional connection to more

distant neighbors (nearest, second-nearest, third-nearest, ...) induces an exponential increase

of the time to compute the self-energy in Eq. 11. Furthermore, a large number of the off-

diagonal blocks Gnm(E) must be computed if off-site self-energy interactions are taken into

account. Efficient computational approaches like the recursive Green’s Function (RGF)

algorithm64 fail if far off-diagonal blocks are required. The physical implications of full-

matrix and diagonal self-energy interactions have recently been studied in small 2-D systems

with respect to the influence on phase and momentum relaxation56. To compensate the

missing self-energy terms, the magnitude of the matrix elements Mλ
nm(q) can be artificially

increased57. This has not been tested in this study and it can only be speculated that

scattering is underestimated.

To avoid the calculation of several off-diagonal blocks Gnm and to ensure current conser-

vation in the diagonal self-energy approximation, Eq. 11 is simplified to

Σ≷,e−ph
nn (E) =

∑

l

∑

λ,q

Mλ
nl(q) ·

[

Nλ(q)G≷
ll (E ± ~ωλ(q))+

(Nλ(q) + 1)G≷
ll (E ∓ ~ωλ(q))

]

· Mλ∗
ln (q). (12)

The position index l runs over all the nearest-neighbors of the atom located at Rn, generally

7



four atoms, except at the nanowire surface. A combination like Mnl1 ·Gl1l2(E) ·Ml2n where

l1 and l2 are two different nearest-neighbors of n is technically possible, but it would break

current conservation if a self-energy of the form Σl1l2(E) (off-site connection) does not exist.

However, for computational reasons such self-energies are neglected as mentioned above.

While the electron-phonon interaction has been made local in space in Eq. 12, it remains

non-local (inelastic) in energy, one energy E being coupled to many other energies E ′=E ±
~ωλ(q). In a typical nanowire structure, the number of phonon modes λ exceeds one hundred

and the phonon 1-D Brillouin Zone needs to be described by about 50 q points. Hence, one

energy point is connected to at least 2*100*50=10,000 other points (the factor 2 comes from

the plus and minus sign in ±~ωλ(q)). This results in several numerical problems. First,

this number is larger than the total number of points in the energy grid (NE=1,500 to

2,000). Secondly, since the energy points are distributed over many CPUs (see Appendix

A), too much inter-processor communication would be required to exchange massive Green’s

Function data, which is not recommended in parallel computing. An approximate solution to

this problem has been developed and implemented. If the sum over the phonon momentum

vector q is replaced by an integration over the phonon 1-D Brillouin Zone (BZ) of length

LBZ , the schematic form of the electron-phonon self-energy is given by

Σe−ph
nn (E) ∝

∑

l,λ,q

∑

ij

∇iHnl · Gll(E ± ~ωλ(q)) · ∇jHln ·

~

2ωλ(q)
·
(

f i
λ(Rl, q)√

Ml

− f i
λ(Rn, q)√

Mn

)

·
(

f j∗
λ (Rn, q)√

Mn

− f j∗
λ (Rl, q)√

Ml

)

︸ ︷︷ ︸

V
ij

nlln
(ωλ(q))

∝
∑

l,λ

∑

ij

∫

BZ

dq

LBZ

V
ij
nlln(ωλ(q)) · ∇iHnl · Gll(E ± ~ωλ(q)) · ∇jHln. (13)

The coupling strength factor V
ij
nlln(ωλ(q)) has been introduced to clarify the notation, but the

multiple energy connections remain. To reduce them, it is assumed that the lesser and greater

Green’s Functions G
≷
ll (E) slowly vary over a small energy range E −∆E ≤ E ≤ E + ∆E in

the presence of electron-phonon scattering. This is the case for most of the energy points.

Then the sum over λ and the integration over q are replaced by a sum over the phonon
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energy ωPH

Σ≷e−ph
nn (E) =

∑

l,i,j

∑

ωPH

V ij
nlln(ωPH) · ∇iHnl ·

(

NPH(ωPH) · G≷
ll (E ± ~ωPH)+

(NPH(ωPH) + 1) · G≷
ll (E ∓ ~ωPH)

)

· ∇jHln (14)

V ij
nlln(ωPH) =

∑

λ

∫

BZ

dq

LBZ

V
ij
nlln(ωλ(q))

∣
∣
∣
∣
ωPH−∆E/~≤ωλ(q)≤ωPH+∆E/~

. (15)

The sum over λ and q does not completely disappear, but it is moved into the coupling

factor V ij
nlln(ωPH) that is pre-computed at the beginning of any new simulation. It has been

numerically verified that a value ∆E=1 meV is small enough to ensure accurate results and

that increasing the number of ωPH points, i.e. decreasing the value of ∆E below 1 meV, does

not significantly change the results any more, but slows down the computation time. Values

of ∆E comprised between 0.25 and 2 meV have been tested resulting in a variation of the

device current by less than 5%. In Si the largest phonon energy amounts to approximately

60 meV so that the sum over ωPH can be restricted to 2*30 points instead of 10,000 if ∆E=1

meV is assumed.

In Eq. 3, the retarded self-energy ΣR
nn(E) is composed of two parts, the second one

requiring the evaluation of a Cauchy principal integral coupling all the energies together.

For the same computational reasons as above, this integral term cannot be calculated and

it is therefore neglected in this paper. Previous studies have showed that this simplification

does not introduce significant errors in the calculation of the device current28,58. As a future

improvement, the retarded self-energy ΣR
nn(E) will be derived directly from Eq. 9 following

the same procedure as for the lesser and greater Σ≷
nn(E) terms.

Finally, the nearest-neighbor matrix elements of the Slater-Koster table48 are derived to

obtain the ∇iHnm in Eq. 14. Only the relative angle dependence of each atom with respect

to its neighbors (the l, m, and n directional cosines) is considered to calculate ∇iHnm, not

the distance (bond length) dependence of the matrix elements. The latter requires that

the matrix elements Hnm are scaled by a factor (d0/d)η, where d0 (d) is the ideal (altered)

bond length49. If the bond length dependence is included, the ∇iHnm terms increase, as

the electron-phonon interaction, leading to a decrease of the device current. Despite the

overestimation of the device current the bond length dependence of Hnm is neglected since

the η values for Si do not appear to be unequivocally defined in the literature49,59,60.

9



C. Convergence Criteria

Equations 1 to 4 and 14 are self-consistently solved till convergence is reached. A parallel

recursive Green’s Function (RGF) algorithm (up to 4 CPUs) has been developed to accom-

plish this task as explained in Appendix A. Two criteria are used to check the convergence

of the self-consistent Born treatment of the Green’s Functions and self-energies. The succes-

sive iterations of Eq. 1 to 4 and 14 are stopped when the carrier and the current densities,

calculated as in Ref.61,62 vary within an error of 1h and 1%, respectively.

Especially, in a two-terminal device (source and drain), current conservation implies that

the current that enters the simulation domain at a port B1 is the same as the current that

leaves the structure at the other port B2

Id(B) =
e

~

∑

spin

∑

nm

∫
dE

2π
tr
(
Σ>B

nm(E) · G<
mn(E) − G>

nm(E) · Σ<B
mn(E)

)
. (16)

The current Id(B) is the current at the terminal B ∈(source,drain), the position indices n

and m run over all the atoms directly connected to the semi-infinite device contact B, while

Σ>B
nm and Σ<B

nm are the boundary self-energies at the port B. The trace operator “tr” runs

over the different orbitals of the atoms n and m. The convergence criterion for the current

becomes then Id(drain)=Id(source). As a part of data post-processing, it can be checked

that indeed current is conserved throughout the device from one layer to the other.

Surrounding the self-consistent Born iterations between the Green’s Functions and the

self-energies, there is the self-consistent coupling of the charge density and of the device

electrostatic potential through Poisson equation40. Generally, the carrier density converges

much faster than the current density (about 5 to 10 self-consistent Born iterations vs 20 to

50 for the current). Consequently, as long as the electrostatic potential is not stable, only

the convergence of the charge density is fulfilled. Once that Poisson equation has converged,

the criterion for the current density is satisfied too.

III. RESULTS

The structure of the Si gate-all-around (GAA) nanowire field-effect transistors considered

in this work is depicted in Fig. 1. The diameter of the NWs is varied from 2 to 3 nm, the gate

length Lg is set to 15 nm, while the n-doped (ND=1e20 cm−3) source and drain extensions
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measure 12.5 nm, except for the nanowire with d=2.5 nm, where they are extended to 15

nm. Hence, the structure with d=2 nm is composed of 6,497 atoms, that with d=2.5 nm of

11,371 atoms, and finally that with d=3 nm of 14,089 atoms. In the sp3d5s∗ tight-binding

formalism without spin-orbit coupling, the d=3 nm NW is represented by an Hamiltonian

matrix of size N=140,890.

The drain current Id flows along the x direction of the NW FETs, which is aligned with

the <100> crystal axis, y and z are directions of confinement. The nanowire channel is

isolated from the coaxial metal gate contact (work function φM=4.05 eV) by a SiO2 oxide

layer of thickness tox=1 nm, characterized by a relative dielectric constant ǫR=3.9, and

assumed ideal (infinite band gap). The mechanical coupling between the nanowires and

their environment is not taken into account in the simulations so that the transistors can be

seen as free standing. All the simulations are performed at room temperature.

The density-of-states (DOS) g(E) of the phonon modes confined in the free-standing Si

nanowire with d=2.5 nm is reported in Fig. 2. The inset represents the lowest acoustic bands

of the phonon dispersion EPH(q) used to calculate g(E)

g(E) =
1

Vuc

∑

q

δ(E − EPH(q)), (17)

where Vuc is the volume of a nanowire unit cell. The phonon DOS exhibits several peaks,

especially around E=15-16 meV and around E=58-59 meV which is the energy of the optical

phonons in bulk Si. This means that the electron-phonon interaction around these energies

is stronger and the probability for an electron or hole to absorb or emit a phonon with these

energies is higher.

The transfer characteristics Id − Vgs at Vds=0.6 V of Si GAA NW FETs with diameters

d=2, 2.5, and 3 nm are shown in Fig. 3 to 5. The dashed gray lines with circles refer to

ballistic transport simulations, the black lines with squares to simulations in the presence of

electron-phonon scattering. The drain currents Id are given on a logarithmic (left axis) and

on a linear (right axis) scale.

The current reduction due to electron-phonon scattering is reported in Fig. 6 for the three

nanowire FETs as function of Vgs and at Vds=0.6. It is defined as (Iball − Iscatt)/Iball ∗ 100,

where Iball and Iscatt are the ballistic and the dissipative currents, respectively. The arrows

indicate the position of the transistor threshold voltage in the ballistic simulations. As

shown in Fig. 3 to 5, the threshold voltage of the nanowire devices depends on the transport

11



model, ballistic or dissipative, resulting in a short saturation region of the current reduction

starting at the arrow positions.

In Fig. 7 the output characteristics Id − Vds of the nanowire with d=2 nm with (solid

line with squares) and without (dashed line with circles) electron-phonon scattering are

compared at Vgs=0.5 V. The current reduction due to scattering (Iball − Iscatt)/Iball ∗ 100

is also given on the right y-axis. It varies by less than 4% from Vds=0.05 V to Vds=0.6 V.

From Fig. 3 to 7, three common characteristics shared by all the device are identified, (i)

the ballistic current is larger than the current with scattering, (ii) the difference between

the two currents becomes larger at high Vgs, and (iii) the inclusion of scattering helps the

convergence of the Poisson equation up to higher Vgs. Each of these points is detailed below.

Electron-phonon scattering modifies the electrostatic potential of the NW FETs as illus-

trated in Fig. 8. In the source extension (0≤ x ≤15), the total number of electrons ntot is

composed of forwards (nF ) and backwards (nB) moving charges. The forward moving charges

are those injected at the source contact while the backward moving charges are those re-

flected back to the source contact or coming from the drain contact. At low gate biases (Vgs)

nF and nB have almost the same magnitude, the doping concentration ND divided by 2, most

of the injected electrons being reflected at the source-to-drain potential barrier (→ nB=nF ),

and charge neutrality being imposed by Poisson equation (→ ntot=nF +nB=ND). The fun-

damental difference between the ballistic current and the current with scattering comes from

the possibility for electrons flowing over the source-to-drain potential barrier to interact with

a phonon and to be reflected back to the source. This effect reduces the current magnitude,

but it is no more important if it occurs after a distance l measured from the top of the po-

tential barrier and called critical length for backscattering65. After this distance an electron

interacting with a phonon has a very low probability to flow back to the source contact.

At Vgs=0.1 V, the ballistic current (Iballistic) exceeds the current with scattering (Iscattering)

by a factor of 1.86 for a NW diameter with d=2 nm, 1.52 for d=2.5 nm, and 1.35 for d=3

nm. At Vgs=0.5 V the difference between the two currents increases to 1.98 (d=2 nm), 2.0

(d=2.5 nm), and 1.63 (d=3 nm). The fact that electron-phonon plays a more important role

in NWs with a small diameter tends to confirm the observation made in Ref.10.

The behavior of the electrostatic potential in the unrealistic ballistic transport regime is

the main reason behind the current increase close to the transistor ON-state (Vds=Vgs=0.6

V). The lowering of the source-to-drain potential barrier, as observed in Fig. 8 at Vgs=0.5
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V, reduces the amount of reflected electrons nB to almost 0. To maintain charge neutrality

in the source contact, the number of injected electrons nF is artificially increased to the

value of the donor concentration ND by pushing down the conduction band edge, but the

total number of electrons in the source ntot=nF +nB remains the same and is equal to ND

as illustrated in Fig. 9.

Since the ballistic current is directly proportional to the number of injected electrons at

the source, it increases with nF . When electron-phonon is switched on, some of the electrons

injected at the source contact are reflected back when they absorb or emit a phonon so that

nB does not completely vanish. It remains smaller than nF , but the conduction band edge

does not need to move down as deep as in the ballistic simulations. The conjunction of the

backscattering effect and of the conduction band shift explains the larger difference between

the ballistic and scattering currents at high Vgs.

To determine the ballisticity B=Iscattering/Iballistic of the Si nanowire FETs, the effect of

the artificial lowering of the conduction band edge must be removed from Iballistic. This is

achieved by recalculating the ballistic current using the electrostatic potential obtained in

the presence of electron-phonon scattering. Then, the only difference between Iballistic and

Iscattering arises from the backscattering mechanism65 and not from unphysical artifacts. In

doing so, at Vgs=0.5 V, Iballistic becomes larger than Iscattering by a factor of 2.0 for the NW

with d=2 nm, 1.56 for d=2.5 nm, and 1.42 for d=3 nm, which is comparable to the results

obtained at Vgs=0.1 V (1.86, 1.52, and 1.35) and smaller than the values obtained in the

pure ballistic simulations with the lowering of the CB edge (2.13, 2.0, and 1.63). Hence, one

obtains B2nm=50%, B2.5nm=64%, and B3nm=70%. The inclusion of interface roughness at

the Si-SiO2 interface will probably reduce the ballisticity of the FETs66.

For gate voltage Vgs beyond 0.5 V, (0.6 V for the nanowire with d=2 nm), the Poisson

equation does not converge anymore in the ballistic simulations. The mechanism that pushes

down the conduction band, as explained above, becomes very sensitive to a small variation

of the electrostatic potential which in turn starts to oscillate in the source extension region.

The inclusion of dissipative scattering resolves this issue. At high Vgs, the transistor acts

as a resistor, the electrostatic potential drops in the source and drain regions, as seen in

Fig. 8, and the emission of phonons allows the electrons to fill energy states located below

the conduction band edge of the semi-infinite source contact. These states are inaccessible

in the absence of dissipative scattering. Hence, the electrostatic potential remains stable
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and the self-consistent calculation of the electron density and of Poisson equation continues

to converge.

Figure 10 shows the ballistic and scattering currents at Vgs=0.5 V and Vds=0.6 V as

function of the position and energy in the NW FET with d=2.5 nm. The ballistic current is

conserved for each injection energy E, as expected, while the current with electron-phonon

scattering follows the contour of the electrostatic potential, it flows at higher energy in the

source than in the drain region due to phonon emission, and only the sum of the current

contributions from all the energies is conserved. Current conservation in the presence of

electron-phonon scattering is demonstrated in Fig. 11.

The ON-current (Id at Vgs=Vds=0.6 V) of the NW FET with d=2.5 nm is given in Fig. 12.

The potential drop in the source region is larger than at Vgs=0.5 V in Fig. 10 and regions

with a high current concentration (indicated by black arrows) separated by regions with a

lower current concentration become visible. The energy separation between these regions

is about 15-16 meV, corresponding to one of the peaks of the phonon density-of-states

shown in Fig. 2. The phonon DOS is larger at 58-59 meV than at 15-16 meV, but since the

electron-phonon coupling factor V ij
nlln(ωPH) in Eq. 14 is inversely proportional to the phonon

frequency ωPH , the strength of the electron-phonon interaction at E=15-16 meV is almost

4 times larger than at 58-59 meV. This explains the energy separation of the regions with a

high current concentration.

IV. CONCLUSION AND OUTLOOK

Electron-phonon scattering has been demonstrated in a 3-D, atomistic, full-band, de-

vice simulator based on the nearest-neighbor sp3d5s∗ tight-binding model and the Non-

equilibrium Green’s Function formalism. Nanowire field-effect transistors with a diameter

up to 3 nm, a length of 40 nm, and composed of more than 14,000 atoms have been sim-

ulated. The influence of electron-phonon scattering in the OFF- and ON-states of Si NW

transistors is investigated. The overestimation of the drain current by ballistic transport

simulations is more pronounced in the ON-state due to an increase of the electrons that are

injected at the source contact.

To further extend the dimensions of the 3-D simulation domains, the numerical algorithm

must be improved. The current parallelization of the recursive Green’s Function (RGF)
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algorithm does not allow to distribute the work load over a large enough number of CPUs.

More efficient approaches have been proposed by other groups67,68 and will be tested in the

future.

The capability of treating electron-phonon scattering will be of great interest to study

certain types of devices like band-to-band tunneling field-effect transistors (TFETs) which

are based on the tunneling of electrons from the valence band of one contact into the con-

duction band of the other contact. Silicon might be the material of choice to fabricate

such devices because it is compatible with the MOSFET technology and its properties are

well-understood. However, the indirect band gap of Si prevents direct tunneling to occur

between its valence band and its conduction band. Momentum conservation requires that

a phonon is absorbed or emitted during the tunneling process. At the same time, modeling

TFETs demands a full-band approach to accurately describe the valence and conduction

bands of the semiconductor material.
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APPENDIX A: NUMERICAL IMPLEMENTATION

Parallel computing is the key element to solve Eq. 1 to 4 and 14 in 3-D nanowire struc-

tures. It would simply not be possible to simulate the devices described in Section III on a

single processor, not even on a small cluster of 100 cores or less. All the results presented in

this work were obtained on 3,200 to 6,400 cores and each simulation lasted between 36 and

100 hours, depending on the device dimensions.
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Due to the energy coupling no embarrassingly parallelization of Eq. 14 is possible. To

keep an efficient distribution of the energy points (ideally, there are NE,local=2 energy points

per CPU) the calculation of Eq. 1 to 4 and 14 is separated in two steps:

1. for each new self-consistent Born iteration, all the Σ<e−ph
nn (E) and Σ>e−ph

nn (E) are

first computed from Eq. 14. This requires a lot of communication since each energy

point E needs about 2*30*NA G≷
nn(E ′) blocks from the previous self-consistent Born

iteration. The factor 2 originates from the connection to higher and lower energies

E ′, 30 is the number of different phonon energies that are typically considered, while

NA is the number of atoms in the device structure. The NA blocks G≷
nn(E ′) of size

tB×tB are cast into a single variable G≷(E ′) of size NAtB×tB and are not individually

transferred from one CPU to the other, but in one single step. Each of the 60 G≷(E ′)

matrices are usually stored on 60 different CPUs. In other words, each core must

send its Green’s Functions to 60 different CPUs and receive data from 60 others. The

most efficient solution to manage the communication issues consists in using the non-

blocking MPI Isend function to send the data and MPI Receive to collect them63. For

a given phonon energy ωPH , each CPU sends its NE,local G≷(E) matrices to the CPU(s)

containing the energies E ± ~ωPH . After all the CPUs have sent their data, they can

at any time receive the matrices G≷(E ∓ ~ωPH) they need to evaluate Eq. 14 for the

NE,local energy points they take care of.

2. once that each CPU has solved Eq. 14, Eq. 1 to 4 can be computed in an almost

embarrassingly parallel way, with limited interprocessor communication, as described

in Ref.40.

For a typical energy grid of NE=1,500-2,000 energy points, a total number of 750 to

1,000 CPUs can be used per simulation, assuming that Eq. 1 to 4 are treated on a single

core using a recursive Green’s function (RGF) approach64. However, the RGF algorithm can

be slightly modified to efficiently parallelize on 2 CPUs. In its standard form64, the recursive

calculation of the Green’s Functions starts at one corner of the Hamiltonian matrix, goes

on till the other corner of the matrix, and moves back to the original corner. An alternative

is to start the calculation from both corners of the matrix, each of them being handled by

a different CPU, to move towards the center of the matrix, to exchange information there

through MPI Send and MPI Receive, and to go back to the two matrix corners. A speed-
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up factor close to 2 can be obtained following this approach. Two additional cores can be

used in Eq. 1 to 4, one of them calculating GR
nn(E) and G<

nn(E), the other GR
nn(E) and

G>
nn(E). This is not an ideal parallelization since GR

nn(E) is calculated twice, but it allows

a speed-up of 1.5. In summary, the domain decomposition of the Hamiltonian matrix and

the separation of G<
nn(E) and G>

nn(E) lead to a speed-up factor of 3 on 4 cores as compared

to one single CPU.

Hence, a total of 3,000 to 4,000 CPUs can be used per bias point for an energy grid of

NE=1,500 to 2,000 energy points. The scaling performance of our approach for NE=1,571

points is demonstrated in Fig. 13. It is shown that the simulation time for one Born iteration

(solution of Eq. 1 to 4 and Eq.14 for all the energy points) in a nanowire with a diameter of 2

nm decreases almost ideally from 28 to 3,200 cores on a CRAY XT4 machine69. The number

of CPUs per energy point is set to 4 (domain decomposition and separation of G<
nn(E) and

G>
nn(E)) for all the timing experiments reported in Fig. 13. This means that 7 energy points

are simultaneously treated when the total number of CPUs is equal to 28 and 800 when the

total number of CPUs is 3,200. Furthermore, several bias points can be simulated at the

same time in a embarrassingly parallel way. In this paper, a maximum a 2 bias points has

been simultaneously treated, leading to a total number of 6,400 cores per simulation.

The scaling behavior of the simulation approach does not depend on the nanowire size or

cross section and remains almost ideal for all cases. However, the simulation time increases

as function of the number of atoms in the device structure. The time to solve Eq. 1 to

4 (standard RGF approach) increases as O(N3
CS), where NCS is the number of atoms per

nanowire unit cell21 and as O(NUC), where NUC is the number of unit cells along the nanowire

length. The time to compute the scattering self-energy in Eq. 14 linearly increases as function

of the total number of atoms NA since only diagonal interactions are considered.
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FIG. 1: Schematic view of a gate-all-around (GAA) circular Si nanowire field-effect transistor (NW

FET) with a diameter d=2, 2.5, and 3 nm. The transport direction x is aligned with the <100>

crystal axis. The SiO2 dielectric layer has a thickness tox=1 nm. The gate length Lg measures 15

nm while the source and drain contacts have a length of 12.5 nm and a donor doping concentration

ND=1e20 cm−3.
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FIG. 2: Density-of-states of the confined phonons in a Si nanowire with a diameter d=2.0 nm

(dashed line), d=2.5 nm (solid line), and d=3.0 nm (dashed-dotted line). The inset shows the

lowest part of the phonon bandstructure in the nanowire with d=2.5 nm.
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FIG. 3: Transfer characteristics Id −Vgs at Vds=0.6 V of a Si GAA NW FET with a diameter d=2

nm. The gray lines with circles refer to the ballistic current, the black lines with squares to the

current with electron-phonon scattering.
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FIG. 4: Same as Fig. 3, but for a Si nanowire with a diameter d=2.5 nm.
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FIG. 5: Same as Fig. 3 and 4, but for a Si nanowire with a diameter d=3 nm.
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FIG. 6: Drain current reduction due to electron-phonon scattering at Vds=0.6 V as function of Vgs

in Si nanowires with a diameter d=2.0 nm (dashed line with circles), d=2.5 nm (solid line), and

d=3.0 nm (dashed-dotted line with triangles). The ballistic Iball and dissipative Iscatt currents of

Fig. 3 to 5 are used to calculate (Iball-Iscatt)/Iball*100. The arrows indicate the threshold voltage

in the ballistic simulations.
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FIG. 7: Output characteristics Id − Vds at Vgs=0.5 V (left y-axis) of the Si GAA NW FET with

a diameter d=2 nm. The gray lines with circles refer to the ballistic current, the black lines

with squares to the current with electron-phonon scattering. The drain current reduction due to

scattering is plotted on the right y-axis. It is defined as in Fig. 6.
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FIG. 8: Conduction band edges at Vds=0.6 V, Vgs=0.1 V (dashed lines) and Vgs=0.5 V (solid

lines) in the nanowire with d=2.5 nm. The band edges in case of ballistic transport are shown in

the left subplot, those with electron-phonon scattering in the right subplot. The variable nF (nB)

describes the electrons moving forwards (backwards) to (from) the gate, l is the critical length for

backscattering65.
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FIG. 9: Number of electrons per unit cell (ensemble of 4 atomic layers in the transport direction

x) for the Si GAA NW FET with a diameter d=2.5 nm at Vds=0.6 V and Vgs=0.5 V. The gray

line with circles depicts the ballistic electron density, the black line with squares the carrier density

in presence of electron-phonon scattering. The number of doping atoms per unit cell in the source

and drain contacts is 0.274.
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FIG. 10: Spectral current of the Si GAA NW FET with a diameter d=2.5 nm from Fig. 4 at

Vgs=0.5 V and Vds=0.6 V. The left subplot represents the ballistic current (homogeneous), the

right subplot the current with electron-phonon scattering. The dashed lines indicate the position

of the conduction band (CB) edge.
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FIG. 11: Spatial current along the transport direction x of the Si GAA NW FET with a diameter

d=2.5 nm and in the presence of electron-phonon scattering. The currents are calculated at Vds=0.6

V and 0.2≤ Vgs ≤0.6 V.
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FIG. 12: Spectral current of the Si GAA NW FET with a diameter d=2.5 and electron-phonon

scattering at Vgs=Vds=0.6 V. The arrows indicate two regions with high current densities, separated

by an energy difference of 15-16 meV.
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FIG. 13: Parallel execution time on a CRAY XT4 for the calculation of one Born iteration, i. e.

for the solution of Eq. 1 to 4 and Eq. 14 for all the energies E on 28 to 3,200 cores. The test

structure is a nanowire with n=2 nm and NE=1,571 energy points. Each energy point is treated

by four CPUs. Typically, 20 to 50 Born iterations are required to obtain the device current.
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