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Abstract: Biological membranes are complex assemblies of many different molecules of 

which analysis demands a variety of experimental and computational approaches. In this 

article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of 

lipid membranes. We provide an introduction into the various move sets that are 

implemented in current MC methods for efficient conformational sampling of lipids and 

other molecules. In the second part, we demonstrate for a concrete example, how an 

atomistic local-move set can be implemented for MC simulations of phospholipid 

monomers and bilayer patches. We use our recently devised chain breakage/closure  

(CBC) local move set in the bond-/torsion angle space with the constant-bond-length 

approximation (CBLA) for the phospholipid dipalmitoylphosphatidylcholine (DPPC).  

We demonstrate rapid conformational equilibration for a single DPPC molecule, as 

assessed by calculation of molecular energies and entropies. We also show transition from 

a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated 

by the electron density profile, head group orientation, area per lipid, and whole-lipid 

displacements. We discuss the potential of local-move MC methods in combination  

with molecular dynamics simulations, for example, for studying multi-component lipid 

membranes containing cholesterol. 

Keywords: Monte Carlo; phospholipid bilayer; cholesterol; diffusion; coordinate 

transformation; entropy; sampling 
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1. Introduction 

1.1. Membrane Simulations and the Time-Scaling Problem 

Analysis of the molecular mechanisms underlying membrane lipid organization is of crucial 

importance for understanding the function of membranes in living cells. Recent interest has focused on 

the biophysical characterization of model membranes to explore the physical principles governing the 

behavior of biological membranes. For example, lipid phase behavior and separation was investigated 

in model membranes by fluorescence microscopy, neutron scattering and NMR, while cholesterol 

dependent lipid order in endoplasmic reticulum membranes was determined by EPR spectroscopy [1–5]. 

Despite a large increase in computational power, atomistic membrane simulations lack behind this 

experimental progress. This is largely due to the large time scale at which biologically relevant 

processes in membranes occur. While characteristic times for stretching of a C–C bond in a fatty acid 

tail are in the range of a few picoseconds, change of the lateral position of two lipids requires several 

nanoseconds, and transverse phospholipid migration in pure lipid bilayers takes place on a time scale 

of hours [6,7]. Similarly, important biological processes like vesicle formation during intracellular 

transport require the collective dynamics of hundreds of membrane components for several seconds. 

Molecular detail, however, cannot be ignored when developing models of these processes, since small 

structural changes in the involved lipids can promote or antagonize membrane budding and  

fusion [8,9]. In addition, biological membranes are of extreme complexity by consisting of several 

hundred different lipid species, transmembrane proteins, like G-protein coupled receptors and 

peripheral proteins like prenylated ras or the glycosylphosphatidylinositol- (GPI-) anchored folate 

receptor [10,11]. There is also the subcortical actin playing an important role in membrane 

organization and dynamics [12–17], the extracellular oriented glycocalyx [18] and the well-established 

transbilayer phospholipid asymmetry [19]. This compositional complexity together with the 

dynamically varying solute and ion composition on both sides of the plasma membrane naturally call 

for many different modeling approaches being suitable for each level of description [20–23].  

1.2. Molecular Dynamics Simulation of Lipid Membranes  

Atomistic molecular dynamics (MD) simulation, which solves explicitly Newton’s equations of 

motion, is now a very advanced and established technique being able to simulate the behavior of 

phospholipid membranes up to several hundred nanoseconds [7,24]. Important collective phenomena, 

such as thickness fluctuations and bilayer undulations, correlative lipid motion during diffusion, heat 

capacity changes due to increasing salt concentration, or cholesterol’s impact on the lateral pressure 

profile in lipid membranes have been studied by this approach [24–27]. Recently, cholesterol 

translocation has been studied by atomistic MD simulation using the replica exchange approach [28]. 

In this method, multiple replicas of the membrane are simulated in parallel at various temperatures to 

sample rare events, such as cholesterol flip-flop [28,29]. By this approach, the overall simulation time, 

including the advancement of the simulation clock for each detected rare event, could be extended 

tremendously to 15 µs altogether [28]. Local interaction of membrane proteins and lipids as well as the 

impact of fluorescent probes on bilayer properties has also been investigated by atomistic MD 

simulations [30–34]. MD simulations were combined with ab-initio calculation and spectroscopy 
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experiments to determine dynamics of fluorescent dyes in ground and excited states [35]. Finally, 

using a specially designed supercomputer [36], classical atomistic MD simulations of protein-lipid 

systems were extended into the µsec-range and used to study voltage gating of a membrane embedded 

ion channel, to decipher conformational changes of the epidermal growth factor receptor on ligand 

binding and to characterize specific lipid interactions of receptor subunits [37,38].  

Together, classical atomistic MD simulations provide information about many relevant membrane 

processes in the time window of several fs to <~0.5 µs for a few hundred lipid molecules. Using 

improved sampling schemes, such as replica exchange MD or supercomputer architectures optimized 

for MD simulations, the simulation time can be extended by a factor of ten. However, even with 

further improvement of computer instrumentation, it can be expected that other highly relevant but 

slower phenomena like lipid domain formation or phospholipid flip-flop in membranes taking place in 

the range of milliseconds to seconds and/or involving larger membrane areas cannot be studied  

solely by the MD technique. This is a disadvantage of the inherent time dependence of the method,  

which requires time propagation steps of typically 1–2 fs to follow the fastest processes, such as 

intramolecular vibrations. As a consequence, membrane phenomena occurring on a large time scale in 

nature will require lengths of MD simulation runs not accessible by today’s conventional 

computational power. Supercomputers, such as “Anton”, developed by David E. Shaw’s group, might 

provide a way to extend MD further towards the relevant mesoscopic scheme [36]. However, it is of 

large interest to develop alternative computational approaches reaching thermodynamic equilibrium of 

slow membrane processes within reasonable calculation time on conventional computer systems. One 

way is the coarse graining of the molecular lipid structure and force field, thereby allowing for 

efficient simulation of slow collective membrane phenomena, such as membrane domain formation, 

vesicle fusion, membrane crowding, or flip-flop of phospholipids and transbilayer coupling [39–41]. 

These advantages come to the price of neglecting molecular detail, such that fine differences in lipid 

structure, for example, between cholesterol and its various biosynthetic precursors [42], cannot be 

studied adequately by coarse-grained (CG) simulation. This is a rapidly growing field, and a detailed 

discussion of these developments is beyond the scope of this article. We will, though, briefly touch on 

this topic when we discuss the potential of local move Monte Carlo (MC) simulations for multiscale 

and CG modeling of lipid membranes in Section 5 of this article. 

1.3. Monte Carlo Methods for Atomistic Simulation of Lipids and Other Biomolecules 

As alternative to MD simulations of atomistic or CG molecular models, one can circumvent the 

explicit time dependence of the investigated processes and sample molecular conformations along a 

Markov chain in the configuration space based on their probability in a Boltzmann distribution [43]. 

This approach, which is at the core of the Metropolis MC method, samples different configurations 

from an ensemble of structures and should—According to the Ergodic theorem—Provide the same 

result as MD sampling of the time-evolution of a single structure [44]. Let XN be the configuration 

vector comprising positional and rotational coordinates of an N-molecule system, i.e., XN = {X1, X2, ... XN}, 

average thermodynamic properties, such as the internal energy, U, of the system are expressed in a 

statistical sense as average according to: 
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 (1) 

Here, E(XN) is the configuration energy, while the probability of finding the system in state XN is 

given by 

 
(2) 

This high-dimensional configuration integral and thereby the thermodynamic average properties, 

such as the internal energy, cannot be evaluated by numerical integration. However, P(XN) can be 

evaluated by generating an irreducible Markov chain, of which the limiting distribution is the 

Boltzmann distribution:  

 (3) 

Here,  is the Boltzmann probability of the ith configuration of the system; for a detailed 

discussion of the underlying statistical theory, see ref. [43–45]. The standard Metropolis MC method 

has been first applied to simulation of water and aqueous solutions of ions [46,47]. It was limited by 

slow convergence, i.e., reaching the thermodynamic equilibrium of the system given by the limiting 

distribution of the Markov chain (see above) in reasonable computational time. This problem 

hampered the application of the method to larger molecular systems.  

Early attempts to improve sampling efficiency modified the underlying transition matrix, thereby 

biasing the moves in a certain direction. For example, smart MC developed by Ross et al. included 

forces into the MC sampling procedure, thereby increasing the likelihood of moves in the direction of 

forces acting on the simple molecule models [48]. A similar modification of the Markov chain has 

been introduced by Pangali et al. in their force-biased MC algorithm [49]. Computationally faster 

equilibration of solvated rigid molecules has been also achieved in such early studies using a preferred 

sampling method, where solvent molecules close to the solute surface have been moved with higher 

frequency [50]. Not only intermolecular forces but also the virial in the NPT-ensemble can be included 

in the acceptance criterion to increase the sampling efficiency [51]. In addition, the step size of the 

attempted moves can be adjusted according to the total interaction energy of the particle [52]. Another 

way of accelerating equilibration of the system is to shift to the grand canonical ensemble (GCE) and 

to insert/delete molecules as part of the sampling procedure. Mezei and co-workers developed  

cavity-biased GCE simulations in which MC moves are only attempted into intermolecular cavities of 

suitable size [53]. In addition, other methods have been developed, and this short overview is not 

comprehensive, but just serves the aim of making the reader familiar with the major challenges in 

applying MC methods to molecular simulations. For a more general introduction into various  

MC methods and enhanced sampling techniques, the interested reader might consult the text book by 

Allen and Tildesley [44] or two recent reviews [54,55]. Similarly, the fruitful application of the  

MC method to two-dimensional lattice and off-lattice simulations of simple membrane models are  

covered elsewhere [22].  

While being a problem in simulating particles in dense fluids, the low acceptance rate of standard 

Markov chain MC methods has been even a larger hurdle in MC simulations of non-rigid molecules 

and macromolecular assemblies, such as proteins or lipid bilayers. The reason for this is that 
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intramolecular moves often result in steric clashes associated with high energy and thereby rejection of 

the attempted move. For example, even a modest change of a torsion angle in the middle of a 

molecular chain can lead to large movement of the atoms at the end of the chain causing, for example, 

clashes between neighboring fatty acyl chains of phospholipids in the membrane [56–58]. Several 

strategies have been developed to overcome this problem and to improve sampling efficiency. Reptation 

moves were proposed and applied, among others, to long chain n-alkanes and polymethylenes [59,60]. 

Here, an atom is removed at the end of one chain, while another atom is simultaneously added at the 

end of an adjacent chain. End rotation is the simple change of the last torsion angle in a chain altering 

the position of the last atom, only [61,62]. Another straightforward local MC move set is the flip move, 

in which an inner (united) atom of the chain is picked at random and rotated around the adjacent bond 

by an angle sampled from a uniform distribution in the range of 20°–30° [63]. This changes a total of 

four torsion and two bond angles. These three sampling methods replace only one atom per MC move, 

which is in contrast to MC moves, involving the geometric reconstruction of a group of atoms. One 

approach of the latter category is the so-called configurational biased MC (CBMC). In this method,  

an end segment of a chain molecule is removed and the missing part is rebuilt sequentially with a bias 

towards avoiding overlaps with the unmoved neighbor sites. Thus, CBMC introduce biases in the 

sampling procedure which sample certain torsion moves preferentially based on additional information 

about the studied molecular system [58,64]. CBMC has been combined with intervening MD 

simulations to enhance equilibration of a bilayer of 100 molecules of dipalmitoylphosphatidylcholine 

(DPPC) [57,65]. The cavity-biased GCE method has been also employed in conjunction with CBMC 

for simulation of a membrane patch of dimyristoylphosphatidylcholine (DMPC) resulting in improved 

sampling compared to MD runs of comparable length [66]. Permeation of small molecules across 

DMPC bilayers, as well as the effect of cholesterol on membrane permeability, has been studied by 

atomistic MC simulation in the torsion angle space with fixed bond length and bond angles [67–69]. 

Intramolecular rotations as well as whole lipid rotations were performed in an extension-biased  

scheme [67].  

However, these approaches suffer from rather slow convergence, as small changes in torsion angles 

can be associated with large changes in configurational energy due to van der Waals contacts of distant 

atoms and steric clashes [70]. Much effort was, therefore, devoted to the development of local move 

sets with constant bond lengths and bond angle constraints for more efficient equilibrium ensemble 

simulations. The theoretical background of such work is provided by the classical paper of Go and 

Scheraga (1970) [71], where a general formalism for ring and chain closure in the space of dihedral 

angles (the “torsion angle space”) was developed. The basic idea of this type of local or “window” 

moves is to change first one torsion angle (the driver torsion) followed by adjustment of the next six 

dihedral angles in the chain in a way that keeps the remaining chain (i.e., from torsion angle φ = 7 on) 

unchanged. This closure method is inspired by the inverse kinematic problem in robotics, where a 

robotic arm joint by several links must be placed in such a manner that a desired position of an  

end-effector is provided [72]. To ensure chain connectivity, the closure problem in torsion angle space 

is solved by sequential application of rotation matrices under the constraint of recreating the correct 

distance between the last atom of the moved fragment and the second fixed fragment of the  

chain [71,73–75]. The approach introduced by Go and Scheraga (1970) has been adapted to the use in 

MC simulations of chain molecules by the concerted rotation (CR) method, which ensured detailed 
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balance by taking the different volume elements of the coordinate systems into account [76]. A number 

of special CR variants were developed and successfully tested in MC simulations of polypeptide 

structures [70,74,75,77,78] and lipid bilayers [79], and the CR algorithm was implemented as an 

option of the MC module for the CHARMM program [80]. Another solution to the local MC move 

problem was presented by Pant and Theodorou (1995) with their “end bridging” (EB) and “internal  

re-bridging” (IRB) moves [81]. As in the original CR method [76], the geometric problem of chain 

closure in torsion angle space was formulated as determining the coordinates of a moved trimer 

relative to two specially confined dimers [81]. In the EB method, the fixed dimers belong to two 

different chains, while in the IRB method the dimers belong to the same molecular chain. Thereby, the 

IRB method is equivalent to the CR move set, just with two driver torsions, one for each of the fixed 

segments. In both bridging moves, a set of nine equations is numerically solved, which links the 

Cartesian coordinates of the atoms of the bridging trimer to the constrained bond lengths. Here, bond 

lengths are defined between the connected adjacent atoms and as the distance between the second 

neighbors, essentially fixing the bond angles in the molecule [81]. The EB method alters the chain 

length distribution and is therefore suitable to simulate polydisperse polymer melts [81,82]. In these 

systems, proper weighting and simulation in the semigrand ensemble using EB, reptation, and  

end-rotation moves guarantee the correct polydispersity, i.e., chain length distribution for the polymer 

model [81]. The EB method becomes more accurate for long chains, but cannot be used for lipid 

membranes, which is for the following reasons. First, EB moves alter the chain lengths, which is 

inappropriate for phospholipid bilayers, and, second, the performance of the EB moving scheme drops 

dramatically if the chains are ordered, as it happens to be in lipid membranes [62]. The bridging 

scheme of the original study [81] has been later extended for monodisperse systems using the double 

bridging moves [62]. It was also extended to internal segments of arbitrary lengths and combined with 

CBMC moves to systematically re-growth the internally moved segment [83,84].  

Importantly, the torsion angle changes during a CR move are correlated such that the volume 

element in the Boltzmann factor exp(−E/kT)dφ1 ... dφ6 is not volume preserving. This necessitates 

inclusion of a Jacobian, J, in the Metropolis acceptance criterion as first shown by Dodd et al. [76]. 

The Jacobian accounts for the different volume elements in the Cartesian space versus the space of 

torsion angles and constraint variables. More generally, using any definition of generalized coordinates 

for describing the configuration space of a molecular system requires a transformation of the volume 

element in the configuration integral of the partition function. A subset of the new coordinates is 

usually considered as constraints (like bond lengths and angles in the CR procedure). Thus, the 

transformation of the volume element from the canonical Cartesian space into a new set of transformed 

coordinates reads: 

 
(4) 

where {qi} is the subset of independent generalized coordinates, and {ci} are the constrained variables. 

The Jacobian J is the functional determinant of the transformation and is typically calculated as  

the inverse: 
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 (5) 

Importance sampling, according to the Metropolis method, basically evaluates the integral over 

configurations of a subset of the configurational space in Cartesian coordinates. Therefore, the 

Jacobian has to be included in the Metropolis acceptance criterion to account for the coordinate 

transformation from cartesian to internal coordinates in the closure procedure. The Jacobian enters the 

acceptance criterion for the trial move m → n according to: 

 (6) 

Here,  and  are the probabilities for selecting and accepting the move, respectively [56]. 

Omitting the Jacobians from the acceptance criterion results in wrong torsion angle distributions since 

it violates the criterion of microscopic reversibility of the moves. The latter is required to ensure 

detailed balance and thereby to sample the Boltzmann distribution correctly. All CR variants in the 

torsion angle space have in common that complex non-linear chain closure equations have to be 

solved, with at most 16 solutions in the general case. Hence, computationally demanding numerical 

procedures are involved that do not readily provide the full set of solutions. To overcome this problem, 

Mezei (2003) devised a method to choose that solution of the closure problem, which is closest to the 

original conformation before attempting the move. Making this choice eliminated all moves which are 

unlikely to proceed [79]. To maintain microscopic reversibility, it was tested whether the reverse 

rotation applied leads again to the original conformation, which was called the “reverse proximity 

criterion” [79].  

Like the other CR methods, this approach is limited to moves in the torsion angle space, since bond 

lengths and angles are kept constant in the simulation. Fixing bond angles, however, is not in 

accordance with MD simulations and results in a rough, artificial energy landscape. For example fixing 

bond angles increases the energy barrier for a cis–trans conversion of alkanes significantly making this 

constraint less suitable for membrane simulations [78]. The problems encountered by using fixed bond 

angles in protein systems were first addressed by Bruccoleri and Karplus (1985) who modified the 

original CR method by allowing for limited bond angle variations [85]. Definition of a modified  

(φ,ψ)-torsion potential to compensate for otherwise increased torsional barriers also allowed for 

partially removing the problems caused by fixed bond angles [70]. These problems were finally solved 

by extending the CR approach to include flexible bond angles in the closure algorithm [78]. In the 

latter method called concerted rotations with angles (CRA), the mathematical formalism for solving 

the kinematic problem in torsion angle space was modified by replacing three torsions around dihedral 

angles with changing bond angles. The overall derivation of the closure equations is very similar to the 

classical CR method including the associated Jacobians. The pre-rotation, however, was additionally 

restricted by a Gaussian bias to ensure small structural changes likely being accepted during each 

move [78]. The algebraic expressions become simpler in the CRA method with only two branches in 

the polynomial equation for solving the closure problem compared to four branches in the original CR 

method. It was shown that the CRA local moving scheme results in faster equilibration and more soft 

energy landscape [78,86,87]. In addition to sequential rotations and rebridging, the chain closure 

),,(

),,,,,(

1

3111

N

MNM ccqq
J

rr ⋅⋅⋅∂

⋅⋅⋅⋅⋅⋅∂
= −−













⋅⋅

⋅⋅
=

−
→

−
→

→
)(

)(
,1min

/

/

mJep

nJep
p

kTEsel
nm

kTEsel
mnacc

nm

sel

nmp →
acc

nmp →



Int. J. Mol. Sci. 2014, 15 1774 

 

problem has been formulated as a fixed-end move for polypeptide chains, in which a crankshaft 

rotation is performed between distant alpha carbons [88]. This local move type does also alter the bond 

angles adjacent to the respective alpha carbons and was found to be more efficient than the original CR 

method. Related crankshaft-type local move sets, in concert with extensive use of side chain structure 

libraries, have been repeatedly applied to conformational sampling of flexible loops in proteins, but to 

review this rapidly growing field in detail is beyond the scope of this article [89–91]. Very recently, 

the geometric problem of CR has been rephrased in such a way that an exact analytical solution for the 

chain closure could be derived instead of the tedious numerical procedure [92]. Having this analytical 

solution, the authors could express the coupling between pre- and postrotation as linear transformation 

allowing for construction of a probability distribution controlling all necessary degrees of freedom 

(DOF). More precisely, the interdependencies between the various DOF during the local move could 

be expressed as correlations in a multivariate Gaussian distribution. This information could be used 

during the move to avoid imbalances in angular variations of pre- and postrotations, a problem  

from which even the CRA method suffered [78,92]. The so-called “concerted rotations involving  

self-consistent proposals” (CRISP) move was combined with an implicit solvent description and was 

found to sample the conformational ensemble of ubiquitin and other proteins more efficiently than the 

CRA move set [92]. The CRISP move along with CRA, crankshaft, pivot, and other MC move sets has 

been implemented in a program suite called “Phaistos” for rapid conformational sampling of proteins 

in implicit solvents [93]. 

We have recently presented a very different local-move set MC method, the chain breakage/closure 

(CBC) algorithm, which solves closure equations in the bond/torsion angle space using the constant 

bond length approximation (CBLA) [94]. The CBC equations provide two simple analytical solutions 

to the closure problem. Jacobi factors were analytically derived for chain molecules as well as for the 

ribose ring of DNA molecules and included in the Metropolis acceptance criterion. The method was 

found to be computationally very efficient and highly suitable to simulate sequence-specific DNA 

structure and drug docking to DNA [95,96]. It set the stage for further important developments and 

application in the field of modeling nucleic acids [97,98]. To take advantage of this approach in MC 

simulations of phospholipid membranes, local move sets within the CBC framework were adapted and 

defined for describing structural variations of DPPC molecules. In the following, we describe how this 

can be used to simulate single DPPC molecules and DPPC membranes in an implicit solvent 

description. We give a detailed explanation of implementation of local MC moves within the CBC 

framework into lipid and membrane simulations. This will make the reader familiar with the technical 

details and the challenges of this type of molecular simulations. In particular, we describe the 

sequential moving of individual units in each DPPC molecule, the set up and details of the bilayer 

simulation and the analysis of the data. We demonstrate that local moves in the bond/torsion angle 

space can provide fast structural equilibration of DPPC molecules in an implicit solvent, and we 

describe several measures for assessing this equilibration. We also show the rapid, in terms of 

computation time, transition of a crystalline-like DPPC bilayer into the fluid state, and discuss the 

limitations of the used solvent description. We do not claim, however, that the presented data for the 

membrane simulation resemble comprehensive sampling of the conformational space of all the lipids 

in the bilayer, as this would require much more extensive simulations and a more elaborated implicit 

solvent model, both, clearly beyond the scope of this review article.  
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2. Simulation Details and Analysis of DPPC Structure as Monomer and in the Bilayer  

2.1. Molecular Model and Assignment of Moved and Dependent Variables 

For some aspects of the lipid molecule, we used a united atom representation of DPPC recently 

developed for the AMBER 4.1. force field [99]. This DPPC parametrization combines methyl groups 

of the fatty acyl chains and methylen groups at the nitrogen and in the fatty acid tails, respectively, into 

one united atom, thereby reducing the total number of atoms from 120 to 50 per molecule (Figure 1). 

For the fatty acyl chains, the Ryckaert-Bellemann potential was applied as described [100,101].  

A branched main chain of atoms in the DPPC molecule was defined leaving the united CH3 atoms 

(atoms # 44–46) on the headgroup nitrogen (atom # 1), the oxygen atoms (atoms # 47,48) on the 

headgroup phosphate (atom # 5), and the carbonyl atoms (atoms # 49,50) as external atoms (light grey 

in Figure 1, see preceding paragraph). From the 3N DOF, where N = 50 (number of (united) atoms) in 

the molecule, we have, due to CBLA and introduction of additional constraints, a reduction from 150 

to 88 DOF. Figure 1 shows the local move sets defined for the variation of DPPC structures. The chain 

breaking fragments of the CBC algorithm are reduced to single atoms (red circles). After Cartesian 

moves of such atoms, the chemically bound neighbor atoms are repositioned by using the closure 

equations of CBC in the frame of CBLA. Crankshaft rotations of these atoms define additional DOF. 

Chemical moieties at chain ends or attached to the chain are moved by using classical internal 

coordinates (bond and torsion angles). All moves, including volume moves, were performed in a 

sequential manner including sequential updating of the energy. This has been shown to fulfil the 

balance condition and thereby to sample correctly from the Boltzmann distribution [102]. 

2.2. Start Configuration, Boundary Conditions, and Solvent Treatment 

A DPPC molecule was built using in-house modeling software. Values for bond angles, torsion 

angles, and bond lengths were taken from their equilibrium values defined in [99]. These values 

yielded straight fatty acyl chains of DPPC and a molecular conformation close to but not identical to 

the crystal structure previously defined for the closely related DMPC (PDB ID XP4; Figure 1) [103]. 

For one-lipid simulations, one MC cycle comprised changing all 88 DOF. Efficiency of energy 

calculations was guaranteed by calculating energy differences for each moved fragment with respect to 

all other atoms in the same lipid prior and after the local MC move. For the bilayer, the energy 

calculation included additionally the non-bonded interactions to other lipids (see below). The DPPC 

bilayer is approximately described by a two-dimensional periodic model with a cubic elementary cell, 

and the simulations were done under the condition of constant pressure of 1 atmosphere. This means 

that, in addition to structural moves, random variations of the volume have to be included, and the 

energetic contribution of the volume change adds to the structural intra- and intermolecular energy. 

The resulting enthalpy decides on the acceptance of the move by the Metropolis algorithm. We started 

with the crystalline-like conformation for 64 DPPC molecules (compare Figure 2A, “start” and  

Figure 5A). Cut-offs used in calculation of pair-wise (atom-atom) energies were defined by the 

minimum image convention [44]. For 6-12-Lennard Jones and electrostatic interactions a cut-off of  

10 Å and a shell with a non-bonded list of 10 Å was generated. This list was updated every 10 cycles. 

That is, interaction of groups at a distance between 0 and 10 Å were calculated every cycle, while 
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those of groups at a distance between 10 and 20 Å were stored in the pair list, similar as described 

previously [44,101]. Volume moves were attempted in every MC cycle for the bilayer by isotropic 

adjustment of the box length. For that purpose, the center-of-mass distance between all DPPC 

molecules was adjusted in each MC cycle. To account for effects of the solvent, an implicit description 

of dielectric properties of the water phase close to the bilayer/solvent interface was chosen. Thus, 

electrostatics was treated by employing a sigmoidal damping function for the dielectric constant ε(r) in 

the Coulomb term of the AMBER 4.1. force field function [104]. This is based on a function originally 

proposed by Hingerty et al. [105], and refitted by Lavery et al. [106], for large distances from  

the interface: 

 (7) 

where d is the plateau value and s the slope for the dielectric permeability. This function models the 

change of dielectric permittivity due to solvation of the phospholipid molecules. It, thereby, accounts 

for the overall effect of solvent (water) reorientation close to the solute surface. Simulations were run 

on an AMD PC with an Athlon XP 2700+ processor having 2.2 GHz clock frequency. On this 

machine, 105 steps of MC simulation of a DPPC bilayer consisting of 64 molecules using the implicit 

solvent model required ten days of simulation time.  

Figure 1. Molecular model of DPPC for atomistic Monte Carlo simulation. A united atom 

representation of dipalmitoylphosphatidylcholine (DPPC), which neglects hydrogen atoms, 

is employed reducing the number of atoms per DPPC molecule to 50 [81]. 
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Figure 2. Snapshot and energy of a single-molecule Monte Carlo simulation. (A) starting 

conformation (start) and representative snapshots of a single molecule MC simulation are 

shown after 1·× 105 and 1·× 106 MC steps. Large conformational moves of the fatty acyl 

chains and the lipid head group can be observed; (B) mean system energy equivalent to the 

conformational energy calculated from the AMBER force field during the simulation [85]. 

The conformational energy becomes stable already after about 750,000 MC steps.  

The inset shows the initial phase of energy equilibration with a maximum after  

about 20,000 MC steps; (C) histogram of the conformational energy of the last one million 

MC steps (grey bars) overlaid with a fit to a Gaussian function of the form 
 providing the mean energy at equilibrium, E, and the standard 

deviation, σ, as a measure of fluctuations around the mean value (red line). See text for 

further explanation.  

 

2.3. Evaluation of DPPC Conformations and Bilayer Structure  

All trajectory analysis was performed using in-house developed Fortran77-based software. Systems 

energy and entropy were calculated from the trajectories of obtained conformations of the DPPC 

molecule. A histogram of molecule energies was generated for the one-lipid and bilayer simulation and 

was fitted to a simple Gaussian model using SigmaPlot 4.0 (SPSS Inc., Chicago, IL, USA). To 

calculate the entropy associated with the conformational ensemble of the single DPPC molecule, the 

following formula was used [107]: 

( )2)2)((exp)( σ⋅−⋅= EEAEf i



Int. J. Mol. Sci. 2014, 15 1778 

 

(1+ M ּ◌C) (8) 

Here, 1 is the unity matrix, M the mass matrix containing atomic masses in the diagonal, kb is the 

Boltzmann constant, e is Euler’s number, and C is the symmetrical covariance matrix whose elements 
 are given by: 

 =  (9) 

The respective mean value in angular brackets is the average of all positions of an atom in Cartesian 

space calculated for a given number of MC steps. For example, the covariance matrix after 20,000 MC 

steps provides the variances and covariances of 20,000 conformations around the respective mean 

value separately calculated for each x-, y-, z-coordinate of the atoms in the DPPC molecule.  

Non-vanishing off-diagonal elements (covariances) indicate correlations between structural fluctuations 

of adjacent atom coordinates. The atomic Cartesian coordinates are given by x1, … x3N , and the matrix 

C has the dimension 150 × 150 for a single DPPC molecule. Values for the matrix C were calculated 

according to Equation (9), exported as text-file and plotted using the open-source image analysis 

software ImageJ (developed at the U.S. National Institutes of Health and available on the Internet at 

http://rsb.info.nih.gov/ij) in tagged image file (TIFF) format. The conformational entropy was 

calculated according to Equation (8), above, as function of MC steps (see Results section, Figure 3). 

The basic assumption here is that fluctuations are normal-distributed around the mean allowing for 

estimating covariances from a multidimensional Gaussian distribution [107–109]. The electron density 

profile was calculated by placing a Gaussian distribution of the electrons on each atomic center with 

the variance being equal to the van der Waals radius for each configuration and averaged over all 

configurations [110]. The P-N-vector was calculated as the angle between the P–N bond in the lipid 

head groups with the bilayer normal, and the distribution was calculated for all molecules in the bilayer 

and averaged over all configurations [99,111]. Head group torsions for the single lipid and the DPPC 

membrane were calculated using the same notation as described [99,103]. To assess the lateral 

diffusion of DPPC in the bilayer plane, the mean square displacement (MSD) was calculated according to: 

 (10) 

Here, N is the total number of lipids,  is the position vector of the center of mass of each lipid and 

s is the running index for the MC steps. An equivalent to a lateral diffusion coefficient, D, was 

estimated from the slope of the averaged MSD after an initial phase of box size adjustment in the 

constant NPT-ensemble simulation (see Results section) [27].  

3. Results and Discussion 

3.1. Efficient Monte Carlo Sampling of Conformations of a Single Lipid Molecule 

We started our simulations with a single DPPC molecule, as it allows us to assess structural 

equilibration of the basic unit of the membrane and to perform MC sampling of the whole 

conformational space. This is important, as thermodynamic properties calculated from bilayer 

ln⋅= bkS ⋅
⋅⋅
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simulations always average over individual lipids, which do not necessarily explore their 

configurational space individually. Thus, in order to assess equilibrium properties of the used 

molecular DPPC model, we performed first simulations of single DPPC molecules. This allows us to 

determine the evolution of structural correlations during MC sampling and thereby to assess the effect 

of the molecular constraints used in the description of DPPC (e.g., the CBLA and the move sets of 

external and closure atoms; see Figure 1 and Section 2.1., above). In addition, the properties of an 

equilibrated single DPPC structure can be directly compared with the same properties of DPPC in the 

bilayer assembly (see below and Figure 4 vs. Figure 6). Thereby, we can gather information about the 

degree of equilibration of the membrane during our simulation as well as about eventual structural 

confinement of DPPC in the bilayer. Both aspects are discussed below. Large structural moves in 

relatively short simulation times on a normal desktop computer were made possible by using the CBC 

moving scheme (Figure 2A). The conformational energy dropped, followed by a rise towards a local 

maximum before a stable value was reached after about 50,000 MC steps (Figure 2B). It can be 

concluded that the potential energy, E, for a single DPPC molecule is in the range of its equilibrium 

value after about 100,000 MC steps, while complete equilibration required about 750,000 steps. 

Fluctuations of E around the mean after obtaining a stable plateau value can be well approximated by a 

normal distribution (Figure 2C). This is a first indication that a thermodynamic equilibrium has been 

reached, since the probability density function (PDF) of the potential energy, pk(E), should be well 

approximated by a Gaussian function at equilibrium [112]. The PDF, pk(E), is the product of the 

density of states, n(E), a rapidly increasing function, and the Boltzmann weight factor (an exponentially 

decreasing function, as defined in Equations (2) and (3)) providing the bell-shaped energy distribution 

with maximum at the average conformational energy of the molecule at the given temperature [89,112]. 

From the non-linear regression one obtains an average conformational energy of 10.26 kcal/mol 

associated with a standard deviation as a measure for fluctuation of the conformational energy around 

the mean of SD = 5.71 kcal/mol. By squaring that value and multiplying with β = 1/(kb·T) with  

T = 323 K, we can determine the molar heat capacity of a single DPPC molecule in the canonical 

ensemble to cV = 9.43 cal/mol·K [112]. For the united atom representation with 150 DOF and 

assuming for the sake of simplicity that the heat capacity ratio, γ, can be calculated like for an ideal gas 

(i.e., γ = 1 + 2/DOF = 1.013~1), we would have approximately the same value for the heat capacity at 

constant pressure, cp. As we use the CBLA and thereby ignore stretching vibrations of the bonds, these 

values are presumably smaller than those obtainable by quantum mechanical calculations. However, it 

serves as starting point for comparison with the bilayer simulation (see below).  

It is possible that the energy landscape for the lipid molecule is quite flat, meaning that a large 

number of different conformations are associated with very similar total energy. To obtain an 

independent proof for successful sampling of a representative subset of the conformational ensemble 

by our MC method, the conformational entropy was calculated. According to the Boltzmann theorem, 

the entropy is a measure of the probability of the sampled conformational subensemble and  

should, therefore, tend towards a maximum after long simulations leading to a thermodynamic 

equilibrium [44]. The conformational entropy can be calculated from the covariances of atomic 

positions, as outlined in Section 2.3, and Equations (8) and (9), above [107,108]. A stable plateau of 

the entropy would be equivalent to a covariance matrix with more or less constant values. In  

Figure 3A, the covariance matrix is plotted for all 50 atoms of the single DPPC molecule after various 
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MC steps. It is apparent from the figure that values of the matrix do not change after one million MC 

steps, indicating that atomic fluctuations are in equilibrium. Some correlations persist in the 

equilibrated structure, as indicated by non-vanishing covariances after one and two million MC steps. 

This is likely a consequence of two facts; first, we have performed the calculation with Cartesian 

coordinates, which will naturally result in correlations between the x-, y-, z-directions for a given 

atomic position [113], and second, in the chosen geometry of the DPPC molecule, some groups are 

always moved in concert. This applies to the groups being defined as external atoms, such as the 

methyl groups at the nitrogen in the phosphatidylcholine head group or the carbonyl groups together 

with the fatty acyl chains (light grey spheres in Figure 1) and to the closure atoms belonging to each 

atom moved directly in Cartesian space (dark grey and red spheres in Figure 1, respectively)  

In addition, the local move MC set defined by the CBC equations naturally introduces correlations in 

the moves, which is the reason for the local and efficient sampling but also for the necessity of 

including the Jacobian into the acceptance criterion (see Equations (4)–(6) in Section 1.3. and [91]). 

Stable values of the covariance matrix after prolonged simulation is, thus, an important condition for 

ensuring reliable sampling of many independent conformations by the CBC algorithm.  

The Schlitter entropy calculated from the mass-weighted covariances reaches a plateau after about 

1,000,000 MC steps; i.e., it needs longer simulations to equilibrate the conformational entropy than the 

energy, E (compare Figures 2B and 3B) [107]. From the entropy, S, and the conformational energy, E, 

of the molecule, the free energy, F, can be calculated according to F = E − T·S, where T is the 

temperature at which the simulation was performed [44]. As shown in Figure 3C, the conformational 

free energy reaches a plateau value after about one million MC steps indicating that the system has 

reached a thermodynamic equilibrium. The simulation time required for stabilization of the 

conformational free energy of a DPPC molecule is largely determined by the term T·S, i.e., by the time 

for equilibration of the molecular entropy. The simulation time for obtaining constant values of the 

conformational entropy could be best described (χ2 = 0.9999) by a tri-exponential function with 

fractional half-times of 385 MC steps for the first phase, 11.179 MC steps for the second phase, and 

266.595 MC steps for the third phase, respectively (not shown). The first and third phase contributed, 

each, to about 1/3 of the decrease in entropy, while the second phase contributed half of the entropy 

drop. Thus, the conformational entropy of our DPPC model is equilibrated by the CBC move set to 

about 83% of the stable plateau value with a half-time of less than 12,000 MC steps. The rather slow 

equilibration of the remaining one third of the entropy (the third phase of the fit) is not found for the 

evolution of conformational energy of the molecule, which became stable already after about  

750,000 MC steps (compare Figures 2B and 3B). This suggests that many different conformations of 

DPPC are associated with a similar energy. Please note, that the absolute value of the entropy 

calculated from the covariance matrix is just an estimate based on the assumption that the PDF of 

atomic positions is a multivariate Gaussian distribution. Thus, the reached plateau values of entropy 

and, consequently, free energy might be different in case that non-Gaussian PDF’s underlie the 

fluctuation of atomic positions during the simulation. Together, calculation of conformational entropy 

and free energy, both reaching stable plateau values after about 1.5 × 106 MC steps, indicates that our 

atomistic MC algorithm efficiently samples an ensemble of lipid conformations, thereby, faithfully, 

representing the configurational integral [44,55]. 
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Figure 3. Covariance, conformational entropy and free energy of a single DPPC molecule. 

(A) from trajectories of single molecule simulations the covariance matrix of atomic 

positions was calculated and plotted as a 150 × 150 matrix for 100 (=0.1), 2,000 (“2”), 

20,000 (“20”), 200,000 (“200”), one million (“1000”), and two million (“2000”) MC steps, 

respectively. Dark and light spots indicate high and low values of (co-)variances, 

respectively. The matrix values do not change grossly after 1 million MC steps with low 

off-diagonal values (i.e., covariances). This indicates equilibration of the structural 

sampling and absence of significant correlations of fluctuations of adjacent atoms in the 

DPPC molecule; (B) the conformational entropy was calculated from the mass-weighted 

covariance matrix after a given number of MC steps, as described in the text; (C) the 

conformational free energy was calculated as F = E − T·S with E and S being the 

conformational (internal) energy and entropy, respectively. The temperature of the 

simulation was 323 K (i.e., 50 °C).  

 

Next, the distribution of head group torsions was analyzed from a trajectory of MC simulated 

DPPC. The start value is given as a dotted line similar to a delta function, and only the alpha-torsions 

following the definition of Vanderkooi are shown (Figure 4) [103]. Already, after 1000 MC steps, a 

broad distribution of torsions angles close to a local torsion energy minimum is found for the DPPC 

molecule (red lines). This indicates large structural moves in a small number of steps, reflecting the 
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sampling efficiency of the algorithm. After 10,000 MC steps, the second minimum starts to be 

occupied (blue lines), while, after one million steps, the local minima are occupied to a similar extent 

(green lines). No further change in these values was observed after two million MC steps (violet lines), 

suggesting that, after one million MC steps, the sampled ensemble represents the equilibrium state for 

a single DPPC molecule. Analysis of head group torsions therefore supports that the one-molecule 

system rapidly reaches a thermodynamic equilibrium when sampled by our MC algorithm. Note that 

this simulation takes only about ten minutes on a Pentium PC. 

Figure 4. Distribution of DPPC head group dihedral angles from a single-molecule 

simulation. Head group torsions were defined as in Vanderkooi et al. [84] with the starting 

value defined by the initial conformation (dotted lines, “start”; compare Figure 2A). The 

percentage of occupation was calculated as function of torsion angle (in degree) after 1000 

(“N = 1”, red line), 10,000 (“N = 10”, blue line), one million (“N = 1000”, green line), and  

two million (“N = 2000”, pink line) MC steps, respectively. The dihedral angles are 

defined as (A) torsions around atom 6 and 7 (α1); (B) atom 5 and 6 (α2); (C) atom 4 and 5 

(α3); (D) atom 3 and 4 (α4); (E) atom 2 and 3 (α5); and (F) atom 1 and 2 (α6), respectively 

(compare Figure 2 for atom numbering in the DPPC molecule). 

 

3.2. Large Conformational Moves Mediate the Transition from a Crystalline to a Fluid Bilayer 

Phospholipids are naturally associated in membrane assemblies, and it is therefore important to 

prove that the MC algorithm faithfully simulates lipid membranes as well. Having shown rapid 

equilibration of an isolated DPPC molecule does not prove that densely packed DPPC molecules in a 
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bilayer arrangement can be efficiently simulated. Our starting structure is a crystalline-like DPPC 

bilayer with straight fatty acyl chains and identical conformations for the 64 lipid molecules that 

comprise our system (see Section 2.2 and Figure 5A). We wanted to determine whether our  

local-move MC technique is able to produce conformational moves large enough to create a structural 

transition from a crystalline to a fluid-like state in the bilayer. As shown in Figure 5B, already, after 

10,000 MC steps, the high molecular order typical for the crystal-like structure is lost and acyl chains 

of individual PC molecules show large conformational differences. Individual molecules are tightly 

packed, which is due to the fact that the box size in the NPT-ensemble simulation is rapidly adjusted 

(see also the accompanying video sequence). After 20,000 MC cycles, fatty acyl chains became more 

disordered (Figure 5C), while after 40,000 MC steps, the acyl chains of the phospholipids show large 

structural variation compared to the starting configuration. These changes indicate that the bilayer 

system made a transition to a fluid lipid bilayer. The simulated membrane model system is driven in a 

state of slight undulations, as suggested by the wave-like appearance of the head group regions  

(Figure 5D). This mesoscopic organisation has previously been described for long MD simulations of 

fluid DPPC membranes [25]. However, due to the simple solvent representation used in our MC 

simulation, we cannot rule out that these phenomena are caused or at least influenced by the simple 

solvent description. Starting from the crystalline-like ordered structure shown in Figure 5A, we 

determined next whether our MC algorithm leads to equilibration of the DPPC bilayer in terms of 

system enthalpy. As shown in Figure 5E, the system enthalpy drops to the equilibrium value in less 

than 10,000 MC steps, which are simulated in about one day on a Pentium PC. Thus, no energy 

minimization of the bilayer is required as often performed prior to extensive MD simulations  

(see [114] as example). A plateau value around −250 kcal/mol is obtained, which pertains stable 

during the simulation run. The PDF of the system enthalpy, pk(H), is well approximated by a Gaussian 

function with mean −256.7 and SD = 54.1 kcal/mol (Figure 5F) [112]. Using again the relation 

between fluctuation in energy (or enthalpy, as the membrane simulation was done in the constant  

NPT-ensemble; see section 2.2, above) and the heat capacity, we can derive a value of cp = 821.63 

cal/mol·K~0.822 kcal/mol·K. This can be used for a consistency check of one-lipid and bilayer 

simulation, as follows. Given the proportionality between heat capacity and system size [112], a value 

of cp = 0.6 kcal/mol·K (i.e., 64 times the value for the single lipid) would be expected. As the one-lipid 

simulation resembles individual DPPC molecules dissolved in an aqueous solution, one has to consider 

the additional heat capacity change due to transfer of lipid molecules from water to the hydrophobic 

membrane phase (i.e., due to the hydrophobic effect [115]). This has been estimated to give  

Δcp ~ −0.1 kcal/mol·K per fatty acid chain of 16 carbon length [116]. Accordingly, based on this 

consideration and the one-lipid simulation, we would expect for the bilayer a value of cp = 0.4 

kcal/mol·K. Experimental values for the heat capacity of DPPC bilayers are in this range  

(e.g., ~0.15 kcal/mol measured by Heimburg and colleagues and ~0.3 kcal/mol as determined by 

Blume’s group, both using various forms of calorimetry [117,118]). Given the small bilayer patch, the 

simple implicit solvent representation, some uncertainty in the force field parameters and the used 

constrained bond lengths in our simulation, the value found here for the heat capacity is in satisfactory 

agreement with the experiment.  
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Figure 5. Simulation snapshot and system energy of a DPPC bilayer. The membrane 

simulation started from a crystalline bilayer consisting of 32 DPPC molecules with straight 

fatty acyl chains in each leaflet. Each molecule was rotated by a random rotation angle 

around the molecular long axis in the start configuration ((A), “N = 0”); (B–D) show 

snapshots after N = 10,000 (B); N = 20,000 (C); and N = 40,000 (D) MC steps, 

respectively. United atoms of methyl and methylen as well as carbon atoms are shown in 

grey, oxygen in red, nitrogen in blue, and phosphorus in yellow. Fatty acyl chains become 

increasingly disordered in course of the simulation; (E) the enthalpy of the bilayer in the 

implicit solvent was calculated after a given number of MC steps of the simulation 

performed in the constant NPT-ensemble. The temperature of the simulation was 323 K 

(i.e., 50 °C); (F) a histogram of the conformational energy of the last 40,000 MC steps 

(grey bars) overlaid with a fit to a Gaussian function of the form 
 provides the mean energy at equilibrium, E, and the 

standard deviation, σ, as a measure of fluctuations around the mean value (light grey line). 

See text for further explanation.  

 

3.3. Rapid Transition of PC Headgroup Conformations by Local Move Set MC Sampling  

To quantify the extent of equilibration of DPPC headgroups during transition of the crystalline to 

the fluid bilayer state, we calculated the torsion angle distribution for selected head group torsion 

angles as performed for the single DPPC molecule (compare Figures 4 and 6). After only 10 steps, 

head group torsion angles occupy a relatively broad distribution around the starting value (dark grey 

line). After 10,000 MC steps, values for all torsion angles reveal a local energy minimum that starts to 

be occupied, while after 60,000 MC steps, energy minima of some head group torsions were equally 

occupied (see Figure 6C,D). By comparing, for example, the torsion angle distribution for the  

α4 torsion angle of phospholipids in the bilayer (Figure 6C) with that of the single DPPC molecule 

(Figure 4D) it becomes obvious that a similar level of occupancy is reached. Note, that we averaged 

over the given number of MC steps for all 64 phospholipid molecules in case of the bilayer, providing 

better statistics for a shorter simulation time than in case of a single DPPC molecule. In other words, 

( )2)2)((exp)( σ⋅−⋅= EEAEf i
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the simulation of a single molecule for one million MC steps gives a very similar distribution for the α4 

torsion angle in a DPPC bilayer with 64 molecules simulated for ~60,000 MC steps.  

In contrast, the distribution of the α1 torsion angle clearly differs for the single molecule (Figure 4A) 

and the bilayer (Figure 6A). This torsion around the bond between atoms O(6) and C(7) in the lipid 

head group (the numbers in brackets are according to Figure 1) is therefore likely hindered in the 

bilayer compared to the free movement in a single molecule. Conformational equilibration for the 

bilayer lipids was also found for the β-torsions in the DPPC head groups after 60,000 MC steps  

(Figure 6B,D). We cannot rule out, however, that significantly longer simulation times would be 

required to ensure equilibration of all torsions in the head group region, especially those with high 

energy barriers due to steric confinement at the interface. 

Figure 6. Head group torsions of DPPC in the membrane. Head group dihedral angles 

were defined as in Vanderkooi et al. [84], and as given in the legend to Figure 5. The 

starting value is defined by the initial conformation (dotted lines, “start”; compare  

Figure 2A). The percentage of occupation was calculated as function of torsion angle  

(in degree) after 10 (“N = 10”, dark grey line), 10,000 (“N = 10,000”, light grey line), 

60,000 (“N = 60,000”, black line) MC steps, respectively. (A) shows the torsion around the 

bond connecting atoms 6 and 7 (α1); (B) around the bond connecting atoms 8 and 9 (β1) 

(C) around the bond connecting atoms 3 and 4 (α4) and (D) is the torsion angle distribution 

around the bond connecting atoms 11 and 12 (β4). 

 

3.4. Electron Density Profile, Area per Lipid and Lateral Displacement of DPPC Molecules 

Next, we evaluated the electron density profile parallel to the z-axis in the laboratory frame.  

In Figure 7A, the electron density profile of the starting structure is compared to that of the structure 

after 60,000 MC steps. The peak-to-peak distance in the head group region, DHH, a measure for bilayer 

thickness [6], is DHH = 46 Å in the crystalline-like start structure and shows a characteristic double 



Int. J. Mol. Sci. 2014, 15 1786 

 

peak in the headgroup/glycerol region (grey line in Figure 7A). This double peak, as well as the  

value for DHH, is in line with X-ray diffraction data and earlier MD simulation of DPPC gel phase 

membranes [119,120]. Slight inter-digitations of the terminal part of the fatty acyl chains resulted in a 

small increase in electron density in this region. After 60,000 MC steps, the typical symmetrical 

density profile of a fluid DPPC bilayer with lowest electron density in the bilayer center was found 

(black line in Figure 7A). This confirms the transition from the crystalline-like to the fluid bilayer state 

during the simulation. The equilibrated bilayer structure is thinner (DHH = 36 Å) than what is found in 

experiments for fluid DPPC bilayers at 323 K, i.e., DHH ~ 38 Å [6]. We assign this discrepancy to the 

simple solvent treatment in our simulation and to the united atom AMBER force field, which we used 

for DPPC. Interestingly, Smondyrev and Berkowitz, who developed this force field parameterization 

for DPPC [99], reported also a significantly lower peak-to-peak distance for DPPC in an MD 

simulation at 323 K with explicit water compared to the experimental value [99,121].  

Another criterion for the transition from the crystalline-like start structure of the bilayer to a fluid 

membrane is the change of the area per lipid during the MC simulation (Figure 7B). After an initial 

sharp drop from 1.02 nm2 in the start structure to 0.53 nm2 after 2200 MC steps, the bilayer expanded 

in the following 40,000 MC steps to reach a plateau value of 0.6 nm2 area per lipid after 60,000 MC 

steps. Most of the initial drop is a consequence of the volume moves displacing whole lipids thereby 

resulting in tighter packing and a contraction of the simulation box. The subsequent increase in area 

per lipid is due to incremental mobility of the fatty acyl chains and their “melting” from the all-trans 

configuration [122,123]. In addition to intramolecular structural rearrangements during equilibration 

and conformational fluctuations at equilibrium, membrane phoshopholipids can exchange place by 

lateral diffusion in the bilayer plane. To determine whether our MC move scheme can cause significant 

lipid displacements in the membrane, the MSD of the center of mass of individual lipid molecules in 

the DPPC bilayer was calculated from the trajectory of an MC run and plotted as function of MC steps 

(Figure 7D). A stroboscopic snapshot of the center-of-mass position of tracked molecules in the upper 

membrane leaflet indicates that the DPPC molecules indeed perform large displacements during the 

simulation (Figure 7C). This confirms the fluid state of the DPPC bilayer reached after less than 

30,000 MC steps. For example, lipid number 10 moves a distance of about 15 Å in the positive x-axis 

direction, while the lipid number 11 shows a similar displacement in y-axis direction. The MSD plot 

shows a steep increase for up to 10,000 MC steps, followed by a linear rise with much smaller slope 

after about 20,000 MC steps (Figure 7D, inset). While the initial rise again reflects primarily 

adjustment of the box size in our NPT-ensemble simulation as consequence of whole-lipid moves, the 

second linear phase indicates real Brownian-type diffusion. This part of the displacement curve can be 

fitted with a linear function (dashed line in Figure 7D). Following the Einstein relation for diffusion in 

a plane: 

 (11)

an apparent diffusion coefficient of D = 0.68 Å2 /MC step can be calculated. We note that sampling 

along a Markov chain in configurational space, especially in internal coordinates, does not provide  

real dynamic information about the investigated molecular system [44]. The MSD is defined as the 

second moment, i.e., the variance, of the PDF of the stochastic process underlying the observed  

time-dependent displacements. The PDF equals the step length distribution in tracking of randomly 

tDtMSD ⋅⋅= 4)(



Int. J. Mol. Sci. 2014, 15 1787 

 

moving particles. Its time evolution is governed by the diffusion equation (i.e., it is the propagator of 

the studied diffusion process). The MSD calculated here as a function of MC steps cannot be used to 

extract physically meaningful self-diffusion constants of DPPC or to test various membrane diffusion 

models. It is just used here to assess the efficiency local move MC simulations in “lateral scrambling” 

of lipids as precondition for studying lipid mixtures by atomistic simulation.  

Figure 7. Electron density profile, area per lipid and lateral displacement in the bilayer.  

(A) the electron density profile was calculated for the starting configuration (grey line) and 

for the structure obtained after 60,000 MC steps (black line). One can clearly see that the 

membrane gets thinner with a large extent of fatty acyl chain disorder towards the bilayer 

center during the simulation; (B) the change of area per lipid from the crystalline start 

structure to the equilibrated value after 60,000 MC steps is shown; (C) a stroboscopic 

snapshot of selected lipid trajectories is shown for the upper leaflet during an MC 

simulation of 50,000 MC steps (lipid number X and X' at the start, circles, and the end of 

the simulation, triangles). The position of the center of mass of the lipids is calculated. 

After adjustment of the box size causing initially large inward-directed “movement” of 

most lipids, the lipids show irregular “movement” as being characteristic for random walks 

(i.e., diffusion); (D) the mean square displacement (MSD) was calculated between 20,000 

and 50,000 MC steps. The MSD is linear (light grey line) and can be well described by a 

linear fit (dashed black line), as characteristic for normal diffusion (see text for values). 

Inset shows the MSD as function of MC steps (“10*MC cycles”) for the whole simulation. 

 

3.5. Impact of the Implicit Solvent on Area per Lipid and Head Group Conformation 

The advantage in sampling efficiency of atomistic Monte Carlo simulations of biomolecular 

structures can only become significant if an implicit solvent description is used. This is because the 
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computational cost of calculating solute-solvent interactions for explicit solvent surmounts the gain in 

sampling efficiency by MC compared with other methods [41,65,87,124]. As electrostatic interactions 

play a fundamental role in stabilizing bilayer structure [125], we next assessed the impact of the 

solvent treatment in our simulation. To this end, we systematically varied the slope, s, of the  

distance-dependent dielectric constant (see Equation (7)) and determined the area per lipid and the 

angle between the P–N vector and the bilayer normal from the trajectories of separately run MC 

simulation, each having 60,000 MC cycles (Figure 8). Varying the slope, s, determined at which 

distance from the bilayer surface the dielectric constant approached the value found for water (i.e.,  

ε = 78; Figure 8A,B). For example, for a slope, s = 0.65, the dielectric constant at a distance 10 Å from 

the membrane surface is ε = 74.69, which is close to the value in bulk water. In contrast, for a slope of 

s = 0.15, the dielectric constant at the same distance from the bilayer is only ε = 15.72, which 

resembles strong orientation of water molecules at the interface. There is a sigmoid dependence of ε as 

function of the slope, s, for a given distance from the surface (Figure 8A). We found that the area per 

lipid depends on the slope of the distance-dependent dielectric constant also in a sigmoid manner, with 

values of ≥0.6 nm2 for s > 0.5 (Figure 8C, mean ± SD). Thus, we chose a slope of s = 0.654 for all the 

simulations shown in Figures 5–7 to match experimental values as well as possible. The evolution of 

the area per lipid towards its equilibrium value was also found to depend on the slope value (not shown). 

The fluctuation around the mean value given by the respective SD of the area per lipid can be related 

to the bilayer compressibility modus KA [123,126,127], for which we found in most simulations  

260–430 mN/m. This is comparable to values found in equilibrated MD simulations [123,127].  

The orientation of DPPC head groups was also affected by the parameter values chosen for the 

slope of the dielectric constant. For s = 0.154 and s = 0.354, the angle between P–N vector and bilayer 

normal showed a rather narrow peak at ~91° (Figure 8D, red and green curve, respectively). This 

constricted distribution is also found in simulations of DPPC bilayers in the gel phase [111], but also 

for certain lipid force field parameterizations [128]. It suggests that at low slope values of the dielectric 

constant the transition to the fluid bilayer state is incomplete in our simulations. For s = 0.554 and  

s = 0.654 we found a broad distribution of head group orientations with a maximum around 90°–100° 

(Figure 8D, yellow and blue curve, respectively). This has been similarly found in other MD 

simulations of DPPC membranes [99,128]. For s = 0.654 used in most of the simulations, there are two 

local maxima, one around 85° and one around 110°, while the overall distribution is rather broad 

(Figure 8D, blue curve). The maximum of the distribution suggests that DPPC head groups orient 

preferentially to cover the bilayer surface thereby efficiently shielding the hydrophobic acyl chains.  

In other words, this position of the P–N vector might have a function in covering the hydrophobic fatty 

acyl chains from contact to the aqueous environment [99,129]. Together, we found that the orientation 

of the P–N vector, similar as the bilayer thickness (see above), depend on the choice of the slope of the 

sigmoidal damping function in Equation (7) in Section 2.2. As this value is physically reasonable and 

produced the best agreement with experiments, we chose a value of s = 0.654 for this function in the 

simulation generating the results shown in Figures 5–7.  
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Figure 8. Impact of electrostatic interactions on membrane structure. (A) the  

distance-dependent dielectric constant is plotted as function of the slope, s, as defined in 

Equation (7) for a fixed distance from a charged group of 10 Å; (B) the distance-dependent 

dielectric constant is plotted as function of the distance from a charged group for various 

slope values of s = 0.154 (black line), s = 0.354 (red line), s = 0.454 (green line), s = 0.554 

(yellow line), and s = 0.654 (blue line), respectively; (C) the area per lipid was calculated 

from the least 40,000 steps of separate MC runs performed with differing slope values of 

the dielectric constant. The mean ± SD is plotted as function of slope, s; (D) the head group 

orientation was inferred from the angle between the P–N vector and the bilayer normal and 

plotted for the separate MC runs. Increasing the slope, s, of the dielectric constant resulted in 

a broadening of the angle distribution (color coding is as for panel B). See text for more details.  

 

4. Summary and Future Improvements of the Presented Local MC Simulation Technique 

In this study, we give a thorough introduction into atomistic MC simulations of lipid membranes. 

We describe the challenges and advantages of MC compared to other simulation methods and  

provide a concrete implementation of local move MC for efficient equilibration of lipid bilayer  

structures. While previous atomistic MC simulations of membranes use CBMC [65], cavity-biased  

moves [66], or local moves in the torsion angle space [67,79], our study shows the first implementation 

of an efficient move set in the torsion and bond angle space for lipid assemblies. As the CBC method 

allows large MC steps in the conformational space, it might overcome energetic barriers, which are not 

connected in a physical trajectory along phase space thereby enhancing the sampling efficiency. While 

this is true for other MC procedures as well, introducing flexible bond angles softens the energy 

landscape, which is particularly important for condensed systems of chain molecules, such as lipid 

bilayers. Some improvements of our method for future applications are as follows. First, we want to 

point out that the treatment of electrostatic interactions and the solvent description must be improved. 

Instead of the well known double-cut offs and pair lists for calculating the long-ranging interactions, 

particle-mesh Ewald or reaction field methods might be used [125,127]. A better implicit solvent 
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model could be implemented based on the Generalized Born model, the ABSINTH implicit solvent 

description or the field integrated electrostatic approach (FIESTA) [87,91,124,130,131]. Special care 

has to be taken in implementing such models to account for the multibody interactions, which can 

conflict with the necessary decomposition of the energy function into static and changing terms for 

MC simulations [91]. In any case, explicit water should be avoided as it will diminish any advantage 

due to rapid sampling by lengthy calculations of solute-solvent interactions. In fact, we have tried 

initial MC simulations with explicit water based on the SPC2 water model and found that  

the computation time per MC cycle was, depending on the exact moving scheme, between six- to 

twelve-fold that of simulation with the implicit solvent description used here (not shown). A suitable 

compromise could be to use a mixed explicit/implicit solvent description. A physiologically relevant 

salt, such as NaCl could be added as co-solute and modeled explicitly, while the continuous 

description of water is kept. This has been done previously in local move MC simulations of DNA 

using the CBC algorithm [95] and would be highly relevant for membrane simulations, as salts  

like NaCl have been shown to affect phospholipid dynamics in membranes, both in experiments  

and simulations [27].  

Second, refined force field parameters could be used likely giving bilayer structures in better 

agreement with experiments [132–134], which might be even more important than a more elaborated 

treatment of long-range electrostatics [128]. In fact, this issue touches upon the similarity between the 

united atom description used here for part of the DPPC molecule and CG descriptions of lipid 

structures. The empirically defined interaction potentials in CG models of lipid structure often include 

the solvent in the interaction parameters thereby also allowing for an implicit solvent description  

(see Section 5.2 below). In some of these CG models, a cohesive force between the fatty acyl chains is 

introduced to ensure stability of the bilayer state [135]; see below. Together, this suggests that better 

force field parameters might be obtained for a united atom description of the DPPC lipid structure by 

taking the aim of an implicit solvent description into account during force field refinement.  

Third, local move MC simulation of lipid membranes might be improvable by appropriate 

parallelization of the program code. Due to the sequential moving and updating scheme, MC 

simulations are traditionally very difficult to parallelize. The only routine, which in principle should be 

easy to parallelize is the energy calculation, for the whole system as well as for the energy difference 

prior to and after attempted local moves. One way of parallelizing the whole MC run is by 

implementing the replica-exchange technique, also called parallel tempering, into the MC algorithm. 

This method is useful for sampling rare events in MD and MC simulations (see an example for 

membranes in the Introduction, Section 1.2). As long as the energy distributions of the system 

simulated at various temperatures overlap, and the system size is not too large, replica-exchange MC 

simulation can be very efficient for overcoming low-energy barriers [89,136]. Translated into a MC 

simulation of membranes, the procedure could comprise parallel local move MC simulation of replicas 

of the bilayer system at various temperatures distributed over several processors. As the simulation 

proceeds, configurations are exchanged between the systems at random and become accepted by a 

Metropolis-like criterion, if the high-temperature simulation happens to have found one of the  

low-energy regions of conformational space [29,55,89,136]. As an example of this, a massively 

parallelized replica-exchange MC simulation of a CG model of a polymer has been performed on 

graphical processing units (GPUs) with an almost linear relation between number of replicas and 
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acceleration of the computation time for the system [137]. Alternatively, the MC move set can be 

directly parallelized by introducing a suitable decomposition scheme in which moves are attempted in 

parallel for regions of the simulated system separated at a distance larger than the longest inter-pair 

interaction. This decomposition could be the checkerboard arrangement of interaction sites, which has 

been first used on spin systems [138] and very recently in many particle simulations of hard disks on 

GPUs [139]. For local move MC simulations of chain molecules, Uhlherr et al. (2002) used a stripe 

decomposition, in which randomly chosen stripes across a simulated polyethylene molecule were 

defined as active [61]. The molecular model was a united atom representation of polyethylene, in 

which only short range Lennard Jones interactions and harmonic bond stretching were considered. In 

the active regions, various local move MC steps, such as CR, end bridging, etc. were performed in 

parallel. Suitable neighbor list were defined to update interacting united atoms, while any displacement 

attempts out of the currently active stripes were rejected [61]. Despite this progress, we believe that 

local move MC simulations of dense systems with many chain-like molecules, such as lipid bilayers, 

will be very challenging to carry out on several processors in parallel. Atoms belonging to different 

molecules will hardly be found in one active stripe only, as fatty chains in the bilayer interior are 

intersecting and closely packed. Accordingly, many attempted moves out of a stripe will be rejected. In 

addition, the necessary incorporation of long-range electrostatic interactions makes the definition of 

stripes with intervening non-active zones difficult, especially when Ewald summation techniques are 

used. The same challenges of including all necessary interactions are also found in parallelized  

MD simulations of membranes in which system decomposition is used. These problems have been 

satisfactorily solved in, for example, the Gromacs program suite [131,140], and might be possible to 

overcome also for local move MC simulations. In addition, for increasing membrane size, another 

simpler parallelization scheme useful for one bilayer system might be worth to consider: the costly 

energy calculation could be spread over several GPUs, while the Metropolis routine (i.e., move, closure, 

and acceptance/rejection) could be run on the kernel-CPU. Indexing of interaction partners over an 

updatable pairlist would allow one to split the energy calculation efficiently over many processors/units. 

5. Relationship between Atomistic MC Simulations and Other Membrane Modeling Techniques  

5.1. Combination of Atomistic MC and MD Simulations 

The last two decades have witnessed an enormous progress of biomolecular simulations, in 

particular in the field of modeling lipid membranes. In this area, simulations can be very fruitful, since 

in most experimental techniques only bulk bilayer properties are assessed. In contrast, molecular 

simulations of membranes can provide structural detail of the underlying lipid and protein dynamics. 

The simulations classically performed by atomistic MD, however, are very time-consuming and cover 

only membrane patches of a size of a few nanometer. This naturally calls for several developments: 

first, hybrid simulations using MD and other simulation approaches. We suggest that the local move 

MC method presented here is specifically useful in combination with MD simulations of lipid 

membranes. MD simulations provide dynamic structural information being directly comparable to 

experimental data. Assessing membrane dynamics with confidence requires proper equilibration of the 

simulated molecular system with its inherently broad range of time scales. Metropolis MC simulations 
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of macromolecular systems, in particular in case of local and connectivity altering move sets, lack 

temporal information, as sampling occurs along a phase space trajectory [44]. Only for MC 

simulations of particles with very small step sizes and for croft CG representations of peptide chains 

with extremely small changes of torsion angles as the sole implemnented MC moves, a correspondence 

between MC steps and physical time could be established [141,142]. This is because the Metropolis 

MC sampling is a stochastic process, governed by a Markovian master equation, which allows for 

comparison with Langevin dynamics in these special cases [141]. On the other hand, connectivity 

altering local-move set MC methods, such as the CBC, CR, or CRA algorithms allow for overcoming 

physically disconnected energy barriers in the conformational space, which can be very useful for 

speeding up the equilibration phase of MD simulations. In fact, in previous attempts of combined MC 

and MD simulation of membranes, MD runs were interrupted with CBMC sampling to significantly 

enhance equilibration of a DPPC bilayer [65] and to improve diffusive mixing in two-component PC 

bilayers [143]. A direct comparison of combined CBMC/MD versus pure MD simulation for several 

single-type PC membranes found the first method three times faster in terms of CPU time for 

equilibration of the bilayers [144]. Chiu and colleagues used that approach additionally for  

pre-equilibration of sphingomyelin membranes, starting from a DPPC structure [145] and in  

two-component bilayers made of DPPC and cholesterol [146], for the CBMC moves, explicit water 

was removed, and the dielectric constant was set to one, which is even simpler than our implicit 

solvent description [65]. In addition, in these and similar studies [147], CBMC moves are only applied 

to enhance sampling of the phospholipids but not of cholesterol. This is not suitable for determining 

the lateral and transverse membrane distribution of this important lipid component. As the CBC 

approach is very general, it will allow for implementing the method to steroid-like molecules. Thus, 

we believe that local move MC algorithms, as the one shown here, hold great promise for rapid  

pre-equilibration of multi-component membranes, especially in combination with classical or advanced 

MD techniques [28]. This is also indicated in a mixed MC/MD simulation of a polyalanine peptide in 

which MD runs, based on the velocity-Verlet algorithm, were alternated with CRA moves explained in 

Section 1.3, above [148]. The authors found significantly faster formation of secondary structures 

compared to MD simulations alone. Efficiency of MC moves in such studies might be further 

increased by using force-biased MC techniques being introduced in Section 1.3, above. These 

techniques consume additional computational efforts by requiring calculation of forces which enter the 

Metropolis acceptance criterion. This disadvantage is eventually more than compensated by the 

possibility to define a reasonable MC time step, which—upon appropriate weighting—can be 

compared to the time step in the MD part of the simulation [90]. Timoneva et al. (2010) showed, based 

on earlier work, that a modified form of force-biased MC called uniform-acceptance force-biased MC 

(UFMC) allows for physically realistic simulation of diffusion and phase transitions in various 

materials [149]. In UFMC all displacements are accepted, which is in contrast to the original  

force-biased MC method by Pangali and Rao (1979) [49], but the moved distance is determined by  

the forces acting on the particle. These forces, in turn, follow a Boltzmann distribution, as long as they 

are sufficiently small which is guaranteed by predefining a maximal displacement [90,149]. A 

modification of this approach called time-stamped UFMC has been presented by Mees et al. (2012), 

where the maximal displacement of particle i was weighted by the square root of the mass of the 

lightest particle divided by the mass of the particle i [150]. This allowed for defining an average time 
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step per simulation being directly comparable to the time step in MD simulations. Local move MC for 

biomacromolecular systems, as defined in the CBC and other algorithms outlined above (Section 1.3), 

can in principal also be extended towards variants of force-biased MC like UFMC. This, however, 

might be complicated by the complexity of the move operation in internal coordinates, making the 

definition of a meaningful time step challenging. Even if the latter would turn out to be prohibitively 

difficult, force-biased MC variants of the presented connectivity altering MC move sets should results 

in accelerated sampling and ease combination with MD simulations, potentially compensating for the 

time-consuming force calculation. 

5.2. Atomistic MC Simulations in Multi-Scale Modeling of Lipid Membranes 

A second development in the field concerns multi-scale modeling of lipid membranes.  

Coarse-graining of the molecular structure of various lipid species has been used to simulate 

membrane phenomena beyond the reach of classical all-atom simulations including lipid assembly and 

vesicle formation [41]. A particular challenge in this area is the development and validation of the 

molecular model, which allows for simulating lipid structures under various conditions, for example 

temperature-induced phase transitions. In addition to appropriate grouping of atoms with similar 

physical properties into defined “CG beads” [135], CG simulations require adjustment of the  

inter-particle interaction potential. There is no way of grouping atoms and defining interaction 

potentials from first principles. Thus, the interaction potentials between CG beads are necessarily 

effective potentials, which need to be inferred by matching lipid partition coefficients between oil and 

water [39] or by inverse statistical mechanics using data from all-atom MD simulations of the same 

system. A procedure using the latter approach is the inverse Monte Carlo method developed by 

Lyubartsev and Laaksonen (1995) [151]. This method is based on a theorem by Henderson (1974), 

which states that the interaction potential between atoms or molecules can be inferred from the radial 

distribution function (RDF) of the system at thermodynamic equilibrium [152]. Inverse MC starts with 

a distance-dependent discretization of the Hamiltonian of the system, which allows for relating the 

Hamiltonian to the RDF and the pair interaction potential [151]. In practice, inverse MC determines 

effective pair potentials by repeatedly performing MC simulations of a predefined CG molecular 

system, each time with slightly varied short-range interactions. These simulations provide estimates of 

the RDF for each variation of the interaction potential. As initial guess for the effective pair potential, 

the potential of mean force might be used. The RDF of this CG molecular system calculated for each 

MC run is compared to the RDF calculated for the same system in all-atom simulations, the latter 

being considered as ground truth. By minimizing the distance between the MC-estimated RDF and the 

“true” RDF, non-linear optimization, such as a Newton-Raphson method, allows for determining 

effective pair potentials. The procedure stops when the RDF of the CG system resembles that of the 

all-atom simulated system to a satisfactorily degree. The MC simulations during the optimization 

procedure consider only simple Cartesian moves of the CG beads in the CG model. Once the CG lipid 

model is established, it is used for simulations of large membrane systems which are beyond the reach 

of classical all-atom MD simulations. Such CG simulations are typically performed by MD or MC 

simulations, the latter with Cartesian moves of the CG beads, i.e., the molecular sites [151,153]. We 

believe that local move MC simulations can be a very useful tool complementing the existing 
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techniques for multiscale modeling of membranes in several ways. First, local move MC, for example 

in the CBC scheme developed here for the united atom representation of DPPC, can be applied to 

speed up the optimization procedure in inverse MC for obtaining the interaction potentials from the 

RDF (see above). Instead of simple Cartesian moves being prone for rejection due to steric clashes, the 

CBC moving scheme will allow for rapid exploration of the conformational space and consequently 

for reliable estimates of the RDF [151]. Second, local move MC might be applied directly to the 

simulations of the CG molecular model of a given phospholipid species. Indeed, in some 

implementations of CG membrane simulations, bond lengths are kept constant, while bond angle 

potentials between the CG beads are inferred from all-atom MD simulations [154]. Thus, connectivity 

altering local MC move sets, especially those which involve only three atoms per attempted move, as 

the CBC scheme discussed here, should be directly applicable to CG bilayer simulations and might 

result in faster equilibration compared to CG MD simulations.  
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