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Atomistic Simulation of
Realistically Sized Nanodevices Using

NEMO 3-D—Part II: Applications
Gerhard Klimeck, Senior Member, IEEE, Shaikh Shahid Ahmed, Neerav Kharche, Marek Korkusinski,

Muhammad Usman, Marta Prada, and Timothy B. Boykin, Senior Member, IEEE

(Invited Paper)

Abstract—In Part I, the development and deployment of a
general nanoelectronic modeling tool (NEMO 3-D) has been dis-
cussed. Based on the atomistic valence-force field and the sp3d5s∗

nearest neighbor tight-binding models, NEMO 3-D enables the
computation of strain and electronic structure in nanostructures
consisting of more than 64 and 52 million atoms, corresponding
to volumes of (110 nm)3 and (101 nm)3, respectively. In this
part, successful applications of NEMO 3-D are demonstrated
in the atomistic calculation of single-particle electronic states of
the following realistically sized nanostructures: 1) self-assembled
quantum dots (QDs) including long-range strain and piezoelectric-
ity; 2) stacked quantum dot system as used in quantum cascade
lasers; 3) SiGe quantum wells (QWs) for quantum computation;
and 4) SiGe nanowires. These examples demonstrate the broad
NEMO 3-D capabilities and indicate the necessity of multimillion
atomistic electronic structure modeling.

Index Terms—Atomistic simulation, Keating model, nanostruc-
tures, nanowire, NEMO 3-D, piezoelectricity, quantum computa-
tion, quantum dot (QD), quantum well (QW), strain, tight binding,
valley splitting (VS).

I. INTRODUCTION

THIS paper describes NEMO 3-D capabilities in the simu-

lation of three different classes of nanodevices of carrier

confinement in three, two, and one dimension in the GaAs/InAs

and SiGe materials systems.
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Single and Stacked Quantum Dots (QDs, Confinement in

Three Dimensions): QDs are solid-state semiconducting nano-

structures that provide confinement of charge carriers (elec-

trons, holes, and excitons) in all three spatial dimensions,

resulting in strongly localized wave functions, discrete energy

eigenvalues, and subsequent interesting physical and novel

device properties [1]–[5]. Existing nanofabrication techniques

tailor QDs in a variety of types, shapes, and sizes. Within

bottom–up approaches, QDs can be realized by colloidal syn-

thesis at benchtop conditions. QDs thus created have dimen-

sions ranging from 2 to 10 nm, corresponding to a range of

100–100 000 atoms. Self-assembled QDs (SAQDs), in the co-

herent Stranski–Krastanov heteroepitaxial growth mode, nucle-

ate spontaneously within a lattice mismatched material system

(for example, InAs grown on GaAs substrate) under the influ-

ence of strain in certain physical conditions during molecular

beam epitaxy and metal–organic vapor phase epitaxy [1], [6].

The strain produces coherently strained quantum-sized islands

on top of a 2-D wetting-layer. The islands can be subsequently

buried to form the QD. Semiconducting QDs grown by self-

assembly are of particular importance in quantum optics [7],

[8] since they can be used as detectors of infrared radiation,

optical memories, and in laser applications. The delta-function-

like energy dependence of the density of states and the strong

overlap of spatially confined electron and hole wavefunctions

provide ultralow threshold current densities, high temperature

stability of the threshold current, and high material and dif-

ferential quantum gain/yield. Strong oscillator strength and

nonlinearity in the optical properties have also been observed

[1], [8]. SAQDs also have the potential for applications in

quantum cryptography as single-photon sources and quantum

computation [9], [10]. In electronic applications, QDs have

been used to operate like a single-electron transistor and

demonstrate pronounced Coulomb blockade effect. SAQDs,

with an average height in the range of 1–5 nm, are typically

of size (base length/diameter) ranging from 5 to 50 nm and

consist of atoms ranging from 5000 to 2 000 000. Arrays of

quantum mechanically coupled (stacked) SAQDs can be used

as optically active regions in high-efficiency room-temperature

lasers. Typical QD stacks consist of QDs ranging from 3 to 7

with a typical lateral extension in the range of 10–50 nm and

0018-9383/$25.00 © 2007 IEEE
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Fig. 1. Simulated InAs/GaAs QDs with dome and pyramidal shapes. Two
simulation domains are shown (Delec: central domain for electronic structure
calculation, Dstrain: larger/outer domain for strain calculation, s: substrate
height, c: cap layer thickness, h: dot height, d: diameter, b: base length).

dot height in the range of 1–3 nm. Such dots contain atoms in

the range of 5–50 million, where atomistic details of interfaces

are indeed important [11].

QuantumWires (Confinement in Two Dimensions): For quite

some time, nanowires have been considered to be a promising

candidate for future building blocks in computers and informa-

tion processing machines [12]–[16]. Nanowires are fabricated

from different materials (metal, semiconductor, insulator, and

molecular) and assume different cross-sectional shapes, di-

mensions, and diameters. Electrical conductivity of nanowires

is greatly influenced by edge effects on the surface of the

nanowire and is determined by quantum mechanical conduc-

tance quanta. In the nanometer regime, the impact of surface

roughness or alloy disorder on electronic band structure needs

to be atomistically studied to further gauge the transport prop-

erties of nanowires.

Quantum Wells (QWs, Confinement in One Dimension):

QW devices are already a de-facto standard technology in

metal–oxide–semiconductor devices and QW lasers. They con-

tinue to be examined carefully for ultrascaled devices where

interfacial details turn out to be critical. Composite channel

materials with GaAs, InAs, InSb, GaSb, and Si are being con-

sidered [17], [18], which effectively constitute QWs. Si QWs

that are buffered/strained by SiGe are considered for quantum

computing (QC) devices where valley splitting (VS) is an

important issue [19]. Si is desirable for QC due to its long spin-

decoherence times, scaling potential, and integrability within

the present microelectronic infrastructure. In strained Si, the

sixfold valley degeneracy of Si is broken into lower twofold and

raised fourfold valley degeneracies. The presence of twofold

valley degeneracy is a potential source of decoherence, which

leads to the leakage of quantum information outside qubit

Hilbert space. Therefore, it is of great interest to study the

lifting of the remaining twofold valley degeneracy in strained

Si due to sharp confinement potentials in recently proposed [19]

SiGe/Si/SiGe QW heterostructures based QC architectures.

II. SIMULATION RESULTS

A. Strain and Piezoelectricity in InAs/GaAs Single QDs

The dome- and pyramid-shaped InAs QDs that are studied

first in this paper are embedded in a GaAs barrier material

(schematic shown in Fig. 1), have a diameter (base length) and

Fig. 2. Atomistic diagonal strain profile along the [001] z-direction.
(a) Dome-shaped dot with diameter d = 11.3 nm and height h = 5.65 nm.
(b) Pyramidal dot with base b = 11.3 nm and height h = 5.65 nm. Strain
is seen to penetrate deep inside the substrate and the cap layer. In addition,
noticeable is the gradient in the trace of the hydrostatic strain curve Tr inside
the dot region that results in optical polarization anisotropy and nondegeneracy
in the electronic conduction band. Atomistic strain thus lowers the symmetry
of the QD. The number of atoms used in these simulations was about 5 million.

height of 11.3 and 5.65 nm, respectively, and are positioned on a

0.6-nm-thick wetting layer [20], [21]. The simulation of strain

is carried out in the larger computational box (width Dstrain

and height H), while the electronic structure computation is

usually restricted to the smaller domain (width Delec and

height Helec). All the strain simulations in this category fix the

atom positions on the bottom plane to the GaAs lattice constant,

assuming periodic boundary conditions in the lateral dimen-

sions and open boundary conditions on the top surface. The

inner electronic box assumes closed boundary conditions with

passivated dangling bonds [22]. The strain domain contains

∼3 million atoms, while the electronic structure domain con-

tains ∼0.3 million atoms.

Impact of Strain: Strain modifies the effective confinement

volume in the device, distorts the atom bonds in length and

angles, and hence modulates the local band structure and the

confined states. Fig. 2 shows the diagonal (biaxial) components

of strain distribution along the [001] direction in both the QDs

(cut through the center of the dot). There are two salient features

in both these plots: 1) The atomistic strain is long ranged and

penetrates deep into both the substrate and the cap layers, and

2) all the components of biaxial stress has a nonzero slope

inside the QD region. The presence of the gradient in the

trace of the hydrostatic strain introduces unequal stress in

the zincblende lattice structure along the depth, breaks the

equivalence of the [110] and [110] directions, and finally breaks

the degeneracy of the first excited electronic state (the so-called

P level). Fig. 3 shows the wavefunction distribution for the

first eight conduction band electronic states within the device

region for both the dots (in a 2-D projection). Note the optical

anisotropy and nondegeneracy in the first excited (P ) energy

level. The first P state is oriented along the [110] direction,

and the second P state is oriented along the [110] direction.

The individual energy spectrum is also depicted in this figure,

which reveals the value of the P -level splitting/nondegeneracy

(defined as E110 − E110) to be about 5.73 and 10.85 meV for the

dome-shaped and pyramidal QDs, respectively. Although both

the two dots have the same qualitative trend in diagonal strain

profiles and similar wavefunction distributions, the reason for a

larger split and hence pronounced anisotropy of the P level in

the pyramidal QD are due to the presence of a larger gradient

Authorized licensed use limited to: Purdue University. Downloaded on November 25, 2008 at 10:29 from IEEE Xplore.  Restrictions apply.
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Fig. 3. Conduction band wavefunctions and spectra (in electronvolts) for
the first eight energy levels in the (a) dome-shaped and (b) pyramidal QD
structures. Atomistic strain is included in the calculation. Note the optical
anisotropy and nondegeneracy in the P energy level. The first state is oriented
along the [110] direction, and the second state is oriented along the [110]
direction.

Fig. 4. Atomistic off-diagonal strain profile along the z (vertical) direction,
which in effect induces polarization in the QD structure. (a) Dome-shaped dot
with diameter d = 11.3 nm and height h = 5.65 nm. (b) Pyramidal dot with
base b = 11.3 nm and height h = 5.65 nm.

of the hydrostatic strain, as shown in Fig. 2, inside the dot

region. In other words, as far as crystal symmetry lowering is

concerned, atomistic strain has stronger impact in the pyramidal

dot than it has in the dome-shaped dot.

Impact of Piezoelectric Field: The presence of nonzero off-

diagonal strain tensor elements leads to the generation of a

piezoelectric field in the QD structure, which is incorporated in

the simulations as an external potential by solving the Poisson

equation on the zincblende lattice. Fig. 4 shows the atomistic

off-diagonal strain profiles in both the QDs with height h of

5.65 nm and a diameter (base length) of 11.3 nm. The off-

diagonal strain tensors are found to be larger in the dome-

shaped dot. The off-diagonal strain tensors are used to calculate

the first-order polarization in the underlying crystal (please

see [20] for the governing equations), which gives rise to a

piezoelectric charge distribution throughout the device region

and is then used to calculate the potential by solving the Poisson

equation. The relevant parameters for the piezoelectric calcula-

tion are taken from [20]. Experimentally measured polarization

constants of GaAs and InAs materials (on unstrained bulk)

Fig. 5. Potential surface plot of (a) dome-shaped and (b) pyramidal QDs in
the XY plane at z = 1 nm from the base of the dot.

having values of −0.16 and −0.045 C/m2 are used. The second-

order piezoelectric effect [23] is neglected here because of the

unavailability of reliable relevant polarization constants for an

InAs/GaAs QD structures.

The calculated piezoelectric potential contour plots in the

XY plane are shown in Fig. 5, revealing a pronounced polar-

ization effect that is induced in the structure. It is found that,

in both the dots, the piezoelectric field alone favors the [110]
orientation of the P level. Shown in Fig. 6 is the asymmetry in

the potential profile due to atomistic strain and inequivalence in

the piezoelectric potential along the [110] and [110] directions

at a certain height z = 1 nm from the base of the dots.

Figs. 7 and 8 show the conduction band wavefunctions for the

ground and first three excited energy states in the dome-shaped

and pyramidal QD structures with a diameter (base length) of

11.3 nm and height h of 5.65 nm, respectively. In Figs. 7(a) and

8(a), strain and piezoelectricity are not included in the calcu-

lation. The weak anisotropy in the P level is due to the atom-

istic interface and material discontinuity. Material discontinuity

mildly favors the [110] direction in both the dots. In Figs. 7(b)

and 8(b), atomistic strain and relaxation is included, resulting

in 5.73-meV (dome) and 10.85-meV (pyramidal) splits in the P

energy levels. Strain favors the [110] direction in both the dots.

In Figs. 7(c) and 8(c), piezoelectricity is included at the top

of strain, inducing a split of −2.84 meV (dome) and 9.59 meV

Authorized licensed use limited to: Purdue University. Downloaded on November 25, 2008 at 10:29 from IEEE Xplore.  Restrictions apply.
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Fig. 6. Potential along the [110] and [110] directions at z = 1 nm from
the base of the dot. Notice the induced polarization in the potential profile
and the unequal values of potential along the [110] and [110] directions. In
addition, the dome-shaped dot induces stronger potential (d/b = 11.3 nm and
h = 5.65 nm).

Fig. 7. Conduction band wavefunctions for the first three energy levels
in the dome-shaped QD structure with base b = 11.3 nm and height h =
5.65 nm. (a) Without strain and piezoelectricity, E[110] − E[110] = 1.69 meV.

(b) With atomistic strain, E[110] − E[110] = 5.73 meV. (c) With strain

and piezoelectricity, E[110] − E[110] = −2.84 meV. Piezoelectricity flips the

wavefunctions.

(pyramid) in the P energy level. There is a noticeable difference

in Figs. 7(c) and 8(c). In the case of a dome-shaped dot

[Fig. 7(c)], the first P state is oriented along the [110] direction,

and the second state is oriented along the [110] direction; piezo-

electricity thereby has not only introduced a global shift in the

energy spectrum but also flipped the orientation of the P states

[20]. In the case of a pyramidal dot [Fig. 8(c)], the energetic

sequence of the P states remains unchanged. The underlying

reason behind this difference in orientation polarization due

to piezoelectricity can be explained by the unequal potential

induced, as depicted in the 1-D potential plot in Fig. 6, which

really is induced by the off-diagonal crystal distortion that is

depicted in Fig. 4. The pyramidal dot does not build up as much

off-diagonal strain due to the alignment of its facets with the

crystal. As a result, the piezoelectric fields are reduced.

Fig. 8. Conduction band wavefunctions for the first three energy levels in
the pyramidal QD structure with base b = 11.3 nm and height h = 5.65 nm.
(a) Without strain and piezoelectricity, E[110] − E[110] = 2.02 meV. (b) With

atomistic strain, E[110] − E[110] = 10.85 meV. (c) With strain and piezo-

electricity, E[110] − E[110] = 0.74 meV. Piezoelectricity does not flip the

wavefunctions.

Fig. 9. Electron state energies in the QD molecule as a function of interdot
separation. The strain simulation domain contains atoms ranging from 8 to
13 million, and the electronic structure domain contains atoms ranging from
0.5 to 1.1 million.

B. Stacked QD System

SAQDs can be grown as stacks where the QD distance can be

controlled with atomic layer control. This distance determines

the interaction of the artificial atom states to form artificial

molecules. The design of QD stacks becomes complicated since

the structures are subject to inhomogeneous long-range strain

and growth imperfections, such as nonidentical dots and inter-

diffused interfaces. QD stacks consisting of three QD layers are

simulated next (see inset of Fig. 9). The InAs QDs are disk

shaped with a diameter of 10 nm and a height of 1.5 nm that

is positioned on a 0.6-nm-thick wetting layer. The substrate

thickness under the first wetting layer is kept constant at 30 nm,

and the cap layer on top of the topmost dot is kept at 10 nm for

all simulations. The strain simulation domain contains atoms in

the range of 8–13 million, and the electronic structure domain

contains atoms in the range of 0.5–1.1 million.

Authorized licensed use limited to: Purdue University. Downloaded on November 25, 2008 at 10:29 from IEEE Xplore.  Restrictions apply.
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Fig. 10. (Columns) First five electron states wavefunction magnitudes with
(rows) 2-, 3-, 4-, 6-, 10-, and 12-nm QD separation.

Fig. 9 shows the electron state energy as a function of interdot

separation. In a system without inhomogeneous strain, one

would expect the identical dots to have degenerate eigenstate

energies for large dot separations. Strain breaks the degeneracy,

even for large separations. The strain field clearly extends

over the distance of 15-nm QD separation (which is why they

physically do not grow on top of each other). As the dot sepa-

ration is narrowed, the dots interact with each other mechani-

cally through the strain field as well as quantum mechanically

through wavefunction overlaps. The set of lowest states E1–3

clearly shows the state repulsion of bonding and antibonding

molecular states for short interdot distances. Fig. 10 shows

cross-sectional cuts in the growth direction and one lateral

direction through the middle of the 3-D wavefunctions. The

wavefunctions are quite clearly separated into the individual

dots, with little overlap across the dots for dot separations of 12

and 10 nm. For separation in the range of 2–6 nm, wavefunction

overlap can be observed. The reduction of E3 energy with

decreasing distance in the range of 2–4 nm can be associated

with a crossover of p-symmetry states. The electronic states

and wavefunctions in a coupled QD system are thus determined

through a complicated interplay of strain, QD size, and wave-

function overlap. Only a detailed simulation can reveal that

interplay.

C. SiGe QW

Miscut (vicinal) surfaces [Fig. 11(b)], as opposed to flat

surfaces [Fig. 11(a)], are often used to ensure uniform growth

of Si/SiGe heterostructures. Miscut has a dramatic effect on the

band structure of Si QW. The band structure of a flat Si QW

has two valleys that are centered at ±kx = 0 and separated by

an energy known as VS [24], [25]. VS in a flat QW is a result

Fig. 11. (a) Schematic of a SiGe/Si/SiGe QW heterostructure grown on
the [001] substrate. The crystal symmetry directions are along x and z.
(b) Schematic of a QW unit cell grown on z′[1̄0n] miscut substrate. The unit
cell is periodic along the x′[n01]-direction and y′-direction, and confined in
the z′[1̄0n]-direction. The miscut angle is θT = tan−1(1/n). The step height
is one atomic layer (a/4), where a is lattice constant. (c) Band structure of
5.26-nm-thick flat QW along x and 2◦ miscut QW along the x′-direction.
Flat QW shows the presence of two nondegenerate valleys that are separated
by an energy that is known as VS. Miscut QW shows the presence of two
degenerate valleys that are centered at ±k0

x′
. Interaction between these valleys

at ±kx′ = 0 causes a minigap (∆m), as shown in the inset. The lowest valleys
are degenerate. Here, aL = naSi, and n = 28 for 2◦ miscut. SiGe buffer layers
are not included in electronic structure calculation domain for these plots.

of interaction among states in bulk z-valleys that are centered

at kz = km, where km is the position of the valley-minimum

in strained Si. In a miscut QW, the lowest lying valleys are

degenerate with minima at ±k0

x
′ . Valley–valley interaction at

±kx = 0 causes the formation of a minigap ∆m. Thus, atomic

scale modulation of surface topology leads to very different

electronic structures in flat and miscut QWs. As a consequence

of this, flat and miscut QWs respond differently to the applied

magnetic fields. In the presence of lateral confinement in miscut

QW, the two degenerate valleys in Fig. 11(c) interact, giving

rise to VS.

The VS can be measured using magnetic probe techniques,

such as Shubnikov de Haas oscillations or electron-valley reso-

nance [26], [27]. In these measurements, in-plane confinement

of the Landau levels (LLs) is provided by the magnetic field.

Fig. 12(a) and (b) shows the dependence of VS on the applied

magnetic field in flat and 2◦ miscut QWs. In a flat QW, VS is

independent of the magnetic field because in these QWs, VS

arises from z-confinement that is provided by the confining

SiGe buffers. In miscut QWs, however, VS arises from the

interaction of two degenerate valleys that are centered at ±k0

x
′

along the x′-direction. Therefore, x′ confinement arising from

the applied magnetic field results in the dependence of VS on

the magnetic field. At low magnetic fields, this dependence is

linear. The SiGe alloy disorder that is shown in the inset of

Fig. 12(a) is inherently present in Si/SiGe heterostructures. In

tight-binding calculations, alloy disorder translates into atom

disorder and inhomogeneous strain disorder.

Authorized licensed use limited to: Purdue University. Downloaded on November 25, 2008 at 10:29 from IEEE Xplore.  Restrictions apply.
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Fig. 12. (a) VS of the first LL in a 10-nm-thick flat strained Si QW. VS
increases due to the alloy disorder (as shown in the inset) in SiGe buffer
layers. (b) VS of the first LL in a 2◦ miscut strained Si QW. The presence
of miscut surfaces leads to significant suppression in VS. Inclusion of realistic
alloy disorder in SiGe buffer layers raise the VS to experimentally observed
values. Error bars represent standard deviation in VS.

Strain disorder is known to have long-range nature (see, for

example, the QD simulations in Fig. 2). SiGe layers measuring

40 nm are included at the top and the bottom of 10-nm Si

QW for strain calculations. This SiGe thickness is sufficient to

model the long-range strain disorder, where the detailed strain

boundary conditions are not important and the SiGe volume

exceeds the Si QW volume significantly. SiGe buffers provide

electronic confinement of approximately 100 meV, because

of which the electronic states of interest in this problem are

spatially confined to the QW and only weakly penetrate into

the SiGe buffer. Therefore, one can safely reduce the electronic

structure domain to 3 nm of the SiGe buffer around the Si QW.

For this setup, the strain calculation requires 3.6 million atoms,

and the electronic structure calculation requires 0.7 million

atoms. For the idealized geometries without a SiGe buffer,

a homogeneous lattice distortion of ε‖ = 0.013 is assumed

throughout the Si QW, as approximated from the full-SiGe

buffer system calculation and hard wall boundary conditions

are assumed in the z-direction. Such electronic structure calcu-

lations require ∼50 000 atoms.

The magnetic field is introduced into the tight-binding

Hamiltonian through Peierls substation [28]–[30]. x′ confine-

ment resulting from the magnetic field is incorporated through

the Landau gauge (
⇀

A = Bxŷ). Closed boundary conditions

are used in the x- and z-directions, while the y-direction is

assumed to be (quasi-)periodic. The confinement that is induced

by closed boundary conditions in the x′-direction competes

with the magnetic field confinement. The lateral extension

of the strain and the electronic structure domain is set to

150 nm, which is about seven times larger than the maximum

magnetic confinement length in a 2-D electron gas (2DEG) at

B = 1.5 T (21 nm). For the magnetic field range of 1.5–4 T,

confinement is dominated by the magnetic field, and no lateral

x-confinement effects due to the closed boundary conditions

are visible in the simulations of Fig. 12. Modulation doping

in Si/SiGe heterostructures induces a built-in electric field. In

the simulations performed here, an electric field of 9 MV/m

is assumed in the growth direction. The SiGe alloy disorder is

assumed to be quasi-periodic in y-direction with the period of

5.5 nm, which is sufficient to capture the effect of inhomoge-

neous strain disorder.

In the presence of the applied magnetic field, the 2DEG is

quantized in LLs. The valley degeneracy of LLs is broken in

the presence of sharp confinement due to Si/SiGe interfaces in a

QW. The VS of the first LL in flat and 2◦ miscut QWs is plotted

as a function of the applied magnetic field in Fig. 12. The VS

in ideal (no SiGe disorder) miscut QWs is two orders of magni-

tude less than that in flat QWs. The SiGe alloy disorder provides

additional symmetry breaking, leading to enhancement in VS in

flat as well as miscut QWs (Fig. 12). Addition of SiGe buffers

to the electronic structure calculation domain in 2◦ miscut QWs

results in VS close to the experimentally observed values.

Previous predictions of VS [24], [25] overpredict the value

of the VS compared to experimental data [26], [27], while

perfect slanted QWs underpredict the observed VS by an order

of magnitude. Friesen et al. [31] suggest that the disorder in the

miscuts raises the VS to experimentally observed levels. Here,

we show that buffer disorder with regular miscut steps alone

can account for the additional VS. We do not have to assume

any particular step disorder models at all [32]. The atomistic

representation of the confinement buffer and the local disorder

in it is therefore an essential ingredient in the physics-based

simulation of VS. No additional disorder parameters need to be

introduced to obtain results that are close to those obtained in

the experiments! Simulations including step roughness disorder

combined with alloy disorder have recently been shown [32] to

improve the agreement with experiment.

D. SiGe Nanowires

Nanowires conduct carriers in one dimension and confine

them in the other two dimensions. As the wire diameter is

reduced to the nanometer range, it is understood that the

2-D confinement modifies the electronic structure and that the

nanowire is quite similar to an electromagnetic waveguide.

Typical calculations are performed in the single band effective

mass calculation. Full 3-D transport simulations based on the

nonequilibrium Green’s function (NEGF) have been imple-

mented in simulators [13], analyzed for interface roughness

[33], and released on the nanoHUB [34]. Since its release in

May 2006, the nanowire code has been used by more than

612 users who have run more than 8970 simulations on a

parallel virtual cluster utilizing VIOLIN [35], indicating that

there is a real demand in the community for such simulations.

It is however also understood that, as the nanowire dimension

shrinks to below 5 nm, the effective mass approximation breaks

down [36], and an atomistic representation of the material is

needed to compute the dispersion of an ideal nanowire slice.

Efforts are now underway to develop full 3-D nanowire NEGF-

based transport simulators that are fully atomistic [15]. Funda-

mental questions to be addressed here remain the influence of

the nanowire interface and the atomistic nanowire composition,

such as alloy disorder.

Recently, NEGF-based transport simulations and full 3-D

electronic structure calculations were compared for AlGaAs

nanowires [16]. A critical finding of that work was that the alloy

disorder strongly influences the dispersion along the wire direc-

tion. The considered AlGaAs wires are unstrained and “only”

contain atom disorder, while all atom positions are on a regular

zincblende GaAs/AlAs lattice. This paper presents for the first

time electronic structure calculations for SiGe nanowires that
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Fig. 13. (a) Atomistically resolved disorder in the Si0.8Ge0.2 40 × 4 × 4
nanowire. (b) Band-edge minima of the first four conduction subbands plotted
along the length of the nanowire in local band structure and VCA formulations.
(c) Band-edge minimum in the transport direction plotted along the length of
the nanowire.

contain strain, position, and atom disorder. Different nanowire

cross sections with four, six, and eight unit cells, corresponding

to 2.17, 3.26, and 4.34 nm with a common nanowire length

of 40 unit cells, corresponding to 22 nm, are considered.

Strain and electronic structure calculations are performed on the

whole nanowire in free-standing configuration. In other words,

the substrate is not taken into account.

Fig. 13(a) depicts a sliver cut through the center of the

40 × 4 × 4 sample, indicating the atomistically resolved dis-

order of the wire. Only the central 5-nm-long portion of this

22-nm-long wire is shown for good atomistic resolution. It

is obvious that there is no such thing as a repeated unit cell

in that wire. Therefore, the very concept of band structure,

which is based on a (small) repeated cell in semiconductors

is called into question [37]. The most typical approach to

deal with alloy disorder is called virtual crystal approximation

(VCA). The VCA averages the atomic potentials according to

the atom concentrations to smooth out the material. In that ap-

proach, a band structure can be easily calculated in the repeated

4 × 4 unit cell.

In another approach, one can consider a single sliver of the

4 × 4 building block, imagine that this cell is repeated infinitely,

and compute a band structure in it. This would, in a sense, repre-

sent the local band structure for each slice. With the fluctuations

in the device, one would expect that the conduction band edge

will fluctuate from slice to slice, as indicated in Fig. 13(b).

The SiGe alloy disorder splits four fourfold degenerate bands

in a pure Si nanowire. The corresponding band-edge minima of

Fig. 14. Band structures of the 40 × 4 × 4 Si0.8Ge0.2 alloy nanowire in
(gray) local band structure, (red) VCA, and (blue) zone-unfolding formulations.

these four bands in 40 × 4 × 4 SiGe alloy nanowire are plotted

along the length of the nanowire in Fig. 13(b). The four bands

are degenerate in the VCA formulation, and the band-edge

minimum of this band is also plotted in Fig. 13(b). Fig. 13(c)

shows the X-point conduction band minimum along the wire

length in local band structure and VCA formulation. Each slice

has its own local band structure, and its fluctuations in k-space

are compared in Fig. 14 against the VCA approach. This local

band structure approach does not deliver a meaningful band

edge of the wire or a meaningful effective mass.

An alternative approach to the local band structure and the

VCA approach is the computation of the electronic structure of

the overall wire to extract an approximate band structure that

describes the overall wire well [37]. This approximate band

structure is representative of the overall transport capabilities

of the wire and correlates well to NEGF transport simulations

[16]. Fig. 14 also compares the approximate band structure to

the VCA and the local band structure samples. The approximate

band structure provides a much more meaningful representation

of the nanowire performance than the other two, which either

overrepresent the disorder or ignore disorder completely. From

this approximate dispersions, one can derive critical device

parameters such as band gap and effective masses (along the

transport direction), which can be used in an approximate over-

the-barrier-model to predict device performance [17], [38].

Band gaps and effective masses are plotted as a function of

nanowire diameter in Fig. 15(a) and (b). The approximate band

structure predicts a smaller band gap than the VCA similar

to AlGaAs nanowires [16] and AlGaAs bulk [39]. The direct

(∆4) and indirect (∆2) valley band gaps show an interesting

crossover for 4.34-nm wires, which will significantly increase

the density of states at the conduction band edge and influence

device performance; the VCA assumption does not result in

such a crossover. Interestingly, the VCA and approximate band

structure result in virtually identical effective masses. Addi-

tional statistical samples on different wires need to be simulated

in the future to verify if this is a typical trend for this class of

SiGe wires.

Since the band structure is approximate, it does contain an

error bar in energy for each k point in the dispersion. These

energy uncertainties can be used to calculate the scattering time

of the state according to the prescription of [40]. One would

expect that, as the system becomes larger, the error bars become
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Fig. 15. (a) Direct (∆4 valleys) and indirect (∆2 valleys) band gaps obtained
from VCA and zone-unfolded band structures. (b) Effective masses of ∆4 and
∆2 valleys. (c) Energy uncertainties of ∆4 and ∆2 bands. The effective masses
for each valley are almost the same in the VCA and unfolded cases so that the
curves coincide.

smaller and the system becomes more bulklike. Fig. 15(c)

depicts the size of the error bars at the ∆4 and ∆2 valley

conduction band edges and indeed confirms that expectation.

Note that, even for the 4.34-nm-thick nanowire, the fluctuations

are still on the order of 5 meV.

III. CONCLUSION

NEMO 3-D is introduced to the IEEE Nanoelectronics com-

munity as a versatile open-source electronic structure code that

can handle device domains that are relevant for realistic devices.

Realistic devices containing millions of atoms can be computed

with reasonably easily available cluster computers. NEMO

3-D employs a valence-force field Keating model for strain

and the 20-band sp3d5s∗ empirical tight-binding model for

the electronic structure computation. The impact of atomistic

strain and piezoelectricity on the electronic structure in dome-

shaped QDs is explored. Under the assumptions of realistic

boundary conditions, strain is found to be long ranged and to

penetrate about 20 nm into the dot substrate, thus stressing the

need for using large dimensions of these surrounding layers

and at least three million atoms in the simulations. The true

symmetry of the QDs is found to be lower than the geometrical

shape symmetry because of the fundamental atomistic nature

of the underlying zincblende crystal lattice. Atomistic strain

is found to induce further optical polarization anisotropy fa-

voring the [110] direction and pronounced nondegeneracy in

the QD excited states, the magnitude (few millielectronvolt)

of which depends mainly on the dot size and surrounding

material matrix. First-order piezoelectric potential, on the other

hand, favors the [110] direction, reduces the nondegeneracy

in the P states, and is found to be strong enough to flip the

optical polarization in certain sized QDs [20]. Simulations

of QD stacks exemplify the complicated mechanical strain

and quantum mechanical interactions on confined electronic

states. Molecular states can be observed when the dots are in

close proximity. Simulations of SiGe-buffered Si QWs indicate

the importance of band-to-band interactions that are naturally

understood in the NEMO 3-D basis. VS is computed as a

function of the magnetic field matching experimental data.

The first simulations of disordered SiGe alloyed nanowires

indicate the critical importance of the treatment of atomistic

disorder. Typical approaches of a smoothed-out material (VCA)

or considerations of band structure in just individual slices

clearly fail to represent the disordered nanowire physics.

NEMO 3-D demonstrates the capability to model a large

variety of relevant realistically sized nanoelectronic devices.

It is released under an open-source license and maintained

by the NCN—an organization dedicated to develop and de-

ploy advanced nanoelectronic modeling and simulation tools.

NEMO 3-D is not limited to research computing alone; The

first educational version including visualization capabilities has

been released on https://www.nanohub.org. and has been used

by hundreds of users for thousands of simulations.
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