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We describe a local surrogate model for use in conjunction with global structure search methods. The model
follows the Gaussian approximation potential (GAP) formalism and is based on a the smooth overlap of atomic
positions descriptor with sparsification in terms of a reduced number of local environments using mini-batch
k-means. The model is implemented in the Atomistic Global Optimization X framework and used as a partial
replacement of the local relaxations in basin hopping structure search. The approach is shown to be robust for
a wide range of atomistic system including molecules, nano-particles, surface supported clusters and surface
thin films. The benefits in a structure search context of a local surrogate model are demonstrated. This
includes the ability to transfer learning from smaller systems as well as the possibility to perform concurrent
multi-stoichiometry searches.

I. INTRODUCTION

The use of electronic structure calculations has re-
cently undergone dramatic changes driven by the intro-
duction of machine learning (ML) techniques used in the
construction of potential energy surface (PES) surrogate
models. Supervised machine learning regression methods
have successfully been trained on large atomistic struc-
ture databases and used for the accurate and fast pre-
diction of the PES. Outstanding results have been ob-
tained with kernel based methods,1–4 such as Gaussian
Process Regression (GPR), as well as with deep neu-
ral networks.5–10 Replacing the computational expensive
electronic structure calculations, such as density func-
tional theory (DFT), with fast ML potentials has enabled
hitherto inaccessible materials modeling.11 Example of
this are longer molecular dynamics simulations provid-
ing more reliable simulated vibrational spectra,12 slower
cooling simulations providing more accurate insight in
amorphous solid phases13 and more thorough global opti-
mization searches providing new structural models of e.g.
point-defects,14 surface reconstructions15 and supported
clusters.16

The construction of ML potentials typically rely on
the pre-construction of large and diverse databases of
atomic structures along with their target potential en-
ergies and forces. This is both time-consuming and dif-
ficult since the database should be both diverse and
an exhaustive sample of the chemical space of inter-
est. Several efficient schemes have been suggested for
the construction of atomic structure databases by sam-
pling the PES, such as random structures searches,17

genetic algorithm,18 molecular dynamics sampling,19–21

meta-dynamics sampling,22 density guided approaches,23

Monte Carlo techniques,24 simulated annealing25 or local
optimization techniques.26 Common for all approaches is
that they replace some of the computationally expensive
target potential evaluations with cheaper machine learn-
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ing surrogate models.

The use of ML regression techniques for materials mod-
elling requires a transformation from the Cartesian coor-
dinates of the individual atoms of an atomic structure
to feature vectors suitable for regression. Typically this
includes translational and rotational invariance of the
representation as well as permutational invariance of the
atomic types. The features can either be atomic descrip-
tors representing the local environment of each atom or
a global descriptor representing the structural configura-
tion of the entire atomistic structure. Many approaches
have been proposed for both local27–30 and global31–34

descriptors. A recent review of the topic can be found in
Musil et al.35

A multitude of global structure search methods have
been proposed over the years. From the simple and unbi-
ased random structure search,36 where a random struc-
ture is generated and then relaxed to a local minimum
in the target potential, to the more elaborate genetic
algorithms,37–39 Other notable algorithms include basin
hopping,40 simulated annealing,41 minima-hopping42 and
particle swarm algorithms.43,44 Recently, much progress
has been gained by leveraging machine learning (ML)
techniques both for the screening of candidates and data-
driven generation of candidates45–49 as well as local re-
laxations using ML potentials.50–52

We have earlier introduced the Atomistic Global Op-
timization X (AGOX) code as a customizable and effi-
cient global structure optimization code.53 In this work,
we implement a local GPR model based on the smooth
overlap of atomic positions27 (SOAP) representation as
a surrogate model in the AGOX framework. This is used
to partly replace the structure relaxations in a paral-
lel tempering basin hopping (PT-BH) structure search.
The model is trained on-the-fly during the search thereby
enabling immediate feedback from the previously eval-
uated structural candidate and efficiently sparsified to
reduce the computational cost of both training and pre-
diction. The use of a local descriptor based model opens
for the possibility of transfer learning from pre-evaluated
data. This is explored by training on data gathered from
smaller but similar systems and by performing concur-

ar
X

iv
:2

20
8.

09
27

3v
1 

 [
ph

ys
ic

s.
ch

em
-p

h]
  1

9 
A

ug
 2

02
2

mailto:hammer@phys.au.dk


2

rent searches for a multitude of stoichimetries, where the
model data is shared between the searches. Compared
to earlier work on local GPR models21,54,55 our emphasis
is on efficient training such that to enable effective on-
the-fly learning through the use of a mini-batch k-means
sparsification, only training on energies as well as exclud-
ing the training of two- and three-body models. We show
that this simplistic approach is robust for a number of
systems ranging from nano-particles to surface thin films.
The search for two-dimensional C5NH5 and C30-cluster
are benchmarked against a PT-BH search using a global
GPR model. An illustration of the robustness of the
method is given by the search for a number of diverse sys-
tems already tackled in the literature. The systems are:
Ti13-cluster, bulk B12, two-dimensional CoB−18, Ag12S6-
cluster, (MgSO3)4 and Cu10 on a ZnO(101̄0) surface.
Furthermore, we study the oxidation of a Ag(111) sur-
face using a concurrent multi-stoichiometry BH search.
Twelve different stoichiometries are searched for simul-
taneously, where each search shares a common database
and model thus exploiting online transfer learning be-
tween the different sized systems.

The paper is outlined as follows. First, an introduc-
tion of the Gaussian approximation potential (GAP) for-
malism is provided along with our specific implementa-
tion choices. Second, the ML-enhanced PT-BH search
method is introduced in terms of the AGOX framework.
Third, a comparison between local and global surrogate
model relaxations in conjunction with the PT-BT search
method presented. Fourth, a demonstration of the ML-
enhanced PT-BH is performed for a number of previously
studied systems. Last, the oxidation phase of a Ag(111)
surface is studied using a concurrent multi-stoichiometry
BH search.

II. METHOD

A. Local Gaussian process regression model

Kernel methods, such as Gaussian Process, rely on the
transformation of the initial representation of the data by
a kernel function which enables fitting in an implicit mul-
tidimensional feature space. The kernel function can be
interpreted as a similarity measure between data points,
and such models learns properties by measuring similar-
ity to known training examples through the kernel func-
tion. A Gaussian process is defined by its kernel and
mean function which together constitute a distribution
of learnable functions prior to observations. By condi-
tioning on observations a predictive distribution arises
with its mean taken as the model prediction. Typically
a noise term is included which expresses the amount of
uncertainty, both from observation noise and any repre-
sentation errors, of the observations.

Fig. 1 schematically illustrates the concepts of rep-
resentation and a local machine learned model for the
generic compound X3Y3. Fig. 1(a) shows the local en-

(a)

(b)
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Machine learning potential

FIG. 1: (a) The transformation from an atomic
environment into a local feature representation. (b)
Parameterised path of moving one hydrogen along the
backbone of a molecule. Green outline dots represent
structures included in the training of a local model. The
green line represents prediction of the model. Albeit a
schematic, the data in the figure are indeed constructed
following the local GPR model outlined in this section.

vironment of a white atom and the transformation to a
local feature representation. Fig. 1(b) shows the total
energy prediction of a local model for the parameterised
path of moving one white atom along the molecule back-
bone. The green points indicate data used for the train-
ing of a local surrogate model, with the green line the
model prediction. Notice the promising extrapolation
far beyond any training data on the right side of the
parametrised path.

The GAP formalism extends the GPR formulation to
encompass learning total energies through a number of
local atomic representation without explicitly defining a
global descriptor. The fundamental assumption of the
GAP formalism is that the potential energy of an atomic
structure is local, such that the total energy can be de-
composed into the non-physical local energies obeying

E =
∑
n

εn. (1)
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FIG. 2: The training and prediction with a local GPR model. (a) For each structures in the training database the
atomic descriptors are calculated. (b) Based on all the local atomic features, the sparsification is performed by
selection a predefined number of basis feature vectors. In this example using k-means clustering of the features with
M = 3. (c) The kernel between the basis feature vectors and all the local features stemming from the structures are
calculated and transformed with L defined by eq. (2). Furthermore, the kernel matrix between the basis vectors is
calculated. (d) The α fitting weights are found by solving the matrix equation. (e) The prediction of a new
structure consists of calculating the atomic features. Calculating the kernel between each feature and the basis
feature vectors and multiplying with the fitting weights. This gives the local energies, which are summed to give the
total energy prediction.

This is not generally true, since long-range electrostatic
effects and quantum mechanical phenomena (e.g. non-
local extension of orbitals and fluctuating dipole interac-
tions) cannot be captured, but it has proven a very good
approximation for many systems. Thus, a GAP should
learn to predict the local energies of a given structure
based on the corresponding atomic descriptors, and the
prediction of the total energy of a given structure is sim-
ply the sum of local energies. Although this sounds sim-
ple, local energies are not present for ab-initio methods
such as DFT, and thus it is not possible to use a standard
GPR formulation, where the number of dependent and
independent variables must match.

The solution to this is through the decomposition of
the total energy given by eq. 1, which for a number of
total energies corresponding to atomistic structures can
be written as

E = Lε, (2)

where ε are all the unknown local atomic energies. The
matrix Lij is one if local energy j corresponds to an atom
in structure i and otherwise it is zero. An example of the
L matrix can be seen in fig. 2(c). In the GAP formalism
the transformation matrix L is used to relate the local
kernel matrices between the atomic descriptors to the
corresponding total energies.

The number of atomic environments, N , grows very
quickly with the number of training structures and thus
the O(N3) scaling for GPR training becomes a compu-
tational bottleneck. This is overcome by introducing a
sparse GPR where a user-defined number, M , of basis
points in feature space, are used as representative points
for all training data. This reduces the time complexity

for training to O(NM2), as well as reducing prediction
times complexity to being linear in M . Hence, choosing a
small number of representative basis features drastically
reduces the computational demands of the model. The
sparsification is furthermore supported by the assump-
tion that local environments are repetitious in atomic
structures, and thus redundant basis points can be re-
moved without reducing the quality of the model. Natu-
rally over-sparsifying will lead to a worse fit, since areas
of feature space present in the training data are under-
represented in the sparse basis.

The kernel function quantifies the similarity between
local atomic environments. The cornerstone of the sparse
GPR method is to only calculate the similarity between
all local environments in the training data, XN , and the
basis points, XM , resulting in the sparse kernel matrix
KMN = KT

NM = K(XM , XN ). Using the energy de-
composition given in eq. 2 as well as the sparse kernel
matrix KNM, the training of a local sparse GPR reduces
to solving eq. 3 for the training weights α.

α =
[
KMM + (LKNM )T Σ−1(LKNM )

]−1×
(LKNM )T Σ−1E,

(3)

with Σ being a diagonal noise matrix where Σii sets the
noise value for local environment (XN )i. In our imple-
mentation, we train the model using a QR-factorization
of the kernel matrix part and then solve the matrix equa-
tion using least squares. A further regulariser in the form
of a diagonal matrix with a small number on the diagonal
is added before factorization to reduce numerical insta-
bility. The steps needed in order to train the model are
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illustrated in fig. 2(a)-(d). In the limit of isolated basis
point, the fitting weight αi can be interpreted as the lo-
cal energy contribution for looking like basis point i when
measured in kernel similarity between atomic descriptor
environments.

The prediction of the total energy is depicted in 2(e)
and is given by

E =
∑
i

k(XM ,xi)
Tα, (4)

where the sum is over all local environments in the struc-
ture, K(XM ,xi) is the kernel similarity between the fea-
ture vector for the local environment of atom i, xi, and
the matrix of all basis feature vectors, XM . Due to the
sparsification this only includes M kernel evaluations no
matter the amount of the training data. For an in-depth
review of the GAP formalism as well as several use cases
see Deringer et al.56

How to choose the basis points in the most suitable
manner is still an open question. Previously this has been
done using k-means57 and using the CUR algorithm.54

In this work, we have chosen a mini-batch version of k-
means58 that allows for the efficient re-training of the
model during a structure search. The mini-batch k-
means divides all training data into a number of batches.
Each batch is then used to update the cluster centers
by gradient descent, such that all training data has ap-
peared once in each training iteration. In a typical struc-
ture search setting, where only a few structures are added
to the training data per search iteration, only a single k-
means training iteration is performed restarting from the
previous cluster centers. In this work, we have chosen to
use a Gaussian kernel together with the SOAP descrip-
tors as implemented in the DScribe package.59 The kernel
is given by

k(x,x′) = A exp

(
−d(x,x′)2

2l2

)
, (5)

where d(x,x′) is the Euclidean distance between atomic
feature x and x′. Though our implementation allows
the usage of all kernels buildable from the Scikit Learn
package.60 Additionally, an analytical repulsive term is
added to the prediction of the energy to avoid atoms lo-
cally relaxing to very short bond distances.54 The specific
model and representation hyperparameters used for each
system can be found in the supplementary material.

B. Machine learning enhanced parallel tempering basin
hopping

Now we introduce of the global structure optimiza-
tion algorithm used in this work. A ML-enhanced PT-
BH structure search algorithm is proposed as an efficient
global optimization (GO) algorithm exploiting surrogate
model relaxations in order to reduce the number target
potential single point evaluations. In basin hopping a sin-
gle structural candidate is evolved through a stochastic

rattle operation followed by a local relaxation. We partly
replace the local relaxation by a surrogate relaxation and
only a few local relaxation steps are taken in the target
potential. Hereby, the computational cost of the search is
significantly reduced. The rattled and relaxed candidate
replaces its parent structure as the starting point for the
next iteration if the Metropolis criterion is fullfilled. The
acceptance criterion A is given by

A = min{1, exp(β[Eparent − Erattled])}, (6)

where β = 1/kBT with T a search hyperparameter, that
determines the likelihood with which a less stable struc-
ture can replace its parent. If the newly generated struc-
ture is not accepted the parent remains the starting point
for a new stochastic rattle operation followed by the re-
laxation. Furthermore, a parallel tempering scheme is
used where several basin hopping workers at different
temperatures are run simultaneously. The workers are
then allowed to swap their parent structures if a Metropo-
lis criterion similar to eq. 6 is fullfilled. Specifically, the
acceptance criterion for swapping between two workers is
given by

A = min{1, exp([βi − βj ][Ei − Ej ])}, (7)

where the indices i and j refers to two workers. By
searching with a number of workers with varying tem-
peratures both high energy regions can effectively be ex-
plored as well as low energy regions can be exploited for
an overall increased efficiency.53 A flowchart of the search
method is shown in fig. 3 following the AGOX modules
naming.

All searches are performed in the AGOX framework
with DFT using the GPAW61,62 code except for the case
of CoB−18-cluster search which is performed in DFT using
the ORCA code.63 All DFT evaluations use the Perdew-
Burke-Ernzerhof functional.64 For the specific implemen-
tation details for each system see the supplementary ma-
terial.

III. MODEL BENCHMARK

We start by demonstrating the performance of the local
GPR model and its ability to transfer knowledge across
stoichiometries on the standard energy regression prob-
lem. This is only an indication of the models capabilities
when used in an active learning setting, such as a struc-
ture search where the model is trained on-the-fly. The
system chosen is two-dimensional C5NH5, since it con-
stitutes a multi-species system with high enough com-
plexity to be challenging, while also being easy to de-
pict visually. Furthermore, C4NH5 is used to test the
transferability of the model. Constant energy molecular
dynamics (MD) simulations at 4000K starting from ten
distinct low energy conformers of C5NH5 are sampled to
create a training and test dataset. The ten conformers
and the data present in the test dataset are visualised
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FIG. 3: Flowchart of the ML-enhanced PT-BH search
algorithm. Swaps between workers are carried out
according to the acceptance criterion given by eq. 7.

in fig. 4. 80 structures for each conformer are selected
randomly for the training dataset and 20 structures from
each for the test dataset.

Fig. 5(a,b) shows the train-test error, where the model
is trained on the entire MD training dataset. The hyper-
parameters for the kernel length-scale, l, and the model
noise are optimised with a grid search by 5-fold cross val-
idation. The parameters with lowest mean absolute error
upon validation are used, and the model is trained on the
entire training dataset. The parameters of the SOAP
descriptor are kept fixed throughout with nmax = 3,
lmax = 2, σ = 1 and a cutoff radius of 3Å as well as a poly-
nomial weight function as implemented in the DScribe
package. Fig. 5(b) demonstrates that the model is able
to interpolate the diverse set of structures present in the
test data. It is also worth noting that the model is able
to predict energies much lower than anything it has seen
in the training data, and that these predictions are very
reasonable, with the lowest energy structure being cor-
rectly predicted to be the pyridine structure as indicated
by the arrow.

Fig. 5(c,d) shows the train and test data energy predic-
tions for a model only trained on the part of the training
data which belongs to the four highest energy conform-
ers. The missing low energy conformers are pointed out
in fig. 5(c) with an arrow. Hence, no five or six ringed
structures are included in the training data. The test pre-
dictions are on the same data as in fig. 5(b) excluding

structures from the highest four energy conformers. The
model fit is worse than in the previous case, which is ex-
pected from the higher degree of extrapolation required.
Despite this, the model is able to give good prediction
for the test structures, and the lowest energy conformers
are reasonably well predicted.

One of the important features of a local model is its
ability to transfer knowledge across stoichiometries by
only relying on local feature information. This enables
pre-training models on more accessible data typically
from smaller systems and then using the model on larger
or more complex systems. As a simple demonstration
of the transferability of the model, we train a model on
a diverse dataset of C4NH5 structures. This model is
then used to predict on the C5NH5 test set. The predic-
tions are shown in fig. 5(e,f) along with the prediction
errors. The model predictions are reasonable with es-
pecially branched structures being ill-predicted, whereas
ring structures are well predicted. This is a natural con-
sequence of no structures in the training data showing
motifs with a branching carbon backbone, thus noth-
ing explicit has been learned about such environments.
Again, it can be noted that the model is able to predict
the low energy conformers with high accuracy, and that
their individual ordering of energies are almost correct.

This benchmark on a simple but diverse dataset stand
as a testament to both the extrapolative power of the lo-
cal GPR model as well as its ability to transfer knowledge
between stoichiometries. In a GO search context, this al-
lows us to solve smaller problems and transfer the data
to help improve the performance of a search on larger
problems.

IV. C5NH5 AND C30 SEARCH

We now move on to the application of the local GPR
model in a GO setting. A two-dimensional search for
C5NH5 where the global minimum (GM) is the hetero-
cyclic molecule pyridine is carried out with both a global
and a local GPR model as the surrogate model used in
the ML-enhanced PT-BH search strategy. Two choices
of global descriptors are compared by using either an av-
eraged SOAP descriptor or the Valle and Oganov finger-
print descriptor31 for the global GPR model searches.
For the local GPR model only the SOAP descriptor
is used, but transfer of either the C4NH5 GM or the
entire C4NH5 training dataset used previously is pre-
sented. Comparison is made by performing 50 inde-
pendent searches and recording at which iteration each
search is successful, which in this case is defined by find-
ing the GM pyridine structure. The accumulative sum
of the success-count as a function of number of single
point DFT evaluations then results in a statistical mea-
sure of the performance of a specific search method. See
Christiansen et al. for a more detailed explanation of
success-curves.53

Fig. 6 shows the success curves for the five different
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0.0eV 1.3eV 1.4eV 1.7eV 1.7eV

2.0eV 2.8eV 2.8eV 2.9eV 2.9eV

FIG. 4: The ten two-dimensional conformers of C5NH5 and the MD structures used as test data. The transparent
atoms behind each conformer indicate the variety of structures in the test data stemming from the MD runs. The
border coloring is used to identify which conformer the training and test data refers to in the fig. 5.

FIG. 5: (a,b) The train-test energy predictions for the model trained on all the training data. Points with a black
outline are the predictions on the ten unmodified conformers. The most stable conformer is also predicted as the
most stable test structure as indicated by the arrow. (c,d) The train-test predictions for only training on the part of
the training data belonging to the MD data from the four highest energy conformers. (e,f) The train-test predictions
for training on C4NH5 data and testing on the C5NH5 test data. Most structures in the test data are predicted far
lower in energy than anything in the training dataset owing to excellent transferability. For each prediction the
mean absolute error between the prediction and the DFT energy is stated.
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FIG. 6: Success as a function of number of search single
point evaluations for the two-dimensional C5NH5

structure search. The GM pyridine structure is shown
in the bottom corner.

search settings. As is evident, an improvement is gained
by using a local GPR model compared to a global GPR
model regardless of which representation is used with the
global model. Another improvement in the efficiency of
finding the GM is gained by biasing the local model by in-
cluding the C4NH5 GM pyrrole structure in the training
data from the start of the search. Finally, transferring
more C4NH5 data than purely the GM increases the per-
formance further. This can be ascribed to the much more
detailed model PES trained from the start of the search
already before any data is gathered during the search.
Note that the SOAP descriptors used for the global GPR
model are different from the local GPR model. Several
sets of parameters for the global SOAP descriptor have
been tested and the best choice is shown here.

We present another comparative study between the
global and local GPR models for a three-dimensional
C30-clusters search. This is shown in fig. 7. Again,
the local GPR model clearly outperforms the global GPR
model using the fingerprint descriptor. A further increase
in success is gained by including the four lowest energy
structures from C24-clusters.65

The capabilities of any machine learning potential is
limited by the representation of the atomistic structures.
The SOAP descriptor allows for the adjustment of the
representation to suit the specific use case through its
parameters such as the width of the Gaussian broaden-
ing of the atomic neighbour densities and the cutoff. The
optimal representation-parameters for a given system is
often difficult to guess and typically depends on the use
case. In a structure search setting where the data for the
model is actively being gathered during the search, both
very diverse and sometimes irrelevant data are collected
during the search. Furthermore, an effective model in an

GM

FIG. 7: Structure search for C30-clusters using a global
GPR model as compared to a local GPR model with
and without transfer data. The three distinct clusters
within 0.1eV of the GM are shown.

active learning setting, such as the on-the-fly learning of
a model in a structure search setting, is balanced with re-
spect to being confident about stable configurations out-
side its training data. If the models keeps predicting false
minima in the surrogate potential a search will continue
producing such unreasonable structures. On the other
hand, if the model is not able to extrapolate away from
its training data no exploration of the PES will occur
during the search. In both cases the search will stagnate
and not be very effective. The representation can affect
this compromise between the extrapolation and interpo-
lation qualities of the model.

Fig. 8 shows the success after 600 single points evalua-
tions for a C30-cluster search with varying SOAP parame-
ters. Specifically, the Gaussian broadening of the atomic
neighbour densities, σ, in (a) and the cutoff rc in (b).
Small σ values makes the representation very distinctive,
which hinders the extrapolative capabilities of the model
and thereby makes the search stagnate in high energy
configurations and hence poor success is reached. On
the other hand, too large values for σ also leads to poor
success. This can be attributed to the reduced distinc-
tiveness of the representation, which leads to difficulties
in resolving the optimal structural configurations. A sim-
ilar trend is seen for the effect of the cutoff of the SOAP
descriptor. Here, a too short cutoff will lead to the re-
duced distinctiveness of the representation and thus the
diminished resolution of the model. A too long cutoff has
the effect of increasing the number of distinctive local en-
vironments and thus making extrapolation difficult as all
environments appear distinct. As is evident from fig. 8,
the choice of parameters for the representation is crucial
for a search to be successful and a poor choice of param-
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FIG. 8: Search success after 600 single point evaluations
with varying representation parameters. In (a) the σ
parameter of the SOAP descriptor is varied. In (b) the
cutoff of the SOAP descriptor is varied.

eters could lead to wrong conclusion when performing
structure searches for which the GM is unknown. Over-
sparsifying the model by selecting to few basis points can
also lead to an ineffective model in a GO setting. Fig.
8(c) shows the success after 600 single point evaluations
for both C30 and C5NH5. It is evident that a lot more
basis points is needed to resolve the multi-species C5NH5

system than single-species C30 system.

V. STRUCTURE SEARCH EXAMPLES

After having seen how efficiently the ML-enhanced PT-
BH search performs on the test systems we undertake
searches for systems already investigated in literature.
A short overview of the chosen systems and with what
methods they have been studied previously is provided
below.

The global optimization of TiN -clusters for N = 2−32
has been studied by Lazauskas et al.66 In their work, they
use a genetic algorithm on a tight-binding interatomic

potential with post-search analysis of low energy clusters
using DFT. We perform a search for the Ti13-clusters
using our ML-enhanced PT-BH algorithm.

Bernstein et al. have proposed the use of ML-enhanced
RSS using a GAP potential for the search for the bulk
α-rhombohedral boron structure.67 This method utilizes
the GAP model as a surrogate landscape when perform-
ing RSS and iteratively improving the GAP model by se-
lecting geometrically diverse new training data using the
CUR algorithm. Similarly, we perform a ML-enhanced
PT-BH search for the bulk α-rhombohedral boron struc-
ture.

The GM structure of the planar Co-doped boron clus-
ter, CoB−18, has been found by Li et al. using their BH
search method TGmin.68,69 The search for the CoB−18
cluster is carried out using our ML-enhanced PT-BH
method. Unlike all other searches presented, this has
been done using the ORCA63 DFT package.

Song and Tian have investigated (Ag2S)N -clusters for
N = 1 − 8 using a generic algorithm and subsequently
characterized the properties of the their GM.70 We per-
form a structure search for the (Ag2S)6 structure using
our ML-enhanced PT-BH method corroborating the GM
found by Song and Tian.

Structure searches for nanosilicate pyroxene
(MgSO3)N for N = 1 − 10 using a Monte Carlo
basin-hopping method in a specifically tailored inter-
atomic potential followed by DFT characterization of
the found GM has been carried out by Escattlar et al.71

We perform a search for the N = 4 pyroxene cluster
confirming the GM found by Escatllar et al.71

The investigation of CuN -clusters for N = 4 − 10
on a ZnO(101̄0) surface has previously been carried
out by Paleico and Behler.46 In their work, they use
a ML-enhanced genetic algorithm employing a high-
dimensional neural network potential. We have per-
formed a search for the N = 10 cluster on a frozen
ZnO(101̄0) surface using our ML-enhanced PT-BH
method confirming the GM found by Paleico and Behler.

Fig. 9 shows the energy evolution of a single ML-
enhanced PT-BH search using the local GPR surrogate
model for the six different systems studied in this sec-
tion. In all cases the search algorithm successfully iden-
tifies the global minimum structure as well as providing
reasonable structural candidates during the search. This
shows the applicability of the method to a large variation
of systems previously studied in the literature. For the
specific search details see the supplementary material.

VI. SILVER-OXIDE CONCURRENT SEARCH

The oxidation of a Ag(111) surface has previously been
studied both experimentally and theoretically.72,73 Thor-
ough searches with varying stoichiometries along with
thermodynamical calculations have successfully identi-
fied the correct experimental structure of the c(4 × 8)
phase, but relying on large amounts of computational



9

FIG. 9: Examples of the ML enhanced PT-BH searches for a variation of different systems. For each system the
energy progression relative to the GM energy is plotted. The GM structure along with an earlier candidate is shown.

resources, since each stoichiometry is searched for com-
pletely independently from each other. We propose a
concurrent searching scheme outlined in fig. 10, where
a number N concurrent searches are started simultane-
ously with a shared database and a shared model. Since
the local GPR model does not require the training struc-
tures to be of the same size, it is possible to train a
common model based on all the data gathered in the N
searches, thus enabling online transfer learning between
multiple searches. This has the benefit, that the model
improves much faster as compared to a search with only
one stoichimetry. Furthermore, motifs which are difficult
to construct in one stoichiometry might be easier in an-
other and thus the model will quickly cover a large part
local feature space. The searches do not share structural
candidates, but this could easily be implemented such
that interesting structures with one stoichimetry can be
used in the search for a slightly different stoichiometry
with the correct number of atoms added or subtracted.

For the Ag(111)− c(4× 8) surface oxide search, twelve
concurrent searches are started for AgXOY with 4 ≤ X ≤
6 and 2 ≤ Y ≤ 5 using a two-layer Ag slab and thus cov-

ering the area around the previously established most
stable oxide phase, Ag5O4. The most stable structure
for each stoichiometry is plotted in fig. 11 corroborating
the previous results using independent global structure
searches. These are obtained by relaxing the five most
promising structural candidates on a five layer slab and
plotting the lowest energy structure for each stoichiome-
try. It is worth noting, that several structures share the
same motifs, such as the Ag5OY structures for Y = 3−5,
where the difference is only the addition or subtraction
of a single oxygen compared to Ag5O4. Triangular mo-
tifs with a single central on top oxygen is also apparent
in several of the most stable structures such as Ag6O3,
Ag4O4 and Ag6O4. Furthermore, square motifs with a
single central on top oxygen are evident for lower cov-
erage such as Ag4O2, Ag5O2 and Ag4O3. Due to the
repetition of stable motifs between stoichiometries the
online transfer of knowledge between systems is expected
to have improved the search significantly.

Post search the most stable structures for each stoi-
chiometry are compared by their Gibbs free energy ac-
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× ×4 2{ },

...

Worker 1 Worker N

× ×6 5{ },

Concurrent search

Common
Database

Model

{
FIG. 10: Illustration of the concurrent
multi-stoichiometry search, where a number of workers
search for structures with a varying number of silver
and oxygen atoms, but share a common database and
model.

cording to74

∆G(T, p) = EDFT − EDFT
slab − Y µAg −XµO(T, p), (8)

where EDFT is the DFT energy of the entire structure
and EDFT

slab is the energy of the Ag(111) − c(4 × 8) five
layer slab. The chemical potential of Ag is calculated as
the difference per atom between a six- and five-layer slab.
The oxygen chemical potential is calculated as74

µO(T, p) = ∆µO(T, p) +
1

2
EDFT

O2
, (9)

where ∆µO(T, p) is the temperature and pressure de-
pendent part of the chemical potential. The free en-
ergy for Ag4O2, Ag6O3, Ag5O4 and Ag6O5 are shown
in fig. 11(a) for varying ∆µO(T, p). It is observed, that
for a wide range of ∆µO-values the Ag5O4 stoichiom-
etry is the most stable phase. Fig. 11(b) shows the
free energy for the twelve investigated stoichiometries
with ∆µO = −0.5eV corresponding roughly to ambient
conditions.73 The concurrent search method enabled by
the use of a local model allows for effortless searches for
the most stable phase when the experimental composi-
tion is unknown.

VII. CONCLUSION

We have introduced a local GPR surrogate model
based on the GAP formalism and implemented it in the

AGOX framework for the use in conjunction with struc-
ture search methods. The local GPR model has been
used as a partial replacement for the local relaxations in
BH structure search and it is shown that it is efficient and
robust on a number of atomistic systems. Furthermore,
transfer learning has been successfully exploited both for
pre-training on smaller system and online transfer in con-
current multi-stoichiometry structure searches.
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3A. P. Bartók, S. De, C. Poelking, N. Bernstein, J. R. Kermode,
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Faraday Discuss. 211, 45 (2018).

18M. K. Bisbo and B. Hammer, Phys. Rev. Lett. 124, 086102
(2020).

19J. Behler, Int. J. Quantum Chem. 115, 1032 (2015).
20Z. Li, J. R. Kermode, and A. De Vita, Phys. Rev. Lett. 114,

096405 (2015).
21R. Jinnouchi, F. Karsai, and G. Kresse, Phys. Rev. B 100,

014105 (2019).
22J. Xu, X.-M. Cao, and P. Hu, J. Chem. Theory Comput. 17,

4465 (2021).
23G. Schmitz, E. L. Klinting, and O. Christiansen, J. Chem. Phys.
153, 064105 (2020).

24T. D. Loeffler, T. K. Patra, H. Chan, M. Cherukara, and S. K.
R. S. Sankaranarayanan, J. Phys. Chem. C 124, 4907 (2020).

25J. Timmermann, Y. Lee, C. G. Staacke, J. T. Margraf,
C. Scheurer, and K. Reuter, J. Chem. Phys. 155, 244107 (2021).

26Q. Lin, Y. Zhang, B. Zhao, and B. Jiang, J. Chem. Phys. 152,
154104 (2020).

27J. Behler, J. Chem. Phys. 134, 074106 (2011).
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54V. L. Deringer and G. Csányi, Phys. Rev. B 95, 094203 (2017).
55J. Vandermause, S. B. Torrisi, S. Batzner, Y. Xie, L. Sun, A. M.

Kolpak, and B. Kozinsky, npj Comput. Mater. 6, 1 (2020).
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